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Abstract

The CADE ATP System Computer (CASC) evaluates the performance of sound, fully
automatic, classical logic, ATP systems. The evaluation is in terms of the number of problems
solved, the number of acceptable proofs and models produced, and the average runtime for
problems solved, in the context of a bounded number of eligible problems chosen from the
TPTP problem library, and specified time limits on solution attempts. The 5th IJCAR ATP
System Competition (CASC-J5) was held on 17th July 2008. The design of the competition
and it’s rules, and information regarding the competing systems, are provided in this report.

1 Introduction

The CADE conferences are the major forum for the presentation of new research in all as-
pects of automated deduction. In order to stimulate ATP research and system development,
and to expose ATP systems within and beyond the ATP community, the CADE ATP Sys-
tem Competition (CASC) is held at each CADE conference. CASC-J5 was held on 17th
July 2010, as part of the 5th International Joint Conference on Automated Reasoning (IJ-
CAR 2010)1, in Edinburgh, United Kingdom. It is the fifteenth competition in the CASC series
[113, 118, 116, 87, 89, 112, 110, 111, 94, 96, 98, 100, 103, 105].

CASC evaluates the performance of sound, fully automatic, classical logic, ATP systems.
The evaluation is in terms of:

• the number of problems solved,

• the number of acceptable proofs and models produced, and

• the average runtime for problems solved;

in the context of:

• a bounded number of eligible problems, chosen from the TPTP problem library [104], and

• specified time limits on solution attempts.

Thirty-eight ATP systems and variants, listed in Table 1, entered into the various competition
and demonstration divisions. The winners of the CASC-22 (the previous CASC) divisions were
automatically entered into those divisions, to provide benchmarks against which progress can be
judged (the competition archive provides access to the systems’ executables and source code).2

The design and procedures of this CASC evolved from those of previous CASCs [113, 114,
109, 115, 85, 86, 88, 90, 91, 92, 93, 95, 97, 99, 102]. Important changes for this CASC were:

• The THF division became a full competition division.

1CADE was a constituent conference of IJCAR, hence CASC-“J5”.
2The CASC-22 LTB winner, Vampire-LTB 11.0, was only roughly adapted to the changes to the organization

of the CASC-J5 LTB division. It’s performance was thus compromised.
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• The FOF division had three problem categories - the existing FNE and FEQ categories,
and a new FEP category for FOF effectively propositional problems (which were removed
from the FNE and FEQ problem categories). Problems were placed in the FEP category
if their CNF is EPR (using E’s FOF to CNF converter).

• The SAT division was suspended.

• The LTB division had only an assurance ranking class.

• A TFA (Typed First-order with Arithmetic) demonstration division was added.

• The problems in each division and LTB problem category were given in increasing order of
TPTP difficulty rating (this is aesthetic in the non-LTB divisions, but practically impor-
tant in the LTB problem categories where it is possible to learn from proofs found earlier
in the batch).

• In the LTB division:
– The division was run on quad-core computers. Systems were encouraged to take

advantage of the multiple cores.

– The batch specification file had a new configuration section.

– There was a per-problem wall clock time limit, and an overall wall clock time limit
that was the per-problem limit multiplied by the number of problems. The per-
problem wall clock time limit was announced to be in the range 30s-60s. These time
limits were given in the configuration section at the start of the batch specification
file. The overall wall clock time limit was also (as previously) available as a command
line parameter. There were no CPU time limits.

• The efficiency measure was changed, to use the average of the individual solution rates
rather than the overall solution rate.

• Timing was to 100ths of a second.

The competition organizer was Geoff Sutcliffe. The competition was overseen by a panel of
knowledgeable researchers who were not participating in the event; the CASC-J5 panel members
were Nikolaj Bjørner, John Slaney, and Christoph Weidenbach. The CASC rules, specifications,
and deadlines are absolute. Only the panel has the right to make exceptions. The competition
was run on computers provided by the Max-Planck-Insitut für Informatik, Saarbrücken, Ger-
many, and the Department of Computer Science, University of Manchester, United Kingdom.
The CASC-J5 web site provides access to resources used before, during, and after the event:
http://www.tptp.org/CASC/J5

It is assumed that all entrants have read the web pages related to the competition, and
have complied with the competition rules. Non-compliance with the rules could lead to dis-
qualification. A “catch-all” rule is used to deal with any unforeseen circumstances: No cheating
is allowed. The panel is allowed to disqualify entrants due to unfairness, and to adjust the
competition rules in case of misuse.

2 Divisions

CASC is run in divisions according to problem and system characteristics. There are competition
divisions in which systems are explicitly ranked, and a demonstration division in which systems
demonstrate their abilities without being formally ranked. Some divisions are further divided
into problem categories, which make it possible to analyse, at a more fine grained level, which
systems work well for what types of problems. The problem categories have no effect on the
competition rankings, which are made at only the division level.

3
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2.1 The Competition Divisions

The competition divisions are open to ATP systems that meet the required system properties
described in Section 6.1. Each competition division uses problems that have certain logical,
language, and syntactic characteristics, so that the ATP systems that compete in the division
are, in principle, able to attempt all the problems in the division.

The THF division: Typed Higher-order Form non-propositional theorems (axioms with a
provable conjecture), using only the THF0 syntax. The THF division has two problem categories:

• The TNE category: THF with No Equality

• The TEQ category: THF with EQuality

The FOF division: First-Order Form non-propositional theorems (axioms with a provable
conjecture). The FOF division has three problem categories:

• The FNE category: FOF with No Equality, not (obviously) effectively propositional

• The FEQ category: FOF with Equality, not (obviously) effectively propositional

• The FEP category: FOF Effectively Propositional

The FNT division: First-order form non-propositional Non-Theorems (axioms with an un-
provable conjecture, and satisfiable axioms sets). The FNT division has two problem categories:

• The FNN category: FNT with No equality

• The FNQ category: FNT with eQuality

The CNF division: Clause Normal Form really non-propositional theorems (unsatisfiable
clause sets), but not unit equality problems (see the UEQ division below). Really non-propositional
means with an infinite Herbrand universe. The CNF division has five problem categories:

• The HNE category: Horn with No Equality

• The HEQ category: Horn with some (but not pure) EQuality

• The NNE category: Non-Horn with No Equality

• The NEQ category: Non-Horn with some (but not pure) EQuality

• The PEQ category: Pure EQuality

The EPR division: Effectively PRopositional clause normal form theorems and non-theorems
(clause sets). Effectively propositional means non-propositional with a finite Herbrand Universe.
The EPR division has two problem categories:

• The EPT category: Effectively Propositional Theorems (unsatisfiable clause sets)

• The EPS category: Effectively Propositional non-theorems (Satisfiable clause sets)

The UEQ division: Unit EQuality clause normal form really non-propositional theorems
(unsatisfiable clause sets).

The LTB division: First-order form non-propositional theorems (axioms with a provable
conjecture) from Large Theories, presented in Batches. The LTB division has three problem
categories:

• The CYC category: Problems taken from the Cyc contribution to the CSR domain of the
TPTP. These are problems CSR025 to CSR074.

4
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• The MZR category: Problems taken from the Mizar Problems for Theorem Proving
(MPTP) contribution to the TPTP. These are problems ALG214 to ALG234, CAT021 to
CAT037, GRP618 to GRP653, LAT282 to LAT380, SEU406 to SEU451, and TOP023 to TOP048.

• The SMO category: Problems taken from the Suggested Upper Merged Ontology (SUMO)
contribution to the CSR domain of the TPTP. These are problems CSR075 to CSR109, and
CSR118.

Section 3.2 explains what problems are eligible for use in each division and category. Section 4
explains how the systems are ranked in each division.

2.2 The Demonstration Division

ATP systems that cannot run in the competition divisions for any reason (e.g., the system re-
quires special hardware, or the entrant is an organizer) can be entered into the demonstration
division. Demonstration division systems can run on the competition computers, or the com-
puters can be supplied by the entrant. Computers supplied by the entrant may be brought to
CASC, or may be accessed via the internet. The demonstration division results are presented
along with the competition divisions’ results, but may not be comparable with those results.
The systems are not ranked and no prizes are awarded. The entry specifies which competition
divisions’ problems are to be used.

In CASC-J5, in addition to the competition divisions, there was an additional demonstration
division:

• The TFA division: Typed First-order with Arithmetic theorems (axioms with a provable
conjecture, using the TFF0 syntax and the proposed TPTP arithmetic format). These
were limited to integer arithmetic problems.

3 Infrastructure

3.1 Computers

The non-LTB division computers were Dual-Opteron computers, each having:

• Two AMD Opteron(tm) Processor 250, 2390MHz CPUs

• 7.5GB memory

• Linux mpicl3-04 2.6.30.10.1.amd64-smp operating system

The LTB division computers were quad-core Dell server computers, each having:

• Four Intel(R) Xeon(R) L5410, 2.333GHz CPUs

• 12GB memory

• Linux 2.6.29.4-167.fc11.x86 64 operating system

3.2 Problems

3.2.1 Problem Selection

The problems were taken from the TPTP problem library, version v4.0.0. The TPTP version
used for the competition is not released until after the system delivery deadline, so that new
problems have not seen by the entrants.

The problems have to meet certain criteria to be eligible for selection:

5
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• The TPTP uses system performance data to compute problem difficulty ratings, and from
the ratings classifies problems as one of [117]:

– Easy: Solvable by all state-of-the-art ATP systems

– Difficult: Solvable by some state-of-the-art ATP systems

– Unsolved: Solvable by no ATP systems

– Open: Theoremhood unknown

Difficult problems with a rating in the range 0.21 to 0.99 are eligible. Problems of lesser
and greater difficulty ratings might also be eligible in some divisions (especially the LTB
division, because the TPTP problem ratings are computed from sequential mode results).
Performance data from systems submitted by the system submission deadline is used for
computing the problem ratings for the TPTP version used for the competition.

• The TPTP distinguishes versions of problems as one of standard, incomplete, augmented,
especial, or biased. All except biased problems are eligible.

• In the LTB division, the problems are selected so that there is consistent symbol usage
between problems in each category, but there may not be consistent axiom naming between
problems.

The problems used are randomly selected from the eligible problems at the start of the
competition, based on a seed supplied by the competition panel.
• The selection is constrained so that no division or category contains an excessive number

of very similar problems.

• The selection mechanism is biased to select problems that are new in the TPTP version
used, until 50% of the problems in each category have been selected, after which random
selection (from old and new problems) continues. The actual percentage of new problems
used depends on how many new problems are eligible and the limitation on very similar
problems.

3.2.2 Number of Problems

The minimal numbers of problems that have to be used in each division and category, to ensure
sufficient confidence in the competition results, are determined from the numbers of eligible
problems in each division and category [43] (the competition organizers have to ensure that
there are sufficient computers available to run the ATP systems on this minimal number of
problems). The minimal numbers of problems is used in determining the time limits imposed
on each solution attempt - see Section 3.3.

A lower bound on the total number of problems to be used is determined from the number
of computers available, the time allocated to the competition, the number of ATP systems to
be run on the competition computers over all the divisions, and the per-problem time limit,
according to the following relationship:

NumberOfProblems =
NumberOfComputers ∗ TimeAllocated

NumberOfATPSystems ∗ TimeLimit

It is a lower bound on the total number of problems because it assumes that every system
uses all of the time limit for each problem. Since some solution attempts succeed before the
time limit is reached, more problems can be used.

The numbers of problems used in the categories in the various divisions are (roughly) pro-
portional to the numbers of eligible problems than can be used in the categories, after taking
into account the limitation on very similar problems. The numbers of problems used in each
division and category are determined according to the judgement of the competition organizers.

6
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3.2.3 Problem Preparation

The problems are in TPTP format, with include directives (included files are found relative to
the TPTP environment variable). The problems in each division and LTB problem category are
given in increasing order of TPTP difficulty rating (this is aesthetic in the non-LTB divisions,
but practically important in the LTB problem categories where it is possible to learn from proofs
found earlier in the batch).

In order to ensure that no system receives an advantage or disadvantage due to the specific
presentation of the problems in the TPTP, the problems are preprocessed to:

• strip out all comment lines, including the problem header

• randomly reorder the formulae/clauses (the include directives are left before the formulae,
and in the THF division all symbols’ type declarations are kept before the symbols’ uses)

• randomly swap the arguments of associative connectives, and randomly reverse implica-
tions

• randomly reverse equalities

In order to prevent systems from recognizing problems from their file names, symbolic links
are made to the selected problems, using names of the form CCCNNN-1.p for the symbolic links.
CCC is the division or problem category name, and NNN runs from 001 to the number of problems
in the respective division or problem category. The problems are specified to the ATP systems
using the symbolic link names.

In the demonstration division the same problems are used as for the competition divisions,
with the same preprocessing applied. However, the original fille names can be retained for
systems running on computers provided by the entrant.

In the LTB division, the problems for each category are listed in a batch specification file,
containing:

• A header line % SZS start BatchConfiguration

• The problem category is given in a line of the form division.category LTB.category mnemonic

• The per-problem wall clock time limit is given in a line of the form limit.time.problem.wc

limit in seconds

• The overall wall clock time limit is given in a line of the form limit.time.overall.wc

limit in seconds

• A terminator line % SZS end BatchConfiguration

• A header line % SZS start BatchIncludes

• include directives that are used in every problem. Problems in the batch have all these
include directives, and can also have other include directives that are not listed here.

• A terminating line % SZS end BatchIncludes

• A header line % SZS start BatchProblems

• Pairs of absolute problem file names, and absolute output file names where the output for
the problem must be written.

• A terminator line % SZS end BatchProblems

3.3 Resource Limits

Non-LTB divisions
CPU and wall clock time limits are imposed. A minimal CPU time limit of 240 seconds per
problem is used. The maximal CPU time limit per problem is determined using the relationship

7
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used for determining the number of problems, with the minimal number of problems as the
NumberOfProblems. The CPU time limit is chosen as a reasonable value within the range
allowed, and is announced at the competition. The wall clock time limit is imposed in addition
to the CPU time limit, to limit very high memory usage that causes swapping. The wall clock
time limit is double the CPU time limit. The time limits are imposed individually on each
solution attempt.

In the demonstration division, each entrant can choose to use either a CPU or a wall clock
time limit, whose value is the CPU time limit of the competition divisions.

LTB division
There is a per-problem wall clock time limit, and an overall wall clock time limit that is the
per-problem limit multiplied by the number of problems. The per-problem wall clock time limit
is in the range 30s-60s. These time limits are given in the configuration section at the start of
the batch specification file. The overall wall clock time limit is also available as a command line
parameter. There are no CPU time limits.

4 System Evaluation

For each ATP system, for each problem, four items of data are recorded: whether or not a
solution was found, the CPU time taken, the wall clock time taken, and whether or not a
solution (proof or model) was output. In the LTB division, time spent before starting the first
problem, and times spent between ending a problem and starting the next, are not part of the
time taken on problems.

The systems are ranked at the division level from the performance data. All the divisions
have an assurance ranking class, ranked according to the number of problems solved (a “yes”
output, giving an assurance of the existence of a proof/model). The FOF and FNT divisions
additionally have a proof/model ranking class, ranked according to the number of problems
solved with an acceptable proof/model output. Ties are broken according to the average time
over problems solved (CPU time for the non-LTB divisions, wall clock time for the LTB division).
In the competition divisions, class winners are announced and prizes are awarded.

The competition panel decides whether or not the systems’ proofs and models are acceptable
for the proof/model ranking classes. The criteria include:

• Derivations must be complete, starting at formulae from the problem, and ending at the
conjecture (for axiomatic proofs) or a false formula (for proofs by contradiction, including
CNF refutations).

• For proofs of FOF problems by CNF refutation, the conversion from FOF to CNF must
be adequately documented.

• Derivations must show only relevant inference steps.

• Inference steps must document the parent formulae, the inference rule used, and the in-
ferred formula.

• Inference steps must be reasonably fine-grained.

• An unsatisfiable set of ground instances of clauses is acceptable for establishing the unsat-
isfiability of a set of clauses.

• Models must be complete, documenting the domain, function maps, and predicate maps.
The domain, function maps, and predicate maps may be specified by explicit ground lists
(of mappings), or by any clear, terminating algorithm.
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In the assurance ranking classes the ATP systems are not required to output solutions (proofs
or models). However, systems that do output solutions are highlighted in the presentation of
results.

In addition to the ranking criteria, two other measures are made and presented in the results:
The state-of-the-art contribution (SOTAC) quantifies the unique abilities of the systems. For
each problem solved by a system, its SOTAC for the problem is the inverse of the number of
systems that solved the problem, and a system’s overall SOTAC is the average SOTAC over
the problems it solves. The efficiency measure balances the number of problems solved with
the CPU time taken. It is the average of the inverses of the times for problems solved (CPU
times for the non-LTB divisions, wall clock times for the LTB division, with times less that the
timing granularity rounded up to that granularity, to avoid skewing caused by very low times)
multiplied by the fraction of problems solved. This can be interpreted intuitively as the average
of the solution rates (for problems solved) multiplied by the fraction of problems solved.

At some time after the competition, all high ranking systems in each division are tested
over the entire TPTP. This provides a final check for soundness (see Section 6.1 regarding
soundness checking before the competition). If a system is found to be unsound during or after
the competition, but before the competition report is published, and it cannot be shown that
the unsoundness did not manifest itself in the competition, then the system is retrospectively
disqualified. At some time after the competition, the proofs and models from the winners of
the proof/model ranking classes are checked by the panel. If any of the proofs or models are
unacceptable, i.e., they are significantly worse than the samples provided, then that system is
retrospectively disqualified. All disqualifications are explained in the competition report.

5 System Entry

To be entered into CASC, systems have to be registered using the CASC system registration
form. No registrations are accepted after the registration deadline. For each system entered, an
entrant has to be nominated to handle all issues (including execution difficulties) arising before
and during the competition. The nominated entrant must formally register for CASC. It is not
necessary for entrants to physically attend the competition.

Systems can be entered at only the division level, and can be entered into more than one
division (a system that is not entered into a competition division is assumed to perform worse
than the entered systems, for that type of problem - wimping out is not an option). Entering
many similar versions of the same system is deprecated, and entrants may be required to limit
the number of system versions that they enter. Systems that rely essentially on running other
ATP systems without adding value are deprecated; the competition panel may disallow or move
such systems to the demonstration division. The division winners from the previous CASC are
automatically entered into their divisions, to provide benchmarks against which progress can be
judged.

5.1 System Description

A system description has to be provided for each ATP system entered, using the HTML schema
supplied on the CASC web site. The schema has the following sections:

• Architecture. This section introduces the ATP system, and describes the calculus and
inference rules used.

• Strategies. This section describes the search strategies used, why they are effective, and
how they are selected for given problems. Any strategy tuning that is based on specific
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problems’ characteristics must be clearly described (and justified in light of the tuning
restrictions described in Section 6.1).

• Implementation. This section describes the implementation of the ATP system, including
the programming language used, important internal data structures, and any special code
libraries used. The availability of system is described here.

• Expected competition performance. This section makes some predictions about the perfor-
mance of the ATP system in each of the divisions and categories in which it is competing.

• References.

The system description has to be emailed to the competition organizers by the system de-
scription deadline. The system descriptions, along with information regarding the competition
design and procedures, form the proceedings for the competition.

5.2 Sample Solutions

For systems in the proof/model classes, representative sample solutions must be emailed to the
competition organizers by the sample solutions deadline. Use of the TPTP format for proofs and
finite interpretations is encouraged. Proof samples for the FOF proof class must include a proof
for SYN075+1. Model samples for the FNT model class must include models for MGT019+2 and
SWV010+1. The sample solutions must illustrate the use of all inference rules. An explanation
must be provided for any non-obvious features.

6 System Requirements

6.1 System Properties

Systems are required to have the following properties. Entrants must ensure that their systems
execute in a competition-like environment, and have the following properties. Entrants are
advised to check these well in advance of the system delivery deadline. This gives the competition
organizers time to help resolve any difficulties encountered. Entrants do not have access to the
competition computers.

6.1.1 Soundness and Completeness

• Systems must be sound. At some time before the competition all the systems in the
competition divisions are tested for soundness. Non-theorems are submitted to the systems
in the THF, FOF, CNF, EPR, UEQ, and LTB divisions, and theorems are submitted to the
systems in the FNT and EPR divisions. Finding a proof of a non-theorem or a disproof of a
theorem indicates unsoundness. If a system fails the soundness testing it must be repaired
by the unsoundness repair deadline or be withdrawn. The soundness testing eliminates
the possibility of a system simply delaying for some amount of time and then claiming
to have found a solution. At some time after the competition, all high ranking systems
in the competition divisions are tested over the entire TPTP. This provides a final check
for soundness. For systems running on entrant supplied computers in the demonstration
division, the entrant must perform the soundness testing and report the results to the
competition organizers.

• Systems do not have to be complete in any sense, including calculus, search control, im-
plementation, or resource requirements.
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• All techniques used must be general purpose, and expected to extend usefully to new un-
seen problems. The precomputation and storage of information about individual TPTP
problems and axiom sets is not allowed. Strategies and strategy selection based on individ-
ual TPTP problems is not allowed. If machine learning procedures are used, the learning
must ensure that sufficient generalization is obtained so that no there is no specialization
to individual problems or their solutions.

• The system’s performance must be reproducible by running the system again.

6.1.2 Execution

• Systems have to run on a single locally provided standard UNIX computer (the competition
computers - see Section 3.1). ATP systems that cannot run on the competition computers
can be entered into the demonstration division.

• Systems must be executable by a single command line, using an absolute path name for
the executable, which might not be in the current directory. In the non-LTB divisions the
command line arguments are the absolute path name of a symbolic link as the problem file
name, the time limit (if required by the entrant), and entrant specified system switches.
In the LTB division the command line arguments are the absolute path name of the batch
specification file, the aggregated batch time limit (if required by the entrant), and entrant
specified system switches. No shell features, such as input or output redirection, may be
used in the command line. No assumptions may be made about the format of the problem
file name.

• Systems must be fully automatic, i.e., any command line switches have to be the same for
all problems in each division.

• In the LTB division the systems must attempt the problems in the order given in the batch
specification file. Systems may not start any attempt on a problem, including reading the
problem file, before ending the attempt on the preceding problem.

6.1.3 Output

• In the non-LTB divisions all solution output must be to stdout. In the LTB division all
solution output must be to the named output file for each problem.

• For each problem, the systems have to output a distinguished string (specified by the
entrant), indicating what solution has been found or that no conclusion has been reached.
The distinguished strings should use the SZS ontology and standards [101]. For example

SZS status Unsatisfiable for SYN075-1

or

SZS status GaveUp for SYN075-1

Regardless of whether the SZS status values are used, the distinguished strings must be
different for:

– Proved theorems of FOF problems (SZS status Theorem)

– Disproved conjectures of FNT problems (SZS status CounterSatisfiable)

– Unsatisfiable sets of formulae (FOF problems without conjectures) and unsatisfiable
set of clauses (CNF problems) (SZS status Unsatisfiable)

– Satisfiable sets of formulae (FNT problems without conjectures) (SZS status Satisfiable)

The first distinguished string output is accepted as the system’s result.

11



CASC-J5 Sutcliffe

• When outputting proofs/models, the start and end of the proof/model must be delimited
by distinguished strings (specified by the entrant). The distinguished strings should use
the SZS ontology and standards. For example

SZS output start CNFRefutation for SYN075-1

...

SZS output end CNFRefutation for SYN075-1

Regardless of whether the SZS output forms are used, the distinguished strings must be
different for:

– Proofs (SZS output forms Proof, Refutation, CNFRefutation)

– Models (SZS output forms Model, FiniteModel, InfiniteModel, Saturation)

The string specifying the problem status must be output before the start of a proof/model.
Use of the TPTP format for proofs and finite interpretations is encouraged [107].

• In the LTB division the systems must print SZS notification lines to stdout when starting
and ending all work on a problem (including any cleanup work, such as deleting temporary
files). It is recommended that the result for the problem be output as the last thing
before the ending notification line (note, the result must also be output to the solution file
anyway). For example

% SZS status Started for /home/graph/tptp/TPTP/Problems/CSR/CSR075+2.p

... (system churns away, result and solution output to file)

% SZS status Theorem for /home/graph/tptp/TPTP/Problems/CSR/CSR075+2.p

% SZS status Ended for /home/graph/tptp/TPTP/Problems/CSR/CSR075+2.p

Once the Ended notification is received the output file is time stamped and may not be
changed. Systems may spend any amount of time before starting the first problem (e.g.,
preloading and analysing the batch axioms), and any amount of time between ending a
problem and starting the next (e.g., learning from the proof just found). This time is not
part of the time used for any problem, but is part of the overall time for the batch.

6.1.4 Resource Usage

• The systems that run on the competition computers have to be interruptible by a SIGXCPU

signal, so that the CPU time limit can be imposed, and interruptible by a SIGALRM signal, so
that the wall clock time limit can be imposed. For systems that create multiple processes,
the signal is sent first to the process at the top of the hierarchy, then one second later to
all processes in the hierarchy. The default action on receiving these signals is to exit (thus
complying with the time limit, as required), but systems may catch the signals and exit
of their own accord. If a system runs past a time limit this is noticed in the timing data,
and the system is considered to have not solved that problem.

• If an ATP system terminates of its own accord, it may not leave any temporary or in-
termediate output files. If an ATP system is terminated by a SIGXCPU or SIGALRM, it may
not leave any temporary or intermediate files anywhere other than in /tmp. Multiple
copies of the ATP systems have to be executable concurrently on different computers but
in the same (NFS cross mounted) directory. It is therefore necessary to avoid producing
temporary files that do not have unique names, with respect to the computers and other
processes. An adequate solution is a file name including the host computer name and the
process id.

12



CASC-J5 Sutcliffe

• For practical reasons excessive output from an ATP system is not allowed. A limit, depen-
dent on the disk space available, is imposed on the amount of output that can be produced.
The limit is at least 10MB per system.

6.2 System Delivery

For systems running on the competition computers, entrants must email an installation package
to the competition organizers by the system delivery deadline. The installation package must
be a .tgz file containing the system source code, any other files required for installation, and a
ReadMe file. The ReadMe file must contain:

• Instructions for installation

• Instructions for executing the system, using %s and %d to indicate where the problem file
name and time limit must appear in the command line.

• The distinguished strings indicating what solution has been found, and delimiting proof-
s/models.

The installation procedure may require changing path variables, invoking make or something
similar, etc, but nothing unreasonably complicated. All system binaries must be created in the
installation process; they cannot be delivered as part of the installation package. If the ATP
system requires any special software, libraries, etc, which is not part of a standard installation,
the competition organizers must be told in the system registration. The system is installed
onto the competition computers by the competition organizers, following the instructions in the
ReadMe file. Installation failures before the system delivery deadline are passed back to the
entrant. (i.e., delivery of the installation package before the system delivery deadline provides
an opportunity to fix things if the installation fails!). After the system delivery deadline no
further changes or late systems are accepted.

For systems running on entrant supplied computers in the demonstration division, entrants
must deliver a source code package to the competition organizers by the start of the competition.
The source code package must be a .tgz file containing the system source code.

After the competition all competition division systems’ source code is made publically avail-
able on the CASC web site. In the demonstration division, the entrant specifies whether or not
the source code is placed on the CASC web site. An open source license is encouraged.

6.3 System Execution

Execution of the ATP systems on the competition computers is controlled by a perl script,
provided by the competition organizers. The jobs are queued onto the computers so that each
computer is running one job at a time. In the non-LTB divisions, all attempts at the Nth
problems in all the divisions and categories are started before any attempts at the (N+1)th
problems. In the LTB division all attempts in each category in the division are started before
any attempts at the next category.

During the competition a perl script parses the systems’ outputs. If any of an ATP system’s
distinguished strings are found then the time used to that point is noted. A system has solved
a problem iff it outputs its termination string within the time limit, and a system has produced
a proof/model iff it outputs its end-of-proof/model string within the time limit. The result and
timing data is used to generate an HTML file, and a web browser is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

13



CASC-J5 Sutcliffe

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 Ayane 2

Russell Wallace
Independent researcher, Ireland

Architecture
Ayane is an automated theorem prover for first-order logic. It uses refutation by saturation, con-
verting the input to clause normal form then generating additional clauses until a contradiction
is found or until no further inference can be performed. Inference is based on the superposition
calculus.

Strategies
The current version uses a straightforward implementation of the given clause algorithm, with
clauses selected for processing in order of size (smallest first) and basic filtering of generated
clauses for duplication and tautologies.

Implementation
Ayane is written in C#, and has been tested on Linux (Mono 2.4.4, should work with later or
somewhat earlier versions) and Windows (.Net); it is expected to work on any platform that
supports a reasonably up to date version of the CLR.

The system is available from http://code.google.com/p/ayane/.

Expected Competition Performance
Ayane is not expected to win the competition yet, as it is still in early development and much
work on efficient inference remains to be done.

7.2 Currahee(E,iProver) 0.1

Matthias Schmalz, Jann Röder
ETH Zurich, Switzerland

Architecture
Currahee(E,iProver) 0.1 applies a number of axiom selection strategies to a problem in parallel,
and passes the resulting smaller problems to E and iProver. Currahee(E,iProver) relies on the
assumption that several axiom selection strategies and theorem provers are more successful
than one axiom selection strategy with one theorem prover. The challenge was to find out the
strengths of the individual selection strategies, i.e., when to apply which strategy.

Strategies
Currahee(E,iProver) applies the following axiom selection strategies (with slight adjustments):

• the algorithm underlying SInE,

• contextual indirect relevance [81],
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• Meng and Paulson’s relevance filter for Sledgehammer [60],

• combinations of these strategies.

For a given problem the strategies are chosen depending on the problem’s size.

Implementation
Problems are parsed using Andrei Tchaltsev’s TPTP parser (in Java). The axiom selection
strategies have been reimplemented in Java. The underlying theorem provers are E 1.1 and
iProver 0.8pre.

After the competition, Currahee(E,iProver) can be obtained from http://www.infsec.

ethz.ch/people/mschmalz.

Expected Competition Performance
Based on preliminary measurements, we expect Currahee(E,iProver) to solve at least half of the
problems from last year’s LTB division (applying this year’s resource restrictions).

7.3 Darwin 1.4.5

Peter Baumgartner
NICTA, Australia

Architecture
Darwin [11, 12] is an automated theorem prover for first order clausal logic. It is an implementa-
tion of the Model Evolution calculus [15]. The Model Evolution calculus lifts the propositional
DPLL procedure to first-order logic. One of the main motivations for this approach was the
possibility of migrating to the first-order level some of those very effective search techniques
developed by the SAT community for the DPLL procedure.

The current version of Darwin implements first-order versions of unit propagation inference
rules, analogous to a restricted form of unit resolution and subsumption by unit clauses. To retain
completeness, it includes a first-order version of the (binary) propositional splitting inference
rule.

Strategies
Proof search in Darwin starts with a default interpretation for a given clause set, which is evolved
towards a model or until a refutation is found. Darwin traverses the search space by iterative
deepening over the term depth of candidate literals. Darwin employs a uniform search strategy
for all problem classes.

Implementation
The central data structure is the context. A context represents an interpretation as a set of
first-order literals. The context is grown by using instances of literals from the input clauses.
The implementation of Darwin is intended to support basic operations on contexts in an effi-
cient way. This involves the handling of large sets of candidate literals for modifying the current
context. The candidate literals are computed via simultaneous unification between given clauses
and context literals. This process is sped up by storing partial unifiers for each given clause
and merging them for different combinations of context literals, instead of redoing whole unifier
computations. For efficient filtering of unneeded candidates against context literals, discrimina-
tion tree or substitution tree indexing is employed. The splitting rule generates choice points in
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the derivation which are backtracked using a form of backjumping, similar to the one used in
DPLL-based SAT solvers.

Darwin is implemented in OCaml and has been tested under various Linux distributions. It
is available from http://goedel.cs.uiowa.edu/Darwin/.

Changes to the previous version consist of minor bug fixes.

Expected Competition Performance
We expect its performance to be very strong in the EPR division.

7.4 E/EP 1.2pre

Stephan Schulz
Technische Universität München, Germany

Architecture
E 1.2pre [82, 83] is a purely equational theorem prover. The core proof procedure operates on
formulae in clause normal form, using a calculus that combines superposition (with selection
of negative literals) and rewriting. No special rules for non-equational literals have been im-
plemented, i.e., resolution is simulated via paramodulation and equality resolution. The basic
calculus is extended with rules for AC redundancy elimination, some contextual simplification,
and pseudo-splitting with definition caching. The latest versions of E also supports simultaneous
paramodulation, either for all inferences or for selected inferences.

E is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e., a strict sepa-
ration of active and passive facts. Proof search in E is primarily controlled by a literal selection
strategy, a clause evaluation heuristic, and a simplification ordering. The prover supports a large
number of preprogrammed literal selection strategies. Clause evaluation heuristics can be con-
structed on the fly by combining various parameterized primitive evaluation functions, or can be
selected from a set of predefined heuristics. Supported term orderings are several parameterized
instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering (LPO).

The prover uses a preprocessing step to convert formulae in full first order format to clause
normal form. This step may introduce (first-order) definitions to avoid an exponential growth
of formulae. Preprocessing also unfolds equational definitions and performs some simplifications
on the clause level.

EP 1.2pre is just a combination of E 1.2pre in verbose mode and a proof analysis tool
extracting the used inference steps.

Strategies
The automatic mode determines literal selection strategy, term ordering, and search heuristic
based on simple problem characteristics of the preprocessed clausal problem. E has been opti-
mized for performance over the TPTP. The automatic mode of E 1.2pre is partially inherited
from previous version and is based on about 60 test runs over TPTP 4.0.1. It consists of the
selection of one of about 40 different strategies for each problem. All test runs have been per-
formed on Linux/Intel machines with a time limit roughly equivalent to 300 seconds on 300MHz
Sun SPARC machines, i.e., around 30 seconds on 2Ghz class machines. All individual strategies
are refutationally complete.

E distinguishes problem classes based on a number of features, all of which have between 2
and 4 possible values. The most important ones are:

• Is the most general non-negative clause unit, Horn, or Non-Horn?
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• Is the most general negative clause unit or non-unit?

• Are all negative clauses unit clauses?

• Are all literals equality literals, are some literals equality literals, or is the problem non-
equational?

• Are there a few, some, or many clauses in the problem?

• Is the maximum arity of any function symbol 0, 1, 2, or greater?

• Is the sum of function symbol arities in the signature small, medium, or large?

For classes above a threshold size, we assign the absolute best heuristic to the class. For
smaller, non-empty classes, we assign the globally best heuristic that solves the same number of
problems on this class as the best heuristic on this class does. Empty classes are assigned the
globally best heuristic. Typically, most selected heuristics are assigned to more than one class.

For the LTB part of the competition, E will use a relevancy-based pruning approach and
attempt to solve the problems with successively more complete specifications until it succeeds
or runs out of time.

Implementation
E is implemented in ANSI C, using the GNU C compiler. At the core is an implementation of
aggressively shared first-order terms in a term bank data structure. Based on this, E supports
the global sharing of rewrite steps. Rewriting is implemented in the form of rewrite links from
rewritten to new terms. In effect, E is caching rewrite operations as long as sufficient memory
is available. E uses perfect discrimination trees with age and size constraints for rewriting
and unit-subsumption, feature vector indexing [83] for forward- and backward subsumption and
contextual literal cutting, and a new technique called fingerprint indexing for backward rewriting
and (hopefully) paramodulation. Knuth-Bendix Ordering and Lexicographic Path Ordering are
implemented using the linear and polynomial algorithms described by Bernd Löchner [54, 55].

The program has been successfully installed under SunOS 4.3.x, Solaris 2.x, HP-UX B 10.20,
MacOS-X, and various versions of Linux. Sources of the latest released version are available freely
from http://www.eprover.org.

EP 1.2pre is a simple Bourne shell script calling E and the postprocessor in a pipeline.

Expected Competition Performance
In the last years, E performed well in most proof categories. We believe that E will again be
among the stronger provers in the FOF and CNF categories. We hope that E will at least be a
useful complement to dedicated systems in the other categories.

EP 1.2pre will be hampered by the fact that it has to analyse the inference step listing, an
operation that typically is about as expensive as the proof search itself. Nevertheless, it should
be competitive among the FOF systems.

7.5 E-Darwin 1.3

Björn Pelzer
Universität Koblenz-Landau, Germany

Architecture
E-Darwin is an automated theorem prover for first order clausal logic with equality. It is a
modified version of the Darwin prover [11], intended as a testbed for variants of the Model
Evolution calculus [15]. Among other things, it implements the Model Evolution with Equality
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calculus [16]. Also, since the last version, a new calculus has been implemented, using a different
approach to incorporating equality reasoning into Model Evolution. This new calculus will be
used for CASC this year. Three principal data structures are used: the context (a set of rewrite
literals), the set of constrained clauses, and the set of derived candidates. The prover always
selects one candidate, which may be a new clause or a new context literal, and exhaustively
computes inferences with this candidate and the context and clause set, moving the results to
the candidate set. Afterwards the candidate is inserted into one of the context or the clause
set, respectively, and the next candidate is selected. The inferences are superposition-based.
Demodulation and various means of redundancy detection are used as well.

Strategies
The uniform search strategy is identical to the one employed in the original Darwin, slightly
adapted to account for derived clauses.

Implementation
E-Darwin is implemented in the functional/imperative language OCaml. The system has been
tested on Unix and is available under the GNU Public License from http://www.uni-koblenz.

de/~bpelzer/edarwin.

Darwin’s method of storing partial unifiers has been adapted to equations and subterm
positions for the superposition inferences in E-Darwin. A combination of perfect and non-perfect
discrimination tree indexes is used to store the context and the clauses.

Expected Competition Performance
The new calculus used this year differs significantly from the previous versions , which still had
a lot in common with the original Model Evolution. The implementation was completed very
recently. As such we do not yet know what performance to expect.

7.6 E-KRHyper 1.1.4

Björn Pelzer
Universität Koblenz-Landau, Germany

Architecture
E-KRHyper [76] is a theorem proving and model generation system for first-order logic with
equality. It is an implementation of the E-hyper tableau calculus [14], which integrates a
superposition-based handling of equality [9] into the hyper tableau calculus [13]. The system is
an extension of the KRHyper theorem prover [123], which implements the original hyper tableau
calculus.

An E-hyper tableau is a tree whose nodes are labeled with clauses, and which is built up
by the application of the inference rules of the E-hyper tableau calculus. The calculus rules are
designed such that most of the reasoning is performed using positive unit clauses. A branch can
be extended with new clauses that have been derived from the clauses of that branch.

A positive disjunction can be used to split a branch, creating a new branch for each disjunct.
No variables may be shared between branches, and if a case-split creates branches with shared
variables, then these are immediately substituted by ground terms. The grounding substitution
is arbitrary as long as the terms in its range are irreducible: the branch being split may not
contain a positive equational unit which can simplify a substituting term, i.e., rewrite it with one
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that is smaller according to a reduction ordering. When multiple irreducible substitutions are
possible, each of them must be applied in consecutive splittings in order to preserve completeness.

Redundancy rules allow the detection and removal of clauses that are redundant with respect
to a branch.

The hyper extension inference from the original hyper tableau calculus is equivalent to a series
of E-hyper tableau calculus inference applications. Therefore the implementation of the hyper
extension in KRHyper by a variant of semi-naive evaluation [119] is retained in E-KRHyper,
where it serves as a shortcut inference for the resolution of non-equational literals.

Strategies
E-KRHyper uses a uniform search strategy for all problems. The E-hyper tableau is generated
depth-first, with E-KRHyper always working on a single branch. Refutational completeness and
a fair search control are ensured by an iterative deepening strategy with a limit on the maximum
term weight of generated clauses.

Implementation
E-KRHyper is implemented in the functional/imperative language OCaml. The system runs
on Unix and MS-Windows platforms and is available under the GNU Public License, from
http://www.uni-koblenz.de/~bpelzer/ekrhyper.

The system accepts input in the TPTP-format and in the TPTP-supported Protein-format.
The calculus implemented by E-KRHyper works on clauses, so first order formula input is
converted into CNF by an algorithm which follows the transformation steps as used in the
clausification of Otter [58]. E-KRHyper operates on an E-hyper tableau which is represented
by linked node records. Several layered discrimination-tree based indexes (both perfect and
non-perfect) provide access to the clauses in the tableau and support backtracking.

Expected Competition Performance
Most of the work done on E-KRHyper since the last version is only related to its operation as a
reasoning server within the question-answering system LogAnswer [40], and these modifications
have no effect on CASC-performance. Therefore we expect it to be comparable to Otter, like
last year.

7.7 Equinox 5.0

Koen Claessen
Chalmers University of Technology, Sweden

No system description supplied.

7.8 Geo 2010C

Hans de Nivelle
Uniwersytetu Wroclawskiego, Poland

Architecture
Geo is based on geometric resolution [38, 36, 37]. A geometric formula is a formula without
function symbols and constants, which has form:
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FORALL x1, ..., xn

[ A1 /\ ... /\ Ap /\ v1 != w1 /\ ... /\ vq != wq -> Z(x1,...,xn) ].

The Ai are atoms, which are not equality atoms or inequality atoms. The arguments
of the atoms Ai and the inequalities vj != wj must be among the variables x1, ..., xn.
Z(x1,...,xn) must have one of the following three forms:

1. The constant FALSE.

2. A disjunction B1

/ ...

/ Br, in which the atoms Bk are non-equality atoms, and the arguments of each atom Bk

are among the variables x1,..., xn.

3. An existential quantification EXISTS y B, in which y is a variable distinct from x1,...,xn,
and B is a non-equality atom that has all its variables among x1,...,xn,y.

As input, Geo accepts geometric formulae and first-order formulae. First-order formulae are
transformed into geometric formulae. During this translation, function symbols and constants
are removed, and replaced by relations.

Geo accepts formulae either in its own syntax or in TPTP syntax. Because CNF has no
special status for Geo, TPTP formulae in CNF form are treated as ordinary first-order formulae.

During search, Geo searches for a model of the geometric formulae by a combination of
backtracking and learning. Whenever it cannot extend an interpretation into a model, Geo
learns a new rule of Type 1, which ensures that Geo will not explore similar models in the
future.

In case Geo finds a finite model, it simply prints the model. In case no model exists, it will
eventually learn the rule -> FALSE, so that it is able to output a proof.

The final aim of geometric resolution, and of Geo, is to obtain a prover that is both good at
finding proofs, and at finding finite models.

Strategies
Currently, Geo has only one strategy: It searches for a model by depth-first search, and learns a
new lemma at each backtracking point. Lemmas never expire, but they are sometimes simplified
into smaller lemmas.

Implementation
Geo is written in C++. We try to keep the code readable and reasonably efficient at the same
time. Currently, Geo has no sophisticated data structures for efficiency. Our priority lies with
the theoretical understanding of geometric resolution, adding a rich type system with partial
functions to Geo, implementing full natural deduction proof output, and adding other features
that might be useful in interactive verification.

Expected Competition Performance
There is no significant difference with earlier versions of Geo. We expect to end somewhere in
the middle.
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7.9 iProver 0.7

Konstantin Korovin
University of Manchester, United Kingdom

Architecture
iProver is an automated theorem prover based on an instantiation calculus Inst-Gen [41, 49]
which is complete for first-order logic. One of the distinctive features of iProver is a modular
combination of first-order reasoning with ground reasoning. In particular, iProver currently
integrates MiniSat [39] for reasoning with ground abstractions of first-order clauses. In addition
to instantiation, iProver implements ordered resolution calculus and a combination of instan-
tiation and ordered resolution; see [48] for the implementation details. The saturation process
is implemented as a modification of a given clause algorithm. We use non-perfect discrimi-
nation trees for the unification indexes, priority queues for passive clauses, and a compressed
vector index for subsumption and subsumption resolution (both forward and backward). The
following redundancy eliminations are implemented: blocking non-proper instantiations; dis-
matching constraints [42, 48]; global subsumption [48]; resolution-based simplifications and
propositional-based simplifications. We implemented a compressed feature vector index for
efficient forward/backward subsumption and subsumption resolution. Equality is dealt with
(internally) by adding the necessary axioms of equality.

Strategies
iProver has around 40 options to control the proof search including options for literal selection,
passive clause selection, frequency of calling the SAT solver, simplifications and options for
combination of instantiation with resolution. At CASC iProver will execute a small number of
fixed schedules of selected options depending on general syntactic properties such as Horn/non-
Horn, equational/non-equational, and maximal term depth.

Implementation
iProver is implemented in OCaml and for the ground reasoning uses MiniSat. iProver accepts
FOF and CNF formats, in the case of FOF format, E prover is used for clausification. iProver
is available from http://www.cs.man.ac.uk/~korovink/iprover/.

Expected Competition Performance
iProver 0.7 is the CASC-22 EPR division winner.

7.10 iProver(-SInE) 0.8

Konstantin Korovin
University of Manchester, United Kingdom

Architecture
iProver is an automated instantiation-based theorem prover for first-order logic. We refer to
description of iProver 0.7 for general information. Major additions in the current version are:

• Model output using first-order definitions in term algebra.

• Incrementality wrt. model changes in the SAT solving part.

• New index for dismatching constraints.
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For the LTB division, axiom selection and clausification is done by Vampire 0.6. SInE scripts
are used for problem scheduling and iProver for reasoning.

Implementation
iProver accepts FOF and CNF formats, where either Vampire [80] or E prover [83] is used
for clausification of FOF problems. iProver is available from http://www.cs.man.ac.uk/

~korovink/iprover/.

Expected Competition Performance
iProver 0.8 is expected to have strong performance in FOF, CNF, FNT, SAT and LTB divisions,
and to considerably outperform iProver 0.7 in the EPR division.

7.11 iProver-Eq(-SInE) 0.6

Konstantin Korovin, Christoph Sticksel
University of Manchester, United Kingdom

Architecture
iProver-Eq [50] extends the iProver system [48] with built-in equational reasoning, along the lines
of [42]. As in the iProver system, first-order reasoning is combined with ground satisfiability
checking, where the latter is delegated to an off-the-shelf ground solver.

iProver-Eq consists of three core components: i) ground reasoning by an SMT solver, ii) first-
order equational reasoning on literals in a candidate model by a labelled unit superposition
calculus [50] and iii) instantiation of clauses with substitutions obtained by ii).

Given a set of first-order clauses, iProver-Eq first abstracts it to a set of ground clauses
which are passed to the ground solver. If the ground abstraction is unsatisfiable, then the set
of first-order clauses is also unsatisfiable. Otherwise, literals are selected from the first-order
clauses based on the model of the ground solver. The labelled unit superposition calculus checks
whether the selected literals are conflicting. If they are conflicting, then clauses are instantiated
such that the ground solver has to refine its model in order to resolve the conflict. Otherwise,
satisfiability of the initial first-order clause set is shown.

Clause selection and literal selection in the unit superposition calculus are implemented
in separate given clause algorithms. Relevant substitutions are accumulated in labels during
unit superposition inferences and then used to instantiate clauses. For redundancy elimination
iProver-Eq uses demodulation and dismatching constraints. In order to efficiently propagate
redundancy elimination from instantiation into unit superposition, we implemented different
representations of labels based on sets, AND/OR-trees and OBDDs. Non-equational resolution
inferences provide further simplifications.

For the LTB division, axiom selection and clausification is done by Vampire 0.6. SInE scripts
are used for problem scheduling and iProver-Eq for reasoning.

Strategies
Proof search options in iProver-Eq control clause and literal selection in the respective given
clause algorithms. Equally important is the global distribution of time between the inference
engines and the ground solver. At CASC, iProver-Eq will execute a fixed schedule of selected
options.

If no equational literals occur in the input, iProver-Eq falls back to the inference rules of
iProver, otherwise the latter are disabled and only unit superposition is used. If all clauses
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are unit equations, no instantiations need to be generated and the calculus is run without the
otherwise necessary bookkeeping.

Implementation
iProver-Eq is implemented in OCaml and uses CVC3 [15] for the ground reasoning in the equa-
tional case and MiniSat [39] in the non-equational case. iProver-Eq accepts FOF and CNF
formats, where either Vampire [80] or the E prover [83] is used for clausification of FOF prob-
lems. iProver-Eq is available from http://www.cs.man.ac.uk/~korovink/iprover.

Expected Competition Performance
iProver-Eq has significantly improved over the version in the previous CASC. We expect reason-
ably good performance in all divisions, including the EPR divisions where instantiation-based
methods are particularly strong.

7.12 Isabelle/HOL 2009-1

Jasmin C. Blanchette1, Lawrence C. Paulson2, Tobias Nipkow1, Makarius Wenzel1, Stefan
Berghofer1
1Technische Universität München, Germany
2University of Cambridge, United Kingdom

Architecture
Isabelle/HOL 2009-1 [63] is the higher-order logic incarnation of the generic proof assistant
Isabelle2009-1. Isabelle/HOL provides several automatic proof tactics, notably an equational
reasoner [62], a classical reasoner [75], a tableau prover [74], and a first-order resolution-based
prover [46].

Although Isabelle is designed for interactive proof development, it is a little known fact that it
is possible to run Isabelle from the command line, passing in a theory file with a formula to solve.
Isabelle theory files can include Standard ML code to be executed when the file is processed.
The TPTP2X Isabelle format module outputs a THF problem in Isabelle/HOL syntax, augmented
with ML code that (1) runs the ten tactics in sequence, each with a CPU time limit, until one
succeeds or all fail, and (2) reports the result and proof (if found) using the SZS standards.
A Perl script is used to insert the CPU time limit (equally divided over the ten tactics) into
TPTP2X’s Isabelle format output, and then run the command line isabelle-process on the
resulting theory file.

Strategies
The Isabelle/HOL wrapper submitted to the competition tries the following tactics sequentially:

simp Performs equational reasoning using rewrite rules.

blast Searches for a proof using a fast untyped tableau prover and then attempts to reconstruct
the proof using Isabelle tactics.

auto Combines simplification and classical reasoning under one roof.

metis Combines ordered resolution and ordered paramodulation. The proof is then recon-
structed using Isabelle tactics.
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fast Searches for a proof using sequent-style reasoning, performing a depth-first search. Unlike
blast and metis, they construct proofs directly in Isabelle. That makes them slower, but
enables them to work in the presence of the more unusual features of HOL, such as type
classes and function unknowns.

fastsimp Combines fast and simp.

best Similar to fast, except that it performs a best-first search.

force Similar to auto, but more exhaustive.

meson Implements Loveland’s MESON procedure [56]. Constructs proofs directly in Isabelle.

smt Invokes the Z3 SMT solver [35] developed at Microsoft Research, and reconstructs the
proofs in Isabelle [27].

Implementation
Isabelle is a generic theorem prover written in Standard ML. Its meta-logic, Isabelle/Pure,
provides an intuitionistic fragment of higher-order logic. The HOL object logic extends pure
with a more elaborate version of higher-order logic, complete with the familiar connectives and
quantifiers. Other object logics are available, notably FOL (first-order logic) and ZF (Zermelo-
Fraenkel set theory).

The implementation of Isabelle relies on a small LCF-style kernel, meaning that inferences
are implemented as operations on an abstract theorem data type. Assuming the kernel is correct,
all values of type theorem are correct by construction.

Most of the code for Isabelle was written by the Isabelle teams at the University of Cambridge
and the Technische Universität München. A notable exception is the metis proof method, which
was taken from the HOL4 theorem prover (also implemented in ML).

Isabelle/HOL is available for all major platforms under a BSD-style license, from http:

//www.cl.cam.ac.uk/research/hvg/Isabelle.

Expected Competition Performance
Results from last year would suggest that Isabelle will finish third in the THF category, after
TPS and LEO-II. However, since last year, we have added the smt proof method, which we
expect will increase our theorem count by about 50.

7.13 leanCoP(-SInE) 2.2

Jens Otten
University of Potsdam, Germany

Architecture
leanCoP [66, 64] is an automated theorem prover for classical first-order logic with equality. It
is a very compact implementation of the connection (tableau) calculus [23, 53].

For the LTB division, leanCoP-SInE runs leanCoP as the underlying inference engine of
SInE 0.4, i.e., axiom selection is done by SInE, and proof attempts are done by leanCoP. SInE
is developed by Kryštof Hoder; leanCoP-SInE is co-developed by Thomas Raths.
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Strategies
The reduction rule of the connection calculus is applied before the extension rule. Open branches
are selected in a depth-first way. Iterative deepening on the proof depth is used to achieve
completeness. Additional inference rules and strategies are regularity, lemmata, and restricted
backtracking [65]. leanCoP uses an optimized structure-preserving transformation into clausal
form [65] and a fixed strategy scheduling.

Implementation
leanCoP is implemented in Prolog (ECLiPSe, SICStus, and SWI Prolog are currently supported).
The source code of the core prover is only a few lines long and fits on half a page. Prolog’s
built-in indexing mechanism is used to quickly find connections.

leanCoP can read formulae using the leanCoP syntax as well as the (raw) TPTP syntax
format. Equality axioms are automatically added if required. The core leanCoP prover returns
a very compact connection proof, which is translated into a readable proof. Several output
formats are available. As the main enhancement, leanCoP 2.2 now supports the output of proofs
in the (proposed) TPTP syntax for representing derivations in connection (tableau) calculi [67].

The source code of leanCoP 2.2, which is available under the GNU general public license,
together with more information can be found on the leanCoP web site http://www.leancop.de.

Expected Competition Performance
As the core prover has not changed, we expect the performance of leanCoP 2.2 and leanCoP-SInE
2.2 to be similar to the performance of leanCoP 2.1 and leanCoP-SInE 2.1, respectively.

7.14 leanCoP-Ω 0.1

Jens Otten, Holger Trölenberg, Thomas Raths
University of Potsdam, Germany

Architecture
leanCoP-Ω is an automated theorem prover for classical first-order logic with equality and inter-
preted functions and predicates for integer arithmetic. It combines version 2.1 of the compact
connection prover leanCoP [64, 65] with version 1.2 of the Omega test system [79].

Strategies
The Omega test determines whether there is an integer solution to an arbitrary set of linear
equalities and inequalities. It is based on an extension of Fourier-Motzkin variable elimination
(a linear programming method) to integer programming, and has worst-case exponential time
complexity [79]. Omega test is invoked from the leanCoP prover if equalities or inequalities are
contained in the active path of a connection derivation.

Implementation
The leanCoP prover is implemented in Prolog; see the leanCoP 2.2 description for more details.
The Omega test system is implemented in C++. If leanCoP-Ω finds a proof it returns a very
compact connection proof.
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7.15 LEO-II 1.2

Christoph Benzmüller1, Frank Theiss2
1Articulate Software, USA, 2Saarland University, Germany

Architecture
LEO-II [20], the successor of LEO [19], is a higher-order ATP system based on extensional higher-
order resolution. More precisely, LEO-II employs a refinement of extensional higher-order RUE
resolution [17]. LEO-II is designed to cooperate with specialist systems for fragments of higher-
order logic. By default, LEO-II cooperates with the first-order ATP system E [82]. LEO-II
is often too weak to find a refutation amongst the steadily growing set of clauses on its own.
However, some of the clauses in LEO-II’s search space attain a special status: they are first-
order clauses modulo the application of an appropriate transformation function. The default
transformation is Hurd’s fully typed translation [46]. Therefore, LEO-II launches a cooperating
first-order ATP system every n iterations of its (standard) resolution proof search loop (e.g.,
n = 10). If the first-order ATP system finds a refutation, it communicates its success to LEO-II
in the standard SZS format. Communication between LEO-II and the cooperating first-order
ATP system uses the TPTP language and standards.

Strategies
LEO-II employs an adapted “Otter loop”. In contrast to its competitor systems (such as Sa-
tallax, TPS, and IsabelleP) LEO-II so far only employs a monolithic search strategy, that is,
it does not use strategy scheduling to try different search strategies or flag settings. However,
LEO-II version 1.2 for the first time includes some very naive relevance filtering and selectively
applies some simple scheduling for different relevance filters.

Implementation
LEO-II is implemented in Objective Caml version 3.10, and its problem representation language
is the new TPTP THF language [21]. In fact, the development of LEO-II has largely paralleled
the development of the TPTP THF language and related infrastructure [106].

The improved performance of LEO-II in comparison to its predecessor LEO (implemented
in LISP) is due to several novel features including the exploitation of term sharing and term
indexing techniques [18], support for primitive equality reasoning (extensional higher-order RUE
resolution), and improved heuristics at the calculus level. One recent development is LEO-II’s
new parser: in addition to the TPTP THF language, this parser now also supports the TPTP
FOF and CNF languages. Hence, LEO-II can now also be used for FOF and CNF problems.
Unfortunately the LEO-II system still uses only a very simple sequential collaboration model
with first-order ATPs instead of using the more advanced, concurrent and resource-adaptive
OANTS architecture [22] as exploited by its predecessor LEO.

The LEO-II system is distributed under a BSD style license, and it is available from http:

//leoprover.org.

Expected Competition Performance
LEO-II (resp. its main developer C. Benzmüller) is currently on parental leave. As a result
LEO-II has not much improved over the last year (except for its parser), while competitors such
as IsabelleP and the new Satallax prover seem to have significantly gained on strength.

This year LEO-II will also participate in the FOF and CNF categories in order to evaluate
its performance for these fragments. For this, note that LEO-II still employs its own input pro-
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cessing and normalization techniques, and that calls to prover E are applied only modulo Hurd’s
fully typed translation. The evaluation will thus reveal the performance loss in comparison to
E and it will likely point to relevant future work. Another reason for entering THF, FOF, and
CNF is to demonstrate that integrated higher-order-first-order theorem provers are generally
feasible.

7.16 Metis 2.2

Joe Hurd
Galois, Inc., USA

Architecture
Metis 2.2 [46] is a proof tactic used in the HOL4 interactive theorem prover. It works by
converting a higher order logic goal to a set of clauses in first order logic, with the property that
a refutation of the clause set can be translated to a higher order logic proof of the original goal.

Experiments with various first order calculi [46] have shown a given clause algorithm and
ordered resolution best suit this application, and that is what Metis 2.2 implements. Since
equality often appears in interactive theorem prover goals, Metis 2.2 also implements the ordered
paramodulation calculus.

Strategies
Metis 2.2 uses a fixed strategy for every input problem. Negative literals are always chosen over
positive literals, and terms are ordered using the Knuth-Bendix ordering with uniform symbol
weight and precedence favouring reduced arity.

Implementation
Metis 2.2 is written in Standard ML, for ease of integration with HOL4. It uses indexes for
resolution, paramodulation, (forward) subsumption, and demodulation. It keeps the Active
clause set reduced with respect to all the unit equalities so far derived.

In addition to standard age and size measures, Metis 2.2 uses finite models to weight clauses
in the Passive set. When integrated with higher order logic, an interpretation of known functions
and relations is manually constructed to make many of their standard properties valid in the
finite model. For example, if the domain of the model is the set 0,...,7, and the higher order logic
arithmetic functions are interpreted in the model modulo 8. Unknown functions and relations
are interpreted randomly, but with a bias towards making supporting theorems valid in the
model. The finite model strategy carries over to TPTP problems, by manually interpreting a
collection of functions and relations that appear in TPTP axiom files in such a way as to make
the axioms valid in the model.

Metis 2.2 reads problems in TPTP format and outputs detailed proofs in TSTP format,
where each refutation step is one of 6 simple inference rules. Metis 2.2 implements a complete
calculus, so when the set of clauses is saturated it can soundly declare the input problem to be
unprovable (and outputs the saturation set).

Metis 2.2 is free software, released under the GPL. It is available from http://www.gilith.

com/software/metis.

Expected Competition Performance
There have been only minor changes to Metis 2.2 since CASC-22, so it is expected to perform at
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approximately the same level in CASC-J5 and end up in the lower half of the table. However, it
is possible that Metis 2.2 might get a boost from its finite model clause weighting, since this year
the CASC competition rules have changed so that function and relation names are no longer
obfuscated.

7.17 MetiTarski 1.3

Larry Paulson
University of Cambridge, United Kingdom

Architecture
MetiTarski [1, 30] is an automatic theorem prover based on a combination of resolution and
QEPCAD-B [30], a decision procedure for the theory of real closed fields. It is designed to
prove theorems involving real-valued special functions such as log, exp, sin, cos and sqrt. In
particular, it is designed to prove universally quantified inequalities involving such functions.
This problem is undecidable: MetiTarski is incomplete. MetiTarski is a modified version of Joe
Hurd’s theorem prover, Metis [46].

Strategies
MetiTarski employs resolution, augmented with axiom files that specify upper and lower bounds
of the special functions mentioned in the problem. MetiTarski also has code to simplify poly-
nomials and put them into canonical form. The resolution calculus is extended with a literal
deletion rule: if the decision procedure finds a literal to be inconsistent with its context (which
consists of known facts and the negation of the other literals in the clause), then it is deleted.

Implementation
MetiTarski, like Metis, is implemented in Standard ML. QEPCAD is implemented in C and
C++ (and unfortunately is very difficult to build on 64 bit machines). The latest version of
MetiTarski can be downloaded from http://www.cl.cam.ac.uk/~lp15/papers/Arith/.

7.18 Muscadet 4.0

Dominique Pastre
University Paris Descartes, France

Architecture
The Muscadet theorem prover is a knowledge-based system. It is based on Natural Deduction,
following the terminology of [26] and [68], and uses methods that resemble those used by humans.
It is composed of an inference engine, which interprets and executes rules, and of one or several
bases of facts, which are the internal representation of “theorems to be proved”. Rules are
either universal and put into the system, or built by the system itself by metarules derived from
data (definitions and lemmas). Rules may add new hypotheses, modify the conclusion, create
objects, split theorems into two or more subtheorems, or build new rules that are local for a
(sub-)theorem.

Strategies
There are specific strategies for existential, universal, conjunctive and disjunctive hypotheses
and conclusions, and equalities. Functional symbols may be used, but an automatic creation
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of intermediate objects allows deep subformulae to be flattened and treated as if the concepts
were defined by predicate symbols. The successive steps of a proof may be forward deduction
(deduce new hypotheses from old ones), backward deduction (replace the conclusion by a new
one), refutation (only if the conclusion is a negation), search for objects satisfying the conclusion,
or dynamic building of new rules.

The system is also able to work with second order statements. It may also receive knowledge
and know-how for a specific domain from a human user; see [69] and [70]. These two possibilities
are not used while working with the TPTP Library.

Implementation
Muscadet [71] is implemented in SWI-Prolog. Rules are written as more or less declarative
Prolog clauses. Metarules are written as sets of Prolog clauses. The inference engine includes
the Prolog interpreter and some procedural Prolog clauses. A theorem may be split into several
subtheorems, structured as a tree with “and” and “or” nodes. All the proof search steps are
memorized as facts including all the elements which will be necessary to later extract the useful
steps (the name of the executed action or applied rule, the new facts added or rule dynamically
built, the antecedents, and a brief explanation).

Muscadet is available from http://www.math-info.univ-paris5.fr/~pastre/muscadet/

muscadet.html.

Expected Competition Performance
The best performances of Muscadet will be for problems manipulating many concepts in which
all statements (conjectures, definitions, axioms) are expressed in a manner similar to the practice
of humans, especially of mathematicians [72, 73]. It will have poor performances for problems
using few concepts but large and deep formulae leading to many splittings. Its best results will
be in set theory, especially for functions and relations. It’s originality is that proofs are given in
natural style.

7.19 omkbTT 1.0

Sarah Winkler
University of Innsbruck, Austria

Architecture
Based on ordered completion [8], omkbTT 1.0 constitutes a theorem prover for unit equality
problems. It stands out from classical completion tools in two respects: (1) automatic ter-
mination tools replace a fixed reduction order, and (2) omkbTT employs a multi-completion
approach [52] to explore multiple branches of the search tree at once. A detailed description of
the underlying inference system can be found in [124].

Strategies
omkbTT keeps track of multiple ordered completion processes using different reduction orders
developed during the deduction. The approach of multi-completion allows sharing of many
inference steps among these processes. A deduction succeeds as soon as one of the processes
does.

omkbTT is parameterized by a termination strategy for the termination checks performed
internally, and a selection strategy to choose the equation to be processed next. To ensure
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that a saturated set of equations and rules is ground-complete, the default termination strategy
comprises a number of termination techniques inducing total termination such as Knuth-Bendix
orders, lexicographic path orders, polynomial interpretations, and multiset path orders. The
default selection strategy first chooses a process for which the size of its current equation and
constraint set is minimal. Then a node for this process is selected by considering the term size
and timestamp, the latter to ensure fairness of the deduction.

Since in the setting with termination tools the reduction order developed along the way is
not known in advance, the set of ordered critical pairs is not computable during the deduc-
tion. Instead, critical consequences are over-approximated using the embedding relation [124].
Furthermore, omkbTT uses multi-completion variants of critical pair criteria [7] to restrict the
number of equational consequences, and isomorphic processes are filtered out to restrict the
search space. Details about these optimizations can be found in [125].

Implementation
Due to the multi-completion approach, equations and rewrite rules as well as goals are repre-
sented using nodes. This data structure connects a pair of terms with the sets of processes which
consider it as an equation or rule, respectively. The inference rules of omkbTT working on sets
on nodes are combined in a DISCOUNT-like control loop. In order to accelerate the retrieval
of adequate terms for rewriting and the computation of overlaps, omkbTT relies on code trees
[120] as its default term indexing technique.

omkbTT is written in OCaml. It interfaces the termination tool TTT2 [51] internally to
perform termination checks. Version 1.0 is available from http://cl-informatik.uibk.ac.

at/software/omkbtt.

Expected Competition Performance
As a prototype of the described approach, the system is to demonstrate the use of termination
tools in a multi-completion setting. omkbTT is expected to solve most easy problems and a
moderate number of the more difficult instances (but is not assumed to win its division).

7.20 Otter 3.3

William McCune
Argonne National Laboratory, USA

Architecture
Otter 3.3 [58] is an ATP system for statements in first-order (unsorted) logic with equality.
Otter is based on resolution and paramodulation applied to clauses. An Otter search uses the
“given clause algorithm”, and typically involves a large database of clauses; subsumption and
demodulation play an important role.

Strategies
Otter’s original automatic mode, which reflects no tuning to the TPTP problems, will be used.

Implementation
Otter is written in C. Otter uses shared data structures for clauses and terms, and it uses indexing
for resolution, paramodulation, forward and backward subsumption, forward and backward
demodulation, and unit conflict. Otter is available from http://www.cs.unm.edu/~mccune/

otter/.
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Expected Competition Performance
Otter has been entered into CASC as a stable benchmark against which progress can be judged
(there have been only minor changes to Otter since 1996 [59], nothing that really affects its
performance in CASC). This is not an ordinary entry, and we do not hope for Otter to do well
in the competition.

Acknowledgments: Ross Overbeek, Larry Wos, Bob Veroff, and Rusty Lusk contributed to
the development of Otter.

7.21 Paradox 3.0

Koen Claessen, Niklas Sörensson
Chalmers University of Technology, Sweden

Architecture
Paradox [34] is a finite-domain model generator. It is based on a MACE-style [57] flattening
and instantiating of the first-order clauses into propositional clauses, and then the use of a SAT
solver to solve the resulting problem.

Paradox incorporates the following features: Polynomial-time clause splitting heuristics, the
use of incremental SAT, static symmetry reduction techniques, and the use of sort inference.

Strategies
There is only one strategy in Paradox:

1. Analyze the problem, finding an upper bound N on the domain size of models, where N is
possibly infinite. A finite such upper bound can be found, for example, for EPR problems.

2. Flatten the problem, and split clauses and simplify as much as possible.

3. Instantiate the problem for domain sizes 1 up to N, applying the SAT solver incrementally
for each size. Report SATISFIABLE when a model is found.

4. When no model of sizes smaller or equal to N is found, report CONTRADICTION.

In this way, Paradox can be used both as a model finder and as an EPR solver.

Implementation
The main part of Paradox is implemented in Haskell using the GHC compiler. Paradox also has
a built-in incremental SAT solver which is written in C++. The two parts are linked together
on the object level using Haskell’s Foreign Function Interface.

Expected Competition Performance
Paradox 3.0 is the CASC-22 FNT division winner.

7.22 Paradox 4.0

Koen Claessen
Chalmers University of Technology, Sweden

No system description supplied.
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7.23 Satallax 1.4

Chad E. Brown
Saarland University, Germany

Architecture
Satallax is an automated theorem prover for higher-order logic. The particular form of higher-
order logic supported by Satallax is Church’s simple type theory with extensionality and choice
operators. The SAT solver MiniSat [39] is responsible for much of the search for a proof.

The theoretical basis of search is a complete ground tableau calculus for higher-order logic
[33] with a choice operator [10]. A problem is given using an S-expression variant of the THF
format. A branch is formed from the axioms of the problem and negation of the conjecture (if
any is given). From this point on, Satallax tries to determine unsatisfiability or satisfiability of
this branch.

Satallax progressively generates higher-order formulae and corresponding propositional clauses.
These formulae and propositional clauses correspond to instances of the tableau rules. Satallax
uses the SAT solver MiniSat as an engine to test the current set of propositional clauses for
unsatisfiability. If the clauses are unsatisfiable, then the original branch is unsatisfiable. If there
are no quantifiers at function types, the generation of higher-order formulae and corresponding
clauses may terminate [32, 32]. In such a case, if MiniSat reports the final set of clauses as
satisfiable, then the original set of higher-order formulae is satisfiable (by a standard model in
which all types are interpreted as finite sets).

Strategies
There are a number of flags that control the order in which instances of tableau rules are
considered. Other flags activate some optional extensions to the basic proof procedure. Three
such extensions have proven particularly successful.

1. A preprocessing stage may split the original problem into several problems to be solved
independently. This is helpful, for example, when the claim to be proven is an equivalence.

2. The set of all (ground) subterms of the problem can be preemptively included in the set of
all allowed instantiations for quantifiers. This is helpful when strictly following the tableau
calculus rules would require taking a roundabout path to licensing a subterm as a legal
instantiation.

3. Some universally quantified formulae can be treated as higher-order clauses with strict
occurrences of higher-order variables. Whenever new (ground) formulae are considered,
pattern matching can be used to create ground instances of higher-order clauses. These
ground clauses are included in the clause set sent to MiniSat.

A collection of flag settings is called a mode. Approximately 250 modes have been tried so far.
Regardless of the mode, the search procedure is sound and complete for higher-order logic with
choice. This implies that if search terminates with a particular mode, then we can conclude that
the original set of formulae is unsatisfiable or satisfiable.

A strategy is an ordered collection of modes with information about how much time the mode
should be allotted. Satallax tries each of the modes for a certain amount of time sequentially.
Satallax 1.4 uses a default strategy consisting of 22 modes determined through experimentation
using the THF problems in the TPTP library.
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Implementation
Satallax is implemented in Steel Bank Common Lisp. Satallax calls MiniSat which is imple-
mented in C++. Satallax is available from http://satallax.com.

Expected Competition Performance
Since Satallax supports theorem proving with a choice operator, there should be a few problems
only Satallax can solve. In addition, the use of MiniSat to do the propositional part of the search
seems to be very effective. Preliminary tests show Satallax to be competitive. On the other
hand, the primary instantiation technique for higher-order quantifiers is essentially a generate-
and-test method. This means most problems that require nontrivial higher-order instantiations
will be out of reach for the time being.

7.24 SNARK—20080805r027

Mark Stickel
SRI International, USA

Architecture
SNARK 20080805r027 is a resolution and paramodulation theorem prover for first-order predi-
cate calculus. Procedural attachment is used to evaluate arithmetic expressions. The objective
to date is to add some arithmetic calculation in support of SNARK’s applications, not to dupli-
cate or incorporate symbolic algebra systems to extend SNARK’s mathematical range.

SNARK has a rudimentary type system that includes subtypes but not polymorphism. Thus,
the mapping onto TPTP arithmetic types, which lack subtypes, and TPTP arithmetic opera-
tions, which are polymorphic, is approximate. It uses Common Lisp’s unlimited precision ratio-
nal arithmetic. Integers are a subtype. Inexact floating-point arithmetic is not used; real number
inputs are converted to rationals. Real numbers are a supertype so that irrational numbers can
be represented symbolically.

Procedural attachment is used to evaluate arithmetic expressions that are fully instantiated
with numeric arguments. For example, ($$SUM 2 2) and ($$LESS 2 3) can be rewritten to 4
and TRUE. The equality relation is also procedurally attached when an argument is numeric so
that, for example, (= ($$SUM ?X 2) 4) can be solved.

Implementation
SNARK is written in Common Lisp that is also used as its extension and scripting language.
SNARK is available from http://www.ai.sri.com/~stickel/snark.html.

7.25 SPASS+T 2.2.12

Uwe Waldmann1, Stephan Zimmer2
1Max-Planck-Institut für Informatik, Germany, 2AbsInt GmbH, Germany

Architecture
SPASS+T is an extension of the superposition-based theorem prover SPASS that integrates
algebraic knowledge into SPASS in three complementary ways: by passing derived formulae to
an external SMT procedure (currently Yices or CVC3), by adding standard axioms, and by built-
in arithmetic simplification and inference rules. A first version of the system has been described
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in [78]. In the current version, a much more sophisticated coupling of the SMT procedure has
been added [126].

Strategies
Standard axioms and built-in arithmetic simplification and inference rules are integrated into
the standard main loop of SPASS. The external SMT procedure runs in parallel in a separate
process, leading occasionally to non-deterministic behaviour.

Implementation
SPASS+T is implemented in C. The system is available from http://www.mpi-inf.mpg.de/

~uwe/software/#TSPASS.

7.26 SPASS-XDB 3.01X0.5

Geoff Sutcliffe1, Martin Suda2
1University of Miami, USA, 2Charles University in Prague, Czech Republic

Architecture
SPASS-XDB [84, 108] is an extended version of the well-known, state-of-the-art, SPASS au-
tomated theorem proving system [122]. The original SPASS reads a problem, consisting of
axioms and a conjecture, in TPTP format from a file, and searches for a proof by refutation
for the conjecture. SPASS-XDB adds the capability of retrieving extra positive unit axioms
(facts) from external sources during the proof search (hence the “XDB”, standing for eXternal
DataBases). The axioms are retrieved asynchronously, on-demand, based on an expectation
that they will contribute to completing the proof. The axioms are retrieved from a range of
external sources, including SQL databases, SPARQL endpoints, WWW services, computation
sources (e.g., computer algebra systems), etc., using a TPTP standard protocol.

For the TFA division, the TFF formulae are converted to FOF using the standard approach
[121], but without predicates to check the types of numeric variables. This means SPASS-XDB
is unsound for certain types of conjectures that mix different types of numbers (e.g., integers
with reals), but those problems will not arise in CASC. Until recently a simple computation
system implemented in Prolog was used (and it’s still available) to obtain ground arithmetic
facts, as required to resolve against arithmetic relations (i.e., all arithmetic function evaluation
had to be done inside an $evaleq/2 relation). More recently this has been replaced by internal
evaluation of ground arithmetic relations and functions. The external mechanism is now being
used to develop more sophisticated arithmetic capabilities, e.g., solving for a variable in an
equation involving arithmetic functions, e.g., solving for X in $sum(2,X) = 5. It is hoped this
will be ready in time for CASC. SPASS-XDB supports integer, rational, and finite precision real
arithmetic.

Strategies
Generally, SPASS-XDB follows SPASS’ strategies. However, SPASS, like most (all?) ATP
systems, was designed under the assumption that all formulae are in the problem file, i.e., it
is ignorant that external axioms might be delivered. To regain completeness, constraints on
SPASS’ search had to be relaxed in SPASS-XDB. This increases the search space, i.e., so the
constraints were relaxed in a controlled, incremental fashion. [108] The search space is also
affected by the number of external axioms that can be delivered, and mechanisms to control the
delivery and focus the consequent search have been implemented. [108]

34

http://www.mpi-inf.mpg.de/~uwe/software/#TSPASS
http://www.mpi-inf.mpg.de/~uwe/software/#TSPASS


CASC-J5 Sutcliffe

Implementation
SPASS-XDB, as an extension of SPASS, is written in C. The internal arithmetic is done using
the GMP multiple precision arithmetic library. Reals are converted to rationals for computation,
but results are presented in real format. The external arithmetic computation system is written
in SWI Prolog, and compiled to an executable. SPASS-XDB is available for use online in the
SystemOnTPTP interface http://www.tptp.org/cgi-bin/SystemOnTPTP.

7.27 TPS 3.080227G1d

Peter B. Andrews1, Chad E. Brown2

1Carnegie Mellon University, USA, 2Saarland University, Germany

Architecture
TPS is a higher-order theorem proving system that has been developed over several decades
under the supervision of Peter B. Andrews with substantial work by Eve Longini Cohen, Dale
A. Miller, Frank Pfenning, Sunil Issar, Carl Klapper, Dan Nesmith, Hongwei Xi, Matthew
Bishop, Chad E. Brown, and Mark Kaminski. TPS can be used to prove theorems of Church’s
type theory automatically, interactively, or semi-automatically [4, 5].

When searching for a proof, TPS first searches for an expansion proof [61] or an extensional
expansion proof [31] of the theorem. Part of this process involves searching for acceptable
matings [2]. Using higher-order unification, a pair of occurrences of subformulae (which are
usually literals) is mated appropriately on each vertical path through an expanded form of the
theorem to be proved. The expansion proof thus obtained is then translated [77] without further
search into a proof of the theorem in natural deduction style. The translation process provides
an effective soundness check, but it is not actually used during the competition.

Strategies
Strategies used by TPS in the search process include:

• Re-ordering conjunctions and disjunctions to alter the way paths through the formula are
enumerated.

• The use of primitive substitutions and gensubs [3].

• Path-focused duplication [47].

• Dual instantiation of definitions, and generating substitutions for higher-order variables
which contain abbreviations already present in the theorem to be proved [25].

• Component search [24].

• Generating and solving set constraints [29].

• Generating connections using extensional and equational reasoning [31].

Implementation
TPS has been developed as a research tool for developing, investigating, and refining a variety
of methods of searching for expansion proofs, and variations of these methods. Its behavior is
controlled by hundreds of flags. A set of flags, with values for them, is called a mode. 52 modes
have been found which collectively suffice for automatically proving virtually all the theorems
which TPS has proved automatically thus far. When searching for a proof in automatic mode,
TPS tries each of these modes in turn for a specified amount of time.

TPS is implemented in Common Lisp, and is available from http://gtps.math.cmu.edu/

tps.html
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Expected Competition Performance
TPS 3.080227G1d is the CASC-22 THF division winner.

7.28 Vampire 10.0

Andrei Voronkov
University of Manchester, United Kingdom

No system description supplied.

Expected Competition Performance
Vampire 10.0 is the CASC-22 CNF division winner.

7.29 Vampire 11.0 and Vampire-LTB 11.0

Andrei Voronkov, Kryštof Hoder
University of Manchester, United Kingdom

Architecture
Vampire 11.0 is an automatic theorem prover for first-order classical logic. It consists of a shell
and a kernel. The kernel implements the calculi of ordered binary resolution and superposition
for handling equality. The splitting rule in kernel adds propositional parts to clauses, which
are manipulated using binary decision diagrams (BDDs). A number of standard redundancy
criteria and simplification techniques are used for pruning the search space: subsumption, tau-
tology deletion, subsumption resolution and rewriting by ordered unit equalities. The reduction
ordering is the Knuth-Bendix Ordering.

Substitution tree indexing is used to implement all major operations on sets of terms and
literals. Although the kernel of the system works only with clausal normal forms, the shell
accepts a problem in the full first-order logic syntax, clausifies it and performs a number of useful
transformations before passing the result to the kernel. Also the axiom selection algorithm of
SInE can be enabled as part of the preprocessing.

When a theorem is proved, the system produces a verifiable proof, which validates both the
clausification phase and the refutation of the CNF.

Strategies
The Vampire 11.0 kernel provides a fairly large number of features for strategy selection. The
most important ones are:

• Choice of the main saturation procedure :
– Limited Resource Strategy

– DISCOUNT loop

– Otter loop

• A variety of optional simplifications.

• Parameterised reduction orderings.

• A number of built-in literal selection functions and different modes of comparing literals.

• Age-weight ratio that specifies how strongly lighter clauses are preferred for inference
selection.

• Set-of-support strategy.
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The Vampire 11.0 core is a completely new Vampire, and it shares virtually no code with
the previous versions. The automatic mode of Vampire 11.0, however, uses both the Vampire
11.0 core and Vampire 10.0 to solve problems, based on input problem classification that takes
into account simple syntactic properties, such as being Horn or non-Horn, presence of equality,
etc.

Implementation
Vampire 11.0 is implemented in C++. The supported compilers are gcc 4.1.x, gcc 4.3.x.

Expected Competition Performance
Vampire 11.0 is the CASC-22 FOF division winner. Vampire-LTB 11.0 is the CASC-22 LTB
division winner.

7.30 Vampire 0.6

Andrei Voronkov, Kryštof Hoder
University of Manchester, United Kingdom

No system description supplied.

7.31 Waldmeister C09a

Thomas Hillenbrand
Max-Planck-Institut für Informatik, Germany

Architecture
Waldmeister C09a [44] is a system for unit equational deduction. Its theoretical basis is unfailing
completion in the sense of [8] with refinements towards ordered completion (cf. [6]). The system
saturates the input axiomatization, distinguishing active facts, which induce a rewrite relation,
and passive facts, which are the one-step conclusions of the active ones up to redundancy. The
saturation process is parameterized by a reduction ordering and a heuristic assessment of passive
facts [45].

Waldmeister C09a is a minor upgrade of Waldmeister 806, the best feature of which is TPTP
format output.

Strategies
The approach taken to control the proof search is to choose the search parameters according to
the algebraic structure given in the problem specification [45]. This is based on the observation
that proof tasks sharing major parts of their axiomatization often behave similar. Hence, for
a number of domains, the influence of different reduction orderings and heuristic assessments
has been analyzed experimentally; and in most cases it has been possible to distinguish a strat-
egy uniformly superior on the whole domain. In essence, every such strategy consists of an
instantiation of the first parameter to a Knuth-Bendix ordering or to a lexicographic path or-
dering, and an instantiation of the second parameter to one of the weighting functions addweight,
gtweight, or mixweight, which, if called on an equation s = t, return |s| + |t|, |max>(s, t)|, or
|max>(s, t)| · (|s|+ |t|+ 1) + |s|+ |t|, respectively, where |s| denotes the number of symbols in s.
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Implementation
The prover is coded in ANSI-C. It runs on Solaris, Linux, and newly also on MacOS X. In
addition, it is now available for Windows users via the Cygwin platform. The central data
structures are: perfect discrimination trees for the active facts; group-wise compressions for the
passive ones; and sets of rewrite successors for the conjectures. Visit the Waldmeister web pages
at http://www.waldmeister.org.

Expected Competition Performance
Waldmeister C09a is the CASC-22 UEQ division winner.

7.32 Waldmeister 710

Thomas Hillenbrand
Max-Planck-Institut für Informatik, Germany

Architecture
Waldmeister 710 [44] is a system for unit equational deduction. Its theoretical basis is unfailing
completion in the sense of [8] with refinements towards ordered completion (cf. [6]). The system
saturates the input axiomatization, distinguishing active facts, which induce a rewrite relation,
and passive facts, which are the one-step conclusions of the active ones up to redundancy. The
saturation process is parameterized by a reduction ordering and a heuristic assessment of passive
facts [45]. This year’s version is the result of polishing and fixing a few things in last year’s.

Implementation
The approach taken to control the proof search is to choose the search parameters – reduction
ordering and heuristic assessment – according to the algebraic structure given in the problem
specification [45]. This is based on the observation that proof tasks sharing major parts of their
axiomatization often behave similarly.

Strategies
The prover is coded in ANSI-C. It runs on Solaris, Linux, MacOS X, and Windows/Cygwin.
The central data structures are: perfect discrimination trees for the active facts; group-wise
compressions for the passive ones; and sets of rewrite successors for the conjectures. Visit the
Waldmeister web pages at http://www.waldmeister.org.

Expected Competition Performance
The system should again be rather strong, and close to the previous version.

7.33 Zenon 0.6.3

Damien Doligez
INRIA, France

Architecture
Zenon 0.6.3 [28] is a theorem prover based on a proof-confluent version of analytic tableaux. It
uses all the usual tableau rules for first-order logic with a rule-based handling of equality.

Zenon outputs formal proofs that can be checked by Coq or Isabelle.
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Strategies
Zenon is a fully automatic black-box design with no user-selectable strategies.

Implementation
Zenon is implemented in OCaml. Its most interesting data structure is the representation of
first-order formulae and terms: they are hash-consed modulo alpha conversion.

Zenon is available from http://zenon-prover.org.

Expected Competition Performance
This version is only slightly better than the version of 2008, and the handling of equality is still
really bad, so Zenon is again expected to rank in the lower part of the field.

8 Conclusion

The CADE-J5 ATP System Competition was the fifteenth large scale competition for classical
logic ATP systems. The organizer believes that CASC fulfills its main motivations: stimulation
of research, motivation for improving implementations, evaluation of relative capabilities of ATP
systems, and providing an exciting event. Through the continuity of the event and consistency
in the the reporting of the results, performance comparisons with previous and future years
are easily possible. The competition provides exposure for system builders both within and
outside of the community, and provides an overview of the implementation state of running,
fully automatic, classical logic, ATP systems.
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