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Abstract
The 2nd IJCAR ATP System Competition (CASC-J2) will be held on 6th July

2004. CASC evaluates the performance of sound, fully automatic, classical first-
order logic, ATP systems. The evaluation is in terms of:

e the number of problems solved,
e the number of acceptable proofs and models produced, and

e the average runtime for problems solved;
in the context of:

e a bounded number of eligible problems, chosen from the TPTP problem li-
brary, and

e a specified time limit for each solution attempt.

1 Introduction

The CADE conferences are the major forum for the presentation of new research in
all aspects of automated deduction. In order to stimulate ATP research and system
development, and to expose ATP systems within and beyond the ATP community, the
CADE ATP System Competition (CASC) is held at each CADE conference. CASC-J2
will be held at the 2nd International Joint Conference on Automated Reasoning (IJCAR,
which incorporates CADE), on 6th July 2004. CASC-J2 is the ninth such ATP system
competition [51, 58, 55, 42, 44, 50, 48, 49].

CASC evaluates the performance of sound, fully automatic, classical first-order logic,
ATP systems. The evaluation is in terms of the number of problems solved, the number
of acceptable proofs and models produced, and the average runtime for problems solved,
in the context of a bounded number of eligible problems chosen from the TPTP problem
library [54], and a specified time limit for each solution attempt.

Twenty-two ATP systems and variants, listed in Table 1, have been entered into
the various competition and demonstration divisions. The winners of the CASC-19
divisions have been automatically entered into those divisions, to provide benchmarks



against which progress can be judged (the competition archive provides access to the
systems’ executables and source code).

The design and procedures of this CASC evolved from those of previous CASCs
[57, 52, 47, 53, 40, 41, 43, 45, 46]. Important changes for this CASC are:

e The FOF division has been divided into two ranking classes, one ranked by the
number of problems solved, and one ranked by the number of problems solved
with acceptable proof output.

The competition organizers are Geofl Sutcliffe and Christian Suttner. The competi-
tion is overseen by a panel of knowledgeable researchers who are not participating in the
event; the panel members are Alan Bundy, Uli Furbach, and Jeff Pelletier. The rules,
specifications, and deadlines given here are absolute. Only the panel has the right to
make exceptions. The competition will be run on computers provided by the Depart-
ment of Computer Science at the University of Manchester. The CASC-J2 WWW site
provides access to resources used before, during, and after the event:

http://wuw.tptp.org/CASC/J2

2 Divisions

CASC is divided into divisions according to problem and system characteristics. There
are competition divisions in which systems are explicitly ranked, and a demonstration
division in which systems demonstrate their abilities without being formally ranked.
Entry into the competition divisions is subject to the following rules:

o ATP systems can be entered at only the division level.

o ATP systems can be entered into more than one division. A system that is not
entered into a division is assumed to perform worse than the entered systems, for
that type of problem.

e The ATP systems have to run on a single locally provided standard UNIX com-
puter (the general hardware - see Section 3.1). ATP systems that cannot run on
the general hardware can be entered into the demonstration division.

2.1 The Competition Divisions

The MIX division: Mixed CNF really non-propositional theorems.

Mized means Horn and non-Horn problems, with or without equality, but not unit
equality problems (see the UEQ division below). Really non-propositional means with
an infinite Herbrand universe. The MIX Division has five problem categories:

e The HNE category: Horn with No Equality
e The HEQ category: Horn with some (but not pure) Equality
e The NNE category: Non-Horn with No Equality

e The NEQ category: Non-Horn with some (but not pure) Equality
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e The PEQ category: Pure Equality

The MIX division has two ranking classes:

e The Assurance class: Ranked according to the number of problems solved (a “yes”
output, giving an assurance of the existence of a proof).

e The Proof class: Ranked according to the number of problems solved with an
acceptable proof output on stdout. The competition panel judges whether or not
each system’s proof format is acceptable.

The FOF division: Mixed FOF non-propositional theorems.
The FOF Division has two problem categories:

e The FNE category: FOF with No Equality
e The FEQ category: FOF with Equality
The FOF division has two ranking classes:

e The Assurance class: Ranked according to the number of problems solved (a “yes”
output, giving an assurance of the existence of a proof).

e The Proof class: Ranked according to the number of problems solved with an
acceptable proof output on stdout. The competition panel judges whether or not
each system’s proof format is acceptable.

The SAT division: Mixed CNF really-non-propositional non-theorems.
The SAT Division has two problem categories:

e The SNE category: SAT with No Equality
e The SEQ category: SAT with Equality
The SAT division has two ranking classes:

e The Assurance class: Ranked according to the number of problems solved (a “yes”
output, giving an assurance of the existence of a model).

e The Model class: Ranked according to the number of problems solved with an
acceptable model output on stdout. The competition panel judges whether or
not each system’s model format is acceptable.

The EPR division: CNF effectively propositional theorems and non-theorems.
Effectively propositional means non-propositional with a finite Herbrand Universe.
The EPR Division has two problem categories:

e The EPT category: Effectively Propositional Theorems (unsatisfiable clauses)
e The EPS category: Effectively Propositional non-theorems (Satisfiable clauses)

The UEQ division: Unit equality CNF really non-propositional theorems.

Section 3.2 explains what problems are eligible for use in each division and category.



2.2 The Demonstration Division

ATP systems that cannot run on the general hardware, or cannot be entered into the
competition divisions for any other reason, can be entered into the demonstration divi-
sion. Demonstration division systems can run on the general hardware, or the hardware
can be supplied by the entrant. Hardware supplied by the entrant may be brought to
CASC, or may be accessed via the internet.

The entry specifies which competition divisions’ problems are to be used. The results
are presented along with the competition divisions’ results, but may not be comparable
with those results.

3 Infrastructure

3.1 Hardware and Software

The general hardware is 64 Dell computers, each having:
e AMD Athlon XP 2200+, 1797MHz CPU
e 512MB memory

o Linux 2.4.20-30.9 operating system

3.2 Problems
3.2.1 Problem Selection

The problems are from the TPTP problem library, version v2.7.0. The TPTP version
used for the competition is not released until after the system installation deadline, so
that new problems have not seen by the entrants.

The problems have to meet certain criteria to be eligible for selection:

e The TPTP uses system performance data to compute problem difficulty ratings,
and from the ratings classifies problems as one of [56]:
— Easy: Solvable by all state-of-the-art ATP systems
— Difficult: Solvable by some state-of-the-art ATP systems
— Unsolved: Solvable by no ATP systems
— Open: Theoremhood unknown
Difficult problems with a rating in the range 0.21 to 0.99 are eligible. Perfor-

mance data from systems submitted by the system submission deadline is used for
computing the problem ratings for the TPTP version used for the competition.

e The TPTP distinguishes versions of problems as one of standard, incomplete,
augmented, especial, or biased. All except biased problems are eligible.

The problems used are randomly selected from the eligible problems at the start of
the competition, based on a seed supplied by the competition panel.



e The selection is constrained so that no division or category contains an excessive
number of very similar problems.

e The selection mechanism is biased to select problems that are new in the TPTP
version used, until 50% of the problems in each category have been selected, af-
ter which random selection (from old and new problems) continues. The actual
percentage of new problems used depends on how many new problems are eligible
and the limitation on very similar problems.

3.2.2 Number of Problems

The minimal numbers of problems that have to be used in each division and category, to
ensure sufficient confidence in the competition results, are determined from the numbers
of eligible problems in each division and category [9] (the competition organizers have
to ensure that there is sufficient CPU time available to run the ATP systems on this
minimal number of problems). The minimal numbers of problems is used in determining
the CPU time limit imposed on each solution attempt - see Section 3.3.

A lower bound on the total number of problems to be used is determined from the
number of computers available, the time allocated to the competition, the number of
ATP systems to be run on the general hardware over all the divisions, and the CPU
time limit, according to the following relationship:

NumberO fComputers x TimeAllocated
NumberO fAT PSystems « C PUTvmeLimat

It is a lower bound on the total number of problems because it assumes that every
system uses all of the CPU time limit for each problem. Since some solution attempts
succeed before the CPU time limit is reached, more problems can be used.

The numbers of problems used in the categories in the various divisions is (roughly)
proportional to the numbers of eligible problems than can be used in the categories,
after taking into account the limitation on very similar problems.

The numbers of problems used in each division and category are determined accord-
ing to the judgement of the competition organizers.

NumberQ f Problems =

3.2.3 Problem Preparation

In order to ensure that no system receives an advantage or disadvantage due to the
specific presentation of the problems in the TPTP, the tptp2X utility (distributed with
the TPTP) is used to:

e rename all predicate and function symbols to meaningless symbols
e randomly reorder the clauses and literals in CNF problems

e randomly reorder the formulae in FOF problems

e randomly reverse the unit equalities in UEQ problems

e remove equality axioms that are not needed by the ATP systems



e add equality axioms that are needed by the ATP systems

e output the problems in the formats required by the ATP systems. (The clause
type information, one of axiom, hypothesis, or conjecture, may be included in
the final output of each formula.)

Further, to prevent systems from recognizing problems from their file names, sym-
bolic links are made to the selected problems, using names of the form CCCNNN-1.p
for the symbolic links, with NNN running from 001 to the number of problems in the
respective division or category. The problems are specified to the ATP systems using
the symbolic link names.

In the demonstration division the same problems are used as for the competition
divisions, with the same tptp2X transformations applied. However, the original file
names are retained.

3.3 Time Limits

In the competition divisions, CPU and wall clock time limits are imposed on each
solution attempt. A minimal CPU time limit of 240 seconds is used. The maximal
CPU time limit is determined using the relationship used for determining the number of
problems, with the minimal number of problems as the NumberO f Roblems. The CPU
time limit is chosen as a reasonable value within the range allowed, and is announced
at the competition. The wall clock time limit is imposed in addition to the CPU time
limit, to prevent very high memory usage that causes swapping. The wall clock time
limit is double the CPU time limit.

In the demonstration division, each entrant can choose to use either a CPU or a wall
clock time limit, whose value is the CPU time limit of the competition divisions.

4 Performance Evaluation

At some time before the competition, all systems in the competition divisions are tested
for soundness. Non-theorems (satisfiable variants of the eligible problems, e.g., without
the conjecture clause, and satisfiable problems selected from the TPTP) are submitted
to the systems in the MIX, FOF, EPR, and UEQ divisions, and theorems (selected
from the TPTP) are submitted to the systems in the SAT and EPR divisions. Finding
a proof of a non-theorem or a disproof of a theorem indicates unsoundness. If an
ATP system fails the soundness testing it must be repaired by the unsoundness repair
deadline or be withdrawn. The soundness testing has a secondary aim of eliminating
the possibility of an ATP system simply delaying for some amount of time and then
claiming to have found a solution. For systems running on entrant supplied hardware in
the demonstration division, the entrant must perform the soundness testing and report
the results to the competition organizers.

During the competition, for each ATP system, for each problem attempted, three
items of data are recorded: whether or not a solution was found, the CPU time taken,
and whether or not a solution (proof or model) was output on stdout. In the MIX and
FOF division proof classes, and the SAT division model class, the systems are ranked



according to the number of problems solved with an acceptable solution output. In all
other cases the systems are ranked according to the numbers of problems solved. If there
is a tie according to these rankings then the tied systems are ranked according to their
average CPU times over problems solved. Division and class winners are announced and
prizes are awarded.

At some time after the competition, all high ranking systems in each division are
tested over the entire TPTP. This provides a final check for soundness. If a system is
found to be unsound, and it cannot be shown that the unsoundness did not manifest
itself in the competition, then the system is retrospectively disqualified. At some time
after the competition, the proofs from the winners of the MIX and FOF division proof
classes, and the models from the winner of the SAT division model class, are checked
by the panel. If any of the proofs or models are unacceptable, i.e., they are significantly
worse than the samples provided, then that system is retrospectively disqualified. All
disqualifications are reported in the journal paper about the competition.

5 System Properties

The precomputation and storage of any information specifically about TPTP problems
is not allowed. Strategies and strategy selection based on the characteristics of a few
specific TPTP problems is not allowed, i.e., strategies and strategy selection must be
general purpose and expected to extend usefully to new unseen problems. If automatic
strategy learning procedures are used, the learning must ensure that sufficient general-
ization is obtained, and that no learning at the individual problem level is performed.

For every problem solved, the system’s solution process has to be reproducible by
running the system again.

Entrants must install their systems on the general hardware, and ensure that their
systems execute in the competition environment, according to the checks listed below.
Entrants are advised to perform these checks well in advance of the system installation
deadline. This gives the competition organizers time to help resolve any difficulties
encountered.

5.1 System Checks

The ATP systems have to be executable by a single command line, using an absolute
path name for the executable, which may not be in the current directory. The command
line arguments are the absolute path name of a symbolic link as the problem file name,
the time limit (if required by the entrant), and entrant specified system switches (the
same for all problems). No shell features, such as input or output redirection, may
be used in the command line. No assumptions may be made about the format of the
problem file name.

e Check: The ATP system can be run by an absolute path name for the executable.
For example:

prompt> pwd
/home/tptp



prompt> which MyATPSystem

/home/tptp/bin/MyATPSystem

prompt> /home/tptp/bin/MyATPSystem /home/tptp/TPTP/Problems/GRP/GRP0O01-1.p
Proof found in 147 seconds.

e Check: The ATP system accepts an absolute path name of a symbolic link as the
problem file name. For example:

prompt> cd /home/tptp/tmp

prompt> 1ln -s /home/tptp/TPTP/Problems/GRP/GRPO01-1.p CCCO01-1.p
prompt> cd /home/tptp

prompt> /home/tptp/bin/MyATPSystem /home/tptp/tmp/CCCO01-1.p
Proof found in 147 seconds.

e Check: The ATP system makes no assumptions about the format of the problem
file name. For example:

prompt> 1ln -s /home/tptp/TPTP/Problems/GRP/GRPO01-1.p \_foo-Blah
prompt> /home/tptp/bin/MyATPSystem \_foo-Blah
Proof found in 147 seconds.

The ATP systems that run on the general hardware have to be interruptable by a
SIGXCPU signal, so that the CPU time limit can be imposed on each solution attempt, and
interruptable by a SIGALRM signal, so that the wall clock time limit can be imposed on
each solution attempt. For systems that create multiple processes, the signal is sent first
to the process at the top of the hierarchy, then one second later to all processes in the
hierarchy. Any orphan processes are killed after that, using SIGKILL. The default action
on receiving these signals is to exit (thus complying with the time limit, as required),
but systems may catch the signals and exit of their own accord. If a system runs past a
time limit this is noticed in the timing data, and the system is considered to have not
solved that problem.

e Check: The ATP system can run under the TreeLimitedRun program (sources

are available from the CASC-J2 WWW site). For example:

prompt> which TreeLimitedRun

/home/tptp/bin/TreeLimitedRun

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCCO01-1.p

TreeLimitedRun: —----—-————-———————————————

TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreeLimitedRun: CPU time limit is 200s

TreeLimitedRun: WC +time limit is 400s

TreeLimitedRun: PID is 4867

TreeLimitedRun: —----—-————-———————————————

Proof found in 147 seconds.

FINAL WATCH: 147.8 CPU 150.0 WC

e Check: The ATP system’s CPU time can be limited using the TreeLimitedRun
program. For example:



prompt> /home/tptp/bin/TreelLimitedRun -q0 10 20 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCCO01-1.p

TreelLimitedRun: - ---—-————————-————————————————

TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreelLimitedRun: CPU time limit is 10s

TreelLimitedRun: WC time limit is 20s

TreeLimitedRun: PID is 5827

TreelLimitedRun: - ---—-————————-————————————————

CPU time limit exceeded

FINAL WATCH: 10.7 CPU 13.1 WC

e Check: The ATP system’s wall clock time can be limited using the TreeLimitedRun
program. For example:

prompt> /home/tptp/bin/TreelimitedRun -q0 20 10 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCCO01-1.p

TreelLimitedRun: - ---—-————————-————————————————

TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreelLimitedRun: CPU time limit is 20s

TreelLimitedRun: WC time limit is 10s

TreeLimitedRun: PID is 5827

TreelLimitedRun: - ---—-————————-————————————————

Alarm clock

FINAL WATCH: 9.7 CPU 10.1 WC

When terminating of their own accord, the ATP systems have to output a distin-
guished string (specified by the entrant) to stdout indicating the result, one of:

e A solution exists (for CNF problems, the clause set is unsatisfiable, for FOF prob-
lems, the conjecture is a theorem)

e No solution exists (for CNF problems, the clause set is satisfiable, for FOF prob-
lems, the conjecture is a non-theorem)

e No conclusion reached

When outputing proofs for MIX and FOF divisions’ proof classes, and models for
the SAT division’s model class, the start and end of the solution must be identified by
distinguished strings (specified by the entrant). These pairs of strings must be different
for proofs and models.

e Check: The system outputs a distinguished string when terminating of its own
accord. For example, here the entrant has specified that the distinguished string
Proof found indicates that a solution exists. If appropriate, similar checks should
be made for the cases where no solution exists and where no conclusion is reached.

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
/home/tptp/tmp/CCCO01-1.p
TreelLimitedRun: ————————————————————————————————————————————————



TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreelLimitedRun: CPU time limit is 200s

TreelLimitedRun: WC time limit is 400s

TreeLimitedRun: PID is 5827

TreelLimitedRun: - ---—-————————-————————————————
Proof found in 147 seconds.

FINAL WATCH: 147.8 CPU 150.0 WC

e Check: The system outputs distinguished strings at the start and end of its so-
lution. For example, here the entrant has specified that the distinguished strings
START OF PROOF and END OF PROOF identify the start and end of the solution.

prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
—-output_proof /home/tptp/tmp/CCCO01-1.p

TreeLimitedRun: —----—-————-———————————————

TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreeLimitedRun: CPU time limit is 200s

TreeLimitedRun: WC +time limit is 400s

TreeLimitedRun: PID is 5827

TreeLimitedRun: —----—-————-———————————————

Proof found in 147 seconds.

START OF PROOF
. acceptable proof here ...

END OF PROOF

FINAL WATCH: 147.8 CPU 150.0 WC

If an ATP system terminates of its own accord, it may not leave any temporary or
other output files. If an ATP system is terminated by a SIGXCPU or SIGALRM, it may not
leave any temporary or other output files anywhere other than in /tmp.

Multiple copies of the ATP systems have to be executable concurrently on different
machines but in the same (NF'S cross mounted) directory. It is therefore necessary to
avoid producing temporary files that do not have unique names, with respect to the
machines and other processes. An adequate solution is a file name including the host
machine name and the process id.

For practical reasons excessive output from the ATP systems is not allowed. A limit,
dependent on the disk space available, is imposed on the amount of stdout and stderr
output that can be produced. The limit is at least 10KB per problem (averaged over
all problems so that it is possible to produce some long proofs).

e Check: No temporary or other files are left if the system terminates of its own
accord, and no temporary or other files are left anywhere other than in /tmp if
the system is terminated by a SIGXCPU or SIGALRM. Check in the current directory,
the ATP system’s directory, the directory where the problem’s symbolic link is
located, and the directory where the actual problem file is located.

prompt> pwd
/home/tptp
prompt> /home/tptp/bin/TreeLimitedRun -q0 200 400 /home/tptp/bin/MyATPSystem
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/home/tptp/tmp/CCCO01-1.p
TreelLimitedRun: ————————————————————————————————————————————————
TreelLimitedRun: /home/tptp/bin/MyATPSystem
TreelLimitedRun: CPU time 1limit is 200s
TreelLimitedRun: WC +time limit is 400s
TreelLimitedRun: PID is 13526
TreelLimitedRun: ————————————————————————————————————————————————
Proof found in 147 seconds.
FINAL WATCH: 147.8 CPU 150.0 WC
prompt> ls /home/tptp
... no temporary or other files left here ...
prompt> ls /home/tptp/bin
... no temporary or other files left here ...
prompt> ls /home/tptp/tmp
... no temporary or other files left here ...
prompt> 1ls /home/tptp/TPTP/Problems/GRP
... no temporary or other files left here ...
prompt> ls /tmp
. no temporary or other files left here by decent systems ...

e Check: Multiple concurrent executions do not clash. For example:

prompt> (/bin/time /home/tptp/bin/TreelLimitedRun -q0 200 400
/home/tptp/bin/MyATPSystem /home/tptp/tmp/CCCO01-1.p) &
(/bin/time /home/tptp/bin/TreelLimitedRun -q0 200 400
/home/tptp/bin/MyATPSystem /home/tptp/tmp/CCCO01-1.p)

TreelLimitedRun: - ---—-————————-————————————————

TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreelLimitedRun: CPU time limit is 200s

TreelLimitedRun: WC time limit is 400s

TreeLimitedRun: PID is 5827

TreelLimitedRun: - ---—-————————-————————————————

TreelLimitedRun: - ---—-————————-————————————————

TreelLimitedRun: /home/tptp/bin/MyATPSystem

TreelLimitedRun: CPU time limit is 200s

TreelLimitedRun: WC time limit is 400s

TreeLimitedRun: PID is 5829

TreelLimitedRun: - ---—-————————-————————————————

Proof found in 147 seconds.

FINAL WATCH: 147.8 CPU 150.0 WC

Proof found in 147 seconds.
FINAL WATCH: 147.8 CPU 150.0 WC

5.2 System Delivery

Access to the general hardware (or equivalent) is available from the general hardware
access deadline. For systems running on the general hardware, entrants have to deliver
an installation package to the competition organizers by the installation deadline. The
installation package must be a .tar.gz file containing the system source code, any other
files required for installation, and a ReadMe file. The ReadMe file must contain:

12



e Instructions for installation
e Instructions for executing the system

— Format of problem files, in the form of tptp2X format and transformation
parameters.

— Command line, using %s and %d to indicate where the problem file name and
CPU time limit must appear.

e The distinguished strings output to indicate

— The result
— The start of solution output

— The end of solution output

The installation procedure may require changing path variables, invoking make or
something similar, etc, but nothing unreasonably complicated. All system binaries must
be created in the installation process; they cannot be delivered as part of the installa-
tion package. The system is reinstalled onto the general hardware by the competition
organizers, following the instructions in the ReadMe file. Installation failures before the
installation deadline are passed back to the entrant. After the installation deadline
access to the general hardware is denied, and no further changes or late systems are
accepted.

For systems running on entrant supplied hardware in the demonstration division,
the systems are installed on the respective hardware by the entrants.

5.3 System Execution

Execution of the ATP systems on the general hardware is controlled by a perl script,
provided by the competition organizers. The jobs are queued onto the computers so that
each computer is running one job at a time. All attempts at the Nth problems in all
the divisions and categories are started before any attempts at the (N4+1)th problems.

During the competition a perl script parses the systems’ outputs. If any of an ATP
system’s distinguished strings are found then the CPU time used to that point is noted.
A system has solved a problem iff it outputs its “success” string within the CPU time
limit, and a system has produced a proof or model iff it outputs its “end of solution”
string within the CPU time limit. The result and timing data is used to generate an
HTML file, and a WWW browser is used to display the results.

The execution of the demonstration division systems is supervised by their entrants.

6 Entry Procedures

To be entered into CASC, systems have to be registered using the CASC system reg-
istration form. No registrations are accepted after the registration deadline. For each
system entered, an entrant has to be nominated to handle all issues (including execution
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difficulties) arising before and during the competition. The nominated entrant must for-
mally register for CASC. However, it is not necessary for entrants to physically attend
the competition.

Entering many similar versions of the same system is deprecated, and entrants may
be required to limit the number of system versions that they enter. The division win-
ners from the previous CASC are automatically entered into their divisions, to provide
benchmarks against which progress can be judged. Systems entered in the MIX and
FOF divisions are automatically ranked in the assurance classes, and are ranked in the
proof classes if they output acceptable proofs. Systems entered in the SAT division
are automatically ranked in the assurance class, and are ranked in the model class if
they output acceptable models. After the competition all systems’ source code is made
publically available on the CASC WWW site.

It is assumed that each entrant has read the WWW pages related to the competition,
and has complied with the competition rules. Non-compliance with the rules could lead
to disqualification. A “catch-all” rule is used to deal with any unforseen circumstances:
No cheating is allowed. The panel is allowed to disqualify entrants due to unfairness,
and to adjust the competition rules in case of misuse.

6.1 System Description

A system description has to be provided for each ATP system entered, using the HTML
schema supplied on the CASC WWW site. The system description must fit onto two
pages, using 12pt times font. The schema has the following sections:

e Architecture. This section introduces the ATP system, and describes the calculus
and inference rules used.

e Implementation. This section describes the implementation of the ATP system,
including the programming language used, important internal data structures, and
any special code libraries used.

e Strategies. This section describes the search strategies used, why they are effective,
and how they are selected for given problems. Any strategy tuning that is based
on specific problems’ characteristics must be clearly described (and justified in
light of the tuning restrictions).

o Expected competition performance. This section makes some predictions about
the performance of the ATP system in each of the divisions and categories in which
the system is competing.

o References.

The system description has to be emailed to the competition organizers before the
system description deadline. The system descriptions, along with information regarding
the competition design and procedures, form the proceedings for the competition.
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6.2 Sample Solutions

For systems in the MIX and FOF division proof classes, and the SAT division model
class, representative sample solutions must be emailed to the competition organizers
before the sample solutions deadline. Proof samples for the MIX division must include
a proof for SYNO75-1. Proof samples for the FOF division must include a proof for
SYNO75+1. Model samples for the SAT division must include a model for MGT031-1.
The sample solutions must illustrate the use of all inference rules. A key must be
provided if any non-obvious abbreviations for inference rules or other information are
used.

The competition panel decides whether or not the proofs and models are acceptable.
The criteria include:

e Derivations must be complete, starting at formulae from the problem, and ending
at the conjecture (for axiomatic proofs) or a false formula (for proofs by contra-
diction, including CNF refutations).

— For proofs of FOF problems by CNF refutation, the conversion from FOF to
CNF must be adequately documented.

e Derivations must show only relevant inference steps.

e Inference steps must document the parent formulae, the inference rule used, and
the inferred formula.

e Inference steps must be reasonably fine-grained.

e An unsatisfiable set of ground instances of clauses is acceptable for establishing
the unsatisfiability of a set of clauses.

e Models must be complete, documenting the domain, function maps, and predi-
cate maps. The domain, function maps, and predicate maps may be specified by
explicit ground lists (of mappings), or by any clear, terminating algorithm.

7 The ATP Systems

These system descriptions were written by the entrants.

7.1 Darwin CASC-J2

Peter Baumgartner!, Alexander Fuchs?, Cesare Tinelli®
"Max-Planck-Institut fiir Informatik Saarbriicken, Germany,
baumgart@mpi-sb.mpg.de

2Universitit Koblenz-Landau, Germany
alexander.fuchs@uni-koblenz.de

3The University of lowa, USA

tinelli@cs.uiowa.edu

15



Architecture

Darwin [4] is an automated theorem prover for first order clausal logic. It is the first
implementation of the Model Evolution Calculus [5]. The Model Evolution Calculus lifts
the propositional DPLL procedure to first-order logic. One of the main motivations for
this approach was the possibility of migrating to the first-order level some of those very
effective search techniques developed by the SAT community for the DPLL procedure.

The current version of Darwin implements first-order versions of unit propagation
inference rules analogously to a restricted form of unit resolution and subsumption by
unit clauses. To retain completeness, it includes a first-order version of the (binary)
propositional splitting inference rule.

Proof search in Darwin starts with a default interpretation for a given clause set,
which is evolved towards a model or until a refutation is found.

Implementation

The central data structure is the context. A context represents an interpretation as a
set of first-order literals. The context is grown by using instances of literals from the
input clauses. The implementation of Darwin is intended to support basic operations
on contexts in an efficient way. This involves the handling of large sets of candidate
literals for modifying the current context. The candidate literals are computed via
simultaneous unification between given clauses and context literals. This process is
sped up by storing partial unifiers for each given clause and merging them for different
combinations of context literals, instead of redoing the whole unifier computations. For
efficient filtering of unneeded candidates against context literals, discrimination tree or
substitution tree indexing is employed. The splitting rule generates choice points in
the derivation which are backtracked using a form of backjumping similar to the one
used in DPLL-based SAT solvers. A generalized version of Backjumping called Dynamic
Backtracking is implemented by representing the derivation tree by a graph of states
and their dependencies.

Darwin is implemented in OCaml and has been tested under Linux. It is available
from:

http://wuw.mpi-sb.mpg.de/ baumgart/DARWIN

Strategies
Darwin traverses the search space by iterative deepening over the term depth of candi-
date literals. Darwin employs a uniform search strategy for all problem classes.

Expected Competition Performance

Darwin is a first prototype implementation for the Model Evolution calculus. We expect
its performance to be strong in the EPR division; we anticipate performance below
average in the MIX division, and weak performance in the SAT division.
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7.2 DCTP 1.3-EPR

Gernot Stenz
Max-Planck-Institut fiir Informatik, Germany
stenz@mpi-sb.mpg.de

Architecture

DCTP 1.3 [37] is an automated theorem prover for first order clause logic. It is an
implementation of the disconnection calculus described in [6, 13, 38]. The disconnec-
tion calculus is a proof confluent and inherently cut-free tableau calculus with a weak
connectedness condition. The inherently depth-first proof search is guided by a literal
selection based on literal instantiatedness or literal complexity and a heavily parame-
terised link selection. The pruning mechanisms mostly rely on different forms of variant
deletion and unit based strategies. Additionally the calculus has been augmented by full
tableau pruning.

The new DCTP 1.3 has been enhanced with respect to clause preprocessing, se-
lection functions and closure heuristics. Most prominent among the improvements is
the introduction of a unification index for finding connections, which also replaces the
connection graph hitherto used.

Implementation

DCTP 1.3 has been implemented as a monolithic system in the Bigloo dialect of the
Scheme language. The most important data structures are perfect discrimination trees,
which are used in many variations. It runs under Solaris and Linux.

Strategies

DCTP 1.3 is a single strategy prover.

Expected Competition Performance

DCTP 1.3-EPR is the CASC-19 EPR division winner.

7.3 DCTP 1.31 and 10.21p

Gernot Stenz
Technische Universitat Miinchen, Germany
stenzg@informatik.tu-muenchen.de

Architecture

DCTP 1.31 [37] is an automated theorem prover for first order clause logic. It is an
implementation of the disconnection calculus described in [6, 13, 38]. The disconnec-
tion calculus is a proof confluent and inherently cut-free tableau calculus with a weak
connectedness condition. The inherently depth-first proof search is guided by a literal
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selection based on literal instantiatedness or literal complexity and a heavily parame-
terised link selection. The pruning mechanisms mostly rely on different forms of variant
deletion and unit based strategies. Additionally the calculus has been augmented by full
tableau pruning.

DCTP 10.21p is a strategy parallel version using the technology of E-SETHEO [39]
to combine several different strategies based on DCTP 1.31.

Implementation

DCTP 1.31 has been implemented as a monolithic system in the Bigloo dialect of the
Scheme language. The most important data structures are perfect discrimination trees,
which are used in many variations. DCTP 10.21p has been derived of the Perl imple-
mentation of E-SETHEQO and includes DCTP 1.31 as well as the E prover as its CNF
converter. Both versions run under Solaris and Linux.

We are currently integrating a range of new techniques into DCTP which are mostly
based on the results described in [15], as well as a certain form of unit propagation. We
are hopeful that these improvements will be ready in time for CASC-J2.

Strategies

DCTP 1.31 is a single strategy prover. Individual strategies are started by DCTP 10.21p
using the schedule based resource allocation scheme known from the E-SETHEQ system.
Of course, different schedules have been precomputed for the syntactic problem classes.
The problem classes are more or less identical with the sub-classes of the competition
organisers. Again, we have no idea whether or not this conflicts with the organisers’
tuning restrictions.

Expected Competition Performance

We expect both DCTP 1.31 and DCTP 10.21p to perform reasonably well, in particular
in the EPR (in any case) and SAT (depending on the selection of problems for the
competition) categories.

7.4 Dilemma 0.1

Magnus Bjork
Chalmers University of Technology, Sweden
mab@cs.chalmers.se

Architecture

Dilemma 0.1 is a theorem prover based on an extension of Stalmarck’s method to first
order classical logic [17, 18, 19]. This calculus is proof confluent and does not use
backtracking. It incorporates all non-branching rules of both KE and KI, and also the
dilemma rule, that is a branch-and-merge rule. It works like the analytic cut rule, except
that the branches can be recombined to one branch again, keeping the intersection of
all new consequences. Dilemma formulas may contain free variables (called rigid), that
may not be substituted in the branches, but are turned into universal variables after a
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merge. Rigid variables are not instantiated destructively, but possible instantiations are
detected and stored for later, when they will be used to find more specialized dilemma
formulas.

Implementation

The system is currently being developed in C4++, and if a working prototype exists at
the time of the CASC-J2 then it will enter the demonstration division.

Strategies

The prototype will have no special strategies.

Expected Competition Performance

The prototype will probably not be very competitive. We enter mostly for the possibility
of getting feedback.

7.5 E and EP 0.82

Stephan Schulz
Technische Universitdt Miinchen, Germany, and 1TC/irst, Italy
schulz@informatik.tu-muenchen.de

Architecture

E 0.82[32, 34] is a purely equational theorem prover. The core proof procedure operates
on formulas in clause normal form, using a calculus that combines superposition (with
selection of negative literals) and rewriting. No special rules for non-equational literals
have been implemented, i.e., resolution is simulated via paramodulation and equality
resolution. The basic calculus is extended with rules for AC redundancy elemination,
some contextual simplification, and pseudo-splitting.

E is based on the DISCOUNT-loop variant of the given-clause algorithm, i.e. a strict
separation of active and passive facts. Proof search in E is primarily controlled by a
literal selection strategy, a clause evaluation heuristic, and a simplification ordering. The
prover supports a large number of preprogrammed literal selection strategies, many of
which are only experimental. Clause evaluation heuristics can be constructed on the fly
by combining various parameterized primitive evaluation functions, or can be selected
from a set of predefined heuristics. Supported term orderings are several parameterized
instances of Knuth-Bendix-Ordering (KBO) and Lexicographic Path Ordering (LPO).

E uses a preprocessing step to convert formulas in full first order format to clause
normal form. Preprocessing also unfolds equational definitions and performs some sim-
plifications on the clause level.

The automatic mode can selects literal selection strategy, term ordering, and search
heuristic based on simple problem characteristics of the preprocessed clausal problem.

EP 0.82 is just a combination of E 0.82 in verbose mode and a proof analysis tool
extracting the used inference steps.
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Implementation

E is implemented in ANSI C, using the GNU C compiler. The most outstanding feature
is the global sharing of rewrite steps. Current versions of EE add rewrite links from
rewritten to new terms. In effect, E is caching rewrite operations as long as sufficient
memory is available. Other important features are the use of perfect discrimination
trees with age and size constraints for rewriting and unit-subsumption, feature vector
indexing [33] for forward and backward subsumption and contextual literal cutting, and
a new polynomial implementation of LPO [16].

The program has been successfully installed under SunOS 4.3.x, Solaris 2.x, HP-
UX B 10.20, MacOS-X, and various versions of Linux. Sources of the latest released
version are available freely from:

http://wuw.eprover.org

EP 0.82 is a simple Bourne shell script calling E and the postprocessor in a pipeline.

Strategies

E’s automatic mode is optimized for performance on TPTP 2.6.0. The optimization is
based on about 90 test runs over the library (and previous experience) and consists of
the selection of one of about 50 different strategies for each problem. All test runs have
been performed on SUN Ultra 60/300 machines with a time limit of 300 seconds (or
roughly equivalent configurations). All individual strategies are general purpose, the
worst one solves about 49% of TPTP 2.6.0, the best one about 60%.

E distinguishes problem classes based on a number of features, all of which have
between two and 4 possible values. The most important ones are:

e Is the most general non-negative clause unit, Horn, or Non-Horn?

e s the most general negative clauce unit or non-unit?

Are all negative clauses unit clauses?

Are all literals equality literals, are some literas equality literals, or is the problem
non-equational?

Are there a few, some, or many clauses in the problem?
e [s the maximum arity of any function symbol 0, 1, 2, or greater?
e [s the sum of function symbol arities in the signature small, medium, or large?

Wherever there is a three-way split on a numerical feature value, the limits are
selected automatically with the aim of splitting the set of problems into approximately
equal sized parts based on this one feature.

For classes above a threshold size, we assign the absolute best heuristic to the class.
For smaller, non-empty classes, we assign the globally best heuristic that solves the same
number of problems on this class as the best heuristic on this class does. Empty classes
are assigned the globally best heuristic. Typically, most selected heuristics are assigned
to more than one class.
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Expected Competition Performance

In the last year, E performed well in the MIX category of CASC and came in third in
the UEQ division. We believe that E will again be among the strongest provers in the
MIX category, in particular due to its good performance for Horn problems. In UEQ, E
will probably be beaten only by Waldmeister. We cannot predict performance on FOF
problems yet, but hope that E will be competitive.

EP 0.82 will be hampered by the fact that it has to analyse the inference step listing,
an operation that typically is about as expensive as the proof search itself. Nevertheless,
it should be competitive among the MIX* and FOF* systems.

7.6 E-SETHEO csp04

Gernot Stenz, Stephan Schulz, Reinhold Letz
Technische Universitat Miinchen, Germany
{stenz,schulz,letz}@informatik.tu-muenchen.de

Architecture

E-SETHEO is a compositional theorem prover for formulae in first order clause logic,
combining the systems E [31] and SETHEO [25]. It incorporates different calculi and
proof procedures like superposition, model elimination and semantic trees (the DPLL
procedure). Furthermore, the system contains transformation techniques which may
split the formula into independent subparts or which may perform a ground instantia-
tion. Finally, advanced methods for controlling and optimizing the combination of the
subsystems are applied. The first-order variant of E-SETHEQ no longer uses Flotter
[61] as a preprocessing module for transforming non-clausal formulae to clausal form.
Instead, a more primitive normal form transformation is employed.

Since version 99csp of E-SETHEQ, the different strategies are run sequentially, one
after the other. E-SETHEO csp04 incorporates the new version of the disconnection
prover DCTP [37] with modified unification and a form of unit propagation as well
as a new version of the E prover [31]. The new E prover also replaces TPTP2X as
the CNF conversion tool. The new Scheme version of SETHEQO that is in use features
local unit failure caching [13] and lazy root paramodulation, an optimisation of lazy

paramodulation which is complete in the Horn case [14]. Other than that (and a new
resource distribution scheme), E-SETHEO c¢sp04 is identical to E-SETHEO c¢sp03.

Implementation

According to the diversity of the contained systems, the modules of E-SETHEQO are
implemented in different programming languages like C, Scheme, and Shell tools. Due
to the replacement of TPTP2X, E-SETHEQ is finally Prolog-free.

The program runs under Solaris and Linux. Sources are available from the authors.

Strategies

Individual strategies are started be E-SETHEO depending on the allocation of resources
to the different strategies, so-called schedules, which have been computed from experi-
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mental data using machine learning techniques as described in [39]. Schedule selection
depends on syntactic characteristics of the input formula such as the Horn-ness of for-
mulae, whether a problem contains equality literals or whether the formula is in the
Bernays-Schonfinkel class. The problem classes are more or less identical with the sub-
classes of the competition organisers. We have no idea whether or not this conflicts with
the organisers’ tuning restrictions.

Expected Competition Performance

We expect E-SETHEO to perform well in all categories it participates in.

7.7 Gandalf ¢c-2.6-SAT

Tanel Tammet
Tallinn Technical University, Estonia
tammet@cc.ttu.ee

Architecture

Gandalf [59, 60] is a family of automated theorem provers, including classical, type the-
ory, intuitionistic and linear logic provers, plus finite a model builder. The version ¢-2.6
contains the classical logic prover for clause form input and the finite model builder. One
distinguishing feature of Gandalf is that it contains a large number of different search
strategies and is capable of automatically selecting suitable strategies and experimenting
with these strategies.

The finite model building component of Gandalf uses the Zchafl propositional logic
solver by L.Zhang [26] as an external program called by Gandalf. Zchaff is not free,
although it can be used freely for research purposes. Gandalf is not optimised for Zchaff
or linked together with it: Zchaff can be freely replaced by other satisfiability checkers.

Implementation

Gandalf is implemented in Scheme and compiled to C using the Hobbit Scheme-to-C
compiler. Version scmbd6 of the Scheme interpreter scm by A.Jaffer is used as the
underlying Scheme system. Zchaff is implemented in C++.

Gandalf has been tested on Linux, Solaris, and MS Windows under Cygwin.

Gandalf is available under GPL from:

http://wuw.ttu.ee/it/gandalf

Strategies

One of the basic ideas used in Gandalf is time-slicing: Gandalf typically runs a number
of searches with different strategies one after another, until either the proof is found or
time runs out. Also, during each specific run Gandalf typically modifies its strategy as
the time limit for this run starts coming closer. Selected clauses from unsuccessful runs
are sometimes used in later runs.

In the normal mode Gandalf attempts to find only unsatisfiability. It has to be called
with a -sat flag to find satisfiability. The following strategies are run:
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e Finite model building by incremental search through function symbol interpreta-
tions.

e Ordered binary resolution (term depth): only for problems not containing equality.

e Finite model building using MACE-style flattening and the external propositional
prover.

Expected Competition Performance

Gandalf ¢-2.6-SAT is the CASC-19 SAT division, assurance class, winner.

7.8 Mace2 2.2

William McCune
Argonne National Laboratory, USA
mccune@mcs.anl.gov

Architecture

Mace2 [21] searches for finite models of first-order (including equality) statements.
Mace?2 iterates through domain sizes, starting with 2. For a given domain size, a propo-
sitional satisfiability problem is constucted from the ground instances of the statements,
and a DPLL procedure is applied.

Mace2 is an entirely different program from Mace4 [22], in which the ground problem
for a given domain size contains equality and is decided by rewriting.

Implementation

Mace2 is coded in ANSI C. It uses the same code as Otter [23] for parsing input, and (for

the most part) accepts the same intput files as Otter. Mace2 is packaged and distributed

with Otter, which is available at the following URL:
http://wuw.mcs.anl.gov/AR/otter

Strategies

Mace2 has been evolving slowly for about ten years. Two important strategies have
been added recently. In 2001, a method to reduce the number of isomorphic models
was added; this method is similar in spirit to the least number optimization used in
rewrite-based methods, but it applies only to the first five constants. In 2003, a clause-
parting method (based on the variable occurrences in literals of flattened clauses) was
added to improve performace on inputs with large clauses. Although Mace2 has several
experimental features, it uses one fixed stragegy for CASC.

Expected Competition Performance

Mace2 is not expected to win any prizes, because it uses one fixed strategy, and no
tuning has been done with respect to the TPTP problem library. Also, Mace2 does
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not accept function symbols with arity greater than 3 or predicate symbols with arity
greater than 4. Overall performace, however, should be respectable.

7.9 Mace4 2004-D

William McCune
Argonne National Laboratory, USA
mccune@mcs.anl.gov

Architecture

Mace4 [22] searches for finite models of first-order (unsorted, with equality) statements.
Given input clauses, it generates ground instances over a finite domain, then it uses
a decision procedure based on rewriting try to determine satisfiability. If there is no
model of that size, it increments the domain size and tries again. Input clauses are
not ”flattened” as they are in procedures that reduce the problem to propositional
satisfiability without equality, for example, Mace2 [21].

Mace4 is an entirely different program from Mace2, in which the problem for a given
domain size is reduced to a purely propositional SAT problem that is decided by DPLL.

Implementation

Mace4 is coded in ANSI C and is available at the following URL:
http://wuw.mcs.anl.gov/AR/maced

Strategies

The two main parts of the Mace4 method are (1) selecting the next empty cell in the
tables of functions being constructed and deciding which values need to be considered
for that cell, and (2) propagating assignments. Mace4 uses the basic least number
heuristic (LNH) to reduce isomorphism. The LNH was introduced in Falcon [62] and is
also used in SEM. Effective use of the LNH requires careful cell selection. Propagation
is by ground rewriting and inference rules to derive negated equalities.

Expected Competition Performance

Mace4 is not expected to win any prizes, because it uses one fixed strategy, and no
tuning has been done with respect to the TPTP problem library. Overall performace,
however, should be respectable. An early version of Maced competed in CASC-2002
under then name ICGNS.

7.10 Octopus 2004

Monty Newborn, Zongyan Wang
McGill University
newborn@cs.mcgill.ca
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Architecture

Octopus is a parallel ATP system. It is an improved version of the single-processor ATP
system THEO [27]. Inference rules used by Octopus include binary resolution, binary
factoring, instantiation, demodulation, and hash table resolutions. Octopus performs
5000-20000 inferences/second on each processor.

Implementation

Octopus is implemented in C and currently runs under Linux and FREEBSD. In the
competition, it will run on a network of 150-200 PCs housed in various laboratories at
McGill University’s School of Computer Science. The processors communicate using

PVM [3].

Strategies

Octopus begins by determining a number of weakened versions of the given theorem,
and then assigns one such version to each computer. Each computer then attempts to
prove the weakened version of the theorem assigned to it. If successful, the computer
then uses the proof found to weakened theorem to help prove the given theorem. In
essence, Octopus combines learning and parallel theorem proving.

In the current version of Octopus, a weakened version of a theorem consists of the
same clauses of the given theorem except for one. In that one clause, a constant or
function is replaced by a variable that doesn’t appear elsewhere in the clause. If a proof
exists to the given theorem, a proof exists to the weakened version, and often, though
far from always, the proof of the weakened version is easier to find.

When a proof is found to a weakened version, certain clauses in the proof are added
to the base clauses of the given theorem. In addition, base clauses that participated in
the proof of the weakened version are placed in the set-of-support. Octopus then tries
to prove the given theorem with the augmented set of base clauses.

Each processor in the system uses different values for the maximum number of literals
and terms in inferences generated when looking for a proof. Thus while two computers
may try to solve the same weakened version of the given theorem, they do it with
different values for the maximum number of literals and terms in derived inferences.

Expected Competition Performance
Octopus is only marginally better than it was last year, although it will run on about 4
times as many computers.

7.11 Otter 3.3

William McCune
Argonne National Laboratory, USA
mccune@mcs.anl.gov
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Architecture

Otter 3.3 [23] is an ATP system for statements in first-order (unsorted) logic with
equality. Otter is based on resolution and paramodulation applied to clauses. An Otter
search uses the “given clause algorithm”, and typically involves a large database of
clauses; subsumption and demodulation play an important role.

Implementation

Otter is written in C. Otter uses shared data structures for clauses and terms, and it uses

indexing for resolution, paramodulation, forward and backward subsumption, forward

and backward demodulation, and unit conflict. Otter is available from:
http://www-unix.mcs.anl.gov/AR/otter

Strategies

Otter’s original automatic mode, which reflects no tuning to the TPTP problems, will
be used.

Expected Competition Performance

Otter has been entered into CASC-J2 as a stable benchmark against which progress can
be judged (there have been only minor changes to Otter since 1996 [24], nothing that
really affects its performace in CASC). This is not an ordinary entry, and we do not
hope for Otter to do well in the competition.

Acknowledgments: Ross Overbeek, Larry Wos, Bob Veroff, and Rusty Lusk
contributed to the development of Otter.

7.12 Paradox 1.0

Koen Claessen, Niklas S6rensson
Chalmers University of Technology and Gothenburg University, Sweden
{koen,nik}@cs.chalmers.se

Architecture Paradox 1.0 [7] is a finite-domain model generator. It is based on a
MACE-style [20] flattening and instantiating of the FO clauses into propositional clauses,
and then the use of a SAT solver to solve the resulting problem.

Paradox incorporates the following novel features: New polynomial-time clause split-
ting heuristics, the use of incremental SAT, static symmetry reduction techniques, and
the use of sort inference.

Implementation

The main part of Paradox is implemented in Haskell using the GHC compiler. Paradox
also has a built-in incremental SAT solver which is written in C++. The two parts are
linked together on the object level using Haskell’s Foreign Function Interface. Paradox
uses the following non-standard Haskell extensions: local universal type quantification
and hash-consing.
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Strategies
There is only one strategy in Paradox:
1. Analyze the problem, finding an upper bound N on the domain size of models,

where N is possibly infinite. A finite such upper bound can for example be found
for EPR problems.

2. Flatten the problem, and split clauses and simplify as much as possible.

3. Instantiate the problem for domain sizes 1 up to N, applying the SAT solver
incrementally for each size. Report “SATISFIABLE” when a model is found.

4. When no model of sizes smaller or equal to N is found, report “CONTRADIC-
TION”.

In this way, Paradox can be used both as a model finder and as an EPR solver.

Expected Competition Performance

Paradox 1.0 is the CASC-19 SAT division, model class, winner.

7.13 Paradox 1.1-casc

Koen Claessen, Niklas S6rensson
Chalmers University of Technology and Gothenburg University, Sweden
{koen,nik}@cs.chalmers.se

Architecture

Paradox 1.1-casc [7] is a finite-domain model generator. It is based on a MACE-style
[20] flattening and instantiating of the first-order clauses into propositional clauses, and
then the use of a SAT solver to solve the resulting problem.

Paradox incorporates the following features: Polynomial-time clause splitting heuris-
tics, the use of incremental SAT, static symmetry reduction techniques, and the use of
sort inference.

The main differences with Paradox 1.0 are: a different SAT-solver, better memory
behaviour, and a faster clause instantiation algorithm.

Implementation

The main part of Paradox is implemented in Haskell using the GHC compiler. Paradox
also has a built-in incremental SAT solver which is written in C++. The two parts are
linked together on the object level using Haskell’s Foreign Function Interface.
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Strategies

There is only one strategy in Paradox:

1. Analyze the problem, finding an upper bound N on the domain size of models,
where N is possibly infinite. A finite such upper bound can for example be found
for EPR problems.

2. Flatten the problem, and split clauses and simplify as much as possible.

3. Instantiate the problem for domain sizes 1 up to N, applying the SAT solver
incrementally for each size. Report “SATISFIABLE” when a model is found.

4. When no model of sizes smaller or equal to N is found, report “CONTRADIC-
TION”.

In this way, Paradox can be used both as a model finder and as an EPR solver.

Expected Competition Performance

Paradox 1.1-casc should perform slightly better than Paradox 1.0.

7.14 SOS 1.0

John Slaney
Australian National University
John.Slaney@anu.edu.au

Architecture

SOS (Son Of SCOTT) Version 1.0 is yet another attempt to enhance Otter [23] by
adding semantic guidance taken from models generated by a finite domain constraint
solver. Its range of inference rules is the same as that of Otter: for CASC, that means
it uses hyperresolution for most problems with non-unit clauses together with paramod-
ulation and dynamic demodulation for equational reasoning. SOS does not impose any
restriction on the inference rules of Otter. Like its predecessors [12] it maintains a model
of some subset of the clauses deduced and updates this model from time to time during
the search. Unlike its predecessors, it treats most of the clauses as soft constraints, thus
maintaining a single approximate model of all of the clauses rather than many exact
models of different subsets. Thus it represents a new solution to the problem of trading
off the computational cost of computing models against the guidance resulting from
them.

Because it contains Otter as a sub-program, all proofs produced by SOS are Otter
proofs. The soundness of the system therefore follows trivially from the soundness of
Otter.

For more information on the architecture and performance of SOS, see the forthcom-
ing paper [36] in ECAI 2004. At the time when that paper was written, the program
was provisionally called “SOFTIE”.
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Implementation

The system is written in C. Most of the code is that of Otter and of the constraint
solver FINDER [35], both of which use very standard libraries. At present it has been
compiled only under Solaris and Linux. The sources are available from:
http://csl.anu.edu.au/ jks/software/sos.tar.gz
Note that the program is very new and still at an experimental stage, so substantial
changes are expected in future versions.

Strategies

All formulae in the set of support are tested against the guiding model and marked
as true or false. Most given clauses are chosen to be the oldest of the shortest of the
Jalse clauses, though some proportion of choices default to Otter’s criteria. The guiding
model is repeatedly updated to make true as many instances (on its domain) of the
usable clauses as possible. For CASC there is a time limit of 2 seconds on each model
search, resulting in indeterminism because on different runs, different models may be the
best found within the limit. SOS behaves differently from Otter not only because of the
preference for false clauses but also because the weight reduction strategy is somewhat
different: weight restriction begins more aggressively than in Otter, but subsequently
each weight limit is phased in more gradually.

Expected Competition Performance

SOS should beat its parent Otter overall. It is expected to perform as well as the previous
versions of SCOTT on UEQ problems, and tolerably well on Horn clause problems (HEQ
and HNE). In other subsections of MIX it will fail for the same reasons as Otter. It
is not expected to threaten more modern high-performance provers except possibly in
UEQ. Its performance depends somewhat on the time limit, because its inference speed
is lower than those of the other provers.

7.15 THEO J2004

Monty Newborn
McGill University
newborn@cs.mcgill.ca

Architecture

THEO [27] is a resolution-refutation theorem prover for first order clause logic. It
uses binary resolution, binary factoring, instantiation, demodulation, and hash table
resolutions.

Implementation

THEQ is written in C and runs under both LINUX and FREEBSD. It contains about
35000 lines of source code. Originally it was called The Great Theorem Prover.
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Strategies

THEO uses a large hash table (16 million entries) to store clauses. This permits complex
proofs to be found, some as long as 500 inferences. It uses what might be called a
brute-force iteratively deepening depth-first search for a contradiction while storing
information about clauses - unit clauses in particular - in its hash table.

In the last year or so, THEO has been modified so that when given a theorem, it first
determines a list of potential ways to “weaken” the theorem. It then randomly selects
one of the weakenings, tries to prove the weakened version of the theorem, and then
uses the results from this effort to help prove the given theorem. A weakened version
is created in a number of different ways, including modifying one clause by replacing
a constant or function by a variable. Certain clauses from the proof of the weakened
version are added to the base clauses when THEO next attempts to prove the given
theorem. In addition, base clauses that participated in the proof of the weakened version
are placed in the set-of-support. THEO then attempts to prove the given theorem with
the revised set of base clauses.

Expected Competition Performance

THEQ is only marginally better than it was last year.

7.16 Vampire 5.0

Alexandre Riazanov, Andrei Voronkov
University of Manchester, England
{riazanoa,voronkov}@cs.man.ac.uk

Architecture

Vampire [29, 30] 5.0 is an automatic theorem prover for first-order classical logic. Its
kernel implements the calculi of ordered binary resolution and superposition for han-
dling equality. The splitting rule is simulated by introducing new predicate symbols.
A number of standard redundancy criteria and simplification techniques are used for
pruning the search space: subsumption, tautology deletion, subsumption resolution and
rewriting by ordered unit equalities. The only term ordering used in Vampire at the
moment is a special non-recursive version of the Knuth-Bendix ordering that allows
efficient approximation algorithms for solving ordering constraints. By the system in-
stallation deadline we may implement the standard Knuth-Bendix ordering. A number
of efficient indexing techniques are used to implement all major operations on sets of
terms and clauses. Although the kernel of the system works only with clausal normal
forms, the preprocessor component accepts a problem in the full first-order logic syntax,
clausifies it and performs a number of useful transformations before passing the result
to the kernel.

Implementation

Vampire 5.0 is implemented in C++. The main supported compiler version is gec 2.95.3,
although in the nearest future we are going to move to gce 3.x. The system has been
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successfully compiled for Linux and Solaris. It is available from:
http://www.cs.man.ac.uk/ riazanoa/Vampire

Strategies

The Vampire kernel provides a fairly large number of features for strategy selection.
The most important ones are:

e Choice of the main saturation procedure : (i) OTTER loop, with or without the
Limited Resource Strategy, (ii) DISCOUNT loop.

e A variety of optional simplifications.
e Parameterised simplification ordering.

e A number of built-in literal selection functions and different modes of comparing
literals.

o Age-weight ratio that specifies how strongly lighter clauses are preferred for infer-
ence selection.

The standalone executables for Vampire 5.0 and Vampire 5.0-CASC use very simple
time slicing to make sure that several kernel strategies are tried on a given problem.

The automatic mode of Vampire 5.0 is primitive. Seven problem classes are dis-
tinguished corresponding to the competition divisions HNE, HEQ, NNE, NEQ, PEQ),
UEQ and EPR. Every class is assigned a fixed schedule consisting of a number of kernel
strategies called one by one with different time limits.

Expected Competition Performance

Vampire 5.0 is the CASC-19 FOF division winner.

7.17 Vampire 6.0

Alexandre Riazanov, Andrei Voronkov
University of Manchester, England
{riazanoa,voronkov}@cs.man.ac.uk

Architecture

Vampire [30] 6.0 is an automatic theorem prover for first-order classical logic. Its kernel
implements the calculi of ordered binary resolution, superposition for handling equal-
ity and ordered chaining for transitive predicates. The splitting rule is simulated by
introducing new predicate symbols. A number of standard redundancy criteria and
simplification techniques are used for pruning the search space: subsumption, tautology
deletion, subsumption resolution and rewriting by ordered unit equalities. The reduc-
tion orderings used are the standard Knuth-Bendix ordering and a special non-recursive
version of the Knuth-Bendix ordering that allows efficient approximation algorithms for
solving ordering constraints. A number of efficient indexing techniques are used to im-
plement all major operations on sets of terms and clauses. Although the kernel of the
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system works only with clausal normal forms, the preprocessor component accepts a
problem in the full first-order logic syntax, clausifies it and performs a number of useful
transformations before passing the result to the kernel.

Implementation

Vampire 6.0 is implemented in C+4. The supported compilers are gee 2.95.3, 3.x and
Microsoft Visual C+4. The system has been successfully compiled for Linux, Solaris
and Win32. It is available (conditions apply) from:

http://www.cs.man.ac.uk/ riazanoa/Vampire

Strategies

The Vampire kernel provides a fairly large number of features for strategy selection.
The most important ones are:

e Choice of the main saturation procedure : (i) OTTER loop, with or without the
Limited Resource Strategy, (ii) DISCOUNT loop.

e A variety of optional simplifications.
e Parameterised reduction orderings.

e A number of built-in literal selection functions and different modes of comparing
literals.

o Age-weight ratio that specifies how strongly lighter clauses are preferred for infer-
ence selection.

The standalone executable for Vampire 6.0 uses very simple time slicing to make
sure that several kernel strategies are tried on a given problem.

The automatic mode of Vampire 6.0 is primitive. Seven problem classes are dis-
tinguished corresponding to the competition divisions HNE, HEQ, NNE, NEQ, PEQ),
UEQ and EPR. Every class is assigned a fixed schedule consisting of a number of kernel
strategies called one by one with different time limits.

Expected Competition Performance

Vampire 6.0 is the CASC-19 MIX division winner.

7.18 Vampire 7.0

Alexandre Riazanov, Andrei Voronkov
University of Manchester, England
{riazanoa,voronkov}@cs.man.ac.uk
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Architecture

Vampire [30] 7.0 is an automatic theorem prover for first-order classical logic. Its kernel
implements the calculi of ordered binary resolution and superposition for handling equal-
ity. The splitting rule and negative equality splitting are simulated by the introduction of
new predicate definitions and dynamic folding of such definitions. A number of standard
redundancy criteria and simplification techniques are used for pruning the search space:
subsumption, tautology deletion (optionally modulo commutativity), subsumption res-
olution, rewriting by ordered unit equalities, basicness restrictions and irreducibility of
substitution terms. The reduction orderings used are the standard Knuth-Bendix or-
dering and a special non-recursive version of the Knuth-Bendix ordering. A number of
efficient indexing techniques is used to implement all major operations on sets of terms
and clauses. Run-time algorithm specialisation is used to accelerate some costly opera-
tions, e.g., checks of ordering constraints. Although the kernel of the system works only
with clausal normal forms, the preprocessor component accepts a problem in the full
first-order logic syntax, clausifies it and performs a number of useful transformations
before passing the result to the kernel. When a theorem is proven, the system produces
a verifiable proof, which validates both the clausification phase and the refutation of
the CNF. The current release features a built-in proof checker for the clausifying phase,
which will be extended to check complete proofs.

Implementation

Vampire 7.0 is implemented in C4++. The supported compilers are gee 3.2.x, gee 3.3.x,

and Microsoft Visual C++. This version has been successfully compiled for Linux, but

has not been fully tested on Solaris and Win32. It is available (conditions apply) from:
http://www.cs.man.ac.uk/ riazanoa/Vampire

Strategies

The Vampire kernel provides a fairly large number of features for strategy selection.
The most important ones are:

e Choice of the main saturation procedure : (i) OTTER loop, with or without the
Limited Resource Strategy, (ii) DISCOUNT loop.

e A variety of optional simplifications.
e Parameterised reduction orderings.

e A number of built-in literal selection functions and different modes of comparing
literals.

o Age-weight ratio that specifies how strongly lighter clauses are preferred for infer-
ence selection.

e Set-of-support strategy.
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The automatic mode of Vampire 7.0 is derived from extensive experimental data
obtained on problems from TPTP v2.6.0. Input problems are classified taking into ac-
count simple syntactic properties, such as being Horn or non-Horn, presence of equality,
etc. Additionally, we take into account the presence of some important kinds of axioms,
such as set theory axioms, associativity and commutativity. Every class of problems is
assigned a fixed schedule consisting of a number of kernel strategies called one by one
with different time limits.

Expected Competition Performance

We expect the new version to perform much better than the last MIX winner Vampire
6.0. The kernel implementation has undergone a number of significant changes, and
several new features has been added, such as basicness restrictions and memory defrag-
mentation. Another source of improvement w.r.t. Vampire 6.0 is better selection of best
strategies based on extensive experiments.

7.19 Waldmeister 702

Thomas Hillenbrand', Bernd Léchner?
"Max-Planck-Institut fiir Informatik Saarbriicken, Germany,
2Universitit Kaiserslautern, Germany
waldmeister@informatik.uni-kl.de

Architecture

Waldmeister 702 is an implementation of unfailing Knuth-Bendix completion [2] with
extensions towards ordered completion (see [1]) and basicness [3, 28]. The system sat-
urates the input axiomatization, distinguishing active facts, which induce a rewrite
relation, and passive facts, which are the one-step conclusions of the active ones up to
redundancy. The saturation process is parameterized by a reduction ordering and a
heuristic assessment of passive facts.

Only recently, we have designed a thorough refinement of the system architecture
concerning the representation of passive facts [11]. The aim of that work - the next
Waldmeister loop - is, besides gaining more structural clarity, to cut down memory
consumption especially for long-lasting proof attempts, and hence less relevant in the

CASC setting.

Implementation

The system is implemented in ANSI-C and runs under Solaris and Linux. The cen-
tral data strucures are: perfect discrimination trees for the active facts; element-wise
compressions for the passive ones; and sets of rewrite successors for the conjectures.
Waldmeister can be found on the Web at:
http://www—avenhaus.informatik.uni-kl.de/waldmeister
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Strategies

Our approach to control the proof search is to choose the search parameters according
to the algebraic structure given in the problem specification [10]. This is based on the
observation that proof tasks sharing major parts of their axiomatization often behave
similar. Hence, for a number of domains, the influence of different reduction orderings
and heuristic assessments has been analyzed experimentally; and in most cases it has
been possible to distinguish a strategy uniformly superior on the whole domain. In
essence, every such strategy consists of an instantiation of the first parameter to a
Knuth-Bendix ordering or to a lexicographic path ordering, and an instantiation of the
second parameter to one of the weighting functions addwetight, gtweight, or mizweight,
which, if called on an equation s = ¢, return |s| + [t|, |mazs (s, t)|, or |mazs (s,t)| - (|s|+
|t| + 1) + |s| + |¢], respectively, where |s| denotes the number of symbols in s.

Expected Competition Performance

Waldmeister 702 is the CASC-19 UEQ division winner.

8 Conclusion

The CADE-19 ATP System Competition is the eighth large scale competition for clas-
sical first-order logic ATP systems. The organizers believe that CASC fulfills its main
motivations: stimulation of research, motivation for improving implementations, evalu-
ation of relative capabilities of ATP systems, and providing an exciting event. For the
entrants, their research groups, and their systems, there is substantial publicity both
within and outside the ATP community. The significant efforts that have gone into
developing the ATP systems receive public recognition; publications, which adequately
present theoretical work, have not been able to expose such practical efforts appropri-
ately. The competition provides an overview of which researchers and research groups
have decent, running, fully automatic ATP systems.
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