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Abstract Despite some impressive individual achievements, the extreme difficulty of Au-
tomated Theorem Proving (ATP) means that progress in ATP is slow relative to, e.g., some
aspects of commercial information technology. The (relatively) slow progress has two dis-
tinct disadvantages. First, for the researchers, it is difficult to determine if a direction of
investigation is making a meaningful contribution. Second, for unaware observers, a lack of
progress leads to a loss of interest and confidence in the field. A serious outcome of this loss
of interest and confidence has been the withdrawal of significant funding for ATP research. In
this context of slow progress, it is important that progress in ATP be measured, monitored,
and recognized. This paper presents quantitative measures that show progress in ATP, from
mid-1997 to the end of 1999. The measures are based on collected performance data from
ATP systems.
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1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use of sys-
tems (computer programs) that automate sound reasoning: the derivation of conclu-
sions that follow inevitably from facts. This capability lies at the heart of many impor-
tant computational tasks, e.g., software verification [Reif, 1995; Kaufmann, 1998], de-
velopment of mathematical theories [McCune and Padmanabhan, 1996; Kunen, 1996],
and security protocol analysis [Weidenbach, 1999]. ATP systems are presented with
problems written in some logic. Classical 1st order logic is widely used because of its
semi-decidability, and all references to ATP systems and problems in this work are for
classical 1st order logic. The ideas presented can, however, readily be transferred to
other cases.

The development of useful ATP systems started in the mid-1960s, and has progressed
to a point now where current ATP systems are capable of solving non-trivial problems,
e.g., EQP [McCune, 2000] solved the Robbins problem [McCune, 1997]. This progress
is impressive, given that ATP is “possibly the hardest subfield of Computer Science”
[Slaney, 1994]. Noteworthy landmarks in this history include:

• The resolution inference rule [Robinson, 1965].

• The series of early ATP systems developed at the Argonne National Laboratories
[Lusk, 1992], which, among other contributions, introduced the ”given clause”
control loop.

• Paramodulation as an alternative to the explicit use of equality axioms [Robinson
and Wos, 1969].

• Subsumption as an effective means for controlling redundant information [Wos
et al., 1993].

• The tableau and model elimination strategies [Furbach et al., 1998; Loveland,
1969], which are effective ATP strategies and also the basis for Prolog [Bratko,
1990].

• The Knuth-Bendix completion procedure[Knuth and Bendix, 1970] and related
methods for unit equality reasoning [Wos et al., 1967; Dershowitz and Vigneron,
2000].

• Indexing techniques for highly efficient storage and access to the data structures
used by ATP systems [Stickel, 1989; Ramakrishnan et al., 1999].

• The superposition inference rule [Bachmair et al., 1992].

Despite these individual achievements, the extreme difficulty of ATP means that pro-
gress in ATP is slow relative to, e.g., some aspects of commercial information tech-
nology. The (relatively) slow progress has two distinct disadvantages. First, for the
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researchers, it is difficult to determine if a direction of investigation is making a mean-
ingful contribution. This is troublesome both in terms of motivation (obvious progress
is always encouraging) and in terms of focus (expend more energy in directions that
are successful). Second, for unaware observers, a lack of progress leads to a loss of
interest and confidence in the field. An extract from a recent review of an ATP paper
submitted to a reputable journal illustrates this attitude . . .

“The reviewer, just like probably most readers of the . . . journal, believes
that the style of systems as compared here . . . (search based fully automatic
TP systems), whose intellectual roots are still in the seventies and early
eighties, are misguided (”intellectually frozen in a time warp of the early
days and only kept alive by such a small isolated but dedicated community”
is a famous value judgement by a well known worker in the field). Hence
these . . . are not only a waste of time, but they are counterproductive as
they lure the young researcher into a style of work that is essentially wasted,
and the . . . authors of this paper should be forced to drink the poisoned cup
of Socrates for corrupting the youth.”

(Ellipses have been used only to prevent identification of the journal and reviewer -
no substance has been removed. The reviewer did however recommend that the paper
be accepted!) A more serious outcome of this loss of interest and confidence has been
the withdrawal of significant funding for ATP research, e.g., the need for revitalized
funding in the USA was highlighted in [Loveland, 1999], and in Germany the DFG
Schwerpunktprogramm Deduktion ended in 1998 and has not been replaced.

In this context of slow progress, it is important that progress in ATP be measured, mon-
itored, and recognized. This paper presents quantitative measures that show progress
in ATP, from mid-1997 to the end of 1999. The measures are based on collected
performance data from ATP systems. Section 2 describes the source, organization,
and features of the performance data, which is then analysed in Section 3. Section 4
concludes the paper.

2 Performance Data

In order to demonstrate progress in ATP, it is necessary to evaluate ATP over time.
Evaluation of individual theoretical results, implementation techniques, etc, is possible,
but from a user perspective these separate contributions are of little interest. Evalua-
tion of the final product of ATP research, that is, the combination of theoretical results,
implementation techniques, etc, into ATP systems, satisfies both user and developer
perspectives of progress. This work thus demonstrates progress in ATP through evalu-
ation of ATP systems over time. Analytic approaches to ATP system evaluation, such
as presented in [Dunker, 1994; Letz, 1993; Plaisted, 1994], provide insights into theo-
retical system capabilities. However, complete analysis of the search space at the 1st
order level is of course impossible (for otherwise 1st order logic would be decidable).
It is therefore necessary to make empirical evaluations of the ATP systems.
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2.1 Specialist Problem Classes

An empirical evaluation of ATP systems requires a selection of ATP problems for the
systems to attempt. ATP problems have easily identifiable logical, language, and syn-
tactic characteristics. Various ATP systems and techniques have been observed to be
particularly well suited to problems with certain characteristics. For example, every-
one agrees that special techniques are deserved for problems with equality, and the
CASC-15 results [Sutcliffe and Suttner, 1999] showed that problems with true func-
tions, i.e., with an infinite Herbrand universe, should be treated differently from those
with only constants, i.e., effectively propositional problems. Due to this specializa-
tion, empirical evaluation of ATP systems must be done in the context of problem sets
that are reasonably homogeneous with respect to the systems. These problem sets are
called Specialist Problem Classes (SPCs), and are based on problem characteristics.
The choice of what problem characteristics are used to form the SPCs is based on com-
munity input and on analysis of system performance data [Fuchs and Sutcliffe, 2000].
The range of characteristics that have so far been identified as relevant are:

• Theoremhood: Theorems vs Non-theorems

• Order: Essentially propositional vs Real 1st order

• Equality: No equality vs Some equality vs Pure equality

• Form: CNF (Clause Normal Form) vs FOF (First Order Form)

• Horness: Horn vs Non-Horn

• Unit equality: Unit equality vs Non-unit pure equality

Based on these characteristics, 14 SPCs have been defined, as indicated by the leaves
of the tree in Figure 1.

CNF

Theorem Non-theorem
Effectively 

propositional
Real 1st order

Some 
equality

Pure 
equality

No 
equality CNFFOF

CNFFOF
CNFFOF

CNFFOFCNF
Horn Non-

Horn
Unit Non-

unit
Horn Non-

Horn

Effectively 
propositional

Real 1st order

FOF

Figure 1: Specialist Problem Classes

For easy reference, the SPCs are referred to using mnemonic acronyms, abbreviating
Theorem to THM, Non-theorem to SAT, Real 1st order to RFO, Effectively propositional
to EPR, Pure equality to PEQ, Some equality to SEQ, No equality to NEQ, Unit (pure)
equality to UEQ, Non-unit (pure) equality to NUE, Horn to HRN, and Non-Horn to NHN.
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CNF and FOF are retained as is. For example, the SPC THM RFO SEQ CNF NHN contains
theorems that are really 1st order, contain some equality, are presented in clause normal
form, and are non-Horn.

2.2 The TPTP Problem Library

Currently there are not many “real” applications of ATP, and therefore there is no
corpus of application problems that can be used for testing ATP systems. The TPTP
(Thousands of Problems for Theorem Provers) problem library is a library of test
problems for ATP systems [Sutcliffe and Suttner, 1998]. The TPTP is large enough
to obtain statistical significance, and spans a diversity of subject matters. The TPTP
is regularly updated with new problems, including problems from “real” applications
of ATP. The TPTP is the best available collection of problems representing general
purpose applications of ATP, and thus is the best source of problems for evaluating
ATP systems. The TPTP also has an organizational structure designed for testing
ATP systems. Since the first release of the TPTP in 1993, many researchers have
used the TPTP as an appropriate and convenient basis for testing their ATP systems.
Although other test problems do exist and are sometimes used, the TPTP is now the
de facto standard for testing classical 1st order ATP systems.

Some researchers who have tested their ATP systems over the entire TPTP problem
library have contributed their performance data to the TPTP results collection [Sut-
cliffe and Suttner, 2000a]. The results are for various ATP systems, various system
versions, and various TPTP versions. The results collection thus provides snapshots
of ATP systems’ performances over time, and forms a basis for measuring progress in
ATP.

2.3 System Performance Curves

The performance data in the TPTP results collection is provided by the individual
system developers, which means that the systems have been tested using a range of
CPU and memory resource limits. Analysis shows that the differences in resource limits
do not significantly affect which problems are solved by each ATP system. Figure 2
plots the CPU times taken by several contemporary ATP systems to solve problems
in the SPC THM RFO SEQ CNF NHN, for each solution found, in increasing order of time
taken.1 The relevant feature of these performance curves is that they are exponential in
nature, as would be expected for a search problem in an exponentially growing search
space (the performance curves in other SPCs have the same feature). Each system
has a point at which the time taken to find solutions starts to increase dramatically.
This point is called the system’s Peter Principle Point (PPP), as it is the point at
which the system has reached its level of incompetence.2 A linear increase in the

1The numbers of solutions found are not comparable, as the systems attempted the SPC in different
TPTP versions

2The Peter Principle is ”The theory that employees within an organization will advance to their
highest level of competence and then be promoted to and remain at a level at which they are incom-
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CPU resources beyond the PPP would not lead to the solution of significantly more
problems. The PPP thus defines a realistic CPU resource limit for the system. From
an ATP perspective, after the PPP the search space has typically grown to a size where
the system is unable to find a solution within the space. The PPP thus also defines a
realistic memory resource limit for the system. Provided that enough CPU time and
memory are allowed for the ATP system to pass its PPP, a usefully accurate measure
of what problems it can solve within realistic resource limits is achieved. Performance
curves provide a basis for evaluating the progress in ATP over time. This is described
in Sections 3.1 and 3.2.
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Figure 2: Proof number vs CPU time in the SPC THM RFO SEQ CNF NHN

2.4 ATP System and Problem Evaluation

[Sutcliffe and Suttner, 2000b] presents methodologies for the empirical evaluation of
ATP systems and problems, within individual SPCs. The methodologies may be sum-
marized as follows. Initially a partial ordering of the systems is determined by sub-
sumption: a system that solves (within realistic resource limits) a strict superset of the
problems solved by another system subsumes, and is better than, the other system.
The non-subsumed systems are designated rating contributors. If the number of rat-
ing contributors is less than a threshold (currently three) then other high performing
but subsumed systems are also made rating contributors (this use of subsumed rating
contributors improves the ratings produced, as is explained in [Sutcliffe and Suttner,
2000b]). A problem is then rated according to the fraction of rating contributors that

petent.” [Peter and Hull, 1969]
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fail to solve the problem. Problems with a rating of zero are easy, with a rating be-
tween zero and one are difficult, and with a rating of one are unsolved. Finally, the
ATP systems are rated according to the fraction of difficult problems they can solve.
The TPTP results collection is used to rate the systems and the problems in the TPTP.
The change of a problem rating from unsolved to difficult captures the point at which a
problem is solved for the first time by an ATP system (according to the collected data),
which is an indication of progress in ATP. This is described in Section 3.3. Overall
reductions in problem ratings over time are also a measure of progress in ATP. This is
described in Section 3.4.

Each year since 1996, an empirical evaluation of 1st order ATP systems has been per-
formed at CADE [Sutcliffe and Suttner, 1997; Suttner and Sutcliffe, 1998; Sutcliffe and
Suttner, 1999; Sutcliffe, 2000; Sutcliffe, 2001].3 The CADE ATP System Competition
(CASC) evaluates the performance of fully automatic ATP systems for classical 1st or-
der logic. The evaluation is in terms of the number of problems solved and the average
runtime for successful solutions, in the context of a bounded number of eligible prob-
lems chosen from the TPTP, and a specified CPU time limit for each solution attempt.
The CPU time limit, and the memory in the computers used, are adequate for the
ATP systems to reach their PPPs. The CASC results can be influential with regard to
funding and other recognition for the ATP system developers. As a result, most of the
decent contemporary ATP systems are entered, and the CASC results provide a way
to show relative progress of ATP systems over time. This is described in Section 3.5.

3 Progress in ATP

To measure the progress in ATP, the performance of ATP systems has been analysed
in two ways. First, the performance data in the TPTP results collection, over a two
and a half year period, has been analysed. The results analysed are for problems in the
TPTP versions v2.0.0, released on 5th June 1997, v2.1.0, released on 17th December
1997, v2.2.0, released on 11th February 1999, and v2.3.0, released on 16th November
1999. Second, the performance of ATP systems in CASC over a two year period has
been analysed. In all cases, as is explained above, the analysis is done in the context
of individual SPCs.

3.1 SOTA System Performance

In order to evaluate overall quality and progress in ATP, the individual ATP systems
tested on an SPC in a TPTP version are combined to form a state-of-the-art (SOTA)
system. For any problem, a SOTA system has the performance of the best available
individual system for the problem, i.e., the time taken by the SOTA system to solve
a problem is simply computed as the minimum of the times taken by the available

3CADE, the Conference on Automated Deduction, is the major forum for the presentation of new
research in automated deduction.
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individual systems. A SOTA system can really be built, by running the individual
systems in competition parallel, as done in the SSCPA system [Sutcliffe and Seyfang,
1999]. A SOTA system’s performance is thus a realistic measure of the combined quality
of the ATP systems of the time. A comparison of the SOTA systems’ performances
for an SPC in two TPTP versions provides evidence of progress in ATP for that SPC.
Note that the contributions of the individual systems to a SOTA system are dependent
on the problems being attempted, but like the individual system performance curves,
the performance curve of a SOTA system has an exponential shape.

An initial comparison of the SOTA systems for two TPTP versions can be made by
comparing their raw performance on problems that were in both TPTP versions. For
example, for the SPC THM RFO SEQ CNF NHN, there were 314 problems that were in both
TPTP versions v2.0.0 and v2.3.0. The SOTA system for TPTP v2.0.0 solved 181 of the
problems, with a maximal CPU time of 831 seconds, while the SOTA system for v2.3.0
solved 219 of the problems (39 additional problems that are not solved by the v2.0.0
system, less 1 unsolved problem that is solved by the v2.0.0 system4), with a maximal
CPU time of 508 seconds. Such a raw increase in the number of problems solved
between TPTP versions v2.0.0 and v2.3.0 occurs in many of the SPCs, as is shown in
the first two columns of Table 1 (the other columns in Table 1 give the results of the
analysis described in Section 3.2). Section 2.3 shows that these numbers of problems
solved are almost independent of the different resources available to the systems, so
that the extra problems solved by the v2.3.0 systems is evidence of progress in ATP.
Section 3.2 refines this analysis to compensate for the small dependence on resources
available.

3.2 Exponential Curve Fitting

The increase in the number of problems solved by SOTA systems, from one TPTP
version to another, may be extrapolated to resource limits beyond those found in the
performance data. This is achieved by fitting exponential curves of the form f(x) = aebx

to the SOTA systems’ performance curves. An approximation method has been used
for this. The method lets b range from a start value α to an end value β, in steps of ε.
For each b, a is computed to minimize the error of fit E(a, b).

E(a, b) =
n∑

i=1

(yi − aebxi)
2

This is achieved by letting

a =

∑n
i=1 yiebxi

∑n
i=1 e2bxi

Among all pairs (a, b), the one with the smallest error E(a, b) is selected. In this study,
b ranging from α = 0 to β = 2 in steps of ε = 10−3 provided adequate accuracy. For

4Problems may change from solved to unsolved when an ATP system is improved so that it can
solve more problems overall, but as a result cannot solve those particular problems, i.e., progress in a
particular ATP system is not necessarily monotonic with respect to the problems it can solve.
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the purpose of demonstrating progress in ATP, it is important that the exponential
curves fit the performance curves most accurately at the higher solution numbers, as
these data points correspond to harder ATP problems.

Exponential curves have been fitted to the performance curves of the SOTA systems
for each of the SPCs in TPTP versions v2.0.0 and v2.3.0. For the SPCs involving SAT
and most of the SPCs involving FOF, there was insufficient data for meaningful curve
fitting and analysis. The performance and exponential curves for the other eight SPCs
are shown in Figure 3, and the curve parameters are given in the first two columns
of Table 1. The gaps between the steep parts of the exponential curves in the SPCs
THM RFO * CNF * are visual evidence of the progress in ATP in that period, for those
SPCs.

In the period between TPTP versions there may be hardware improvements that would
make even an unchanged system perform better in a resource limited situation. Such
hardware improvements may undermine confidence in the conclusion drawn in Sec-
tion 3.1. However, the hardware improvements can be taken into account, as follows.
In order to estimate the hardware improvement factor between two TPTP versions,
the times taken to solve those problems solved by both versions’ SOTA systems are
extracted. The geometric average of the ratio of the times is computed, and used as an
upper bound on the hardware improvement factor.5 The computed hardware improve-
ment factor is an upper bound because it assumes that all changes in the times taken to
solve the problems are caused by hardware improvements, while in reality some portion
of the changes is caused by improvements in the systems. The hardware improvement
factor is used to scale the SOTA systems’ exponential curves, and a comparison of the
results then provides a lower bound on the progress in ATP. First, an estimate of the
number of problems the old system would solve, if run on the new hardware with a
time limit of the maximal time taken by the new system, is computed. To do this,
the maximal time taken by the new system is scaled up by the hardware improvement
factor, and the inverse of the old system’s exponential curve is applied. This estimated
number of problems solved can be compared to the number solved by the new sys-
tem. For example, for the THM RFO SEQ CNF NHN example above, the scaled time limit
is 2.23 * 508 seconds = 1132 seconds, which leads to an estimated 184 problems being
solved by the v2.0.0 system, 35 less than the 219 problems solved by the v2.3.0 system.
Second, an estimate of the number of problems the new system would solve, if run on
the old hardware with a time limit of the maximal time taken by the old system, is
computed. To do this, the maximal time taken by the old system is scaled down by the
hardware improvement factor, and the inverse of the new system’s exponential curve
is applied. This estimated number of problems solved can be compared to the num-
ber solved by the old system. For the THM RFO SEQ CNF NHN example, the scaled time
limit is 831 seconds / 2.23 = 373 seconds, which leads to an estimated 218 problems
being solved by the v2.3.0 system, 37 more than the 181 problems solved by the v2.0.0
system. Third, the old system’s exponential curve is used to estimate the CPU time
that would be required by the old system on the old hardware to solve the number

5A geometric average is used rather than an arithmetic average, so that extreme ratios caused by
the occasionally unstable performances of ATP systems do not have an excessive effect.
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Figure 3: Performance and exponential curves, for TPTP versions v2.0.0 and v2.3.0
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of problems solved by the new system. The ratio of this time and the maximal time
taken by the new system is the hardware improvement factor that would be required
for the old system to solve the same number of problems as the new system, within
the same maximal time. If this ratio is much greater than the computed hardware
improvement factor, or simply unrealistic, then such a claim cannot be made. For
the THM RFO SEQ CNF NHN example, 228101 seconds would have been required by the
v2.0.0 system to solve 219 problems. The ratio of times is 228101/508 = 449.02, i.e., a
449 fold hardware improvement would have been required in that two and a half year
period, which is not realistic.

This hardware sensitive analysis has been applied to the SOTA systems’ performance
curves shown in Figure 3, and the results are given in Table 1. The first two columns of
Table 1 give the raw performance data and exponential curve parameters, as discussed
above. The third column shows the hardware improvement factor, the maximal time
taken by the v2.3.0 system scaled up by the hardware improvement factor, and the
number of problems the v2.0.0 system is estimated to solve in that time. This estimated
number of problems solved can be compared to the number solved by the v2.3.0 system.
The fourth column shows the hardware improvement factor, the maximal time taken by
the v2.0.0 system scaled down by the hardware improvement factor, and the number
of problems the v2.3.0 system is estimated to solve in that time. This estimated
number of problems solved can be compared to the number solved by the v2.0.0 system.
The final column of the table shows the time that the v2.0.0 system is estimated to
require in order to solve the number of problems solved by the v2.3.0 system. This
time required can be compared to the maximal time taken by the v2.3.0 system, and
the ratio is the required hardware improvement factor that is shown. For the SPCs
THM EPR CNF and THM EPR CNF there is little or no evidence of progress in ATP. For the
SPCs THM RFO * CNF * there is clear evidence of progress in the period between these
TPTP versions - June 1997 to November 1999.

3.3 Problems Solved for the First Time

The first time solution of a problem that ATP systems had previously failed to solve
is an indication of progress at the leading edge of ATP, and indicates that the solving
system defines that part of the edge. This is particularly noticeable when the problem
is one that humans have had an interest in, but have failed to solve. A high profile
example of this was EQP’s solution of the Robbins problem [McCune, 1997]. Another
noteworthy example was the characterization of quasigroups using the MGTP system
[Fujita et al., 1993].

The first time solution of a problem is easily detected from the TPTP problem ratings,
which have been included in the TPTP since version v2.0.0. When a problem rating
changes from 1.00 (unsolved) to less than 1.00 (difficult), the problem has been solved
for the first time. If the problem was added to the TPTP in a version that precedes the
version in which the rating dropped, then ATP systems had failed to solve the problem
in the intervening period. The second to fifth columns of Table 2 show the numbers
of problems solved for the first time in the periods between TPTP versions v2.0.0 and
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v2.0.0 system v2.3.0 system v2.0.0 scaled ↑ v2.3.0 scaled ↓ v2.0.0 needs
Time Solved Time Solved Time Solved Time Solved Time Solved

e curve e curve H.I. factor H.I. factor H.I. factor
THM EPR CNF - 304 problems

11s 301 10s 303 10s 301 11s 304 36s 303
1.82E-77e0.595x 4.5E-116e0.884x 1.02 1.02 3.60
THM EPR FOF - 157 problems

4s 145 27s 150 27s 149 4s 149 83s 150
5.61E-40e0.632x 2.30E-91e1.41x 0.99 0.99 3.07
THM RFO NEQ CNF HRN - 327 problems
364s 265 238s 281 390s 267 222s 284 1098s 281
2.38E-6e0.071x 4.09E-7e0.071x 1.64 1.64 4.61
THM RFO NEQ CNF NHN - 131 problems

81s 105 59s 113 63s 105 76s 114 1848s 113
3.46E-17e0.402x 1.74E-11e0.256x 1.07 1.07 31.32
THM RFO SEQ CNF HRN - 213 problems
434s 176 272s 195 326s 176 363s 197 40801s 195

1.31E-16e0.242x 6.69E-11e0.149x 1.20 1.20 150.00
THM RFO SEQ CNF NHN - 314 problems
831s 181 508s 219 1132s 184 373s 218 228101s 219
1.91E-9e0.148x 3.34E-12e0.149x 2.23 2.23 449.02
THM RFO PEQ CNF NUE - 112 problems
875s 69 163s 93 621s 68 230s 94 558090s 93
1.11E-5e0.265x 1.76E-14e0.395x 3.81 3.81 3423.87
THM RFO PEQ CNF UEQ - 358 problems
329s 309 183s 334 291s 312 207s 334 2463s 334

7.97E-11e0.093x 8.92E-24e0.175x 1.59 1.59 13.46

Table 1: Curve analysis, for TPTP versions v2.0.0 and v2.3.0

v2.1.0 (a 6 month period), v2.1.0 and v2.2.0 (a 14 month period), and v2.2.0 and v2.3.0
(a 9 month period). The numbers have been split up according to the TPTP versions in
which those problems were added to the TPTP. Blank entries mean that no problems
were solved for the first time, and if no new problems were solved in a period, that
row of the table has been omitted. A ”-” entry means that the TPTP version in which
problems were added does not precede the version in which solutions could be found.
The sixth column of Table 2 gives the total for each of the periods. These numbers of
problems solved for the first time include those solved due to hardware improvements.
The number of problems that were in v2.0.0, and that could be expected to be solved
for the first time by version v2.3.0 due to hardware improvements, can be estimated
using the ideas of Section 3.2. It is either the estimated number of problems more that
would be solved by the v2.0.0 SOTA system when its maximal time taken is scaled up
by the hardware improvement factor, or the estimated number of problems less that
would be solved by the v2.3.0 SOTA system when its maximal time taken is scaled
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down by the hardware improvement factor. The larger of these two numbers is used,
in order to be conservative. This number can be subtracted from the total number of
problems that were in v2.0.0, and that were solved for the first time. These figures are
shown in the final column of Table 2.

The numbers in Table 2 show regular first time solution of problems, indicating reg-
ular progress at the leading edge of ATP. The progress is particularly evident in the
THM RFO * CNF * SPCs. Hardware improvements account for only some fraction of the
first solutions.

3.4 Decreasing Problem Ratings

While the change of a problem rating from 1.00 to less than 1.00 shows progress at the
leading edge of ATP, general reductions in problem ratings show general improvement
of ATP systems. A problem’s rating decreases when a higher fraction of the rating
contributors, as described in Section 2.4, are able to solve the problem. This may come
about either by the number of rating contributors staying the same but with a new
system that can solve the problem replacing a previous rating contributor, or by the
number of rating contributors increasing with a new system that can solve the problem.
In both cases the new system has improved the overall quality of the available ATP
systems, which is progress in ATP. Note that a change in rating cannot be caused by
a subsumed system.

The average problem ratings have been computed for those problems that were in
all the TPTP versions being considered. These averages are shown in Table 3. For
some SPCs the problems that were in v2.0.0, and hence all subsequent versions, are
all easy. Thus there is no change in the average rating. For the SPCs that have some
meaningful change in average rating, the rate of change as a function of time is shown
in Figure 4. There is a clear overall downward trend in the problem ratings, which
means that the systems are getting better and better, i.e., there is progress in ATP. The
analysis of Section 3.2 shows that only a small part of the progress can be attributed
to hardware improvements. In some SPCs there is an increased average rating between
TPTP versions v2.0.0 and v2.1.0. This came about due to new rating contributors that
could not solve problems that were solved by the existing rating contributors. This
inappropriate variation in ratings has not occurred since more decent ATP systems’
performance data has been collected.

3.5 CASC Fixed Points

CASC is organized into divisions, which correspond closely to the SPCs. The divisions
are MIX - mixed CNF really 1st order theorems (”mixed” means Horn and non-Horn
problems, with or without equality, but not unit equality problems), UEQ - unit equality
CNF really 1st order theorems, SAT - mixed CNF really 1st order non-theorems, and
FOF - mixed FOF really 1st order theorems. A winner is announced in each division of
each CASC. For the last two CASCs (CASC-16 and CASC-17), the CASC organizers
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First solved Added to the TPTP in version v2.0.0
in the period v1.0.0 v1.1.0 v1.2.0 v2.0.0 v2.1.0 Totals Total - H.I.#
SAT EPR CNF
v2.0.0 - v2.1.0 2 - - 2
v2.1.0 - v2.2.0 40 10 - 50 52 - ?
v2.2.0 - v2.3.0 4 4
SAT EPR FOF
v2.2.0 - v2.3.0 6 6 0 - ?
SAT RFO CNF
v2.0.0 - v2.1.0 14 2 - - 16
v2.1.0 - v2.2.0 1 1 2 - 4 23 - ?
v2.2.0 - v2.3.0 1 1 1 1 4
THM EPR CNF
v2.2.0 - v2.3.0 1 2 1 6 10 4 - 1
THM EPR FOF
v2.2.0 - v2.3.0 4 4 0 - 1
THM RFO EQU FOF
v2.2.0 - v2.3.0 1 1 1 - ?
THM RFO NEQ CNF HRN
v2.0.0 - v2.1.0 6 1 - - 7
v2.1.0 - v2.2.0 7 2 - 9 31 - 8
v2.2.0 - v2.3.0 10 5 15
THM RFO NEQ CNF NHN
v2.0.0 - v2.1.0 1 1 - - 2
v2.2.0 - v2.3.0 1 2 1 21 25 6 - 1
THM RFO SEQ CNF HRN
v2.0.0 - v2.1.0 8 2 4 - - 14
v2.1.0 - v2.2.0 1 2 - 3 24 - 1
v2.2.0 - v2.3.0 4 3 7
THM RFO SEQ CNF NHN
v2.0.0 - v2.1.0 8 3 7 - - 18
v2.1.0 - v2.2.0 5 - 5 38 - 6
v2.2.0 - v2.3.0 13 2 30 45
THM RFO PEQ CNF NUE
v2.0.0 - v2.1.0 9 1 7 - - 17
v2.1.0 - v2.2.0 1 3 - 4 27 - 5
v2.2.0 - v2.3.0 4 1 1 6
THM RFO PEQ CNF UEQ
v2.0.0 - v2.1.0 12 4 - - 16
v2.1.0 - v2.2.0 1 - 1 35 - 9
v2.2.0 - v2.3.0 14 1 3 18

Table 2: Numbers of problems solved for the first time
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TPTP version v2.0.0 v2.1.0 v2.2.0 v2.3.0
Months since v2.0.0 0 6 20 29
SPC Average problem rating
SAT EPR CNF 0.40 0.53 0.27 0.13
SAT EPR FOF 0.00 0.00 0.00 0.00
SAT RFO CNF 0.54 0.61 0.47 0.39
SAT RFO FOF 0.00 0.00 0.00 0.00
THM EPR CNF 0.03 0.23 0.02 0.03
THM EPR FOF 0.00 0.00 0.00 0.00
THM RFO NEQ FOF 0.00 0.00 0.00 0.00
THM RFO EQU FOF 0.00 0.00 0.00 0.00
THM RFO NEQ CNF HRN 0.57 0.52 0.48 0.19
THM RFO NEQ CNF NHN 0.30 0.33 0.33 0.12
THM RFO SEQ CNF HRN 0.54 0.46 0.45 0.21
THM RFO SEQ CNF NHN 0.59 0.53 0.44 0.38
THM RFO PEQ CNF NUE 0.71 0.47 0.43 0.42
THM RFO PEQ CNF UEQ 0.46 0.35 0.32 0.07
Average of non-0 averages 0.46 0.45 0.36 0.22

Table 3: Arithmetic average of problem ratings
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Figure 4: Average problem ratings over time
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have entered the previous CASC’s division winners into their divisions. The previous
winners provide fixed points against which the new systems can be judged, using the
same resource limits.

Table 4 shows the performance of the previous CASC’s winners in CASC-16 and CASC-
17. In both CASCs, in all divisions, the previous winner is beaten by one or more of the
new systems. These results indicate that there is progress in ATP between each CASC.
It may be claimed that the different eligible and randomly selected problems of each
CASC is the cause of a new system beating the previous winner, but the consistency
with which previous winners are outperformed makes this claim incredibly unlikely.
Conversely, the addition of new problems to the TPTP each year, and the different
selection of problems used in the competition, means that the improvements in the
new systems cannot be attributed simply to tuning for the previous CASC’s problems.

Division Division winner
Problems/Solved by winner/By previous winner (Position)

CASC-15 CASC-16 CASC-17
MIX Gandalf c-1.1 Vampire 0.0 E 0.6

80/61/- 75/51/39 (4th) 75/57/37 (5th)
UEQ Waldmeister 798 Waldmeister 799 Waldmeister 600

30/30/- 30/30/19 (2nd) 30/30/29 (2nd)
SAT SPASS 0.95T OtterMACE 437 GandalfSat 1.0

30/22/- 30/16/9 (3rd) 30/25/21 (4th)
FOF SPASS 0.95T SPASS 1.00T VampireFOF 1.0

40/39/- 30/22/19 (3rd) 60/53/51 (2nd)

Table 4: Performance of previous CASC division winners

4 Conclusion

This paper presents quantitative measures that show progress in ATP, from mid-1997
to the end of 1999. The measures are based on collected performance data from ATP
systems, and from the results of the CADE ATP System Competitions. The per-
formance data comes from testing ATP systems on TPTP problems, which are di-
vided into 14 Specialist Problem Classes. The performance data has been analysed
in four different ways, and for six of the SPCs the analyses consistently indicate seri-
ous progress in ATP. The six SPCs are the THM RFO * CNF * SPCs that represent the
“mainstream” of ATP and ATP applications. There is some evidence, but a lesser
amount, of progress in the remaining eight SPCs. The comparisons of ATP systems
based on the CASC results similarly provide convincing evidence of progress in ATP,
especially in the “mainstream” divisions.

16



The conclusion that ATP is making progress sends out messages to users, researchers,
and observers. Take heed . . .

• To users: ATP research is steadily producing more powerful systems that can
solve your problems.

• To researchers: The long hard effort is paying off.

• To funding bodies: Your money is being well spent, as support for ATP research
is producing real results.
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