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Abstract This report describes how the homogeneity of sets of ATP problems can be mea-
sured with respect to the performance of ATP systems. Measuring homogeneity is important
as a basis for empirical evaluation of ATP systems and problems. The method developed
assigns problems to nodes in a graph, and finding homogeneous sets of problems is reduced
to finding maximal cliques in the graph. The method is robust to the realities of empirical
data collection. A machine learning approach has been used to differentiate between types
of problems in situations where heterogeneity is apparent.



1 Introduction

A key concern of automated theorem proving (ATP) research is the development of
more powerful systems, capable of solving more difficult problems. In order to build
more powerful systems, it is important to know which systems, and hence which tech-
niques (understanding that a system is a collection and combination of techniques),
work well for what types of problems. This knowledge is a key to further development,
as it precedes any investigation into why the techniques and systems work well or
badly. This knowledge is also crucial for users: given a specific problem, a user would
like to know which systems are most likely to solve it. Inextricably intertwined with
the evaluation of ATP systems is the evaluation of ATP problem difficulty. Evalua-
tion of problem difficulty is important, as it simplifies problem selection according to a
user’s intentions, and over the years, changes in problem ratings provide a quantitative
indicator of advancement in ATP.

Analytic approaches to ATP system evaluation provide insights into theoretical system
capabilities. Complete analysis of the search space at the 1st order level is of course
impossible (for otherwise 1st order logic would be decidable). It is therefore necessary
to make empirical evaluations of ATP systems. [SS00] presents methodologies for the
empirical evaluation of ATP systems and problems. Due to the specialisation of ATP
systems and techniques to problems with certain characteristics, e.g., special techniques
are deserved for problems with equality, the evaluations must be done in the context
of sets of problems that are reasonably homogeneous with respect to the systems.1

These sets of problems are called Specialist Problem Classes (SPCs). The evaluation
methodologies of [SS00] evaluate systems and problems within individual SPCs as
follows. Initially a partial ordering of the systems is determined by subsumption: a
system that solves a strict superset of the problems solved by another system subsumes
(is better than) the other system. Problems are then rated according to the fraction
of non-subsumed systems that fail to solve the problem within realistic resource limits.
(Roughly, a realistic resource limit for a given ATP system is one beyond which a linear
increase in resources would not lead to the solution of significantly more problems; see
[SS00] for details.) Problems with a rating of zero are easy, with a rating between zero
and one are difficult, and with a rating of one are unsolved. Finally, the ATP systems
are rated according to the fraction of difficult problems they can solve within realistic
resource limits.

A cornerstone of the evaluation methodologies is the identification of the SPCs that
are “reasonably homogeneous with respect to the systems”. The SPCs are based on
logical, language, and syntactic characteristics of the problems. The choice of what
characteristics are used has been based on community input and ad hoc analysis of
system performance data. The range of characteristics that have so far been identified
as relevant are:

• Theoremhood: Theorems vs Non-theorems
1In the same way that athletes who specialise in a certain event should be evaluated in that type

of event, rather than over all possible events.
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• Order: Essentially propositional vs Real 1st order

• Equality: No equality vs Some equality vs Pure equality

• Form: CNF (Clause Normal Form) vs FOF (First Order Form)

• Hornness: Horn vs Non-Horn

• Unit equality: Unit equality vs Non-unit pure equality

Based on these characteristics 14 SPCs have been defined, as indicated by the leaves
of the tree in Figure 1.

Figure 1: Specialist Problem Classes
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The evaluation methodologies have been applied to current 1st order ATP systems,
using performance data on the TPTP (Thousands of Problems for Theorem Provers)
problem library [SS98]. The evaluation results produced using these SPCs are appar-
ently meaningful and realistic; systems that are rated highly within a SPC perform
well within the SPC, and are recognised by the community as powerful for that type of
problem. Similarly, TPTP problems that have high ratings are hard to solve using cur-
rent ATP technology, and no anomalies in the problem ratings have been pointed out
by the ATP community. It would seem that the SPCs are adequately homogeneous.
It is important that this situation be maintained, and to this end some mechanical
analysis and measurement of SPC homogeneity is desirable.

This report describes a method for checking the homogeneity of a set of problems, with
respect to performance data on those problems. The method can also be used to iden-
tify homogeneous subsets of a set of problems. The report also shows how a machine
learning technique can be used to identify problem characteristics that differentiate
homogeneous problem sets. These methods and techniques have been used to check
the homogeneity of the SPCs shown in Figure 1, and hence to affirm the basis for the
system and problem evaluations done using the TPTP.

Section 2 introduces the use of graphs to represent problem types and homogeneity
relationships between problem types. In this representation, finding homogeneous sets
of problems corresponds to finding cliques in the graph, and the clique finding algorithm
is described. Section 3 reports on the testing performed, testing the homogeneity of the
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SPCs shown in Figure 1 and independently identifying SPCs in the TPTP. Section 4
describes the use of machine learning to find problem characteristics that differentiate
SPCs. Section 5 concludes the report.

2 Cliques of Problems

As outlined in Section 1, a requirement for meaningful evaluation of ATP systems is
evaluation within the context of sets of problems that are reasonably homogeneous
with respect to the performances of the ATP systems. Given a SPC, if there are some
problems that are solved by system A1 but not by A2, and there are some problems
that are solved by A2 but not by A1, then the performances are contradictory and the
SPC is not homogeneous with respect to A1 and A2. In contrast, if there is no such
contradictory performance then the SPC is homogeneous with respect to A1 and A2.
If a SPC is homogeneous with respect to n ATP systems A1,. . . ,An, then the systems
can be totally ordered using system subsumption, as defined in Section 1. In this case
it makes sense to say that one system is better than another, in the context of the
SPC. Note that homogeneity does not prevent there being a substantial variation in
the number of problems solved by the systems. To measure the homogeneity of a SPC,
the performance data of ATP systems can be examined for contradictory behaviour as
follows.

2.1 Basic Compatibility and Homogeneity Measures

For each problem in a SPC, an ATP system either solves it or fails to solve it (within rea-
sonable resource limits). These two cases are represented by S and F. Each problem P
in a SPC is associated with a performance vector vP ∈ {S, F}n, where vP

i indicates the
performance of ATP Ai on P . Two performance vectors are compatible to the extent
that the systems’ performances do not contradict each other. Two performance vectors
u and v are compatible if there are no two vector positions i and j such that ui = S and
uj = F but vi = F and vj = S. For example, for n = 3, the performance vectors SSS,
SSF, SFF, and FFF are pairwise compatible, whereas SSF and FSS are each compatible
with SSS but are not compatible with each other. (Finer grained levels of compatibility
are considered in Section 2.2 below.)

The performance vectors that occur for a SPC are used to divide the SPC into disjoint
problem groups. Each group, with the associated performance vector, is a node in a
compatibility graph G. An edge connects two nodes in G if the respective performance
vectors are compatible. The cliques of G then identify homogeneous sets of problems.
The homogeneity of a SPC is expressed in terms of the maximal clique size in G. Two
homogeneity measures are defined, using two ways of measuring clique size. The first
measure is the ratio of the number of problems in the clique’s nodes and the number
of problems in the SPC, i.e., measuring the homogeneity of the actual problems in
the SPC. The second measure is the ratio of the number of nodes in the clique and
the number of nodes in the graph. This measure acknowledges that the number of
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problems may be biased by the source of the problems, and thus puts the problems in
a node into an equivalence class, i.e., measuring homogeneity of the problem types.

If one clique covers most of a SPC, then the SPC can be considered homogeneous.
Conversely, there is a strong argument for splitting a SPC if it generates two or more
rather large cliques. Figure 2 shows a compatibility graph, in which each node is shown
with its performance vector and the number of problems. The maximal clique is {SSS,
SSF, SFF, FFF}, containing 15 of the 18 problems and 4 of the 5 nodes. The problem
set is thus 83% homogeneous by problem count and 80% homogeneous by node count.

Figure 2: Simple Compatibility and Clique Example
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2.2 Refinements of the Compatibility and Homogeneity Mea-
sures

The notion of compatibility introduced in Section 2.1 is strictly Boolean: two nodes are
either compatible or not, depending on which systems solve and which systems fail to
solve the associated problems. Although decent ATP systems have reasonably stable
performance characteristics, it is a feature of ATP that small changes in problems can
sometimes lead to strange changes in system performance. Such aberrant behaviour
may cause the performance vectors of two problems to appear incompatible, when for
the underlying purpose of system evaluation the problems really do fall into the same
homogeneous SPC. To make the homogeneity measures robust, a degree of compatibility
between two performance vectors is defined. The connectivity of the compatibility
graph is then determined with respect to a degree of compatibility, with a subsequent
effect on the homogeneity measure.

The compatibility of two performance vectors u and v is defined as the minimal fraction
of ATP systems that have to exchange S for F, or vice versa, to make u and v fully
compatible. For example, if u = SSFS and v = FFSS (i.e., there are four systems), by
changing the third position of u (v) to S (F), the two vectors become fully compatible.
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The degree of compatibility therefore is 1/4 = 0.25. The degree of compatibility
can range from 0 to 0.5 (less than 0.5 if there is an odd number of ATP systems).
The value 0 indicates full compatibility (no change required), as is the case for the
performance vectors SSFF and SFFF. The value 0.5 indicates complete incompatibility,
as is the case for SSFF and FFSS.

When constructing a compatibility graph G, a compatibility threshold d ∈ [0; 0.5] is
specified, which allows two nodes to be connected if their degree of compatibility is
less than or equal to d. In this way absolute compatibility need not be expected,
but excessive contradictory behaviour can be avoided in order to support a reasonable
evaluation of (relative) system performances. Note that for d = 0 we have the original
case that requires full compatibility. Figure 3 shows a compatibility graph, in which
the edges are annotated with the degree of compatibility between the nodes. With a
compatibility threshold of 0.00 the maximal clique is {SSFS, SSFF, SFFF} containing 9
of the 17 problems and 3 of the 5 nodes. With an increased compatibility threshold of
0.25 the maximal clique is {SSFS, SFFF, SFFS, FFSS} containing 13 of the 17 problems
and 4 of the 5 nodes.

Figure 3: Degree of Compatibility Example
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The development so far assumes that every system has attempted every problem in the
SPC being considered. In reality this may not be the case, for two reasons. Firstly, if
a problem is added to the TPTP after a certain ATP system was tested, there is no
performance data available for that system on that problem. In the performance vectors
such cases are denoted by ?. When computing the compatibility of two performance
vectors, positions where either vector has a ? entry are ignored. For example, the
degree of compatibility of SSF? and F?SS is 1/2 = 0.5. Secondly, certain ATP systems
are incapable of attempting certain types of problems, e.g., systems based on unfailing
completion can deal with only unit equality problems, and are therefore not tested
on some problems. In the performance vectors such cases are denoted by X. If two
problems P and Q have performance vectors vP and vQ respectively, and there is an
ATP system Ai (position i) so that vP

i = X and vQ
i ∈ {S, F}, this indicates that P
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and Q should be considered to be inherently different in nature. Consequently these
two problems should not be in the same SPC and hence should not be connected in
the compatibility graph G. This is achieved by assigning a degree of compatibility 1.0
to vP and vQ if the above situation occurs. 1.0 can be viewed as “infinity”, given that
the degree of compatibility is bounded by 0.5 under normal circumstances.

Figure 4 shows the degrees of compatibility between the five nodes, some of which have
? and X entries.

Figure 4: Missing Data Example
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2.3 Finding Maximal Cliques

Maximal clique detection is known to be NP complete [Meh84]. Hence, except for small
graphs, it is necessary to resort to efficient approximation algorithms. A fair amount
of research has gone into approximation algorithms of this kind, most recently in the
field of evolutionary computation [Hay98]. The algorithm used to find the maximal
cliques in the compatibility graphs is best characterised as a greedy or steepest ascent
hill-climbing algorithm. Starting with the graph G0 = G, the node of minimal degree
is removed from Gi, resulting in Gi+1. If there is more than one such node, the one
containing the smallest number of problems is removed, thus creating a bias towards
cliques containing more problems. The process is stopped as soon as Gi is a clique.
After a clique is identified, this procedure is applied to the graph consisting of the
remaining nodes, until the original graph G has been partitioned into k ≥ 1 cliques
C1, . . . , Ck. Ci+1 may contain more problems than Ci since the number of problems
is only a secondary criterion. Ci+1 may also have more nodes than Ci because the
algorithm is an approximation algorithm and is therefore not guaranteed to find the
clique with the maximal number of nodes. The test results presented in Section 3
demonstrate that this simple algorithm performs satisfactorily well for the compatibility
graphs.
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3 Testing and Results

3.1 Testing the Existing SPCs for Homogeneity

The homogeneities of the 14 SPCs shown in Figure 1 have been measured, using data
from systems tested on the TPTP since the release of v2.0.0 on 5 June 1997, up to
14 September 2000. Data from 16 systems was used, except for the SPCs containing
non-theorems, i.e., those starting SAT in the tables below, for which data from 14
systems was used.2 For each SPC the homogeneity measures by problem count and
node count were computed for compatibility thresholds 0.000, 0.0625, 0.1250, 0.2500,
and 0.500. The results are shown in Tables 1 and 2.

SAT EPR CNF SAT EPR FOF
C.T. 31 nodes 139 problems C.T. 16 nodes 83 problems

0.0000 15 (48%) 77 (55%) 0.0000 11 (68%) 73 (87%)
0.0625 15 (48%) 77 (55%) 0.0625 11 (68%) 73 (87%)
0.1250 26 (83%) 125 (89%) 0.1250 15 (93%) 82 (98%)
0.2500 31 (100%) 139 (100%) 0.2500 16 (100%) 83 (100%)
0.5000 31 (100%) 139 (100%) 0.5000 16 (100%) 83 (100%)

SAT RFO CNF SAT RFO FOF
C.T. 38 nodes 88 problems C.T. 4 nodes 9 problems

0.0000 14 (36%) 41 (46%) 0.0000 4 (100%) 9 (100%)
0.0625 14 (36%) 41 (46%) 0.0625 4 (100%) 9 (100%)
0.1250 25 (65%) 56 (63%) 0.1250 4 (100%) 9 (100%)
0.2500 30 (78%) 68 (77%) 0.2500 4 (100%) 9 (100%)
0.5000 30 (78%) 68 (77%) 0.5000 4 (100%) 9 (100%)

THM EPR CNF THM EPR FOF
C.T. 41 nodes 401 problems C.T. 22 nodes 235 problems

0.0000 14 (34%) 345 (86%) 0.0000 15 (68%) 225 (95%)
0.0625 18 (43%) 359 (89%) 0.0625 15 (68%) 225 (95%)
0.1250 32 (78%) 391 (97%) 0.1250 21 (95%) 234 (99%)
0.2500 40 (97%) 400 (99%) 0.2500 22 (100%) 235 (100%)
0.5000 40 (97%) 400 (99%) 0.5000 22 (100%) 235 (100%)

THM RFO EQU FOF THM RFO NEQ FOF
C.T. 32 nodes 323 problems C.T. 6 nodes 21 problems

0.0000 16 (50%) 154 (47%) 0.0000 5 (83%) 19 (90%)
0.0625 16 (50%) 154 (47%) 0.0625 5 (83%) 19 (90%)
0.1250 26 (81%) 310 (95%) 0.1250 6 (100%) 21 (100%)
0.2500 32 (100%) 323 (100%) 0.2500 6 (100%) 21 (100%)
0.5000 32 (100%) 323 (100%) 0.5000 6 (100%) 21 (100%)

Table 1: Statistics for the currently used SPCs, part I

2This difference is due to two systems not being tested on problems known to be non-theorems at
the time, whereas more of the problems are actually non-theorems.
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THM RFO NEQ CNF HRN THM RFO NEQ CNF NHN
C.T. 72 nodes 379 problems C.T. 85 nodes 430 problems

0.0000 18 (25%) 240 (63%) 0.0000 20 (23%) 322 (74%)
0.0625 37 (51%) 307 (81%) 0.0625 23 (27%) 288 (66%)
0.1250 48 (66%) 312 (82%) 0.1250 46 (54%) 379 (88%)
0.2500 69 (95%) 376 (99%) 0.2500 79 (92%) 422 (98%)
0.5000 72 (100%) 379 (100%) 0.5000 85 (100%) 430 (100%)

THM RFO SEQ CNF HRN THM RFO SEQ CNF NHN
C.T. 67 nodes 381 problems C.T. 154 nodes 1194 problems

0.0000 20 (29%) 246 (64%) 0.0000 29 (18%) 959 (80%)
0.0625 38 (56%) 325 (85%) 0.0625 42 (27%) 955 (79%)
0.1250 55 (82%) 349 (91%) 0.1250 82 (53%) 1080 (90%)
0.2500 66 (98%) 380 (99%) 0.2500 153 (99%) 1193 (99%)
0.5000 67 (100%) 381 (100%) 0.5000 154 (100%) 1194 (100%)

THM RFO PEQ CNF NUE THM RFO PEQ CNF UEQ
C.T. 44 nodes 122 problems C.T. 126 nodes 424 problems

0.0000 22 (50%) 94 (77%) 0.0000 31 (24%) 279 (65%)
0.0625 29 (65%) 105 (86%) 0.0625 44 (34%) 315 (74%)
0.1250 38 (86%) 112 (91%) 0.1250 74 (58%) 359 (84%)
0.2500 44 (100%) 122 (100%) 0.2500 116 (92%) 414 (97%)
0.5000 44 (100%) 122 (100%) 0.5000 126 (100%) 424 (100%)

Table 2: Statistics for the currently used SPCs, part II

For all but one of the SPCs, a homogeneity measure in excess of 80% by problem count
is reached with a compatibility threshold of 0.125 (and in many cases with a com-
patibility threshold of 0.0625). The exception is SAT RFO CNF. Here the homogeneity
measure remains below 100% even with a compatibility threshold of 0.5000, indicating
that some nodes are incompatible due to X entries in performance vectors. Closer ex-
amination shows that some systems had (quite reasonably) been tested on only the unit
equality problems in that SPC. Excluding those systems from consideration produces
a homogeneity measure of 86% by both node count and problem count is reached with
a compatibility threshold of 0.1250. This suggests a possible split for the SPC, based
on equality characteristics.

For all but four of the SPCs (excluding SAT RFO CNF discussed above), a homogene-
ity measure in excess of 80% by node count is reached with a compatibility threshold
of 0.125. The exceptions are the SPCs THM RFO NEQ CNF HRN, THM RFO NEQ CNF NHN,
THM RFO SEQ CNF NHN, and THM RFO PEQ CNF UEQ. For SPCs THM RFO NEQ CNF NHN and
THM RFO SEQ CNF NHN, homogeneity measures of 78% and 81% by node count are
reached respectively with a compatibility threshold of 0.14. For THM RFO NEQ CNF HRN,
12 of the 15 nodes in the second clique have one problem. Interestingly, there is
one node with 24 problems, all but one of which are blocks world problems from
the TPTP’s PLA domain. These problems have a high proportion of unit clauses.
The node is excluded from the first clique due to different performance from two
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tableau based (i.e., strongly goal oriented) systems, possibly suggesting that tableau
based systems have better performance when there are many unit clauses present. For
THM RFO PEQ CNF UEQ, the second and subsequent cliques found have reasonably large
numbers of nodes, but all nodes have only very few (typically one or two) problems.
This low homogeneity by node count is somewhat surprising, given the specialised na-
ture of unit equality problem solving. One possible cause is that some systems use
some highly specialised techniques, which may be suited to particular problems.

3.2 Generating Homogeneous Problem Sets

The technique of finding maximal cliques in a compatibility graph has also been used to
divide up the TPTP into subsets that are homogeneous with respect to the performance
data. The subsets are formed from the problems in the nodes of the cliques found
in the compatibility graph for the performance data over the whole TPTP. Using a
compatibility threshold of 0.125 the 4229 problems in the TPTP are divided into 35
homogeneous subsets, with 3972 problems falling into the first seven subsets. All of
the remaining 28 subsets contain 25 or less problems, and are ignored as insignificant.

The generated homogeneous subsets have been compared to the existing SPCs. If any
generated subset is a strict superset of a SPC, then the SPC is 100% homogeneous. If
multiple SPCs fall within a single homogeneous subset, then the union of those SPCs
is homogeneous with respect to the systems’ performances, and merging them may
be appropriate. In contrast, if a SPC is split across multiple subsets, then the SPC is
apparently heterogeneous and may need to be split. In order to make such judgements,
for each homogeneous subset and each SPC, the ratio of the size of their intersection
and the size of the SPC has been computed. The results are shown in Table 3.

The first subset encompasses 2418 of the 3558 CNF problems in the TPTP, includ-
ing most of those in the THM EPR CNF, THM RFO NEQ CNF HRN, THM RFO NEQ CNF NHN,
THM RFO SEQ CNF HRN, THM RFO SEQ CNF NHN, and THM RFO PEQ CNF NUE SPCs. This
shows that there are techniques (and hence systems) that are effective for all these
problem types. The third subset identifies the unit equality SPC. The fifth subset cov-
ers all the FOF SPCs. Evidently the techniques suitable for one type of FOF problem
are adequate for most types. The sixth subset identifies the CNF non-theorems, both
the effectively propositional problems and the real first order ones. The only SPC that
does not have a large fraction contained within only one problem clique is SAT RFO CNF.
This heterogeneity was also identified in Section 3.1, and the reason discussed.

4 Using Machine Learning to Differentiate SPCs

Section 3 shows that the SPCs in Figure 1, formed using the problem characteristics
listed in Section 1, are mostly homogeneous. In the situations where some heterogene-
ity is apparent, it is useful to have a method of identifying problem characteristics that
differentiate between the types of problems. The clique approach to measuring homo-
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SPC Homogeneous Subset Problems
1 2 3 4 5 6 7

SAT EPR CNF 0.00 0.00 0.00 0.00 0.00 0.86 0.00 139
SAT EPR FOF 0.00 0.00 0.00 0.00 0.99 0.00 0.00 83
SAT RFO CNF 0.03 0.00 0.00 0.00 0.00 0.57 0.00 88
SAT RFO FOF 0.00 0.00 0.00 0.00 1.00 0.00 0.00 9
THM EPR CNF 0.81 0.00 0.00 0.00 0.00 0.00 0.15 401
THM EPR FOF 0.00 0.00 0.00 0.00 1.00 0.00 0.00 235
THM RFO EQU FOF 0.00 0.00 0.00 0.00 0.96 0.00 0.00 323
THM RFO NEQ FOF 0.00 0.00 0.00 0.00 1.00 0.00 0.00 21
THM RFO NEQ CNF HRN 0.81 0.08 0.00 0.03 0.00 0.01 0.01 379
THM RFO NEQ CNF NHN 0.77 0.08 0.00 0.06 0.00 0.00 0.01 430
THM RFO SEQ CNF HRN 0.78 0.00 0.00 0.13 0.00 0.00 0.03 381
THM RFO SEQ CNF NHN 0.88 0.05 0.00 0.02 0.00 0.00 0.02 1194
THM RFO PEQ CNF NUE 0.80 0.03 0.00 0.04 0.00 0.00 0.05 122
THM RFO PEQ CNF UEQ 0.00 0.00 0.85 0.00 0.00 0.00 0.00 424
Problems 2418 128 359 119 656 174 118 4229

Table 3: Correlation between Problem Cliques and SPCs

geneity, described in Section 2, assigns graph nodes, and hence performance vectors
and problems, to cliques. This process can be considered to be a problem classification
process, with cliques representing classes. Taking this viewpoint, machine learning
(ML) techniques can be used to obtain a classifier based on problem characteristics.
The classifier then provides the information needed to differentiate between types of
problems. There are many ML techniques dealing with supervised classification, but
not all of them are suitable for this purpose. When determining the SPCs for ATP sys-
tem and problem evaluation, it is important that the classifier be in a comprehensible
form, so that it is intuitive to ATP researchers and users. Conventional decision-tree
algorithms appear to be the best choice, since the way they perform classification is
easily presentable to and understandable by a human reader. C4.5 [Qui93] is one of the
most popular classification systems based on decision trees, and has been used here.

Classification methods in general, and C4.5 in particular, require that a feature vec-
tor be associated with each object to be classified. Each feature captures a certain
property of the objects, and expresses that property with a numerical value.3 Given
a set of features a1, . . . , am, each problem P is then associated with its feature vector
(a1(P ), . . . , am(P )). The features used to differentiate between types of problems are
syntactic problem characteristics, which are supplied with each TPTP problem. They
are different for CNF and FOF problems, and are listed in Table 4.

The use of a classifier provides useful information when examining apparently hetero-
geneous SPCs. For example, Figure 5 shows the output of C4.5 that suggests that the
SPC SAT RFO CNF can be split on equality characteristics, as concluded in Section 3.1.

3Other types of values can also be used, but numerical (integer) values are sufficient here.
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CNF FOF
Cls Number of clauses Form Number of formulae
NHn Number of non-Horn clauses Unit Number of unit formulae
Unit Number of unit clauses Atom Number of atoms
RR Number of range restricted cls EqA Number of equality atoms
Lits Number of literals FD Maximal formula depth
EqL Number of equality literals AvFD Average formula depth
Sz Maximal literals in a clause Pred Number of predicates
Av Average literals in the clauses Prop Number of propositions
Pred Number of predicates MinPArity Minimal predicate arity
Prop Number of propositions MaxPArity Maximal predicate arity
MinPArity Minimal predicate arity Conn Number of connectives
MaxPArity Maximal predicate arity Not Number of ~
Vars Number of variables Or Number of |
Sgn Number of singletons And Number of &
Dp Maximal term depth Equivalent Number of <=>
AvDp Average term depth Implies Number of =>
Func Number of functors ImpliedBy Number of <=
Cnst Number of constants XOr Number of <~>
MinFArity Minimal functor arity NOr Number of ~|
MaxFArity Maximal functor arity NAnd Number of ~&
Cls==Unit 1 if Cls == Unit, else 0 Vars Number of variables
Cls==RR 1 if Cls == RR, else 0 Sgn Number of singletons
Cls==NHn 1 if Cls == NHn, else 0 Forall Number of !
Cls==EqL 1 if Cls == EqL, else 0 Exists Number of ?
Lits==EqL 1 if Lits == EqL, else 0 Dp Maximal term depth
Pred==Prop 1 if Pred == Prop, else 0 AvDp Average term depth
Func==Cnst 1 if Func == Cnst, else 0 Func Number of functors

Cnst Number of constants
MinFArity Minimal functor arity
MaxFArity Maximal functor arity

Table 4: Features associated with problems in CNF or FOF.
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Figure 6 shows the output of C4.5, highlighting the role played by constants in the
24 problem node of the second clique found in the SPC THM RFO NEQ CNF HRN, as also
discussed in Section 3.1.

Figure 5: Differentiating in SAT RFO CNF

Simplified Decision Tree:

Lits==EqL = 0: CL01 (43.0)
Lits==EqL = 1:
| Dp <= 2 : CL01 (9.0)
| Dp > 2 :
| | Sz <= 4 : CL02 (22.0/2.0)
| | Sz > 4 : CL01 (2.0)

Figure 6: Differentiating in THM RFO NEQ CNF HRN

Simplified Decision Tree:

Unit <= 15 : CL01 (335.0/31.2)
Unit > 15 : CL02 (27.0/6.0)

Another use is to apply the classifier to the cliques generated from the TPTP, as de-
scribed in Section 3.2. Figure 7 shows the differentiation between the 2043 problems in
the first two cliques (1702 and 341 problems respectively) generated from the 3331 un-
satisfiable CNF problems in the TPTP. The output clearly separates the unit equality
problems (clique CL02) from the others (clique CL01).

5 Conclusion

This report describes how the homogeneity of sets of ATP problems can be measured
with respect to the performance of ATP systems. The method developed assigns prob-
lems to nodes in a graph, and finding homogeneous sets of problems is reduced to finding
maximal cliques in the graph. An approximation algorithm for finding the maximal
cliques has proved satisfactory, thus overcoming the NP-completeness of finding maxi-
mal cliques in general. Some extensions to the basic idea have made the measurement
robust to the realities of empirical data collection. In addition, a machine learning
approach has been used to differentiate between types of problem in situations where
heterogeneity is apparent.

The techniques developed are important, as they can be used to check the homogeneity
of the Specialist Problem Classes (SPCs) used as a basis for system and problem
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Figure 7: Differentiating unsatisfiable CNF problems

Simplified Decision Tree:

Pred > 1 : CL01 (1382.0/1.4)
Pred <= 1 :
| EqL <= 0 : CL01 (227.0/1.4)
| EqL > 0 :
| | Lits==EqL = 0: CL01 (21.0/1.3)
| | Lits==EqL = 1:
| | | Cnst <= 5 :
| | | | Sgn <= 2 :
| | | | | RR <= 6 : CL02 (322.0/9.6)
| | | | | RR > 6 :
| | | | | | MaxFArity > 2 : CL01 (6.0/1.2)
| | | | | | MaxFArity <= 2 :
| | | | | | | Func > 7 : CL02 (8.0/1.3)
| | | | | | | Func <= 7 :
| | | | | | | | Dp <= 5 : CL01 (8.0/1.3)
| | | | | | | | Dp > 5 : CL02 (2.0/1.0)
| | | | Sgn > 2 :
| | | | | Sgn > 5 : CL02 (5.0/1.2)
| | | | | Sgn <= 5 :
| | | | | | Dp <= 3 : CL02 (2.0/1.0)
| | | | | | Dp > 3 : CL01 (14.0/1.3)
| | | Cnst > 5 :
| | | | Vars <= 24 : CL02 (7.0/1.3)
| | | | Vars > 24 :
| | | | | Cls <= 23 : CL01 (36.0/1.4)
| | | | | Cls > 23 : CL02 (3.0/2.1)

evaluation using the TPTP. The testing done shows that the SPCs are apparently
almost all highly homogeneous. In the exceptional case of the SPC SAT RFO CNF, where
heterogeneity is apparent, equality has been identified as the problem characteristic
that differentiates between the types of problems. As a result the SPCs can now be
refined to take this into account.
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