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ABSTRACT 
This paper presents an embedding of the Linda parallel programming paradigm in Prolog, 
resulting in a coarsely grained parallel Prolog. The work extends that reported in 
[Sutcliffe and Pinakis, 1990]1. This embedding supports a distributed tuple space and a 
control hierarchy that provides remote I/O facilities for client processes. As before, the 
embedding uses unification and Prolog style deduction in the tuple space. Two applications of 
Prolog-Linda are described. 

                                                
1 To make this paper self contained it has been necessary to duplicate some of the information given in 
[Sutcliffe and Pinakis, 1990]. 
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1 Introduction 

A categorisation of parallel Prolog systems may be made according to how the problem is 
divided into parallel tasks. This task granularity can be divided into three categories : 
unification parallelism, goal parallelism, and process parallelism: 
• Unification parallelism introduces parallelism by performing parts of unification 

operations in parallel. This form of parallelism has been used by Ito [1985]. 
• Goal parallelism encompasses AND-parallelism, OR-parallelism and 

AND-OR-parallelism. Here subgoals of a single Prolog program are evaluated in parallel. 
Examples in this category are GHC [Ueda, 1985], EPILOG [Wise, 1986], Parlog 
[Gregory, 1987], the family of Concurrent Logic Programming languages 
[Shapiro, 1987, 1989b], Strand [Foster and Taylor, 1989], and Andora [Haridi and 
Janson, 1990]. 

• Process parallelism is that form of parallelism in which multiple sequential Prolog 
programs execute in parallel, with some mechanism being provided for inter-process 
communication. Examples are Delta-Prolog [Cunha, Ferreira, and Pereira, 1989], 
CS-Prolog [Futo and Kacsuk, 1989], the Quintus Prolog multi-processing package 
[Quintus, 1989], Prolog-1-Linda and Prolog-N-Linda [Sutcliffe and Pinakis, 1990], 
Amoeba Prolog [Shizgal, 1990], PMS-Prolog [Wise, 1991a, Forthcoming], MB-Prolog 
[Wise, 1991b], the SICStus Prolog multi-processing package [Forthcoming], and 
Prolog-D-Linda. 

 
Orthogonal to the task granularity, parallel Prolog systems may be categorised according to 
how the parallel tasks are executed on the host computer. This execution granularity is often 
influenced by the task granularity. The finest grain executes the tasks as light weight 
processes within a single operating system level process. At the next level of granularity the 
tasks are executed as distinct operating system level processes, but are restricted to a single 
processor. In the coarsest granularity the tasks also execute as distinct operating system 
processes, but the processes may be distributed over a network of processors. Combinations 
across categories are possible. The network category is the only one which can harness more 
computing power; the others simply provide conceptual parallelism. 
 
Prolog-D-Linda (Prolog-Distributed-Linda) is an embedding of the Linda paradigm into an 
existing Prolog system. The embedding supports a distributed tuple space, unification and 
Prolog style deduction in the tuple space, and a control hierarchy that provides remote I/O 
facilities for client processes. 
 
The reader is presumed to be familiar with Prolog. 
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2 The Linda paradigm 

Linda is a programming framework of language-independent operators. These operators may 
be injected into the syntax of existing programming languages, such as Modula-II [Borrman, 
Herdieckerhoff, and Klein, 1988], C [Berndt, 1989], LISP [Yuen and Wong, 1990], 
Joyce [Pinakis and McDonald, 1991], and Russell [Butcher and Zedan, 1991], resulting in 
new parallel programming languages. Linda permits cooperation between parallel processes 
by controlling access to a shared data structure called the tuple space. The tuple space 
contains ordered collections of data called tuples. Manipulation of the tuple space is possible 
only by using the set of Linda operators. 

2.1 Tuples 

Tuples are collections of fields, of any arity. Every field has a data type drawn from the host 
language. The type of a tuple is the cross product of the types of its fields. A field can be a 
formal field or an actual field. A formal field has a type but no value, and can be thought of 
as a variable that has not been assigned a value. The type of a formal field is the type of the 
variable. A formal field is specified by the variable name preceded by a ?. An actual field has 
both a type and a value. The type of an actual field is the type of its value. Example : if s1 is 
a variable of type string containing the value "hello", and f1 is a variable of type 
float, then (s1,9,?f1) is a tuple of arity 3. The first two fields are actual fields, the first 
being of type string with value "hello", the second being of type integer with value 
9. The third field is a formal field of type float. The type of the tuple is 
string × integer × float. 
 
The tuple space contains any number of tuples, and identical tuples may exist in the tuple 
space. Processes communicate by inserting, removing and examining tuples in the tuple 
space. Thus the tuple space is a shared data object. All processes having access to a tuple 
space have access to all tuples in it. 

2.2 Operations on tuples 

The out operator inserts a tuple into the tuple space. Following the example above, 
out(s1,9,?f1) inserts the tuple ("hello",9,?f1) into the tuple space. 
 
The in operator removes a tuple from the tuple space. Its argument is a template against 
which tuples are matched. A template matches a tuple if all corresponding fields match. Two 
actual fields match if they have the same type and value. A formal field and an actual field 
match if they have the same type. Two formal fields cannot match. If a match for a template 
is found, the matched tuple is removed from the tuple space and formal fields in the template 
are given the values of the corresponding actual fields in the tuple. For example, if i1 is an 
integer variable, the operation in("hello",?i1,27.0) could remove the previously 
inserted tuple from the tuple space. In addition to removing the tuple, the value 9 would be 



Prolog-D-Linda : An Embedding of Linda in SICStus Prolog Page 4 

assigned to the variable i1. If more than one tuple matches a template, only one is chosen. If 
no matching tuple can be found in tuple space, in will block and wait for a matching tuple to 
be inserted by an out operation. 
 
The rd operation (pronounced read) is similar to in, but leaves the matched tuple in the 
tuple space. rd is used for its binding and synchronization side-effects. 
 
Two related operators are inp and rdp. These perform tasks equivalent to in and rd but 
are non-blocking. Instead they return a boolean value which indicates the success of the 
operation. Recent research [Leichter, 1989] argues against the use of these operators. 

2.3 Process creation 

The final operation provided by Linda is the eval operation. The eval operation is 
syntactically similar to out except that a new process is created to evaluate each of the fields 
in the tuple. When the evaluation of all fields has terminated, the tuple becomes an ordinary 
tuple in the tuple space. For example, let sqrt be the square root function. The operation 
eval("hello",sqrt(81),?f1) will create a new process to evaluate each of the 
fields. The first and last fields evaluate trivially, but the second process will continue to 
execute in parallel with others. When the process finally terminates, the tuple 
("hello",9,?f1) will appear in the tuple space and can be manipulated in the usual 
ways. While the sqrt process is executing the tuple is unavailable. 

3 Prolog-Linda 

Prolog-Linda implements the Linda tuple space as a collection of Prolog clauses in the Prolog 
database. Both Prolog rules and facts can exist in the tuple space. The effect of rules in the 
tuple space is discussed in section 5. Facts correspond almost directly to standard Linda 
tuples. The necessity of a predicate symbol in a fact is analogous to requiring that the first 
field of a tuple be an actual field with a string literal value, as enforced by some Linda 
implementations [Leichter, 1989]. (This requirement does not reduce the generality of the 
system.) Formals in tuples are implemented by unbound variables. As data in Prolog is 
untyped (everything is a term) the data in Prolog-Linda's tuples is untyped. 
 
The out operation adds tuples to the tuple space using Prolog's assertz database 
operation, and the in operation removes tuples using retract. The rd operation 
interrogates the tuple space simply by using Prolog's query mechanism. The tuple matching 
method is thus generalised to Prolog's unification. As a consequence of this formals can 
match and be extracted from the tuple space. Prolog-Linda's eval operation differs from that 
of the original Linda paradigm. An eval operation is used to start a new Prolog environment 
containing specified clauses and evaluating a specified Prolog query. The evaluation of the 
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query may of course cause a tuple to be inserted in the tuple space. This form of eval is 
more general than the original, and can implement the original. 

4 Implementation 

Prolog-D-Linda has been implemented in SICStus Prolog [Carlsson, 1990]. SICStus Prolog 
provides an interface for accessing functions coded in C, and this is used for process creation 
and inter-process communication. Prolog-D-Linda runs on a network of Sun SPARC station-
1s running SunOS 4.1.1, and connected via an Ethernet. This environment provides access to 
a shared file system via Sun's Network File System [Sandberg, 1985]. 

4.1 Overview 

Prolog-D-Linda's tuple space and associated operations are implemented in server processes. 
Multiple servers can be used, each being responsible for part of the tuple space. Linda 
operations in client processes are translated into requests which are passed to an appropriate 
server. Prolog-D-Linda is controlled by a single controller process, which must be associated 
with a terminal device. The controller is responsible for : (i) starting and stopping the server 
processes, (ii) for reading and displaying the terminal input and output of servers, and (iii) for 
reading and displaying the terminal input and output of clients that are started via an eval 
request. 
 
A configuration file must be supplied to Prolog-D-Linda. The configuration file is in the form 
of a Prolog program which specifies (i) the names of processors that will execute server 
processes, (ii) the name of the server which will deal with eval requests, and (iii) how the 
tuple space is to be partitioned amongst the servers. A sample configuration file is listed in 
the appendix. Prolog-D-Linda is started by executing the controller, which reads the 
configuration file to determine the names of the server processors. The names are stored in a 
servers__/1 clause, whose argument is the list of processor names. When this clause has 
been found, the controller uses the rexec() system call to start each of the servers. 
 
Client processes may be started independently at a terminal, or via the eval primitive. 
Clients consult the configuration file, and use the consulted clauses to determine how the 
tuple space is partitioned amongst the servers. The tuple space partition information is in the 
form of select_server__/2 clauses. The first argument returns the name of the server 
processor that is responsible for the tuple that is supplied in the second argument. To 
determine where to send a tuple space operation request, a client simply evaluates an 
appropriate select_server__/2 goal. 
 
One of the servers is designated to be the eval-server. In addition to processing tuple space 
operation requests, the eval-server is responsible for processing all eval requests. The 
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eval-server starts new clients using an rexec() system call. The name of the eval-server is 
stored in the configuration file as the argument of an eval_server__/1 clause. 

4.2  Communication 

Communication between the controller and servers, and between servers and clients, is via 
internet domain stream sockets, as illustrated in Figure 1. 
 

Controller

evaled Client Client

Eval-Server Server Server

Client and eval-server

standard I/O

Server's standard I/O

eval and tuple

requests and replies
Tuple requests

and replies
Tuple requests

and replies

Client

standard I/O

 

Figure 1 - The Prolog-D-Linda System 

When a server is started its terminal input and output streams are connected to a file 
descriptor in the controller. The descriptor is obtained from the rexec() system calls used 
to start the server. Similarly, when a client is started by the eval-server, the client's terminal 
input and output streams are connected to a file descriptor in the eval-server. As well as the 
terminal I/O connection, every client establishes two further connections to each server. One 
connection is used for sending Linda operation requests to the server, and the other is used for 
receiving replies. The controller and servers monitor their input descriptors for incoming data, 
and process incoming data as described below. 

4.3 Linda primitives 

The servers read Linda operation requests from the request connections opened by the clients. 
The requests are serviced by evaluating them as Prolog queries. The requests are thus simply 
queries on Prolog procedures which implement the required operations. The use of Prolog 
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evaluation to service requests is a general mechanism, and allows any query to be passed to a 
server for evaluation. 
 
Prolog-D-Linda's eval operation takes three arguments : the name of a processor on which 
to execute the client, a Prolog goal, and a list of Prolog source file names. When the 
eval-server receives an eval request, it starts the new client by rexecing a SICStus Prolog 
saved state, on the specified processor. (The shared file system provides transparent access to 
files on remote processors.) The saved state has the client running so that it immediately 
consults the configuration file and opens the request and reply connections to the servers. 
In the interim, the eval-server places a tuple of the form 
<client processor>(<the goal>,<the source files>) into its tuple space. 
The client ins this tuple, consults the source files, and evaluates the goal. On completion 
of the goal the client closes the connections and terminates. 
 
Tuple space rd requests received by servers are implemented by evaluating the requested 
tuple template as a Prolog goal, and in requests attempt to retract the requested tuple 
template. When an in or rd request is satisfied, the tuple template, with variables 
instantiated, is sent back to the requesting client on the reply connection. If a server is unable 
to satisfy an in or rd request, the request is placed on a global wait queue in the server, to 
wait for an appropriate tuple to be outed. Tuple space out requests are implemented by 
assertzing the supplied tuple into the server's database. After the assertz, all requests 
on the wait queue are re-evaluated. The inp and rdp operations return the atom fail to the 
requesting client if the request cannot be immediately satisfied. This is used in the client to 
cause the operation to fail. 

4.4 Terminal I/O 

The terminal output of servers is read by the controller, off the descriptors obtained from its 
rexec() calls. The output is displayed on the controller's terminal, prefixed by the 
descriptor number from which it was read. This number uniquely identifies the server from 
which the output originated. Input to be sent to a server is entered at the controller's terminal, 
prefixed by the descriptor number which identifies the server (the descriptor number is 
obtained from previous output from that server). The controller strips the descriptor number 
from the input and forwards the remainder of the input to the server, on that descriptor. 
 
The terminal output of clients which have been started via an eval request, is read by the 
eval-server, off the descriptors obtained from its rexec() calls. The output is forwarded to 
the controller by writing the output to the eval-servers terminal output. The forwarded output 
is prefixed by the descriptor number from which it was read. The output is received by the 
controller and displayed on its terminal in the manner described above. Output from clients is 
therefore displayed with two prefixed descriptor numbers : firstly the descriptor number upon 
which it arrived at the controller (the descriptor number that identifies the eval-server), and 
secondly the descriptor number upon which it arrived at the eval-server. These numbers 
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uniquely identify the client from which the output originated. Input to be sent to a client is 
entered at the controller's terminal, prefixed by the two descriptor numbers which identify the 
client (the descriptor numbers are obtained from previous output from that client). The 
controller strips the first descriptor number from the input and forwards the remainder of the 
input to the eval-server, on that descriptor. The eval-server strips the second descriptor 
number from its input and forwards the remainder to the client, on that descriptor. 
 
This I/O hierarchy permits all clients to be interactive, even though they may not be 
associated with a terminal device. If there is to be a lot of such client I/O, then the system can 
be configured so that the eval-server is not responsible for any part of the tuple space, i.e. the 
eval-server only deals with eval requests and client I/O. The I/O hierarchy is also used to 
halt the system. If the keyword halt. is entered at the controller's terminal, halt. is 
written to all servers' terminal inputs. When a server reads the halt. message, it 
immediately closes all open descriptors and terminates. After writing to all the servers, the 
controller closes all its open descriptors and terminates. 

5 Deductive tuple spaces 

The Linda tuple space and associated operations are very similar to a standard concurrent 
access relational database system. The in and out operations effect database updates, and 
the rd operation effects database queries. The difference is that the Linda paradigm is viewed 
as providing communication between, and synchronization of, parallel processes, whereas a 
relational database is viewed only as storing data. Much research has been done on the 
generalisation of relational database to deductive database, in Prolog. Lloyd [1987] gives a 
good summary of this work. It is a logical step to extend the Prolog-Linda tuple space to a 
deductive tuple space. By allowing  rules as well as facts to be added to and removed from 
the tuple space, the tuple space becomes deductive. Tuple space rd and rdp requests may be 
satisfied by facts, or using rules. Rules are evaluated using normal Prolog deduction, 
including backtracking. If a deductive tuple space is used it is necessary for all the required 
tuples (rules and facts) to be stored in the same partition of the tuple space, i.e. in one server. 
 
A deductive tuple space greatly increases the capabilities of the tuple space, but not without 
some penalty. The first problem is the increased possibility of a bottleneck on the execution 
of the client, as the server must spend time evaluating deductive rds. The second problem, 
which is an extreme case of the first, is the danger of the server entering an infinite deduction. 
Client requests will not be evaluated, in particular requests that may terminate the infinite 
deduction. Clients that make in or rd requests will be blocked indefinitely. A solution to this 
second problem is to restrict the nature of the deductive database to be 
hierarchical [Lloyd, 1987]. Despite the problems associated with a deductive tuple space, 
such a model provides facilities that are not available from a standard tuple space. Two 
examples are described here. 
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• In Linda it is awkward to simultaneously rd tuples of two different signatures. A method 
suggested in [Leichter, 1989] requires the outing process to know that the tuples will be 
requested in this way. A deductive tuple space provides a direct solution : 

 
 make_switch(Tuple1,Tuple2):- 
  out((switch(Tuple1):-Tuple1)), 
  out((switch(Tuple2):-Tuple2)), 
 %----Wait for Tuple1 or Tuple2 to be outed 
  rd(switch(Which)). 
 %----Which contains the outed tuple 
 
• A deductive tuple space has the potential for extreme space saving. There are indeed some 

groups of tuples that can only be finitely stored in a deductive manner. For example : 
 
 recognise_even:- 
  out((even(Negative):-Negative < 0,!,fail)), 
  out(even(0)), 
  out((even(Number):-Number_less_2 is Number-2, 
 even(Number_less_2))). 
  
 would effectively place all tuples even(X) into the tuple space, where X is an even 

natural number. 

6 Applications 

6.1 Automated deduction 

Prolog-Linda has been used to implement a distributed automated deduction system 
[Sutcliffe, 1991]. The deduction system, called GLD||UR, has two deduction components, 
which execute as separate client processes. One component runs a chain format linear 
deduction system and the other a UR-deduction system. Lemmas created in each of the 
deduction components are passed to the other component, via the tuple space. An extended 
version of GLD||UR, in which the lemmas created are distributed via a separate 'lemma 
control' component has also been developed. The speed-ups obtained in GLD||UR are largely 
due to cross-fertilisation between the deduction components. The implementation of 
GLD||UR is highly modular, and new deduction or other components can easily be added to 
the system. 

6.2 Genetic Algorithms 

Prolog-Linda has been used to implement a genetic algorithm, in which multiple clients 
access and update the solution pool in parallel. Each candidate solution is stored as a tuple 
containing the solution and its objective value. Each client process repeatedly (i) rds two 
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parent solution tuples from the tuple space, (ii) performs a crossover to produce two child 
solutions, (iii) for each child, ins a 'sucker' solution chosen at random, (iv) outs the child 
solution if e(SuckerObjective - ChildObjective)/T > random([0,1)), otherwise outs the sucker. (I.e. 
if the child has a better objective value than the sucker, then the child is always outed; if the 
child has a worse objective value, then the child may still be saved by virtue of the Boltzman 
distribution, with temperature T.) Some variants of this algorithm have also been 
implemented. It is the iterative nature of this genetic algorithm that permits it to be 
parallelised. Similar work has been done by Ackley [1987] and Robertson [1987]. 

7 Conclusion 

Prolog-D-Linda is a truly distributed logic programming environment. This distribution 
allows applications to take advantage of the added computing power available, as well as to 
be structured in a parallel fashion. The parallelism obtained is acknowledged to be coarse. In 
the context of parallel Prolog architectures, it has been argued that "exploiting as much fine 
grain parallelism as possible may be a flawed strategy; any gains through increased 
parallelism are wasted due to communication overheads" [Wise, 1991b, p 2]. 
 
The distribution of the tuple space in Prolog-D-Linda makes it superior to its predecessors. 
As the partitioning is user controlled, it is possible to tune the use of the tuple space so that 
bottlenecks are avoided. The introduction of a deductive tuple space is a significant 
enhancement to the capabilities of the Linda paradigm. A deductive tuple space provides 
direct solutions to problems that were previously difficult or impossible. The only system that 
provides features similar to Prolog-D-Linda, is the SICStus Prolog multi-processing package. 
As this product has only just been released, little is known about it. Email exchange with its 
author indicates that it is based on the Linda paradigm, and distributes clients over a network 
of processors. Nothing is known about its tuple space organisation. 
 
The Prolog-D-Linda embedding of Linda in Prolog is very natural : the pattern matching and 
database features of Prolog have been used directly in the embedding; garbage collection and 
hashing in the tuple space are provided free by the Prolog implementation; the 
implementation of formals in tuples is direct; the specification of how the tuple space is to be 
partitioned is done as a Prolog program. This naturalness contrasts with the FCP(↑) 
implementation described by Shapiro [1989a]. 
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Appendix 

Listed below is a sample Prolog-D-linda configuration file. The configuration specifies two 
servers - bison and budgie, of which bison is nominated as the eval-server. The tuple 
space is partitioned so that bison maintains tuples of arity 0 and 1, and budgie maintains 
all other tuples. 
/*----The tuple space is partitioned between two processors */ 
servers__([bison,budgie]). 
 
/*----bison does the eval requests                          */ 
eval_server(bison). 
 
/*----bison maintains tuple with 1 or 0 arguments           */ 
select_server__(bison,Tuple):- 
 functor(Tuple,_,Arity), 
 Arity =< 1. 
 
/*----budgie maintains all other tuples                     */ 
select_server__(budgie,Tuple):- 
 functor(Tuple,_,Arity), 
 Arity >= 2. 


