
1

The CADE-19 ATP System Competition

Geoff Sutcliffe a and Christian Suttner b

a Department of Computer Science

University of Miami

USA

E-mail: geoff@cs.miami.edu
b Cirrus Management

Germany

E-mail: christian@suttner.info

The CADE ATP System Competition (CASC) is an
annual evaluation of fully automatic, first order Auto-
mated Theorem Proving (ATP) systems. CASC-19 was
the eighth competition in the CASC series. Twenty-
five ATP system variants competed in the various com-
petition and demonstration divisions. An outline of the
design and a commentated summary of the results are
presented.

Keywords: competition, automated theorem proving

1. Introduction

The CADE ATP System Competition (CASC)
is an annual evaluation of fully automatic, first or-
der Automated Theorem Proving (ATP) systems.
In addition to the primary aim of evaluating the
relative capabilities of ATP systems, CASC aims
to stimulate ATP research in general, to stimu-
late ATP research towards autonomous systems,
to motivate implementation and fixing of systems,
to provide an inspiring environment for personal
interaction between ATP researchers, and to ex-
pose ATP systems both within and beyond the
ATP community. Fulfillment of these objectives
provides stimulus and insight for the development
of more powerful ATP systems, leading to in-
creased and more effective usage. CASC-19 was
held on 31st July 2003, as part of the 19th Inter-
national Conference on Automated Deduction, in
Miami, USA.

CASC-19 was the eighth competition in the
CASC series - see [12] and citations therein.
Twenty five ATP system variants, listed in Table 1,
competed in the various competition and demon-

stration divisions. The division winners of CASC-
18 were automatically entered to provide bench-
marks against which progress can be judged. De-
tails of the CASC-19 design, and system descrip-
tions for the entered systems, are in [11] and on
the CASC-19 WWW site:
http://www.cs.miami.edu/~tptp/CASC/19/

The WWW site also provides access to all sys-
tems and competition resources. CASC-19 was or-
ganized by Geoff Sutcliffe and Christian Suttner,
and was overseen by a panel consisting of Uli Fur-
bach, Don Loveland, and Jeff Pelletier. The com-
petition machines were supplied by the University
of Manchester.

This paper is organized as follows: Sections 2
and 3 describe the divisions and organization of
CASC-19. Section 4 provides a commentated sum-
mary of the results, and short descriptions of the
division winners are given in Section 5.

2. Divisions

CASC is run in divisions according to system
and problem characteristics. In CASC-19 there
were five competition divisions, in which the sys-
tems were ranked according to the numbers of
problems solved, with ties decided by average CPU
times over problems solved.

– The MIX division used mixed CNF really
non-propositional theorems. Mixed means Horn
and non-Horn problems, with or without
equality, but not unit equality problems (see
the UEQ division below). Really non-proposit-

ional means with an infinite Herbrand uni-
verse. The MIX division had five problem cat-
egories: HNE - Horn with No Equality, HEQ

- Horn with some (not pure) Equality, NNE

- Non-Horn with No Equality, NEQ - Non-
Horn with some (not pure) Equality, and PEQ

- Pure Equality. The MIX division had two
ranking classes: the assurance class - ranked
according to the number of problems solved
(a “yes” output, giving an assurance of the

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved



2 G. Sutcliffe and C. Suttner / CASC-19

Table 1

The ATP systems and entrants

ATP System Divisions Entrants Affiliation

CARINE 0.72 MIX∗ Paul Haroun McGill University

CiME 2.01 UEQ Evelyne Contejean, Benjamin Monate LRI, Universite Paris-Sud

DCTP 1.3 MIX Gernot Stenz Max-Planck-Institut für Informatik

DCTP 1.3-SAT SAT DCTP 1.3 variant

DCTP 1.3-EPR EPR DCTP 1.3 variant

DCTP 10.2p MIX FOF EPR Gernot Stenz Max-Planck-Institut für Informatik

DCTP 10.2p-SAT SAT DCTP 10.2p variant

E 0.8 MIX EPR UEQ Stephan Schulz Technische Universität München

EP 0.8 MIX∗ E 0.8 variant

E-SETHEO csp02 EPR CASC-18 EPR winner

E-SETHEO csp03 MIX FOF EPR Gernot Stenz, Reinhold Letz, Max-Planck-Institut für Informatik

UEQ Stephan Schulz Technische Universität München

E-S’O csp03-SAT SAT E-SETHEO csp03 variant

Gandalf c-2.5-SAT SAT CASC-18 SAT winner

Gandalf c-2.6 MIX EPR Tanel Tammet Tallinn Technical University

Gandalf c-2.6-PRF MIX∗ Gandalf c-2.6 variant

Gandalf c-2.6-SAT SAT EPR Gandalf c-2.6 variant

MUSCADET 2.4 FOF Dominique Pastre Université René Descartes

Octopus N MIX (demo) Monty Newborn, Zongyan Wang McGill University

Otter 3.2 MIX∗ FOF UEQ William McCune Argonne National Laboratory

Paradox 1.0 SAT∗ EPR Koen Claessen, Niklas Srensson Chalmers University of Technology

THEO J2003 MIX∗ Monty Newborn, Zongyan Wang McGill University

Vampire 5.0 MIX∗ FOF CASC-18 MIX and FOF winner

Vampire 6.0 MIX∗ FOF EPR Andrei Voronkov, Alexandre Riazanov The University of Manchester

UEQ

Waldmeister 702 UEQ CASC-18 UEQ winner

Waldmeister 703 UEQ Thomas Hillenbrand, Jean-Marie Max-Planck-Institut für Informatik

Gaillourdet, Bernd Lchner Universität Kaiserslautern

MIX∗ indicates participation in the MIX division proof class - see Section 2.

existence of a proof), and the proof class -
ranked according to the number of problems
solved with an acceptable proof output. The
competition panel judged whether or not each
system’s proof format is acceptable.

– The FOF division used non-propositional first-
order form theorems. The FOF division had
two problem categories: FNE - FOF with No
Equality, and FEQ - FOF with Equality.

– The SAT division used CNF really non-prop-
ositional non-theorems. The SAT division had
two problem categories: SNE - SAT with No
Equality, and SEQ - SAT with Equality. The
SAT division had two ranking classes: the as-

surance class - ranked according to the num-
ber of problems solved (a “yes” output, giv-
ing an assurance of the existence of a model),
and the model class - ranked according to the

number of problems solved with an acceptable

model output. The competition panel judged
whether or not each system’s model format is
acceptable.

– The EPR division used CNF effectively propo-
sitional theorems and non-theorems. Effec-

tively propositional means syntactically non-
propositional but with a finite Herbrand uni-
verse. The EPR division had two problem cat-
egories: EPT - Effectively Propositional The-
orems (unsatisfiable clause sets), and EPS -
Effectively Propositional non-theorems (Sat-
isfiable clause sets).

– The UEQ division used unit equality CNF re-
ally non-propositional theorems.

Additionally, CASC has a demonstration divi-

sion, in which systems demonstrate their abili-



G. Sutcliffe and C. Suttner / CASC-19 3

ties without being formally ranked, using the same
problems as in the competition divisions.

3. Organization

The CASC-19 competition divisions were run on
44 Dell Precision 330 workstations, each having an
Intel P4 993 MHz CPU, 512 MB memory, and the
Linux 2.4.9-34 operating system. In the demon-
stration division, Octopus ran on a network of 60
workstations, each having an Intel P2 or P3 CPU,
between 128 MB and 256 MB memory, and either
the FreeBSD or Linux operating system.

The problems were taken from the TPTP prob-
lem library [13], v2.6.0. TPTP v2.6.0 was not re-
leased until after the competition, so that new
problems had not previously been seen by the en-
trants. Unbiased TPTP problems with a TPTP
difficulty rating in the range 0.21 to 0.99 were eligi-
ble for use. The problems used were randomly se-
lected from the eligible problems, based on a seed
provided by the panel at the start of the competi-
tion. The random selection was subject to a limi-
tation on the number of very similar problems in
each division and category [10], and biased to en-
sure (if possible) the selection of at least 50% new
problems in each division and category. In CASC-
19, due to only a small growth of difficult prob-
lems in the TPTP since CASC-18, only the UEQ
division had a significant number of new problems.
Table 2 gives the numbers of eligible problems, the
maximal numbers that could be used after taking
into account the limitation on very similar prob-
lems, and the numbers of problems used, in each
division and category. A change for CASC-19 was
to take into account the maximal numbers of us-
able problems in each category, when deciding the
numbers of problems to be used. As a result, in the
MIX division the NEQ category had 60 problems
while the other categories had 20. Due to the small
maximal numbers of usable problems in the EPT
and EPS categories, the limitation on the number
of very similar problems could not be fully imposed
there.

To ensure that no system received an advantage
or disadvantage due to the specific presentation of
the problems in the TPTP, the tptp2X utility was
used to replace all predicate and function symbols
with new symbols, randomly reorder the formulae

and the clauses’ literals, and randomly reverse the
unit equalities in the UEQ problems.

The ATP systems were required to be sound and
fully automatic. The organizers tested the systems
for soundness by submitting non-theorems to the
systems participating in the MIX, UEQ, FOF, and
EPR divisions, and theorems to the systems par-
ticipating in the SAT and EPR divisions. Claim-
ing to have found a proof of a non-theorem or a
disproof of a theorem indicates unsoundness. No
system failed this test. Fully automatic operation
meant that any command line switches had to be
the same for all problems. A 600 second CPU time
limit was imposed on each solution attempt. A wall
clock time limit of double the CPU time limit was
imposed in all divisions, to limit very high memory
usage that causes swapping.

4. Results

For each ATP system, for each problem, three
items of data were recorded: whether or not the
problem was solved, the CPU time taken, and
whether or not a solution (proof or model) was out-
put. This section summarizes the results, and pro-
vides some commentary. Detailed results, includ-
ing the systems’ output files, are available from the
CASC-19 WWW site. In each of the results sum-
mary tables below, the CASC-18 winner is high-
lighted in italics.

4.1. The MIX Division

Tables 3 and 4 summarize the results in the
MIX division. As Vampire outputs proofs, Vam-
pire was the winner of both the Assurance and
Proof classes. The improved performance of the
top three systems over Vampire 5.0, the CASC-
18 winner, indicates progress in the area. The
improved performance of Vampire 6.0 over Vam-
pire 5.0 is due to improved indexes and constraint
checking procedures, as well as a better selection
of strategies (see Section 5). The average solution
time of Vampire 6.0 is higher than that of Vam-
pire 5.0 because the strategy scheduling (see be-
low) in Vampire 6.0 was optimized only for solving
as many problems as possible, and was not opti-
mized for time taken.

Of the top eight systems, only E and EP (EP is
a pipeline of E and a postprocessing program that



4 G. Sutcliffe and C. Suttner / CASC-19

Table 2

Numbers of eligible and used problems

Division MIX FOF SAT EPR UEQ

Category HNE HEQ NNE NEQ PEQ FNE FEQ SNE SEQ EPT EPS

Eligible 186 114 71 623 241 73 466 149 129 58 111 138

Max usable 51 63 65 498 121 18 429 149 129 7 12 138

Max new 2 0 0 0 0 0 4 2 0 0 0 33

Used 20 20 20 60 20 15 55 35 35 35 35 70

New used 2 0 0 0 0 0 4 2 0 0 0 33

generates proofs) are monolithic, i.e., select a sin-
gle strategy for each problem. The others all em-
ploy strategy scheduling: a schedule is formed by
allocating some fraction of the CPU time limit to
each of several selected strategies, which are then
run in succession until one finds a solution (or they
all fail). The monolithic nature of E is a major rea-
son for E’s lowest average time taken among the
top eight systems. Note that for three problems,
the postprocessing in EP could not be completed
within the time limit, even though it had been de-
termined that a proof exists. Gandalf c-2.6-PRF
was also unable to solve as many problems as the
plain variant that does not always produce a proof,
confirming the overhead of proof production for
these systems. (The plain variant of Gandalf c-2.6
has the same inference engine as the PRF variant;
the only difference is that it does not maintain the
data structures required for complete proof pro-
duction. This similarity does not exist between dis-
tinct versions of systems, e.g., between Vampires
5.0 and 6.0.)

The rankings in the categories align quite closely
with the division ranking, with the exception of
E and EP in the Horn categories. E and EP are
relatively weaker on HNE problems and stronger
on HEQ problems. E’s stronger performance in the
HEQ category comes from the combination of its
strength in handling unit-equational theories and
good literal selection heuristics. The other systems
are reasonably unspecialized, which is expected
when strategy scheduling is used.

The individual problem results show that three
problems were solved by all the systems, and four
problems were unsolved (they were eligible be-
cause they had been solved by systems that were
not entered). These low numbers of undifferenti-
ating problems indicate that appropriately diffi-
cult problems were eligible for the division. Three
problems were solved by (essentially) only one sys-

Table 3

MIX division results

ATP System MIX Average Prfs

/140 time out

Vampire 6.0 120 65.6 120

E-SETHEO csp03 119 34.7 0

E 0.8 113 20.9 0

Vampire 5.0 113 23.1 113

EP 0.8 113 25.4 110

Gandalf c-2.6 102 67.8 0

Gandalf c-2.6-PRF 79 30.9 79

DCTP 10.2p 72 43.3 0

DCTP 1.3 55 18.2 0

THEO J2003 49 45.6 47

Otter 3.2 34 99.1 34

CARINE 0.72 7 104.9 7

Demonstration division

Octopus N 59 - -

tem: GRP198-1 (a PEQ problem) was solved by
only both Gandalf variants, and NUM007-1 and
SET014-3 (both NEQ problems) were solved by
only THEO. The latter uniqueness is interesting in
the light of THEO’s weak overall performance, and
indicates some unique capabilities in that system.

None of the systems solved more than a very
few problems close to the 600s time limit, and the
ranking would have been the same for any time
limit from 250s to 600s. This indicates that the
600s time limit was sufficient.

4.2. The FOF Division

Table 5 summarizes the results in the FOF di-
vision. All the systems except MUSCADET work
by converting to CNF and producing a refuta-
tion. The winner, Vampire 5.0, was the winner
of the FOF division in CASC-18. The slightly
weaker performance of the new Vampire 6.0 is
believed to be an artifact of the problem selec-



G. Sutcliffe and C. Suttner / CASC-19 5

Table 4

MIX category results

ATP System HNE HEQ NNE NEQ PEQ

/20 /20 /20 /60 /20

Vampire 6.0 18 14 18 54 16

E-S’O csp03 17 17 15 53 17

E 0.8 14 18 15 49 17

Vampire 5.0 18 11 18 51 15

EP 0.8 14 18 15 49 17

Gandalf c-2.6 18 10 13 48 13

G’lf c-2.6-PRF 12 10 8 37 12

DCTP 10.2p 15 2 13 36 6

DCTP 1.3 9 2 9 29 6

THEO J2003 9 0 7 32 1

Otter 3.2 8 2 3 17 4

CARINE 0.72 0 0 0 7 0

Demonstration division

Octopus N 10 2 8 37 2

tion for the division combined with inappropri-
ate strategy scheduling for the selected problems.
The difference in performance between the FNE
and FEQ categories for Otter and MUSCADET
are noticeable - both performed significantly bet-
ter in the FEQ category. The individual problem
results show that six FEQ problems were solved
by only MUSCADET and one was solved by only
Otter, indicating some unique capabilities in these
generally weaker systems. Two further FEQ prob-
lems, SET169+3 and SET171+3, were solved by only
Vampire and MUSCADET, with Vampire requir-
ing 400s and 530s to solve them respectively, while
MUSCADET solved them in no time.

Table 5

FOF division and category results

ATP System FOF Avg Prfs FNE FEQ

/70 time out /15 /55

Vampire 5.0 57 15.2 57 14 43

Vampire 6.0 56 56.5 56 14 42

E-S’O csp03 48 66.1 0 11 37

DCTP 10.2p 42 74.0 0 14 28

Otter 3.2 14 72.0 14 1 13

M’DET 2.4 13 0.5 0 0 13

4.3. The SAT Division

Table 6 summarizes the results in the SAT di-
vision. The performances of Gandalf c-2.6-SAT
and Paradox are significantly better than that of

the CASC-18 winner Gandalf c-2.5-SAT, indicat-
ing progress in the area. Gandalf c-2.6-SAT ben-
efited (relative to Gandalf c-2.5-SAT) from im-
proved handling of problems with more than 128
predicate and function symbols, an additional lit-
eral ordering for resolution, improvements to the
MACE-style strategy, and an ability to interrupt
some complex processing within the Falcon/SEM-
style strategy.

A highlight of the SAT division was the strong
performance of the new system, Paradox. While
Gandalf gave more assurances of satisfiability (and
thus won the Assurance class), Gandalf failed to
output models for 23 of its 63 solved problems.
Paradox output models for all 60 of its solved prob-
lems, and thus won the Model class. The signif-
icantly lower average solution time of Paradox is
also noteworthy. Paradox is a monolithic system,
while all the other systems in the SAT division, ex-
cept DCTP 1.3, employ strategy scheduling. Gan-
dalf and Paradox solved the same number of prob-
lems in the SNE category, and it was Gandalf’s
better performance in the SEQ division that gave
it the overall edge.

The individual problem results show that eight
problems were solved by all the systems. Five prob-
lems, all SEQ, were solved by only E-SETHEO,
and were all solved by the “e-iterator” within E-
SETHEO’s strategy scheduling. The “e-iterator”
sequentially alternates between a model elimina-
tion system and E, with a carefully filtered ex-
change of unit lemmas at each switch.

Table 6

SAT division and category results

ATP System SAT Avg Mdls SNE SEQ

/70 time out /35 /35

G’lf c-2.6-SAT 63 142.2 40 34 20

Paradox 1.0 60 6.5 60 34 26

G’lf c-2.5-SAT 49 93.9 0 27 22

E-S’O csp03-SAT 31 14.2 0 20 11

DCTP 10.2p-SAT 22 28.0 0 17 5

DCTP 1.2-SAT 19 2.5 0 14 5

4.4. The EPR Division

Table 7 summarizes the results in the EPR di-
vision. DCTP performed well on both EPT and
EPS problems, in contrast to other systems that
performed well in one category but not the other,



6 G. Sutcliffe and C. Suttner / CASC-19

e.g., Vampire performed well in only EPT and
Paradox performed well in only EPS. DCTP is
also used as a component of the strategy schedul-
ing E-SETHEO, just as last year’s DCTP 1.2-SAT
was used as a component of the CASC-18 EPR
winner, E-SETHEO csp02. The natural expecta-
tion (and the developers’ expectations!) that E-
SETHEO would again outperform the component
system was invalidated because of DCTP’s better
individual performance in the EPS category. The
single strategy used by DCTP was appropriate for
the large SYN8XX problems in the EPS category,
while the DCTP and other strategies used within
E-SETHEO were not allocated enough time in the
strategy schedule to solve those problems.

The individual problem results show that 18
EPT problems and 4 EPS problems were solved
by all the systems. This indicates that some of the
eligible problems were too easy for comparing the
systems in the competition. An interesting feature
of Gandalf’s performance is that 37 problems were
solved in exactly 259s. This is an artifact of Gan-
dalf’s strategy scheduling - for most of the 37 prob-
lems Gandalf switched at 259s to a ground-and-
decide style strategy that converts the problem to
an equiconsistent propositional problem and runs
ZChaff [6] on it. This turns out to be an appropri-
ate strategy for many of the problems selected for
the EPR division.

Table 7

EPR division and category results

ATP System EPR Avg Ps/Ms EPT EPS

/70 time output /35 /35

DCTP 1.3-EPR 66 95.8 0/0 32 34

G’lf c-2.6-SAT 61 248.1 0/0 33 28

E-S’O csp02 57 25.0 0/0 31 26

E-S’O csp03 57 71.2 0/0 31 26

DCTP 10.2p 55 47.4 0/0 30 25

Paradox 1.0 48 60.7 0/26 22 26

Vampire 6.0 47 49.7 32/0 32 15

E 0.8 47 80.7 0/0 30 17

4.5. The UEQ Division

Table 8 summarizes the results in the UEQ divi-
sion. The winner, Waldmeister 702, was the winner
of the UEQ division in CASC-18. The marginally
lower average time taken by the older system is
insignificant. The main development in Waldmeis-

ter over the past year has been to implement the
“new Waldmeister loop” [2], which dramatically
reduces Waldmeister’s memory usage. This allows
Waldmeister to solve harder problems that require
longer searches, but does not improve performance
on the competition level problems.

A noteworthy feature of the UEQ division is
that, in contrast to the UEQ division in recent
years, Waldmeister did not completely dominate.
There is a relatively gentle drop in the number
of problems solved down the ranking. This is due
mainly to Waldmeister’s relatively weak perfor-
mance on the 33 new problems in the UEQ divi-
sion – on the new problems it was outperformed
by three other systems. In particular, Waldmeis-
ter was unable to solve 14 new lattice theory prob-
lems, as it was unable to recognize the algebraic
structure (a key feature of Waldmeister’s search
parameter selection scheme - see Section 5), and
hence used non-specialized search parameters for
these problems.

Table 8

UEQ division results

ATP System UEQ Avg Prfs New

/70 time out /33

Waldmeister 702 56 6.9 56 17

Waldmeister 703 56 7.0 56 19

E 0.8 53 26.4 0 28

E-SETHEO csp03 52 45.7 0 25

Vampire 6.0 48 52.6 48 31

Gandalf c-2.6 45 73.3 0 24

CiME 2.01 21 93.9 0 12

Otter 3.2 11 44.1 11 4

5. Descriptions of the Winning Systems

Vampire 6.0 [7], the MIX and FOF divisions
winner, is an automatic prover for first order clas-
sical logic. Its kernel implements ordered binary
resolution and superposition with several standard
simplification techniques. A number of efficient in-
dexing techniques are used to implement all search
related operations on sets of terms and clauses.
The saturation process can be controlled by the
limited resource strategy, which aims to maximize
the effectiveness of the proof search in the pres-
ence of a time limit. The kernel works only with
the clausal normal form, but the preprocessor com-



G. Sutcliffe and C. Suttner / CASC-19 7

ponent accepts a problem in full first order form,
clausifies it, and calls the kernel on the clauses. The
kernel provides a fairly large number of features for
specifying strategies, including choice of the sat-
uration procedure (several variants of the given-
clause algorithm), a variety of optional simplifica-
tions, parameterized reduction orderings (not used
in CASC-19), and a number of built-in (parameter-
ized) literal selection functions. Strategy schedul-
ing is used to try several kernel strategies on each
given problem. The main changes since Vampire
5.0 are: a new mode of query answering for large
knowledge bases, the possibility of adding evalu-
ated functions, availability of answer literals, out-
put of first order proofs, set-of-support, and built-
in special treatment of transitive relations. Most
of these changes were driven by applications and
are not CASC-oriented. Changes useful for CASC
(such as built-in transitivity) have not been prop-
erly tested, and were not used in CASC. The sys-
tem is implemented in C++. Further information
may be obtained from:
http://www.cs.man.ac.uk/~riazanoa/Vampire

Gandalf c-2.6-SAT, the SAT division Assurance
class winner, is a member of the Gandalf fam-
ily of automated theorem provers [14], which in-
cludes systems for classical logic, type theory, intu-
itionistic logic, and linear logic. Gandalf c-2.6 con-
tains the classical logic prover and a finite model
builder, for clause form input. One of the basic
ideas used in Gandalf is strategy scheduling. Dur-
ing each run Gandalf typically modifies its strategy
as it approaches the time limit for the run. Addi-
tionally, selected clauses from unsuccessful strate-
gies are sometimes used in later strategies. The fol-
lowing strategies are used for satisfiability check-
ing: finite model building by incremental search
through function and predicate symbol interpre-
tations, ordered (by term depth) binary resolu-
tion for problems not containing equality, and fi-
nite model building using MACE-style flattening
[5]. Gandalf is implemented in Scheme and com-
piled to C using the Hobbit Scheme-to-C compiler.
The finite model building uses the Zchaff propo-
sitional logic solver [6] as an external program for
the MACE-style strategy. Gandalf is available at:
http://www.ttu.ee/it/gandalf

Paradox 1.0 [1], the SAT division Model class
winner, is a finite-domain model generator that
produces human readable models. Paradox is
based on a MACE-style [4] flattening and instan-

tiation of the first order clauses into propositional
clauses that encode the existence of a model of a
fixed size. These propositional problems are gen-
erated for increasing domain sizes and given to
a SAT solver. In some cases, most notably when
there are no functions in the problem, an upper
bound on the size of a model can be determined.
This allows Paradox to deduce that the problem
is contradictory when no models up to this size
bound are found. The following novel features are
included in Paradox: New polynomial-time clause
splitting heuristics, the use of incremental SAT,
static symmetry reduction techniques, and the use
of sort inference. The main part of Paradox is
implemented in Haskell using the GHC compiler.
Paradox also has a built-in incremental SAT solver
which is written in C++. The two parts are linked
together on the object level using Haskell’s Foreign
Function Interface.

DCTP 1.3 [8] is an automated theorem prover
for first order clause logic. It is an implementation
of the disconnection calculus described in [9]. The
disconnection calculus is an instantiation based,
proof confluent and inherently cut-free tableau cal-
culus with a weak connectedness condition. The
inherently depth-first proof search is guided by
a literal selection based on literal instantiated-
ness or literal complexity, and a heavily param-
eterized link selection. The pruning mechanisms
mostly rely on different forms of variant deletion
and unit based strategies. Additionally, the calcu-
lus has been augmented by full tableau pruning.
The new DCTP 1.3 has been enhanced with re-
spect to clause preprocessing, selection functions
and closure heuristics. Most prominent among the
improvements are the introduction of a unification
index for finding connections, which also replaces
the connection graph hitherto used, and the intro-
duction of an enhanced algorithm for determinis-
tically resolving isolated connections in the input
set. As the disconnection calculus provides a de-
cision procedure for the Bernays-Schönfinkel class
of problems, DCTP-1.3 had been expected to per-
form well in the EPR category. Moreover, the en-
hancements described above specifically improved
DCTP’s performance in this class while keeping
the proof procedure sufficiently generic. DCTP is
available at:
http://www.mpi-sb.mpg.de/~stenz/dctp-sb.html

Waldmeister 703 is a system for unit equational
deduction. Its theoretical basis is unfailing comple-



8 G. Sutcliffe and C. Suttner / CASC-19

tion with refinements toward ordered completion.
See [3] for a recent in-depth description. Since last
year’s competition, the “new Waldmeister loop”
has been implemented, and is now operational [2].
This notion captures a novel organization of the
saturation-based proof procedure into a system ar-
chitecture, featuring a highly compact representa-
tion of the search state which exploits its inherent
structure. With this architecture one can now solve
problems that previously were out of reach. For ex-
ample, two new minimal-length single axioms have
been found for Boolean algebra in terms of the
Sheffer stroke. The focus of recent developments
has been more on coping with large search states.
Therefore it is not astonishing that, within the
competition setting, this year’s system version is
roughly equivalent to last year’s. The performance
on the unseen problems indicates that the general-
purpose strategy for unknown algebraic structures
should be fanned out into a multitude of strate-
gies. The new search-state representation renders
possible a novel realization of time-slicing via true
multiplexing. Finally, visit the thoroughly rewrit-
ten Web pages at:
http://www.mpi-sb.mpg.de/ hillen/waldmeister

6. Conclusion

The CADE-19 ATP System Competition was
the eighth large scale competition for first or-
der ATP systems. Improved performances (relative
to the CASC-18 winners) in the MIX, SAT, and
EPR divisions were complemented by strong per-
formances by the runners up in the MIX, SAT, and
UEQ divisions. For the first time since CASC-16,
the UEQ division was not overwhelmed by Wald-
meister. At the same time, the divergence between
the top systems and the “also-rans” in the MIX di-
visions remains clear. Figure 1 illustrates the his-
tory of this divergence since CASC-13. The graph
plots the fractions of the maximal number of prob-
lems solved in the MIX division, for each CASC,
for systems that have been entered into several
CASCs. The top group includes SPASS (when it
was entered into CASC), E, E-SETHEO, Gandalf,
and Vampire.

CASC-18 fulfilled its main objectives, by eval-
uating the relative abilities of current ATP sys-
tems, and stimulating development of and interest
in ATP systems. The competition highlighted ar-

Fig. 1. History of MIX division performances

eas of ATP where progress was (and possibly was
not) made in the last year, and through the con-
tinuity of the event the results allow performance
comparisons with previous and future years. The
competition provided exposure for system builders
both within and outside of the community, and
provided an overview of the implementation state
of running, fully automatic, first order ATP sys-
tems.

References

[1] K. Claessen and N. Sorensson. New Techniques
that Improve MACE-style Finite Model Finding. In
P. Baumgartner and C. Fermueller, editors, Proceed-

ings of the CADE-19 Workshop: Model Computation

- Principles, Algorithms, Applications, 2003.

[2] J-M. Gaillourdet, T. Hillenbrand, B. Löchner, and
H. Spies. The New Waldmeister Loop at Work. In
F. Baader, editor, Proceedings of the 19th Interna-

tional Conference on Automated Deduction, number
2741 in Lecture Notes in Artificial Intelligence, pages
317–321. Springer-Verlag, 2003.

[3] T. Hillenbrand. Citius altius fortius: Lessons Learned
from the Theorem Prover Waldmeister. In I. Dahn

and L. Vigneron, editors, Proceedings of the 4th Inter-

national Workshop on First-Order Theorem Proving,
number 86.1 in Electronic Notes in Theoretical Com-
puter Science. Elsevier Science, 2003.

[4] W.W. McCune. A Davis-Putnam Program and
its Application to Finite First-Order Model Search:
Quasigroup Existence Problems. Technical Report
ANL/MCS-TM-194, Argonne National Laboratory,
Argonne, USA, 1994.

[5] W.W. McCune. MACE 2.0 Reference Manual and
Guide. Technical Report ANL/MCS-TM-249, Argonne
National Laboratory, Argonne, USA, 2001.



G. Sutcliffe and C. Suttner / CASC-19 9

[6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver.
In Blaauw D. and L. Lavagno, editors, Proceedings of

the 39th Design Automation Conference, pages 530–
535, 2001.

[7] A. Riazanov and A. Voronkov. The Design and Im-
plementation of Vampire. AI Communications, 15(2-
3):91–110, 2002.

[8] G. Stenz. DCTP 1.2 - System Abstract. In
C. Fermüller and U. Egly, editors, Proceedings of

TABLEAUX 2002: Automated Reasoning with Ana-

lytic Tableaux and Related Methods, number 2381 in
Lecture Notes in Artificial Intelligence, pages 335–340.
Springer-Verlag, 2002.

[9] G. Stenz. The Disconnection Calculus. Logos Verlag,
2002. Dissertation, Fakultät für Informatik, Technische
Universität München.

[10] G. Sutcliffe. The CADE-16 ATP System Competition.
Journal of Automated Reasoning, 24(3):371–396, 2000.

[11] G. Sutcliffe. Proceedings of the CADE-19 ATP System
Competition. Miami, USA, 2003.

[12] G. Sutcliffe and C. Suttner. The CADE-18 ATP Sys-

tem Competition. Journal of Automated Reasoning,
page To appear, 2003.

[13] G. Sutcliffe and C.B. Suttner. The TPTP Problem
Library: CNF Release v1.2.1. Journal of Automated

Reasoning, 21(2):177–203, 1998.

[14] T. Tammet. Gandalf. Journal of Automated Reason-

ing, 18(2):199–204, 1997.


