
The Practice of Clausification in Automatic Theorem Proving Page 1 

The Practice of Clausification in 
Automatic Theorem Proving 

 Geoff Sutcliffe Stuart Melville 
 Department of Computer Science Department of Computer Studies 
 James Cook University, Australia M.L. Sultan Technikon, South Africa 
 Email: geoff@cs.jcu.edu.au Email: stuart@wpogate.mlsultan.ac.za 
 Phone: +61 77 814622, FAX: +61 77 814029 Phone: +27 31 3085339, FAX: +27 31 3085355 

Abstract. In the process of resolution based Automatic Theorem Proving, problems 
expressed in First Order Form (FOF) are transformed by a clausifier to Clause Normal 
Form (CNF). This research examines and compares clausifiers. The boundaries between 
clausification, simplification, and solution search are delineated, and common 
clausification and simplification operations are documented. Four known clausifiers are 
evaluated, thus providing insight into their relative performance, and also providing 
baseline data for future evaluation of clausifiers. 

Keywords. Automated theorem proving, Resolution, Clausifiers. 

C.R. Categories. F.4.1, I.2.3 

1. Introduction 

Automatic Theorem Proving (ATP) is the study and development of computer programs that build proofs 
of theorems. These programs are called ATP systems. The inputs to an ATP system are axioms, 
hypotheses, and a conjecture. The output is a proof object that shows that the conjecture is a logical 
consequence of the axioms and hypotheses, i.e., it is a theorem. See any of [2, 15, 41] for an introduction 
to the topic. 

ATP problems are expressed in some formal language. Most commonly the problems are expressed in a 
logic, ranging from classical propositional logic to more exotic logics. Current research in ATP is 
dominated by the use of classical logic, at the propositional and 1st order levels. These logics, and proof 
within these logics, are well understood and documented (see almost any mathematical logic text, e.g., 
[3]). In particular, proof within propositional logic is decidable (and NP-complete [4]) while at the 1st 
order level it is semi-decidable (but beyond any complexity bound; see, e.g., [5]). Henceforth attention is 
limited to classical logics. 

Although the details of the syntax for writing 1st order logic vary from author to author (see [28] for a 
survey), the same constituents are used consistently. In short, terms are either variables or functions. 
Functions are built from a functor with terms as arguments; the number of arguments is the functor’s 
arity (a function of 0 arguments is often called a constant). Atoms are structurally the same as functions, 
but use predicate symbols rather than functors. Propositional logic is obtained by excluding variables and 
functions from the language and allowing predicate symbols only with arity zero, i.e., propositional logic 
is a strict subset of 1st order logic. Atoms are the simplest type of formula in 1st order logic. More 
complex formulae are built up by applying connectives and quantifiers to existing formulae. Commonly 
used connectives are negation, disjunction, conjunction, implication, and equivalence. The two standard 
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quantifiers are existential quantification, and universal quantification. In this paper the Prolog syntax for 
terms and atoms is used, with variables starting with uppercase, and functors and predicate symbols 
starting with lowercase. The connectives are ~ for negation, ∨ for disjunction, ∧ for conjunction, → for 
implication, ↔ for equivalence. The quantifiers are ∃ for existential quantification, and ∀ for universal 

quantification. For example: 
 ∀X(word(X) → ∃Y(statement(Y) ∧ defines(Y,concept_of(X)))) 

In this paper upper case Zapf Chancery letters are used to denote arbitrary formulae. 

ATP problems expressed using the full expressive power of 1st order logic are said to be in First Order 
Form (FOF). ATP systems for FOF problems are necessarily complex, in order to deal with all aspects of 
the FOF language. In 1964 the resolution inference rule was introduced to ATP [26], along with a 
restricted form of 1st order logic: Clause Normal Form (CNF). Problems in CNF are presented as a set of 
clauses. A clause is the disjunction of zero or more literals, where a literal is an atom (a positive literal) 
or the negation of an atom (a negative literal). For example, the following set has two clauses, each of 
which has two literals: 
 { ~word(X) ∨ statement(definition_of(X)), 

  ~word(X) ∨ defines(definition_of(X),concept_of(X)) } 

The resolution inference rule takes two clauses as input, and produces a resolvant clause as output. 
Unification is used to make some of the atoms in the input clauses the same, by applying a substitution of 
terms for variables in the atoms. Resolution unifies the atoms of some of the positive literals in one input 
clause with the atoms of some of the negative literals in the other input clause. The resolvant is the 
disjunction of the literals not involved in the unification. Variables in the resolvant literals, which also 
appeared in the unified atoms, may have been given values in the unification. For example, the resolvant 
obtained using the positive literals of: 
 ~word(X) ∨ statement(definition_of(X)) 

and both the negative literals of: 
 ~statement(definition_of(atp)) ∨ ~statement(Y) v defines(Y,Z) 

is: 
 ~word(atp) ∨ defines(definition_of(atp),Z) 

There are two other possible resolvants of the above two input clauses, using each of the negative literals 
separately. The resolution inference rule may be decomposed into two simpler inference rules, binary 
resolution and factoring. Binary resolution restricts resolution to use only one literal from each of the 
input clauses. Factoring unifies two or more literals in a clause, and produces a factor consisting of the 
remaining literals and one copy of the unifed literals. Every resolution inference can be done by factoring 
and binary resolution. For example, from the resolution example above: 
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 ~statement(definition_of(atp)) ∨ ~statement(Y) v defines(Y,Z) 

factors, to produce: 
 ~statement(definition_of(atp)) v defines(definition_of(atp),Z) 

which binary resolves with: 
 ~word(X) ∨ statement(definition_of(X)) 

to produce: 
 ~word(atp) ∨ defines(definition_of(atp),Z) 

As well as being the basis for resolution based ATP systems, resolution and factoring are also used in the 
simplification operations described in Section 4.1. There are many other resolution based inference rules, 
e.g., hyper-resolution [27], clause linking [12], paramodulation [25]. 

Although CNF uses only a subset of the FOF language, it is still expressive enough for all ATP problems 
that can be written in FOF. A clausifier negates the FOF conjecture, and then converts the FOF axioms, 
hypotheses, and negated conjecture to CNF. The ATP system then uses resolution based inference rules 
to derive new clauses, which are added to the clause set, aiming to eventually produce an empty clause (a 
clause with zero literals). The empty clause can be inferred only from contradictory parent clauses. The 
derivation of the empty clause is called a refutation. As the operations of the clausifier and ATP system 
are satisfiability preserving, i.e., they cannot create a contradiction from non-contradictory input, finding 
a refutation shows that the axioms, hypotheses, and negated conjecture are together contradictory. 
Providing that the axioms and hypotheses are not contradictory within themselves, this establishes that 
the negated conjecture is the source of the contradiction, and hence that the unnegated conjecture is a 
logical consequence of the axioms and hypotheses. Resolution based theorem proving is refutation 
complete, i.e., if a refutation exists, then it can be found using resolution based inference rules. 

The conversion from FOF to CNF is not unique. With respect to the subsequent ATP process, some CNF 
versions of a FOF problem are better than others, in the sense that a refutation can be found using less 
resources. It is therefore of high interest to find the 'best' CNF version of a FOF problem. The focus of 
this paper is to examine and compare clausifiers. 

The notion of what makes a good CNF version of a FOF problem must be measured with respect to the 
ATP systems that will take the CNF as input. Thus in order to compare CNF versions of a FOF problem, 
it is necessary to consider the workings of a (generic) ATP system. An ATP system finds a solution by 
search. The major choice in the search is which clause(s) to use in the next inference step. Much research 
in ATP has been focussed on designing refinements of resolution based inference rules, e.g., ordering 
[11], semantic resolution [30], model elimination [14], that restrict the choice of clauses to use in each 
inference step without destroying completeness. However, even with such refinements, it is still 
necessary to decide which of the eligible clauses to use. The choice of clause(s) to use is determined by a 
heuristic, which measures the quality of the clauses with respect to the ATP system’s inference rules. The 
study of heuristics for ATP is underdeveloped, and at the 1st order level it impossible for the heuristic to 
ensure that every inference performed is part of a proof of the conjecture (or P = NP). A common, 
simple, and very effective heuristic is to count the number of variable, functor, and predicate symbol 
occurrences in the clause. For example, the clause: 
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 ~word(X) ∨ defines(definition_of(X),concept_of(X)) 

has a symbol count of 7. A lower symbol count indicates a better clause. Symbol count is used, at least in 
part, in the heuristic functions of several contemporary ATP systems, e.g., Gandalf [37], METEOR [1], 
Otter [18], SETHEO [13], SPASS [40], Vampire [38], Violet [8]. Otter, SETHEO, and SPASS were the 
category winners of the CADE-13 ATP system competition [36], thus indicating that symbol count is a 
reasonable heuristic for measuring the quality of clauses, for contemporary state-of-the-art ATP systems1. 

As heuristics measure the quality of clauses, they can also be used for comparing sets of clauses, by 
combining all the clause’s heuristic values in an appropriate fashion. For the symbol count heuristic, 
summing the individual clause’s symbol counts is appropriate. For example, the doubleton clause set in 
the first example above has a symbol count of 12. This measure provides a basis for comparing CNF 
versions of a FOF problem, and hence for comparing clausifiers by their output. The remaining sections 
of this paper discuss and compare clausifiers, using the symbol count heuristic as a basis for comparison. 

Following this introduction, Section 2 examines the boundary between clausifiers and ATP systems. 
Section 3 discusses clausification. Common operations used in clausification are described in Section 3.1, 
and four well known clausifiers are described in Section 3.2. Section 4 discusses simplification of clause 
sets. Common operations used in simplification are described in Section 4.1, and a publicly available 
simplifier is described in Section 4.2. An experimental comparison of clausifiers, using the simplifier, is 
reported in Section 5. Section 6 presents conclusions. 

2. Where Clausifiers and ATP Systems meet 

There are two main approaches to building clausifiers. The standard approach (see, e.g., [2, 39]) is based 
on the application of equivalences to transform the FOF problem to CNF. In the standard approach the 
structure of the FOF problem is lost, and the use of distributivity laws can in some cases lead to a very 
large number of clauses for an apparently simple FOF problem. However, this approach is simple and 
well understood. The definitional approach (see e.g., [6, 22, 7]) introduces definitions of subformulae in 
an attempt to reduce the number and size of the clauses that are produced. Although this technique shows 
promise, it is not yet adequately researched and its general utility has not been established. The standard 
approach is currently dominant, and therefore this paper examines only clausifiers that use the standard 
approach. 

An examination of standard approach clausifiers shows that the transformation process has two distinct 
parts. One part, clausification, transforms the FOF to CNF. The other part, simplification, simplifies the 
CNF obtained from clausification in order to improve it (the notion of improve varies from clausifier to 
clausifier, but typically conforms to the symbol count heuristic). The two parts are not necessarily done 

                                                             
1It is of historical interest to note that symbol counting was one of the early heuristics implemented in 
ATP systems; the first explicit reference found is in 1976 [21], but both Larry Wos [42] and Bill McCune 
[19] believe that Ross Overbeek was using symbol count right from about 1969. Despite the efforts of 
ATP researchers since then, no other general purpose heuristic has proved to be better, as evidenced by 
the CADE-13 ATP system competition results. The use of semantically based heuristics appears to be 
one potential avenue for finding improved heuristics [29, 20, 33, 31]. 
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separately in sequence. Some clausifiers interleave operations from the two parts. Necessarily, both 
clausification and simplification operations are satisfiability preserving. 

The processes of clausification, simplification, and solution search, may be put into context by 
considering the overall ATP process: 

FOF axioms,

hypotheses, &

negated conjecture

Refutation

Satisfiability

preserving

transformations

 

Figure 1: Overall ATP Process 

The “Satisfiability preserving transformations” are clausification, simplification, and inferencing. There 
are two common ways in which the satisfiability preserving transformations are organised: 

• A clausifier is used to produce input for an ATP system. The ATP system does no or little 
simplification of its input, but rather proceeds directly to the solution search. The picture expands to: 

FOF axioms,

hypotheses, &

negated conjecture

Refutation

Clausifier:

Clausification &

(some) Simplification

CNF

ATP system:

Inferencing

 

Figure 2: Simplification in Clausifier 

 Such clausifiers are often built simply to support the development of an ATP system. The ATP 
system is the focus of the research, and the clausifier is merely a required tool to support that 
research. Although such clausifiers produce a CNF version of the FOF problem to be solved, the 
CNF may not be a simple as possible due to inadequate development of the clausifier. In the context 
of the research this may significantly affect the evaluation of the ATP system, and hence the 
perceived quality of the ATP system. 

• The CNF problems are part of an existing test suite, such as those provided by the TPTP Problem 
Library [34, 35]. The problems are used for the evaluation of an ATP system. The manner in which 
the CNF has been obtained is typically unknown. Recognising that the CNF problems are not 
simplified to the extent that they could be, the ATP system includes a simplification stage before the 
solution search is started. In this case the picture expands to: 
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Figure 3: Simplification in ATP System 

 The benefit of simplifying the problem before starting the solution search can be large; in the 
extreme the problem may be solved in the simplification stage. 

It is evident that the process of simplification forms an fuzzy boundary between clausification and the 
search for a solution. The simplification may be associated with either the clausifier or the ATP system, 
and may be applied to clauses at any stage. The distinction between clausification and simplification, and 
between simplification and solution search, has not been well defined. As part of a meaningful evaluation 
of an ATP system, the various components need to be evaluated independently as well as in combination. 
This precise point motivated the decision to compare only CNF ATP systems in the CADE-13 ATP 
system competition [36]. It is therefore necessary to (try to) clearly define what constitutes each of the 
three parts: clausification, simplification, and solution search. In particular, in order to support 
meaningful evaluation of current ATP systems, it is necessary to distinguish between simplification and 
solution search. This is necessary because, as mentioned in Section 1, the search process is controlled by 
a heuristic, and the development of heuristics is a critical but weak area in ATP research. By clearly 
removing the influence of simplification from the solution search, it is possible to accurately evaluate the 
effect of a heuristic. It is inadequate for a search controlling heuristic to be evaluated as “good” simply 
because the preceding simplifier is performing well. 

The fundamental distinction between simplification and solution search lies in the word "search". As 
indicated in Section 1, the search controlling heuristics cannot be perfect in the 1st order case. Thus it is 
necessarily the case that ATP systems perform inference steps that do not form part of any refutation. 
Such steps may reduce the quality of the clause set, as measured by the heuristic function. This 
worsening can be used to clearly differentiate between simplification and solution search. Simplification 
steps are those that monotonically and non-asymptotically improve the clause set, as measured by the 
heuristic function, so that the subsequent search for a solution is easier. For example, using the symbol 
count heuristic, simplification would reduce the total symbol count of the clause set. In contrast, solution 
search may worsen the clause set without contributing to a solution. For example, resolution steps are 
part of the solution search, because resolution steps may increase the total symbol count of the clause set 
increases without making any progress towards a refutation. 

The above gives a clear distinction between simplification and solution search, and hence makes it 
possible to clearly separate clausifiers from ATP systems, as required by this research. The other 
boundary, between clausification and simplification, is harder to delineate. Depending on what 
clausification operations are used, and precisely how they are formulated, some simplification happens 
incidentally within the clausification stage. However, commonly there is an identifiable point within 
clausifiers at which a clause set has been created, and simplification operations explicitly commence. For 
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the purposes of this research, this point has been identified in each of the clausifiers examined in 
Section 3.2. The clausification operations used by these (and most other) clausifiers are described in 
Sections 3.1, and simplification operations are described in Section 4.1. 

3. Clausification 

In standard clausification algorithms the process is broken into distinguishable operations. Each of the 
operations is satisfiability preserving. Some operations have prerequisites on the form of the input data, 
and those prerequisites are met by ordering the operations appropriately, so that the output from each 
operation meets the prerequisites of the next. Following is a survey of commonly used operations. An 
examination of these shows that there are many acceptable orderings of the operations, thus giving rise to 
different clausification algorithms. Four algorithms are given in Section 3.2. Although these operations 
have been used in clausifiers before, this separation and documentation of the operations provides 
explicit building blocks with which new clausifiers can easily be constructed. 

3.1 Clausification Operations 

Removing implications and equivalences 
This operation removes implications and equivalences, replacing them with conjunctions, disjunctions, 
and negations. Implications are transformed into a disjunction of the negated antecedent and the 
consequent, e.g., A → B becomes ~A ∨ B. If an implication is in the immediate scope of a negation, i.e. 
~(A → B), then this is converted directly to A ∧ ~B. Equivalences are transformed into a conjunction of 

two implications that are then transformed separately. If an equivalence is in the immediate scope of a 
negation, i.e., ~(A ↔ B), then this is transformed directly to (A ∨ B) ∧ (~A ∨ ~B). 

Moving quantifiers out 
In this operation quantifiers (∃ and ∀) are moved outwards (textually, leftwards) so that they are outside 

all connectives. The scope of the quantifiers increases. A negated quantified formula is transformed by 
swapping the quantifier and negating the quantified formula, e.g., ~∀XA becomes ∃X~A. Quantifiers 

within conjunctions and disjunctions are moved out to apply to the entire conjunction or disjunction, e.g., 
(A ∧ ∀XB) becomes ∀X(A ∧ B). In this transformation variables are renamed as necessary to avoid the 

incorrect quantification of variables. It is possible to move quantifiers out through implications and 
equivalences, but typically implications and equivalences are removed first to avoid this. After moving 
quantifiers out the formula is in Prenex normal form. 

Moving negations in 
This operation moves negations inwards (to the right), so that they apply to only atoms. Negated 
quantified formulae are dealt with as when moving quantifiers out. Negated conjunctions and 
disjunctions are transformed using De Morgan’s equivalences, e.g., ~(A ∧ B) becomes  ~A ∨ ~B . Double 

negations are cancelled. It is possible to move negations in through implications and equivalences, but 
typically implications and equivalences are removed first to avoid this. After moving negations in the 
formula is in Literal normal form. 
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Mini-scoping 
Mini-scoping reduces the scope of quantifiers. The motivation is to simplify and reduce the number of 
Skolem functions created in Skolemization, which is described below. There are four transformations that 
are used: 
• If the quantified variable does not occur in the quantified formula, the quantification is removed. 
• If the quantified variable does not occur in an operand of a quantified conjunction or disjunction, the 

quantification is applied to only the operand that contains the quantified variable. 
• A universally quantified conjunction is transformed into a conjunction of two universally quantified 

operands, e.g., ∀X(A ∧ B) becomes ∀XA ∧ ∀YB. Note that the quantified variable is renamed in one 

of the conjuncts. 
• An existentially quantified disjunction is transformed into a disjunction of two existentially 

quantified operands, i.e., ∃X(A ∨ B) becomes ∃XA ∨ ∃YB. Note that the quantified variable is 

renamed in one of the disjuncts. 
It is possible to mini-scope formulae containing implications and equivalences, but typically implications 
and equivalences are removed first to avoid this. 

Skolemization 
Skolemization (in the context of clausification) removes existential quantifiers. Skolemization requires, 
in effect, that all quantifiers are outside (to the left of) all negations2. Thus Skolemization is performed 
after either moving quantifiers out or moving negations in. Each existentially quantified variable in an 
atom is replaced by a Skolem function; the functor is a newly generated symbol, and the arguments are 
all the variables that are universally quantified at the position of the existential quantification. The 
existential quantifiers and their variables are removed. For example, ∀X(A ∧ ∃Y∀Zp(X,Y,Z)) becomes 
∀X(A ∧ ∀Zp(X,sk(X),Z)). After Skolemization the formula is in Skolem normal form. 

As Skolemization leaves only universal quantification, the universal quantifiers are typically removed as 
part of this operation, leaving all variables implicitly universally quantified, e.g., 
∀X(A ∧ ∃Y∀Zp(X,Y,Z)) becomes A ∧ p(X,sk(X),Z). To avoid variables with the same name 
being mistakenly considered to be the same variable, variables are uniquely renamed before the universal 
quantifiers are removed. 

Distributing disjunctions 
Conjunctions are moved to outside disjunctions, i.e., no disjuncts are conjuncts. Distributing disjunctions 
requires that negations have been moved in and Skolemization has been done. Conjunctions are moved to 
outside disjunctions by distributing disjunctions over conjunctions, e.g., A ∨ (B ∧ C) becomes 
(A ∨ B) ∧ (A ∨ C). After distributing disjunctions the formula is in Conjunctive normal form. 

                                                             
2If there are negations outside quantifiers, then Skolemization has to take the polarity of negation into 
account at the point of each quantifier. The polarity is negative if an odd number of negations apply and 
positive otherwise. If the polarity is negative, then the roles of the two types of quantifier are reversed. 
See [9, 10] for examples of clausifiers that take this approach. 
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Converting to Clause Normal Form (CNF) 
Formulae in conjunctive normal form are split into clauses by removing the conjunctions, to form a set of 
clauses. For example, (A ∨ B) ∧ (A ∨ C) becomes { A ∨ B, A ∨ C }. 

3.2 Clausifiers 

Many clausifiers have been built in ATP research. The importance of good clausification has been 
recognised as an important facet of successful ATP, and research into building good clausifiers for 
specific ATP systems is well documented, e.g., [18, 9]. General purpose clausifiers, which can be 
expected to be at least adequate for most ATP systems, also exist [2, 35, 40]. Described below are four 
clausifiers that use the standard approach. Each uses a different combination or ordering of the operations 
described in Section 3.1. Attention should be paid to both the similarities and differences between the 
sequences of operations. The effects of the differences are shown in the experimental data, given in 
Section 5. 

Bundy 
Alan Bundy’s clausifying algorithm, described in [2], has been a starting point for many ATP 
researchers. The clausifier does the following sequence of operations: 
• Remove implications and equivalences 
• Move quantifiers out 
• Skolemize 
• Move negations in 
• Distribute disjunctions 
• Convert to CNF 

The notable feature of this algorithm is the early moving of quantifiers to the outermost level. This gives 
greater scope to the quantifiers, and may therefore increase the arity of the Skolem functions created. 

Quaife 
Art Quaife developed an effective clausifier as part of his investigation into the use of ATP in set theory 
and formal mathematical theories [23, 24]. The clausifier does the following steps: 
• Remove implications and equivalences, and Move negations in. Note that these two operations are 

done together. 
• Mini-scope 
• Skolemize 
• Distribute disjunctions 
• Convert to CNF 

This algorithm tries to limit the number of symbols introduced in Skolemization through mini-scoping. 
By moving the negations in it is possible to then reduce the scope of quantifiers as much as possible, 
hopefully reducing the arity and number of Skolem functions. 
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Otter 
Bill McCune’s Otter ATP system [18] is undoubtedly the most widely known ATP system. Otter has 
been used for many years by many ATP researchers, and there are many documented successes, e.g., [16, 
17, 9]. A clausifier is built into Otter, which does the following steps: 
• Remove implications and equivalences 
• Move negations in 
• Skolemize 
• Distribute disjunctions 
• Convert to CNF 

This clausifier differs from Quaife’s only in that it omits mini-scoping. 

TPTP 
The TPTP Problem Library includes a utility, tptp2X, for manipulating and formatting FOF and CNF 
formulae [35]. The utility contains a clausifier, which does the following steps: 
• Remove implications and equivalences 
• Mini-scope 
• Move negations in 
• Skolemize 
• Distribute disjunctions 
• Convert to CNF 

The TPTP clausifier reduces the scope of quantifiers as early as possible, in a (as it turns out) 
unsuccessful attempt to reduce the size and number of Skolem functions. 

4. Simplification 

The operations of simplification improve the quality of the clause set produced by clausification. The 
operations that are typically inter-dependant, in the sense that the application of one may enable the 
application of another (or itself again). Some simplification operations are described below. Some of the 
operations are well known, but others are less common. As in the case of the clausification operations, 
this documentation of the operations provides explicit building blocks with which new simpifiers can 
easily be constructed. 

4.1 Simplification Operations 

Merge identical literals 
Repeated literals in a clause are removed, e.g., A ∨ B ∨ A ∨ C ∨ A becomes A ∨ B ∨ C. Note that the 

literals must be identical. This operation is generalised in the repeatable Factor simplify operation, 
described below. 

Remove tautologies 
Clauses which are tautologous (i.e., necessarily true, regardless of the truth of the atoms in the formula, 
e.g., A ∨ ~A) are removed. This is possible because ATP systems for CNF problems search for a 

contradiction in the clause set, and it is impossible for a tautology to contribute to a contradiction. 
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Eliminate pure literals 
Pure literals are literals in clauses that cannot be resolved against any literal in any clause. Clauses that 
contain a pure literal are removed, because such a clause cannot contribute to a contradiction. 

Remove subsumed clauses 
A clause C subsumes a clause D if there is a substitution of terms for some of the variables of C such that 
the literals of C (after the substitution) are a subset of the literals in D. For example: 
 ~statement(definition_of(atp)) ∨ ~statement(Y) v defines(Y,Z) 

subsumes: 
 ~statement(definition_of(atp)) v defines(definition_of(atp),Z) 

with Y substituted by definition_of(atp). 

Any clause that is subsumed by another in the clause set, is removed. 

Factor simplify 
If a factor of any clause subsumes the clause, then the factor replaces the clause. 

Isolated resolution 
An isolated resolution is a binary resolution in which the literals resolved against cannot resolve against 
any other literals in the clause set. If an isolated resolution is possible then the resolvant replaces the two 
parent clauses. 

Subsuming unit resolution 
A subsuming unit resolution is a resolution between a unit clause and second clause, where the atom of 
the unit clause subsumes the atom of the literal resolved upon in the second clause (analogous to clausal 
subsumption, an atom P subsumes an atom Q if there is a substitution of terms for some of the variables 
of P such P (after the substitution) is the same as Q). The resolvant necessarily subsumes the second 

clause, which is then removed. Such resolution steps are desirable in ATP systems [32, 1] because they 
always improve the clause set (according to the symbol count heuristic). In simplification, if a subsuming 
unit resolution is possible, the resolvant replaces the second parent clause. 

4.2 The tptp2X Simplifier 

As well as a clausifier, the tptp2X utility contains a simplifier that can be used in conjunction with any 
other of its transformations. The simplifier first applies two simplifications once only: 
• Merge identical literals 
• Remove tautologies 
and then applies the following sequence of repeatable simplifications repeatedly, until no element of the 
sequence makes any simplification: 
• Factor simplify 
• Subsuming unit resolution 
• Remove subsumed clauses 
• Eliminate pure literals 
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The first two simplifications are applied once only because they do not interact with any of those that are 
applied repeatedly. If isolated resolution were added to the second list, then the first two simplifications 
would also have to be applied repeatedly. Isolated resolution has not been used because it is not 
guaranteed to improve the clause set, as measured by the symbol count heuristic. 

5. Performance Data 

To test the clausifiers described in Section 3.2, their algorithms have been encoded in the framework of 
the tptp2X utility. Each clausifier was given 145 FOF problems from the SYN domain of the TPTP 
Problem Library (the FOF part of the TPTP is currently in α-release) to convert to CNF. Due to memory 

constraints, two of the 145 problems could not be converted by one of the clausifiers, so those two 
problems have been omitted from the results. The symbol counts of each of the remaining 143 CNF 
versions have been recorded in Table 1 for each clausifier (B=Bundy, Q=Quaife, O=Otter, T=TPTP). 
Each CNF version was then passed through the tptp2X simplifier to measure the extent to which the 
clauses produced by the clausifiers are amenable to simplification. The symbol counts after simplification 
are also recorded in Table 1 (indicated by +S). The righthand half of Table 1 gives some comparative 
analysis of the data. The columns marked “Best” and “Best+S” give the lowest symbol count before and 
after simplification, respectively. The columns marked “Best/?” and “Best+S/?+S” give the ratio between 
the lowest symbol count and that achieved by each of the clausifiers, before and after simplification. Thus 
in these eight columns a value of 1.00 is the best achievable, and lower values are worse. In the cases 
where the algorithm achieves a symbol count of 0, the lowest symbol count is necessarily 0, and a value 
of 1.00 is given as the ratio, indicating that the algorithm also achieves the best possible symbol count. 
The average is given at the bottom of these eight columns. 
 

 Symbol counts Analysis before 
simplification 

Analysis after 
simplification 

Problem B B+S Q Q+S O O+S T T+S Best Best 
/B 

Best 
/Q 

Best 
/O 

Best 
/T 

Best 
+S 

Best
+S / 
B+S 

Best
+S / 
Q+S 

Best
+S / 
O+S 

Best
+S / 
T+S 

SYN040-1 24 0 24 0 24 0 24 0 24 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN041-1 8 0 8 0 8 0 8 0 8 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN001-1 8 0 8 0 8 0 8 0 8 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN045-1 88 0 88 0 88 0 88 0 88 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN044-1 26 26 26 26 26 26 26 26 26 1.00 1.00 1.00 1.00 26 1.00 1.00 1.00 1.00 
SYN046-1 24 0 24 0 24 0 24 0 24 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN047-1 228 0 228 0 228 0 228 0 228 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN048-1 7 0 6 0 7 0 6 0 6 0.86 1.00 0.86 1.00 0 1.00 1.00 1.00 1.00 
SYN049-1 14 0 12 0 14 0 12 0 12 0.86 1.00 0.86 1.00 0 1.00 1.00 1.00 1.00 
SYN050-1 29 0 27 0 29 0 27 0 27 0.93 1.00 0.93 1.00 0 1.00 1.00 1.00 1.00 
SYN051-1 30 20 30 20 30 20 30 20 30 1.00 1.00 1.00 1.00 20 1.00 1.00 1.00 1.00 
SYN052-1 30 20 30 26 30 26 30 26 30 1.00 1.00 1.00 1.00 20 1.00 0.77 0.77 0.77 
SYN053-1 † 42 20 30 0 30 0 30 0 30 0.71 1.00 1.00 1.00 0 0.00 1.00 1.00 1.00 
SYN054-1 39 39 39 39 39 39 39 39 39 1.00 1.00 1.00 1.00 39 1.00 1.00 1.00 1.00 
SYN055-1 53 37 51 36 51 36 51 36 51 0.96 1.00 1.00 1.00 36 0.97 1.00 1.00 1.00 
SYN056-1 98 98 72 72 72 72 72 72 72 0.73 1.00 1.00 1.00 72 0.73 1.00 1.00 1.00 
SYN057-1 39 39 39 39 39 39 39 39 39 1.00 1.00 1.00 1.00 39 1.00 1.00 1.00 1.00 
SYN058-1 48 30 48 30 48 30 48 30 48 1.00 1.00 1.00 1.00 30 1.00 1.00 1.00 1.00 
SYN059-1 426 420 186 144 186 144 186 144 186 0.44 1.00 1.00 1.00 144 0.34 1.00 1.00 1.00 
SYN060-1 39 39 39 39 39 39 39 39 39 1.00 1.00 1.00 1.00 39 1.00 1.00 1.00 1.00 
SYN061-1 30 24 30 24 30 24 30 24 30 1.00 1.00 1.00 1.00 24 1.00 1.00 1.00 1.00 
SYN062-1 42 33 42 33 42 33 42 33 42 1.00 1.00 1.00 1.00 33 1.00 1.00 1.00 1.00 
SYN063-1 † 386 20 342 0 342 0 342 0 342 0.89 1.00 1.00 1.00 0 0.00 1.00 1.00 1.00 
SYN064-1 12 0 8 0 12 0 8 0 8 0.67 1.00 0.67 1.00 0 1.00 1.00 1.00 1.00 
SYN065-1 62 62 62 62 62 62 62 62 62 1.00 1.00 1.00 1.00 62 1.00 1.00 1.00 1.00 
SYN066-1 61 61 57 57 61 61 57 57 57 0.93 1.00 0.93 1.00 57 0.93 1.00 0.93 1.00 
SYN068-1 46 38 46 38 46 38 46 38 46 1.00 1.00 1.00 1.00 38 1.00 1.00 1.00 1.00 
SYN069-1 150 150 141 91 141 91 141 91 141 0.94 1.00 1.00 1.00 91 0.61 1.00 1.00 1.00 
SYN070-1 82 58 82 58 82 58 82 58 82 1.00 1.00 1.00 1.00 58 1.00 1.00 1.00 1.00 
SYN071-1 48 48 48 48 48 48 48 48 48 1.00 1.00 1.00 1.00 48 1.00 1.00 1.00 1.00 
SYN072-1 55 55 55 55 55 55 55 55 55 1.00 1.00 1.00 1.00 55 1.00 1.00 1.00 1.00 
SYN073-1 15 15 13 13 13 13 13 13 13 0.87 1.00 1.00 1.00 13 0.87 1.00 1.00 1.00 
SYN074-1 446 156 372 372 372 234 372 372 372 0.83 1.00 1.00 1.00 156 1.00 0.42 0.67 0.42 
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SYN075-1 446 156 372 372 372 234 372 372 372 0.83 1.00 1.00 1.00 156 1.00 0.42 0.67 0.42 
SYN077-1 166 166 138 138 138 138 138 138 138 0.83 1.00 1.00 1.00 138 0.83 1.00 1.00 1.00 
SYN078-1 165 165 105 105 105 105 105 105 105 0.64 1.00 1.00 1.00 105 0.64 1.00 1.00 1.00 
SYN079-1 36 36 36 36 36 36 36 36 36 1.00 1.00 1.00 1.00 36 1.00 1.00 1.00 1.00 
SYN080-1 58 58 58 58 58 58 58 58 58 1.00 1.00 1.00 1.00 58 1.00 1.00 1.00 1.00 
SYN081-1 21 21 21 21 21 21 21 21 21 1.00 1.00 1.00 1.00 21 1.00 1.00 1.00 1.00 
SYN082-1 135 35 126 126 126 116 126 126 126 0.93 1.00 1.00 1.00 35 1.00 0.28 0.30 0.28 
SYN083-1 76 76 76 76 76 76 76 76 76 1.00 1.00 1.00 1.00 76 1.00 1.00 1.00 1.00 
SYN084-1 592 172 434 133 434 65 434 133 434 0.73 1.00 1.00 1.00 65 0.38 0.49 1.00 0.49 
SYN315-1 34 22 30 26 34 22 30 26 30 0.88 1.00 0.88 1.00 22 1.00 0.85 1.00 0.85 
SYN316-1 28 14 28 22 28 14 28 22 28 1.00 1.00 1.00 1.00 14 1.00 0.64 1.00 0.64 
SYN317-1 36 0 36 0 36 0 36 0 36 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN318-1 23 0 17 0 18 0 17 0 17 0.74 1.00 0.94 1.00 0 1.00 1.00 1.00 1.00 
SYN319-1 77 49 57 48 77 49 57 48 57 0.74 1.00 0.74 1.00 48 0.98 1.00 0.98 1.00 
SYN320-1 22 0 19 0 22 0 19 0 19 0.86 1.00 0.86 1.00 0 1.00 1.00 1.00 1.00 
SYN321-1 48 32 52 44 52 44 52 44 48 1.00 0.92 0.92 0.92 32 1.00 0.73 0.73 0.73 
SYN322-1 16 0 16 0 16 0 16 0 16 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN323-1 32 32 32 32 32 32 32 32 32 1.00 1.00 1.00 1.00 32 1.00 1.00 1.00 1.00 
SYN324-1 62 40 62 40 62 40 62 40 62 1.00 1.00 1.00 1.00 40 1.00 1.00 1.00 1.00 
SYN325-1 40 20 40 20 40 20 40 20 40 1.00 1.00 1.00 1.00 20 1.00 1.00 1.00 1.00 
SYN326-1 52 28 52 28 52 28 52 28 52 1.00 1.00 1.00 1.00 28 1.00 1.00 1.00 1.00 
SYN327-1 67 41 67 51 67 41 67 51 67 1.00 1.00 1.00 1.00 41 1.00 0.80 1.00 0.80 
SYN328-1 102 102 99 99 102 102 99 99 99 0.97 1.00 0.97 1.00 99 0.97 1.00 0.97 1.00 
SYN329-1 20 0 20 0 20 0 20 0 20 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN330-1 108 80 108 80 108 80 108 80 108 1.00 1.00 1.00 1.00 80 1.00 1.00 1.00 1.00 
SYN331-1 60 60 60 60 60 60 60 60 60 1.00 1.00 1.00 1.00 60 1.00 1.00 1.00 1.00 
SYN332-1 382 178 382 178 382 178 382 178 382 1.00 1.00 1.00 1.00 178 1.00 1.00 1.00 1.00 
SYN333-1 68 0 56 0 68 0 56 0 56 0.82 1.00 0.82 1.00 0 1.00 1.00 1.00 1.00 
SYN334-1 124 100 124 100 124 100 124 100 124 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 
SYN335-1 168 148 168 148 168 148 168 148 168 1.00 1.00 1.00 1.00 148 1.00 1.00 1.00 1.00 
SYN336-1 28 10 28 10 28 10 28 10 28 1.00 1.00 1.00 1.00 10 1.00 1.00 1.00 1.00 
SYN337-1 23 0 23 0 23 0 23 0 23 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN338-1 15 0 15 0 15 0 15 0 15 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN339-1 12 12 12 12 12 12 12 12 12 1.00 1.00 1.00 1.00 12 1.00 1.00 1.00 1.00 
SYN340-1 16 16 16 16 16 16 16 16 16 1.00 1.00 1.00 1.00 16 1.00 1.00 1.00 1.00 
SYN341-1 14 14 14 14 14 14 14 14 14 1.00 1.00 1.00 1.00 14 1.00 1.00 1.00 1.00 
SYN342-1 11 0 11 0 11 0 11 0 11 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN343-1 27 0 25 0 27 0 25 0 25 0.93 1.00 0.93 1.00 0 1.00 1.00 1.00 1.00 
SYN344-1 48 28 48 28 48 28 48 28 48 1.00 1.00 1.00 1.00 28 1.00 1.00 1.00 1.00 
SYN345-1 133 81 133 81 133 81 133 81 133 1.00 1.00 1.00 1.00 81 1.00 1.00 1.00 1.00 
SYN346-1 36 36 36 36 36 36 36 36 36 1.00 1.00 1.00 1.00 36 1.00 1.00 1.00 1.00 
SYN347-1 344 0 344 0 344 0 344 0 344 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN349-1 4099 226 4099 226 4099 226 4099 226 4099 1.00 1.00 1.00 1.00 226 1.00 1.00 1.00 1.00 
SYN350-1 174 86 174 86 174 86 174 86 174 1.00 1.00 1.00 1.00 86 1.00 1.00 1.00 1.00 
SYN351-1 234 44 234 44 234 44 234 44 234 1.00 1.00 1.00 1.00 44 1.00 1.00 1.00 1.00 
SYN352-1 176 104 176 104 176 104 176 104 176 1.00 1.00 1.00 1.00 104 1.00 1.00 1.00 1.00 
SYN353-1 398 310 398 310 398 310 398 310 398 1.00 1.00 1.00 1.00 310 1.00 1.00 1.00 1.00 
SYN354-1 124 80 124 80 124 80 124 80 124 1.00 1.00 1.00 1.00 80 1.00 1.00 1.00 1.00 
SYN355-1 * 30 0 18 18 18 18 18 18 18 0.60 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN356-1 36 36 36 36 36 36 36 36 36 1.00 1.00 1.00 1.00 36 1.00 1.00 1.00 1.00 
SYN357-1 6 0 6 0 6 0 6 0 6 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN358-1 30 0 30 0 30 0 30 0 30 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN359-1 * 28 0 26 26 26 26 26 26 26 0.93 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN360-1 * 44 0 17 17 17 17 17 17 17 0.39 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN361-1 * 36 0 23 17 23 17 23 17 23 0.64 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN362-1 16 10 15 9 15 9 15 9 15 0.94 1.00 1.00 1.00 9 0.90 1.00 1.00 1.00 
SYN363-1 20 20 17 17 17 17 17 17 17 0.85 1.00 1.00 1.00 17 0.85 1.00 1.00 1.00 
SYN364-1 * 75 0 43 43 43 43 43 43 43 0.57 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN365-1 * 49 0 41 41 41 41 41 41 41 0.84 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN366-1 * 56 56 40 40 40 40 40 40 40 0.71 1.00 1.00 1.00 40 0.71 1.00 1.00 1.00 
SYN367-1 * 32 0 26 22 26 22 26 22 26 0.81 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN368-1 7 0 6 0 7 0 6 0 6 0.86 1.00 0.86 1.00 0 1.00 1.00 1.00 1.00 
SYN369-1 16 16 13 13 13 13 13 13 13 0.81 1.00 1.00 1.00 13 0.81 1.00 1.00 1.00 
SYN370-1 22 14 22 14 22 14 22 14 22 1.00 1.00 1.00 1.00 14 1.00 1.00 1.00 1.00 
SYN371-1 22 0 16 0 18 0 16 0 16 0.73 1.00 0.89 1.00 0 1.00 1.00 1.00 1.00 
SYN372-1 12 0 12 0 12 0 12 0 12 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN373-1 36 0 36 0 36 0 36 0 36 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN374-1 * 240 0 256 74 256 52 256 74 240 1.00 0.94 0.94 0.94 0 1.00 0.00 0.00 0.00 
SYN375-1 800 80 240 21 242 21 240 21 240 0.30 1.00 0.99 1.00 21 0.26 1.00 1.00 1.00 
SYN376-1 * 22 0 18 18 18 18 18 18 18 0.82 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN377-1 * 240 0 240 21 242 21 240 21 240 1.00 1.00 0.99 1.00 0 1.00 0.00 0.00 0.00 
SYN378-1 14 0 12 0 12 0 12 0 12 0.86 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN379-1 16 0 16 0 16 0 16 0 16 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN380-1 26 26 24 24 24 24 24 24 24 0.92 1.00 1.00 1.00 24 0.92 1.00 1.00 1.00 
SYN381-1 55 23 27 27 27 27 27 27 27 0.49 1.00 1.00 1.00 23 1.00 0.85 0.85 0.85 
SYN382-1 * 22 0 17 17 18 18 17 17 17 0.77 1.00 0.94 1.00 0 1.00 0.00 0.00 0.00 
SYN383-1 14 0 12 0 14 0 14 0 12 0.86 1.00 0.86 0.86 0 1.00 1.00 1.00 1.00 
SYN384-1 12 0 11 0 12 0 11 0 11 0.92 1.00 0.92 1.00 0 1.00 1.00 1.00 1.00 
SYN385-1 10 0 9 0 10 0 9 0 9 0.90 1.00 0.90 1.00 0 1.00 1.00 1.00 1.00 
SYN386-1 * 159 0 56 56 56 56 56 56 56 0.35 1.00 1.00 1.00 0 1.00 0.00 0.00 0.00 
SYN387-1 4 0 4 0 4 0 4 0 4 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN388-1 4 0 4 0 4 0 4 0 4 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN389-1 10 0 10 0 10 0 10 0 10 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN390-1 8 0 8 0 8 0 8 0 8 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN391-1 16 16 16 16 16 16 16 16 16 1.00 1.00 1.00 1.00 16 1.00 1.00 1.00 1.00 
SYN392-1 160 16 160 16 160 16 160 16 160 1.00 1.00 1.00 1.00 16 1.00 1.00 1.00 1.00 
SYN393-1 3552 48 3552 48 3552 48 3552 48 3552 1.00 1.00 1.00 1.00 48 1.00 1.00 1.00 1.00 
SYN394-1 13 0 12 0 12 0 12 0 12 0.92 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN395-1 14 0 12 0 12 0 12 0 12 0.86 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN396-1 12 0 12 0 12 0 12 0 12 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
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SYN397-1 20 0 12 0 12 0 12 0 12 0.60 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN398-1 42 0 30 0 30 0 30 0 30 0.71 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN399-1 38 30 30 26 30 26 30 26 30 0.79 1.00 1.00 1.00 26 0.87 1.00 1.00 1.00 
SYN400-1 8 0 8 0 8 0 8 0 8 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN401-1 6 0 6 0 6 0 6 0 6 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN402-1 6 0 6 0 6 0 6 0 6 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN403-1 18 0 18 0 18 0 18 0 18 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN404-1 6 0 6 0 6 0 6 0 6 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN405-1 13 0 12 0 12 0 12 0 12 0.92 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN406-1 20 20 18 18 18 18 18 18 18 0.90 1.00 1.00 1.00 18 0.90 1.00 1.00 1.00 
SYN407-1 23 23 21 21 21 21 21 21 21 0.91 1.00 1.00 1.00 21 0.91 1.00 1.00 1.00 
SYN408-1 11 0 9 0 9 0 9 0 9 0.82 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN409-1 30 0 21 0 21 0 21 0 21 0.70 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN410-1 8 0 8 0 8 0 8 0 8 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN411-1 56 0 20 0 20 0 20 0 20 0.36 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN412-1 16 0 16 0 16 0 16 0 16 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
SYN413-1 37 37 35 35 35 35 35 35 35 0.95 1.00 1.00 1.00 35 0.95 1.00 1.00 1.00 
SYN414-1 358 358 172 72 172 72 172 72 172 0.48 1.00 1.00 1.00 72 0.20 1.00 1.00 1.00 
SYN415-1 219 219 163 145 163 145 163 145 163 0.74 1.00 1.00 1.00 145 0.66 1.00 1.00 1.00 
SYN416-1 8 0 8 0 8 0 8 0 8 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 
          .902 .999 .983 .998  .945 .890 .901 .890 

Table 1: Symbol counts and analysis for CNF versions produced by the clausifiers 

The range of average ratios indicates that there are differences between the four clausifiers, both before 
and after simplification. To establish this statistically, t-tests for difference were performed between the 
before and after simplification results, for all pairs of clausifiers. The results are shown in Table 2. 
 

 Before simplification After simplification 
Pair t-value Direction of difference t-value Direction of difference 
Bundy/Quaife 2.920 Positive (Quaife better) 0.103 Positive (Quaife better) 
Bundy/Otter 2.810 Positive (Otter better) 0.950 Positive (Otter better) 
Bundy/TPTP 2.910 Positive (TPTP better) 0.103 Positive (TPTP better) 
Quaife/Otter 2.820 Negative (Quaife better) 1.882 Positive (Otter better) 
Quaife/TPTP 1.000 Negative (Quaife better) 0.000 No differences 
Otter/TPTP 2.740 Positive (TPTP better) 1.882 Negative (Otter better) 

Table 2: t-tests for difference between the clausifiers 

In all the comparisons before simplification, except the Quaife/TPTP comparison, one clausifier is shown 
to be better than the other at the 99% confidence level (the required t-value for these one-tailed tests is 
2.35). In the Quaife/TPTP comparison the magnitude of difference is not enough for statistical 
significance, even at only 95% confidence (requiring a t-value of 1.65). In the comparisons after 
simplification, the Quaife/Otter and the Otter/TPTP comparisons are significant, and it can be asserted 
with 95% confidence that Otter is better than Quaife and TPTP. While Otter also yields better results than 
Bundy, the magnitude of these (t-value 0.95) is not enough for statistical significance. 

Both the average ratios and the t-tests show that before simplification the Quaife and TPTP clausifiers are 
superior to the Bundy and Otter clausifiers. This was expected, and is probably due to the positive effect 
of mini-scoping in the Quaife and TPTP clausifiers, and the negative effect of the early moving of 
quantifiers to the outermost level in the Bundy clausifier. After simplification, both the ratio and t-test 
figures show that the Otter clausifier performs better than the others. The ratio figures suggest that the 
Bundy clausifier also performs better than the Quaife and TPTP clausifiers after simplification, although 
this is not supported by the t-test figures (this non-correspondence is discussed below). This change of 
ranking from before to after simplification shows that amenability of the clauses to simplification is an 
important factor in the quality of a clausifier. The common difference between the Bundy and Otter 
clausifiers on one hand, and the Quaife and TPTP clausifiers on the other, is the use of mini-scoping by 
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Quaife and TPTP. This suggests that the use of mini-scoping makes the resultant clause set less amenable 
to simplification. 

Comparing the Bundy and Otter clausifiers, before simplification the Otter clausifier performs better. 
After simplification the situation is less clear: the ratio figures indicate that the Bundy clausifier performs 
better while the t-tests indicate that the Otter clausifier performs better. This apparent paradox is caused 
by the simplifier reducing twelve of the clause sets (marked with an *) from the Bundy clausification, to 
the empty set. The corresponding clause sets for the other three clausifications are not simplified that far. 
The reverse phenomenon occurs in only two problems (marked with an †), where simplifier reduces all 
except the Bundy clause sets to the empty set. The implicit normalisation within the ratio data allows 
these fourteen results to have a very strong effect, while in the t-tests this is not the case. It is thus not 
possible to make a meaningful quantitative comparison between the Bundy and Otter clausifiers, after 
simplification. Despite the weaker performance of Bundy’s clausification, the clauses produced appear to 
be more likely to be simplifiable to the empty set than those produced by the other three clausifiers. The 
resultant benefit of not having to invoke the ATP system for some problems may be desirable for some 
users. The Otter clausifier, on the other hand, may offer better performance over a large set of problems. 

Comparing the Quaife and TPTP clausifiers, before simplification there is a very small difference 
between their performances. After simplification the two produce identical clause sets. The difference 
between the two clausifiers is the order in which moving negations in and mini-scoping are done. This 
swap evidently has no appreciable affect. 

6. Conclusion 

This research has examined and compared four known clausifiers. Common clausification and 
simplification operations have been documented, thus providing a starting point for the construction of 
clausifiers. The boundaries between clausification, simplification, and solution search have been 
delineated, thus contributing to the meaningful evaluation of clausifiers and ATP systems. This is 
important, as the evaluation of ATP systems is often inadequate (see [35, 36] for a full discussion). The 
comparison shows that steps taken to reduce the symbol count during clausification are effective, and that 
amenability to simplification can compensate for poorer raw clausification performance. This is a 
noteworthy result, as it suggests that the construction of clausifiers must consider how the clausification 
and simplification parts interact. The data also forms a baseline for future evaluation of clausifiers. 
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8. Old Stuff Not Used 

8.1 Old Sutcliffe 

REMOVE ME **** Geoff do you want to put this under Jim Adams?? *** 

An alternative method was proposed by ??Adams?? \cite{adams}.  

• Remove implications. 

• Move negations in 

• Skolemize 

• Remove universal quantifiers. 

• Conjunctive Normal Form. 

8.1.1 ABOUT THE TPTP CLAUSIFIER 

Our aim in investigating these conversion techniques is to deduce an algorithm which will produce 
clauses with the minimal number of symbols. The occurance that creates the greatest growth in the 
number of symbols within a formula is skolemization. During this process, an existentially quantified 
variable is substituted by a function of all universally quantified variables that it is within the scope of. In 
order to reduce this number of variables it is necessary to ensure that the scope of any quantifier is no 
larger that needed. Thus in contrast to the first two techniques shown, instead of moving quantifiers to the 
left (thereby widening their scope), they are moved right, into the formula. When their scope is reduced, 
skolemization then produces terms with considerably less literals. This technique of reducing the scope of 
quantifiers is named {\em miniscoping} and has been used by a variety of systems including the Boyer--
Moore and Conpro1 theorem provers~\cite{kaufmann92, quaife, eisinger91}. 
 
Problem B B+S Q Q+S O O+S T T+S B+S 

/B 
Q+S 
/Q 

O+S 
/O 

T+S 
/T 

SYN040-1 24 0 24 0 24 0 24 0 0.00 0.00 0.00 0.00 
SYN041-1 8 0 8 0 8 0 8 0 0.00 0.00 0.00 0.00 
SYN001-1 8 0 8 0 8 0 8 0 0.00 0.00 0.00 0.00 
SYN045-1 88 0 88 0 88 0 88 0 0.00 0.00 0.00 0.00 
SYN044-1 26 26 26 26 26 26 26 26 1.00 1.00 1.00 1.00 
SYN046-1 24 0 24 0 24 0 24 0 0.00 0.00 0.00 0.00 
SYN047-1 228 0 228 0 228 0 228 0 0.00 0.00 0.00 0.00 
SYN048-1 7 0 6 0 7 0 6 0 0.00 0.00 0.00 0.00 
SYN049-1 14 0 12 0 14 0 12 0 0.00 0.00 0.00 0.00 
SYN050-1 29 0 27 0 29 0 27 0 0.00 0.00 0.00 0.00 
SYN051-1 30 20 30 20 30 20 30 20 0.67 0.67 0.67 0.67 
SYN052-1 30 20 30 26 30 26 30 26 0.67 0.87 0.87 0.87 
SYN053-1 42 20 30 0 30 0 30 0 0.48 0.00 0.00 0.00 
SYN054-1 39 39 39 39 39 39 39 39 1.00 1.00 1.00 1.00 
SYN055-1 53 37 51 36 51 36 51 36 0.70 0.71 0.71 0.71 
SYN056-1 98 98 72 72 72 72 72 72 1.00 1.00 1.00 1.00 
SYN057-1 39 39 39 39 39 39 39 39 1.00 1.00 1.00 1.00 
SYN058-1 48 30 48 30 48 30 48 30 0.63 0.63 0.63 0.63 
SYN059-1 426 420 186 144 186 144 186 144 0.99 0.77 0.77 0.77 
SYN060-1 39 39 39 39 39 39 39 39 1.00 1.00 1.00 1.00 
SYN061-1 30 24 30 24 30 24 30 24 0.80 0.80 0.80 0.80 
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SYN062-1 42 33 42 33 42 33 42 33 0.79 0.79 0.79 0.79 
SYN063-1 386 20 342 0 342 0 342 0 0.05 0.00 0.00 0.00 
SYN064-1 12 0 8 0 12 0 8 0 0.00 0.00 0.00 0.00 
SYN065-1 62 62 62 62 62 62 62 62 1.00 1.00 1.00 1.00 
SYN066-1 61 61 57 57 61 61 57 57 1.00 1.00 1.00 1.00 
SYN068-1 46 38 46 38 46 38 46 38 0.83 0.83 0.83 0.83 
SYN069-1 150 150 141 91 141 91 141 91 1.00 0.65 0.65 0.65 
SYN070-1 82 58 82 58 82 58 82 58 0.71 0.71 0.71 0.71 
SYN071-1 48 48 48 48 48 48 48 48 1.00 1.00 1.00 1.00 
SYN072-1 55 55 55 55 55 55 55 55 1.00 1.00 1.00 1.00 
SYN073-1 15 15 13 13 13 13 13 13 1.00 1.00 1.00 1.00 
SYN074-1 446 156 372 372 372 234 372 372 0.35 1.00 0.63 1.00 
SYN075-1 446 156 372 372 372 234 372 372 0.35 1.00 0.63 1.00 
SYN077-1 166 166 138 138 138 138 138 138 1.00 1.00 1.00 1.00 
SYN078-1 165 165 105 105 105 105 105 105 1.00 1.00 1.00 1.00 
SYN079-1 36 36 36 36 36 36 36 36 1.00 1.00 1.00 1.00 
SYN080-1 58 58 58 58 58 58 58 58 1.00 1.00 1.00 1.00 
SYN081-1 21 21 21 21 21 21 21 21 1.00 1.00 1.00 1.00 
SYN082-1 135 35 126 126 126 116 126 126 0.26 1.00 0.92 1.00 
SYN083-1 76 76 76 76 76 76 76 76 1.00 1.00 1.00 1.00 
SYN084-1 592 172 434 133 434 65 434 133 0.29 0.31 0.15 0.31 
SYN315-1 34 22 30 26 34 22 30 26 0.65 0.87 0.65 0.87 
SYN316-1 28 14 28 22 28 14 28 22 0.50 0.79 0.50 0.79 
SYN317-1 36 0 36 0 36 0 36 0 0.00 0.00 0.00 0.00 
SYN318-1 23 0 17 0 18 0 17 0 0.00 0.00 0.00 0.00 
SYN319-1 77 49 57 48 77 49 57 48 0.64 0.84 0.64 0.84 
SYN320-1 22 0 19 0 22 0 19 0 0.00 0.00 0.00 0.00 
SYN321-1 48 32 52 44 52 44 52 44 0.67 0.85 0.85 0.85 
SYN322-1 16 0 16 0 16 0 16 0 0.00 0.00 0.00 0.00 
SYN323-1 32 32 32 32 32 32 32 32 1.00 1.00 1.00 1.00 
SYN324-1 62 40 62 40 62 40 62 40 0.65 0.65 0.65 0.65 
SYN325-1 40 20 40 20 40 20 40 20 0.50 0.50 0.50 0.50 
SYN326-1 52 28 52 28 52 28 52 28 0.54 0.54 0.54 0.54 
SYN327-1 67 41 67 51 67 41 67 51 0.61 0.76 0.61 0.76 
SYN328-1 102 102 99 99 102 102 99 99 1.00 1.00 1.00 1.00 
SYN329-1 20 0 20 0 20 0 20 0 0.00 0.00 0.00 0.00 
SYN330-1 108 80 108 80 108 80 108 80 0.74 0.74 0.74 0.74 
SYN331-1 60 60 60 60 60 60 60 60 1.00 1.00 1.00 1.00 
SYN332-1 382 178 382 178 382 178 382 178 0.47 0.47 0.47 0.47 
SYN333-1 68 0 56 0 68 0 56 0 0.00 0.00 0.00 0.00 
SYN334-1 124 100 124 100 124 100 124 100 0.81 0.81 0.81 0.81 
SYN335-1 168 148 168 148 168 148 168 148 0.88 0.88 0.88 0.88 
SYN336-1 28 10 28 10 28 10 28 10 0.36 0.36 0.36 0.36 
SYN337-1 23 0 23 0 23 0 23 0 0.00 0.00 0.00 0.00 
SYN338-1 15 0 15 0 15 0 15 0 0.00 0.00 0.00 0.00 
SYN339-1 12 12 12 12 12 12 12 12 1.00 1.00 1.00 1.00 
SYN340-1 16 16 16 16 16 16 16 16 1.00 1.00 1.00 1.00 
SYN341-1 14 14 14 14 14 14 14 14 1.00 1.00 1.00 1.00 
SYN342-1 11 0 11 0 11 0 11 0 0.00 0.00 0.00 0.00 
SYN343-1 27 0 25 0 27 0 25 0 0.00 0.00 0.00 0.00 
SYN344-1 48 28 48 28 48 28 48 28 0.58 0.58 0.58 0.58 
SYN345-1 133 81 133 81 133 81 133 81 0.61 0.61 0.61 0.61 
SYN346-1 36 36 36 36 36 36 36 36 1.00 1.00 1.00 1.00 
SYN347-1 344 0 344 0 344 0 344 0 0.00 0.00 0.00 0.00 
SYN349-1 4099 226 4099 226 4099 226 4099 226 0.06 0.06 0.06 0.06 
SYN350-1 174 86 174 86 174 86 174 86 0.49 0.49 0.49 0.49 
SYN351-1 234 44 234 44 234 44 234 44 0.19 0.19 0.19 0.19 
SYN352-1 176 104 176 104 176 104 176 104 0.59 0.59 0.59 0.59 
SYN353-1 398 310 398 310 398 310 398 310 0.78 0.78 0.78 0.78 
SYN354-1 124 80 124 80 124 80 124 80 0.65 0.65 0.65 0.65 
SYN355-1 30 0 18 18 18 18 18 18 0.00 1.00 1.00 1.00 
SYN356-1 36 36 36 36 36 36 36 36 1.00 1.00 1.00 1.00 
SYN357-1 6 0 6 0 6 0 6 0 0.00 0.00 0.00 0.00 
SYN358-1 30 0 30 0 30 0 30 0 0.00 0.00 0.00 0.00 
SYN359-1 28 0 26 26 26 26 26 26 0.00 1.00 1.00 1.00 
SYN360-1 44 0 17 17 17 17 17 17 0.00 1.00 1.00 1.00 
SYN361-1 36 0 23 17 23 17 23 17 0.00 0.74 0.74 0.74 
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SYN362-1 16 10 15 9 15 9 15 9 0.63 0.60 0.60 0.60 
SYN363-1 20 20 17 17 17 17 17 17 1.00 1.00 1.00 1.00 
SYN364-1 75 0 43 43 43 43 43 43 0.00 1.00 1.00 1.00 
SYN365-1 49 0 41 41 41 41 41 41 0.00 1.00 1.00 1.00 
SYN366-1 56 56 40 40 40 40 40 40 1.00 1.00 1.00 1.00 
SYN367-1 32 0 26 22 26 22 26 22 0.00 0.85 0.85 0.85 
SYN368-1 7 0 6 0 7 0 6 0 0.00 0.00 0.00 0.00 
SYN369-1 16 16 13 13 13 13 13 13 1.00 1.00 1.00 1.00 
SYN370-1 22 14 22 14 22 14 22 14 0.64 0.64 0.64 0.64 
SYN371-1 22 0 16 0 18 0 16 0 0.00 0.00 0.00 0.00 
SYN372-1 12 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN373-1 36 0 36 0 36 0 36 0 0.00 0.00 0.00 0.00 
SYN374-1 240 0 256 74 256 52 256 74 0.00 0.29 0.20 0.29 
SYN375-1 800 80 240 21 242 21 240 21 0.10 0.09 0.09 0.09 
SYN376-1 22 0 18 18 18 18 18 18 0.00 1.00 1.00 1.00 
SYN377-1 240 0 240 21 242 21 240 21 0.00 0.09 0.09 0.09 
SYN378-1 14 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN379-1 16 0 16 0 16 0 16 0 0.00 0.00 0.00 0.00 
SYN380-1 26 26 24 24 24 24 24 24 1.00 1.00 1.00 1.00 
SYN381-1 55 23 27 27 27 27 27 27 0.42 1.00 1.00 1.00 
SYN382-1 22 0 17 17 18 18 17 17 0.00 1.00 1.00 1.00 
SYN383-1 14 0 12 0 14 0 14 0 0.00 0.00 0.00 0.00 
SYN384-1 12 0 11 0 12 0 11 0 0.00 0.00 0.00 0.00 
SYN385-1 10 0 9 0 10 0 9 0 0.00 0.00 0.00 0.00 
SYN386-1 159 0 56 56 56 56 56 56 0.00 1.00 1.00 1.00 
SYN387-1 4 0 4 0 4 0 4 0 0.00 0.00 0.00 0.00 
SYN388-1 4 0 4 0 4 0 4 0 0.00 0.00 0.00 0.00 
SYN389-1 10 0 10 0 10 0 10 0 0.00 0.00 0.00 0.00 
SYN390-1 8 0 8 0 8 0 8 0 0.00 0.00 0.00 0.00 
SYN391-1 16 16 16 16 16 16 16 16 1.00 1.00 1.00 1.00 
SYN392-1 160 16 160 16 160 16 160 16 0.10 0.10 0.10 0.10 
SYN393-1 3552 48 3552 48 3552 48 3552 48 0.01 0.01 0.01 0.01 
SYN394-1 13 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN395-1 14 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN396-1 12 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN397-1 20 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN398-1 42 0 30 0 30 0 30 0 0.00 0.00 0.00 0.00 
SYN399-1 38 30 30 26 30 26 30 26 0.79 0.87 0.87 0.87 
SYN400-1 8 0 8 0 8 0 8 0 0.00 0.00 0.00 0.00 
SYN401-1 6 0 6 0 6 0 6 0 0.00 0.00 0.00 0.00 
SYN402-1 6 0 6 0 6 0 6 0 0.00 0.00 0.00 0.00 
SYN403-1 18 0 18 0 18 0 18 0 0.00 0.00 0.00 0.00 
SYN404-1 6 0 6 0 6 0 6 0 0.00 0.00 0.00 0.00 
SYN405-1 13 0 12 0 12 0 12 0 0.00 0.00 0.00 0.00 
SYN406-1 20 20 18 18 18 18 18 18 1.00 1.00 1.00 1.00 
SYN407-1 23 23 21 21 21 21 21 21 1.00 1.00 1.00 1.00 
SYN408-1 11 0 9 0 9 0 9 0 0.00 0.00 0.00 0.00 
SYN409-1 30 0 21 0 21 0 21 0 0.00 0.00 0.00 0.00 
SYN410-1 8 0 8 0 8 0 8 0 0.00 0.00 0.00 0.00 
SYN411-1 56 0 20 0 20 0 20 0 0.00 0.00 0.00 0.00 
SYN412-1 16 0 16 0 16 0 16 0 0.00 0.00 0.00 0.00 
SYN413-1 37 37 35 35 35 35 35 35 1.00 1.00 1.00 1.00 
SYN414-1 358 358 172 72 172 72 172 72 1.00 0.42 0.42 0.42 
SYN415-1 219 219 163 145 163 145 163 145 1.00 0.89 0.89 0.89 
SYN416-1 8 0 8 0 8 0 8 0 0.00 0.00 0.00 0.00 
         0.41 0.49
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