
����� ���� ����������� 	��
���

��� ����� �		
 ��
����� ��
����
������ ���������� ��
�� �
��
 ��������

���� �����	�� �

���������� 	
 ���
�

���
��
 ������ �

���������� ������������ �������� ��� ���������

��
�� ������ �

������� ��������� ����������

��������

��� �	���� ����������� 	
�����

� ����� ����� ���������

��� ����� �		
 ��
����� �� ����
������ ���������� ��
�� �
��
 ������
��! "
��!� ��!����
 �
�������
� ���
����
���
� ��� �
� �����
��� ���� ���
�������������� ��� ���������� �� ��
���! ���������
�������! ������� ��

#
�� �
��
 ��!��$ ��� ����� �� �� #
�� �
��
 ��!�� "������ �� ��� ���%����
�&�
����'� ����
 ��
 ���� ������������(��� ���� ����
����� ��� ����!��"��
������������� �
���
����$ ��� ���������
�������! ��������� ��� ����
�&��
����� ���� ��� �������������� ��� ����������� �� ���������
�������!
������� ��
 ��� ��!��$ �� �
����� ���
� �&����(��� �� ��������� ��
 ��
���
(
����
������ ���������� #
�� �
��

�������!$ ��� ��
����� ���������)
�����

�����!* �������(��� ��� ����
������ ����� ���� ��'� ��� ��� "��� �
��������
���� ��
���! �������$

��� ��
����� ��� ��� ���� ����� �
���+

�������

� �������������� ������%��� ��� �����
�����

�
������ ����������	
�	����

�
������ ��
����	�����
�	����������
�����

�
������ �
��������������

���� �� � �����	�
��� �����

� ��� �
�� �����

 ���� �� ��������� �

������

�� �
��� �
 ���
������� �
	����� ����
��

���� ���
��
�����
��������������

Page 1 of 171

���������� ��	��
� ��

��

� ,��� ��
����
�� ��� ��!�
����� ��
 ��� �Æ�����
��
���������� �� ��
��(
��
�����(���
�� ������(���$(�$!$ ��� ����&��! ������%���(�Æ����� ��
����������� �� ������#������ �
��
��!�(���$

� -�!��
 ��'�� ���� ��
����
�� ��� ��
���� ��
 ���
��
���������� �� �
���
����� ��� ��
�'������(�
��� ��� ����� ���
�!�(���$

� ����������� ��� �'������� ���
������

����	
��	�
�

� ,���
������� �� ���������
�������! ��������� �� ����������� �������

� �&��
������ ���� �
������� ������������

� �������! �� ������ �
�"���� ���� ��!��(��� �������! �� ��!�� ��������� ����
��� ������

� ������� ���������
�������! ������%��� ��
 ������������

� .��
 ����
����� /�� ����� �������(��� 0��� ��� ���������
�������! ���
������1

� ������ ����!
�����

������������(��� ��
����� �������� ������ �
� ����	
��	�
 ����
�����

�	�
�$

2�
��������� ���� �
�� ��'�
�� ���
���+

� �����
���
� ��� ��'� ��'������ ��� ����������� ���������� ���������

�������! ������%��� ��� �������$

� 2
�������
� ��� ��'� �������� ���������
�������! ������� �� ��
���!
������������$

� .��
� ��� ��'� ��
���� ��������� �� ����� ���������
�������! �� ����

�������(��� ��� ���� �� ���
� ��
�$

� 2�������� ���
� ��� �
� ����
����� �� ���
���! ��� ���������
�������! ���
"� ���� �� ����
 �������$

��� ����
��� ����������� �
��� ������� ��� #���� �� '�
�#������(�������'�
����"����(�����������(�������!�
��
����������(�������� ��"(���$ ���
��
����� �
�'���� � ��
�� ��
 ���������� �� ��� ������%��� �������
� �� ����
���������
�������! �
�� ��� ��" ��� ���� ���)
��� ��
��*$ ��� ��
�����
���"��� ��� ��������� �� ���
� �
�� ���� ����
�3 �
������� �&��
������(��� ����
�������� ����
 ����� �� ��� �
� ������%���$

�

Page 2 of 171

ESFOR 2004 Preliminary Version

Darwin: A Theorem Prover for the
Model Evolution Calculus

Peter Baumgartner 1

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

Alexander Fuchs 2

Universität Koblenz-Landau
Fachbereich Informatik
Universitätsstraße 1

D 56070 Koblenz, Germany

Cesare Tinelli 3

Department of Computer Science
The University of Iowa

14 MacLean Hall
Iowa City, IA 52242, USA

Abstract

Darwin is the first implementation of the Model Evolution Calculus by Baumgartner
and Tinelli. The Model Evolution Calculus lifts the DPLL procedure to first-order
logic. Darwin is meant to be a fast and clean implementation of the calculus, show-
ing its effectiveness and providing a base for further improvements and extensions.

Based on a brief summary of the Model Evolution Calculus, we describe in the
main part of the paper Darwin’s proof procedure and its data structures and algo-
rithms, discussing the main design decisions and features that influence Darwin’s
performance. We also report on practical experiments carried out with problems
from the CADE-18 and CADE-19 system competitions, as well as on results on
parts of the TPTP Problem Library.

Key words: Automated Theorem Proving,
Davis-Putnam-Logemann-Loveland procedure

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Page 3 of 171

Baumgartner, Fuchs, Tinelli

1 Introduction

In propositional satisfiability the DPLL procedure [5,4], is the most popular
and successful method for building complete SAT solvers. Its success is due to
its simplicity, its polynomial space requirements, and the fact that, as a search
procedure, it is amenable to powerful but also relatively inexpensive heuristics
and constraint propagation techniques for reducing the search space. Thanks
to these heuristics and to very careful engineering, the best SAT solvers today
can successfully attack real-world problems with hundreds of thousands of
variables and clauses.

Although the DPLL method is usually described procedurally, its essence
can be captured declaratively by means of a sequent-style calculus [16]. The
DPLL calculus has been recently lifted to the first-order level in [2]. The
result is a sound and complete calculus, called the Model Evolution calculus,
or ME calculus for short, for the unsatisfiability of first-order clauses (without
equality) 4 .

One of the main motivations for developing the Model Evolution calcu-
lus was the possibility of migrating to the first-order level some of those very
effective search techniques developed by the SAT community for the DPLL
procedure. This paper describes Darwin, a first implementation of the cal-
culus designed to incorporate these techniques—or better, their first-order
equivalents. The current version of Darwin implements a first-order version
of unit propagation [18], a form of simplification, and backjumping, a form
of intelligent backtracking (which seems to have been used for the first time
for a first-order theorem prover in [12]). The incorporation of another staple
technique for DPLL-based solvers, lemma learning, is planned for the next
version.

Although Darwin is still at a prototype stage, it borrows many advanced
techniques from the first-order theorem proving world—such as term indexing,
subterm sharing, redundancy elimination, and so on. The overall rationale for
developing this system was to get an initial sense of the performance potential
of the ME calculus, to constitute a robust code base for further improvements
on the implementation, and for future extensions of the calculus.

This paper provides a fairly high level description of Darwin’s architecture
and implementation, usually providing more details only on those implemen-
tation aspects that are specific to theME calculus—as opposed to a first-order
calculus in general.

1 Email: baumgart@mpi-sb.mpg.de
2 Email: alexf@uni-koblenz.de
3 Email: tinelli@cs.uiowa.edu
4 The ME calculus extends and significantly improves on the FDPLL calculus [1], which
was the first successful attempt to lift the DPLL calculus to the first-order level.

2

Page 4 of 171

Baumgartner, Fuchs, Tinelli

2 The Model Evolution Calculus

We start by providing a summary description of the Model Evolution calculus
and its main features, concentrating on those aspects that are relevant to the
understanding of the implementation. More details on the calculus can be
found in [2,3].

The DPLL procedure can be described as one that attempts to find a
model of a given formula, input as a set of clauses, by starting with a default
interpretation in which all input atoms are false and incrementally modifying it
until it becomes a model of the input formula, or all alternative modifications
have been considered with no success. The ME calculus can be seen as lifting
this “model evolution” process to the first-order level.

The goal of the calculus is to construct a Herbrand model of a given set
Φ of clauses, if any such model exists. To do that, during a derivation the
calculus maintains a context Λ, a finite set of (possibly non-ground) literals.
The context Λ is a finite—and compact—representation of a Herbrand inter-
pretation IΛ, serving as a candidate model for Φ. The denoted interpretation
IΛ might not be a model of Φ because it does not satisfy some instances of
clauses in Φ. The purpose of the main rules of the calculus is to detect this
situation and either repair IΛ, by modifying Λ so that it becomes a model of
Φ, or recognize that IΛ is unrepairable and fail. In addition to these rules,
the calculus contains a number of simplification rules whose purpose is, like
in the DPLL procedure, to simplify the clause set and, as a consequence, to
speed up the computation.

The rules of the calculus manipulate sequents of the form Λ ` Φ, where
Λ is the current context and Φ is the current clause set. The initial sequent
is made of a context standing for an initial interpretation and of the input
clause set.

To describe the rules we need to introduce a few technical preliminaries
first.

2.1 Technical Preliminaries

Contexts are finite sets of possibly non-ground literals built over terms as
usual, however over two types of variables: universal variables—or simply
variables—drawn from an infinite set X and denoted here by x, y, z, and para-
metric variables—or simply, parameters—drawn from an infinite set V disjoint
with X and denoted here by u, v, w. Context literals are either universal, that
is parameter-free, or parametric, that is, variable-free. By contrast, clause
literals, that is, literals occurring in the clause set Φ of a sequent, are all
parameter-free. For all purposes, the literals of a context can be considered
variable and parameter disjoint with each other—in tableaux terms, neither
parameters nor variables are rigid.

Each context can be seen as the finite specification of a certain Herbrand

3

Page 5 of 171

Baumgartner, Fuchs, Tinelli

interpretation. Roughly speaking, within a context both universal and para-
metric literals stand for their ground instances. The main difference is that
universal literals always stand for all of their ground instances, whereas para-
metric literals may stand only for a subset of all of their ground instances. The
precise way in which context literals denote ground instances and how that is
used to associate a Herbrand model to a context is defined in [2,3]. Here we
will limit ourselves to introduce a few notions that involve parameters and are
needed to describe the rules of the calculus.

Let us consider the set of substitutions defined over the set X ∪ V . We
say a substitution is parameter-preserving, or p-preserving for short, if its
restriction to the set V of parameters is a renaming over V in the standard
sense—i.e., it is a permutation of V . A substitution is a p-renaming if it is a
p-preserving renaming.

We say a term s is a p-preserving variant of a term t, or p-variant for short,
if there is a p-renaming ρ such that sρ = t. We say that s is p-preserving more
general than t, iff there is a p-preserving substitution σ such that sσ = t. If
t is a term we denote by Var(t) the set of t’s variables and by Par(t) the set
of t’s parameters. These definitions stated for terms also apply to literals and
clauses in the obvious way.

We assume an infinite supply of Skolem constants disjoint with the set of
constants occurring in any given input clause set. We write Lsko to denote the
result of applying some substitution to the literal L that replaces each variable
in L by a fresh Skolem constant. We write L to the denote the complement
of L.

A literal L is contradictory with a context Λ iff there is a p-variant K of
some literal in Λ and a p-preserving substitution σ such that Lσ = Kσ.

Definition 2.1 (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context
unifier of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ iff there are fresh
p-preserving variants K1, . . . , Kn of context literals such that

(i) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(ii) for all i = 1, . . . ,m, (Par(Ki))σ ⊆ V ,

(iii) for all i = m + 1, . . . , n, (Par(Ki))σ 6⊆ V .

A context unifier σ of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ is
admissible iff for all distinct i, j = m+1, . . . , n, Liσ is parameter- or variable-
free and Var(Liσ) ∩ Var(Ljσ) = ∅.

The existence of an admissible context unifier Λ between a context and a
clause indicates that the interpretation IΛ denoted by Λ falsifies the clause. 5

5 Strictly speaking, this is true if the context unifier is also productive (see [2]). But the

4

Page 6 of 171

Baumgartner, Fuchs, Tinelli

The rules of the ME calculus use context unifiers as a way to discover that the
interpretation associated with the current context falsifies one of the current
clauses, and decide how to “repair” the context.

Context unifiers are at the core of the ME calculus because they are used
by all of its non-optional derivation rules. In fact, context unification is the
computational bottleneck of our current implementation as most of Darwin’s
run time is spent on computing context unifiers. Darwin’s algorithm and data
structure to compute context unifiers are described in Section 4.6 below.

2.2 The Derivation Rules

The derivation rules of the calculus are described below. We follow the version
of rules given in [3] as those described in [2] are a somewhat simplified but
less powerful version. Except for Compact, which is a simplification rule that
applies only to contexts with variables/parameters, all the other rules are
direct first-order liftings of the rules of the DPLL calculus, and reduce to
those rules when the input clause set is ground.

Split
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L Λ, (Lσ)
sko ` Φ, C ∨ L

if (∗)

where (∗) =


C 6= 2,

σ is an admissible context unifier of C ∨ L against Λ

with remainder literal Lσ,

neither Lσ nor (Lσ)
sko

is contradictory with Λ

Split is the only non-deterministic rule of the calculus. As mentioned earlier,
the existence of an admissible context unifier σ of C∨L against Λ indicates that
IΛ falsifies (C∨L)σ. The left conclusion of the rule tries to fix this problem by
adding to the context a literal Lσ from σ’s remainder. The alternative right
conclusion—needed for soundness in case the repair on the left turns out to be
unsuccessful—adds instead the skolemized complement of Lσ, i.e. the results
of replacing all universal variables of Lσ, if any, by fresh Skolem constants.

The addition of (Lσ)
sko

prevents later splittings on L but leaves the possibility
of repairing the context by adding another of σ’s remainder literals. When
the rule is applicable, we call Lσ a split literal.

difference can be ignored here.

5

Page 7 of 171

Baumgartner, Fuchs, Tinelli

Assert
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L
if



σ is a context unifier of C against

Λ with an empty remainder,

Lσ is universal and

non-contradictory with Λ,

there is no K ∈ Λ s. t. K is

p-preserving more general than Lσ

When Assert applies, the only way to find a model for the clause set based on
the current context or any extension of it is to satisfy every ground instance
of Lσ. The addition of Lσ makes sure that this is the case. Applications of
Assert are highly desirable in practice because i) they strongly constrain further
changes to the context, thereby limiting the non-determinism caused by the
Split rule, and ii) they cause more applications of the three simplification rules
below. When the rule is applicable, we call Lσ an assert literal.

Subsume
Λ, K ` Φ, L ∨ C

Λ, K ` Φ
if K is p-preserving more general than L.

Subsume removes clauses that are “permanently satisfied” by the context,
that is, satisfied by the interpretation denoted by the current context or any
context that extends the current one. Subsume is not needed for completeness
but might improve the performance of an implementation.

Resolve
Λ ` Φ, L ∨ C

Λ ` Φ, C
if


there is a context unifier σ of L

against Λ with an empty remainder

such that Cσ = C

Resolve simplifies the clause set by removing literals from clauses. Like
Subsume it is not needed for completeness. Resolve is the only rule of the
calculus that is not implemented in its full generality in Darwin. In the current
implementation Resolve is only applied for the special case in which there is a
K in Λ s.t. ¬K is p-preserving more general than L.

Compact
Λ, K, L ` Φ

Λ, K ` Φ
if K is p-preserving more general than L

Compact simplifies the context by removing literals which are instances of
other literals. 6 Compact is another optimization rule.

Close
Λ ` Φ, C

Λ ` 2
if


Φ 6= ∅ or C 6= 2,

there is a context unifier σ of C against Λ

with an empty remainder

6 The literals K and L are meant to be distinct.

6

Page 8 of 171

Baumgartner, Fuchs, Tinelli

Close detects a context which falsifies the clause set and cannot be modified
in order to satisfy it. When the rule is applicable, we call σ a closing context
unifier.

2.3 Derivation Tree

Definition 2.2 (Derivation Tree) A derivation tree is a labeled tree induc-
tively defined as follows:

(i) a one-node tree is a derivation tree iff its root is labeled with a sequent
of the form Λ ` Φ, where Λ is a context and Φ is a clause set;

(ii) A tree T′ is a derivation tree iff it is obtained from a derivation tree T
by adding to a leaf node N in T new children nodes N1, . . . , Nm so that
the sequents labeling N1, . . . , Nm can be derived by applying a rule of the
calculus to the sequent labeling N . In this case, we say that T′ is derived
from T.

Split as the only non-deterministic rule introduces two children nodes, every
other rule only one child node.

Definition 2.3 (Open, Closed) A branch in a derivation tree is closed if
its leaf is labeled by a sequent of the form Λ ` 2; otherwise, the branch is
open. A derivation tree is closed if each of its branches is closed, and it is open
otherwise.

Definition 2.4 (Derivation) A derivation is a possibly infinite sequence of
derivation trees (Ti)i<κ, such that for all i with 0 < i < κ, Ti is derived from
Ti−1.

For a given input clause set Φ, derivations are started with the sequent
¬v ` Φ in the root node. Here, the pseudo-literal ¬v causes the interpretation
denoted by the context to falsify every atom by default.

A derivation ending with a closed derivation tree is a proof of the unsatis-
fiability of Φ. An exhausted branch, i.e. a branch to whose leaf no derivation
rules apply, is a proof for the satisfiability of Φ, its context denotes a model
for the clause set.

An important aspect to guarantee refutational completeness is to equip
the calculus with a suitable notion of fairness . We will not describe it here
and refer to [2,3] instead. We note, however, that it enables proof proce-
dures emphasizing don’t-care nondeterminisms. The sole form of don’t-know
nondeterminism is caused by the branching nature of the Split inference rule.

3 The Proof Procedure

The proof procedure implemented in Darwin follows the main loop described
below. Similarly to the DPLL procedure, Darwin’s procedure basically corre-
sponds to a depth-first, or more precisely an iterative-deepening, exploration

7

Page 9 of 171

Baumgartner, Fuchs, Tinelli

of a derivation tree of the calculus. At any moment, the procedure stores in
its data structures a single branch of the tree, where split nodes correspond
to decision points. The procedure grows a branch until

• the branch can be closed, in which case it backtracks to a previous choice
point and regrows the branch in the alternative direction, or

• the branch cannot be grown further, which means that a model of the input
set has been found, or

• a depth limit is reached, in which case the procedure restarts from the
beginning, but with an increased depth limit.

At any moment, in addition to the current context and the set of current
clauses, the procedure maintains a set of candidate literals, literals that could
be added to the context as a consequence of the application of the Assert or
Split rule. Before entering the main loop, the candidate set is initialized with
all the literals that could be added to the initial context by an application of
Assert, which are just the unit clauses from the given clause set.

The main loop of Darwin’s proof procedure consists of the following steps:

(i) Candidate Selection
If the candidate set is empty the problem is proven satisfiable and the

procedure ends returning the current context, which denotes a model of
the input clause set. Otherwise, a literal is chosen from the candidate set
based on selection heuristics described in Section 4.7. The heuristics are
based on various measures but it always prefers Assert candidates over
Split candidates, in order to minimize the creation of backtrack points.

(ii) Context Evolution
If the selected literal is a Split literal, a backtrack point is created (cor-

responding to the left part of the application of the Split rule). Then, the
literal is added to the context, the Compact rule is exhaustively applied
to the new context, and the Subsume, and Resolve rules are exhaustively
applied to the current clause set using the new context literal.

(iii) Context Unifier Computation
All possible context unifiers between current clauses and the new con-

text are computed which involve the new context literal. If this leads to
the computation of a closing context unifier, a context unifier with an
empty remainder, the current branch is immediately closed, forcing the
procedure to backtrack.

(iv) Backtracking
If a closing context unifier is found in the previous step, the current

context does not satisfy the input clause set and is unrepairable. The
procedure then backtracks to a previous choice point, undoing all changes
to the context and the clause set done from that choice point on. Since
the choice point corresponds to the left part of the application of the
Split rule which added a literal L to the context, the right part of the

8

Page 10 of 171

Baumgartner, Fuchs, Tinelli

application is then tried. The skolemized complement of L is selected for
addition to the context and the computation continues with Step ii.

If there are no more choice points to backtrack to, the input set is
proven unsatisfiable and the procedure quits.

(v) Candidate Generation
If no closing context unifier is found in Step iii, the procedure extracts

from the computed context unifiers all those literals that are suitable for
an application of Split or Assert, adds them to the candidate sets, and
goes back to Step 1.

A high-level pseudocode description of the proof procedure is provided in
Figure 1. For simplicity we describe a non-restarting recursive version of the
procedure implementing naive chronological backtracking. When it terminates
the procedure either returns a set of literals, representing the most recent
context and denoting a model of the input clause set, or raises the exception
CLOSED, to denote that the clause set is unsatisfiable. In the backjumping
version the exception CLOSED would also carry dependency information used
to decide whether to ignore right splits or not. The following example is
intended to demonstrate the working of the proof procedure.

Example 3.1 Let Φ be the following clause set.

p(x, a) ∨ s(a) (1)
q(x, y) ∨ q(y, x) (2)
r(f(x, y)) ∨ ¬p(x, y) (3)
¬p(a, a) ∨ ¬q(x, y) ∨ ¬r(f(a, y)) (4)

After initializing its variables Λ and L, the proof procedure in Figure 1
first determines an initial set of candidates CS . Because Φ contains no unit
clause, CS is the empty set and the function me is called as me(Φ, ∅,¬v, ∅).

The set of new candidates CS ′ determined then consists of the two split
literals p(x, a) and q(u, v). They originate from clause 1 and from clause 2,
respectively. Simplification of Φ has no effect, and so Φ′ is the same as Φ.
The current context Λ′ becomes {¬v}. Because of CS ′ 6= ∅, line 20 is reached,
and the selection heuristics choses p(x, a) as the literaral L to consider for
the next inference step (the literal p(x, a) is preferred over the other split
literal, q(u, v), because it is universal, while q(u, v) is not; cf. Section 4.7 for
details). Because p(x, a) is a split literal, line 25 is reached, which results
in the call me(Φ, {¬v}, p(x, a), {q(u, v)}). In its execution, the new assert
candidate r(f(x, a)) is determined (from p(x, a) and clause 3) and thus gets
added to the given candidates, yielding CS ′ = {r(f(x, a)), q(u, v)}. This time,
simplification does show an effect: with the given literal p(x, a), which belongs
to the current context as noted on line 7, clause 1 is subsumed, and the first
literal of clause 4 is resolved away. The new clause set Φ′ thus is

q(x, y) ∨ q(y, x) (2)

9

Page 11 of 171

Baumgartner, Fuchs, Tinelli

Darwin
1 function darwin Φ
2 // input: a clause set Φ
3 // output: either ”unsatisfiable”
4 // or a set of literals encoding a model of Φ
5 let Λ = ∅ // set of literals
6 let L = ¬v // (pseudo) literal
7 // Λ∪{L} is the current context
8 let CS = set of assert literals consisting of the unit clauses in Φ
9 // the candidate set

10 try me(Φ, Λ, L, CS)
11 catch CLOSED-> "unsatisfiable"
12

13 function me(Φ, Λ, K, CS)
14 let CS ′ = add_new_candidates (Φ, Λ, K, CS)
15 let Φ′ = Φ simplified by Subsume and Resolve
16 let Λ′ = Λ ∪ {K} simplified by Compact
17 if CS ′ = ∅ then
18 Λ′ // Λ′ encodes a model of Φ′

19 else
20 let L = select_best (CS ′, Λ′)
21 if L is an assert literal then
22 me(Φ′, Λ′, L, CS ′ \ {L}) // assert L
23 else
24 try
25 me(Φ′, Λ′, L, CS ′ \ {L}) // left split on L
26 catch CLOSED->
27 me(Φ′, Λ′, L

sko
, CS ′ \ {L}) // right split on L

28

29 function add_new_candidates (Φ, Λ, L, CS)
30 adds to CS all assert literals from context unifiers involving L
31 and one split literal from each remainder of a context unifier involving L
32 raises the exception CLOSEDif it finds a closing context unifier
33

34 function select_best (CS , Λ)
35 returns the best assert or split literal in CS

Fig. 1. Darwin’s proof procedure as pseudo code.

r(f(x, y)) ∨ ¬p(x, y) (3)
¬q(x, y) ∨ ¬r(f(a, y)) (4’)

Next, p(x, a) is moved to the current context, yielding Λ′ = {¬v, p(x, a)}.
The execution of the pseudocode reaches line 20, and among the current candi-

10

Page 12 of 171

Baumgartner, Fuchs, Tinelli

dates CS ′ = {r(f(x, a)), q(u, v)} the literal r(f(x, a)) is selected by the heuris-
tics for further processing (see again Section 4.7). Because r(f(x, a)) is an
assert literal, line 22 is reached and me(Φ, {¬v, p(x, a)}, r(f(x, a)), {q(u, v)})
is called. On execution, the newly asserted literal r(f(x, a)) together with the
clause 4’ gives rise to the new assert candidate ¬q(x, a). Notice that in the un-
derlying Assert rule application the context literal r(f(x, a)) gets instantiated
to r(f(a, a)) – with a parametric literal r(f(u, a)) instead, ¬q(x, a) could not
be derived as an assert candidate. Now, ¬q(x, a) is chosen to be asserted, and
the next call thus is me(Φ, {¬v, p(x, a), r(f(x, a))},¬q(x, a), {q(u, v)}). Be-
cause for the context {¬v, p(x, a), r(f(x, a)),¬q(x, a)} a closing context uni-
fier exists (it uses clause 2), the exception CLOSED is raised. Notice that the
parametric literal p(u, v) from the set of candidate literals was never chosen
to derive this closed branch.

The exception raised is caught by the first incarnation of me. Its execution
thus reaches line 27 and tries the right alternative of that Split application.
Because the split literal was p(x, a) the corresponding call to me uses the
complement of the Skolemized version of p(x, a), say, ¬p(c, a). On the ex-
ecution of me(Φ, {¬v},¬p(c, a), {q(u, v)}), the new assert candidate s(a) is
derived from ¬p(c, a) and clause (1). It will indeed be asserted, and for the
next call to me only one candidate will be available, which is the split lit-
eral q(u, v). After chosing it and calling me again no more candidate can be
determined. The execution of me thus terminates and returns the context
{¬v,¬p(c, a), s(a), p(u, v)} to indicate satisfiability of the given clause set.

4 Implementation

The description of the proof procedure in the previous section omits most
implementation details and also leaves room for certain improvements. We
provide some of these details as implemented in Darwin next, focusing more
on those that are significant for its performance.

4.1 Term Database

During the derivation hundreds of thousands of terms may be created, eas-
ily consuming hundreds of megabytes of memory. Many of these terms are
dropped soon after creation, e.g. in backtracking or when a new context literal
permanently satisfies a number of remainders. This causes a lot of time spent
by the garbage collector.

To lessen the problems caused by high memory consumption, terms are
stored in a compact way. Terms are represented in a natural way as tree-like
data-structures. However, at a lower representational level, Darwin uses a
database technique similar to the one used in the Vampire prover [13]. 7 Com-
pared to a näıve representation of terms, it allows for vastly reduced memory

7 Similar techniques are also used in Otter [11] and E [14].

11

Page 13 of 171

Baumgartner, Fuchs, Tinelli

consumption by sharing common subterms. For instance, the terms p(f(a))
and g(f(a)) share the common subterm f(a), which needs to be represented
only once in memory.

As in Vampire, usage of terms is managed by associating counters with
them. Requesting a term increments its usage counter, explicit deregistration
decrements it. When a term’s usage counter drops to zero, the term is re-
moved from the database and garbage collected. 8 Contrary to term requests,
which are processed immediately, deregistration requests for a term are stored
in a buffer and processed (in order of arrival) only when the buffer is full,
effectively delaying by the buffer’s length the decrement of the term’s usage
counter. Since quite often the same terms are requested and released as part
of the candidate set management process, this delay in processing deregistra-
tion requests reduces the number of times those terms are actually removed
from and reinserted into the database.

The overhead of retrieving a term from the database is reduced by means
of an efficient hashing on the terms. Furthermore, we gain the possibility
of implementing term equality tests as constant-time pointer equality tests,
and we save in term creation and garbage collection, leading in practice to
performance improvements in some cases.

4.2 Backjumping and Dynamic Backtracking

The simplest backtracking strategy for a search procedure is (näıve) chrono-
logical backtracking, which backtracks to the most recent choice point in the
current branch of the search tree. A more effective form of chronological
backtracking, implemented instead in Darwin, is backjumping, which takes
dependencies between choice points into account. The idea of backjumping is
best explained in terms of the calculus: suppose the derivation subtree below a
left node introduced by a Split rule application is closed and the literal added
on the left conclusion by that application is not needed to establish that the
subtree is closed. Then, the Split rule application can be viewed as not being
carried out at all. The proof procedure thus may neglect the corresponding
choice point on backtracking and proceed to the previous one.

Backjumping is well known to be one of the most effective improvements
for propositional SAT solvers. Its implementation is not too difficult and is
based on keeping track of which context literals and clauses are involved in
particular in Assert and Close rule applications. Backjumping is an example of
a successful propositional technique that directly lifts to the proof procedure
of Darwin.

8 Note that Darwin does not implement its own garbage collector. Since Darwin is written
in OCaml, removing the term from the database is enough to make the memory locations
it occupies available to OCaml’s garbage collector. To eliminate the overhead of explicit
registrations and deregistration in the database we plan to reimplement the term database
using OCaml’s weak hash tables, which effectively push the registrations and deregistration
activities down to the compiler level.

12

Page 14 of 171

Baumgartner, Fuchs, Tinelli

A smarter technique than backjumping has been proposed under the name
of dynamic backtracking by Ginsberg [7]. It can be adapted to our proof pro-
cedure and it is currently implemented in Darwin as an alternative to back-
jumping. The idea is that a choice point (and associated state) not involved
in establishing that a branch is closed is not discarded as in backjumping,
but kept if it does not depend on a discarded choice point. Conceptually,
the choice points are no longer seen as nodes in a tree but as nodes of a de-
pendency graph. Discarding a choice point does not automatically invalidate
all later created choice points as well, but only those dependent on it. Thus
dropping and possibly recomputing a still valid and potentially useful part of
the derivation is avoided.

A disadvantage of dynamic backtracking versus backjumping is that its
implementation is more involved and requires a more complex type of depen-
dency analysis. This causes non-negligible runtime overhead. Furthermore,
because derivations are in general not shorter than with backjumping, it is not
yet clear at the moment when it is best to use dynamic backtracking instead
of backjumping.

4.3 Iterative Deepening over Term Depth

The refutational completeness of the proof procedure is ensured by using iter-
ative deepening over a bound on term depth, i.e. over the depth of terms seen
as trees. The proof procedure never adds a literal to the context if its depth
exceeds the current term depth bound. Thus, when the inference rule applica-
tions to the current context are exhausted 9 and leave it open, the procedure
has to check if a candidate literal has been ignored because it exceeded the
depth bound. If so, the procedure will restart with a completely new deriva-
tion and an increased term depth bound; otherwise, it reports the discovery
of a model for the input set.

A benefit of the scheme described is that possibly many candidates for
Assert and Split rule applications with deep terms will be dropped. This
vastly decreases the memory requirements for some problems which have a
refutation using only comparatively shallow terms but have lots of candidates
with deeper terms.

Currently, no information from a previous round is kept after a restart.
A valuable improvement of Darwin might be to avoid this and keep growing
the current branch under the increased term depth bound. Asymptotically,
though, there should be no difference. Another related improvement would
be to compute permanent lemma clauses as a side effect of derivations, as can
be commonly found in SAT solvers.

Alternative measures for literal complexity than taking the term depth

9 By the design of the inference rules it is impossible that a context contains two or more
p-variants of the same literal. This property implies the termination of exhaustive inference
rule applications under a term depth bound.

13

Page 15 of 171

Baumgartner, Fuchs, Tinelli

could be used as well. For instance, the hyper tableau prover KRHyper [17]
uses iterative deeping over term weights, which are computed as the number
of symbols in a term. The resolution prover Otter [11] offers sophisticated
control facilities to weigh a term. There is considerable room for further
experimentation.

4.4 Initial Default Interpretation

As mentioned in Section 2.3, the pseudo-literal ¬v that constitutes the initial
context assigns by default false to all ground atoms. Instead of ¬v, the pseudo-
literal v may be used, assigning true to all ground atoms. It is indeed often
plausible to take v, given that many theorem proving benchmarks consist
of an “axiom part” and a “theorem” part. The theorem part quite often
consists of one or more negative clauses. These theorem clauses are falsified
in the interpretation associated with the pseudo-literal v. Now, the calculus
considers for Split rule applications only clause instances that are falsified in
the current interpretation. This means that then theorems are used early in
the derivation, de-emphasizing, in particular, the use of positive clauses from
the axiom part. This way the calculus becomes more goal-oriented than it
would be with {¬v} as the initial context.

Nevertheless, and somewhat surprisingly (to us), the overall performance
on many TPTP problems that have the structure mentioned is much better
with ¬v than with v. This phenomenon should be investigated further.

4.5 Unification with Offsets

In order to avoid creating variants of terms when needed for unification, Otter
and KRHyper use so called contexts. A compile time limit for the number
of variables per term is imposed, e.g. 64 variables per term in the case of
KRHyper. Each variable in a term is identified by a number less than the
limit. During unification a context – containing a multiplier – is associated
with each term. The effective id of a variable during the unification is the
limit multiplied by the associated context’s multiplier plus the variable’s real
id. E.g. if the limit is 64, y has the id 1 in p(x, y), and for a given unification
the multiplier of the context associated with p(x, y) is 3, then the effective id
of y during the unification is 64 ∗ 3+1 = 193. To avoid exceeding the compile
time limit, terms are normalized when constructed so that the variable ids are
enumerated from 0 on.

Inspired by this idea Darwin uses offsets, which avoid the compile time
limitation. During unification the terms of each clause are associated with an
offset unique for the unification. The unification operates on “terms” of the
form offset :term. For example, if the clause p(x)∨ p(f(x)) is unified with two
variants of the context literal ¬p(u), the offset 0 may be associated with the
clause, and the offsets 1 resp. 2 with the two occurrences of the context literal.
Then the terms 0:p(x) and 1:¬p(u) are unified, and the terms 0:p(f(x)) and

14

Page 16 of 171

Baumgartner, Fuchs, Tinelli

2:¬p(u) are unified, yielding the unifier {0:x 7→ 1:u, 2:u 7→ 0:f(1:u)} where
1:u and 2:u are in fact two different variables.

4.6 Context Unifiers

Recall that Step 3 of Darwin’s proof procedure computes all possible context
unifiers involving the context literal just added. To be precise, the system
computes context unifiers of input clauses in order to identify literals that
can be added to the context by the Split rule, and computes context unifiers
of subsets of input clauses in order to identify literals that can be added by
the Assert rule. To speed up this computation, context unifiers are partially
precomputed and cached as described below. For simplicity, we consider here
only the computation of the context unifiers for Split. Figure 4.6 illustrates
this process and its embedding in the proof procedure.

θ1

L

L1

Ln

S1

Sn

Remainder

⊆ Cσ

···
···

···

θn

C

K ′· · · · · ·K

K Kθ = Lθ

③ σ = θθ1 · · · θn

④⑤

②
θ

②

K ′

θ

①

Candidate literals

unifiers
Partial context

Fig. 2. Computation of context unifiers and its embedding in the proof procedure.

Each input literal has an associated list of partial context unifiers. A partial
context unifier is merely a unifier between the input literal and a literal from
the current context. If a literal occurs in several input clauses at the same
position these occurrences share one list.

The bindings of the stored partial context unifiers are kept in a database
similar to the term database. Especially for some Horn problems, where many
very similar terms are computed, the unifiers tend to share most bindings.
Using the database leads to significant memory savings.

When a new literal K is added to the context (step i in the proof proce-
dure, step ① in Figure 4.6), the system computes all partial context unifiers
between (a fresh variant of) K and each input literal. Then it stores each
computed unifier on the list of the corresponding input literal. This is de-
picted in Figure 4.6 as step ②, however for only one input literal. After that,

15

Page 17 of 171

Baumgartner, Fuchs, Tinelli

for each literal L that unifies with K and for each input clause C containing
L, the system attempts to find all possible context unifiers of C against the
current context. This is done as follows.

Assume that C is of the form L∨L1∨· · ·∨Ln, θ is the partial context unifier
between L and K, and Si is the set of partial context unifiers stored in Li’s list.
Then the system considers each tuple of partial unifiers in {θ}×S1× · · ·×Sn

and attempts to merge the elements of that tuple into a single unifier (step
③ in Figure 4.6). When the merge succeeds, the resulting substitution is a
context unifier of C against the current context. 10

To minimize recomputation, the merged unifiers are computed incremen-
tally by traversing the partial context unifier lists for the clause C in a depth-
first fashion. The root node of the depth-first traversal is θ, its children are
all the partial context unifiers of L1, the children of each of the root’s children
are all the partial context unifiers of L2, and so on. Partial context unifiers are
merged incrementally as they are visited along a path of this imaginary tree,
and the merged unifier computed along a path is reused for all the extensions
of that path.

Clearly, less work is done if the tree is slim at the top, as less merging
operations are then necessary. To achieve this the lists associated with the
literals L1, . . . , Ln in C are actually first ordered by increasing length before
starting the traversal. This is indicated in Figure 4.6 by boxes of growing
length for S1 to Sn in this order.

Each newly computed context unifier determines a remainder (step ④ in
Figure 4.6), and every such (non-empty) remainder provides one new can-
didate literal that gets added to the candidate set in Step v of the proof
procedure 11 (step ⑤ in Figure 4.6, where the new candidate literal is denoted
as K ′).

Note that for each candidate literal, the system maintains a reference to
the remainder and the context unifier it came from. This entails that all the
computed context unifiers are permanently kept in memory. 12

It is interesting to point out though that the calculus does not prescribe
that at all: the Split inference rule (and similarly Assert) admits implementa-
tions that compute remainders only “locally”, during the Split rule application,
and discards them afterwards. Thus, for a given context, the possible context
unifiers of a clause could be computed, say, one after the other until an ad-
missible one is found. At this point Split could be applied using that unifier
and the unifier could then be immediately discarded. Memory consumption

10 The context unifier is converted into an admissible context unifier afterwards. But we
can ignore this issue here.
11 It can be shown that it is indeed enough to consider only one Split literal per remainder
without affecting the calculus’ completeness.
12 This is not entirely accurate, since only context unifiers with remainders containing
active candidate literals are explicitly kept (see Section 4.8). It is accurate though if we
assume that the set of active candidates is large enough to contain all candidates.

16

Page 18 of 171

Baumgartner, Fuchs, Tinelli

under such a scheme would be obviously far less. Nevertheless, the approach
as used in Darwin has a big advantage: because at any point in the derivation
all the theoretically necessary context unifiers and their remainders are explic-
itly stored, they are available for inspection and comparison. Because both
the choice of a remainder from the set of all possible (admissible) remainders,
and the choice of a literal from it to split with are don’t-care nondeterministic
choices, arbitrary heuristics can be employed for their computation.

Furthermore, for each pairing of an input literal L with a context lit-
eral, the computation of the context unifier for the clause containing L is
attempted exactly once in the current derivation tree branch. This avoids the
re-computation of the same context unifier that would happen in the more
näıve scheme indicated above.

These two considerations are the main rationale for the design decisions
that led to the described data structures and algorithms described above.
Fortunately, memory problems seem seldom to happen. But clearly more
experimental results explicitly monitoring memory consumption are needed.

4.7 Selection Heuristic

As explained in the previous section, all theoretically necessary remainders are
explicitly stored in memory, at any point in the derivation, which supports
the effortless implementation of heuristics to select a literal to split with. The
heuristics for selecting a literal from the candidate set to be added to the
context is based on the following criteria. The overall heuristics is determined
by the induced lexicographic ordering over these criteria, with “Universality”
being the most significant criterion, and “Generation” the least significant
one.

(i) Universality
Universal literals (which includes ground literals as well) are preferred

to parametric literals as they impose stronger constraints on the context.
Furthermore, as soon as the context contains parameters the number of
computed remainders and thus split candidates might increase signifi-
cantly.

(ii) Remainder Size 13

Recall that candidate literals for Split are drawn from the remainder
of some context unifier. Now, if the problem is satisfiable, at least one
remainder literal of every remainder must be satisfied by the context.
Because of this, candidate literals originating from smaller remainders
are preferred over literals from larger remainders. The rationale is that
backtracking is minimized this way. For an extreme case, note that for

13 This applies only to Split candidates, not Assert candidates. Assert is always preferred
over Split in order to emphasize redundancy elimination. Recall that Assert literals are
always universal. Therefore criterion (i) is always satisfied for Assert candidates, while
criteria (iii) and (iv) still take effect.

17

Page 19 of 171

Baumgartner, Fuchs, Tinelli

Split literals coming from a singleton remainder applying the right side of
Split is pointless because it immediately produces a closed branch. As a
consequence Darwin does not even generate a choice point when it adds
such literals to the context.

(iii) Term Weight
The number of symbols in a literal has shown to be useful information

that should be exploited. This emphasizes the use of “lighter” literals.
Because variables are excluded from counting, additional preference is
given to literals with variables instead of parameters or other terms at
the variable positions.

(iv) Generation
This is a measure of how close in the derivation the candidate is to the

original clause set. The generation of a context literal is −1 for ¬v, and
the generation of the corresponding candidate otherwise. The generation
of a candidate is the maximum of the generations of the context literals
used in its context unifier incremented by one. That is, candidates whose
context unifier is solely based on ¬v are of generation 0.

Candidates with a smaller generation are preferred. The intention is
to keep the derivation close to the problem set, similar to bidirectional
search. For some problems this is the key to their solutions; on average
it is a slight improvement.

Recall that the term depth is not needed as part of the heuristic as it is
implicitly imposed by the depth bound (see Section 4.3).

4.8 Inactive Candidates

In order to decrease the memory usage there is a limit on the number of
active candidates, i.e. the candidates stored together with the remainder they
came from and additional information for the selection heuristic. For the
other candidates—the inactive candidates—only the clause and the context
literals used in the computation of the context unifier are are stored. Due
to the term database this amounts to a few pointers per inactive candidate.
The management of active/inactive candidates in Darwin is analogous to the
management of active/passive clauses in recent versions of Waldmeister [6].
Specifically, however, it works as follows.

When the limit of active candidates is reached a new candidate is first
compared with the worst active candidate, according to the ordering relation
described in the previous subsection. If the new candidate is better, the worst
active candidate is made inactive, and the new candidate is added to the
active candidates; otherwise the new candidate is put into the set of inactive
candidates. The best inactive candidates are moved to the active set as active
candidates are selected for addition to the context and removed from the set.
When an inactive candidate is made active, the context unifier has to be

18

Page 20 of 171

Baumgartner, Fuchs, Tinelli

recomputed from the clause and context literals.

4.9 Substitution Tree Indexing

The context is basically a set of literals. The preconditions of Split, Assert,
and Subsume require, in essence, to search the context for literals that unify
with, subsume, or are subsumed by a given literal. Some of these queries are
applied to every computed candidate at least once in order to immediately
drop invalid, e.g. subsumed, candidates. In order to avoid a linear scan of the
context to perform each of these checks, Darwin uses term indexing for the
context based on substitution trees [9].

Substitution trees index terms by abstracting over identical subterms. E.g.
the terms f(g(a)) and f(g(b)) are represented by a node containing f(g(x))
and two children containing the substitutions {x 7→ a} and {x 7→ b}. Thus for
the term f(h(a)) the non-unifiability is detected at the node f(g(x)) for both
children. In general substitution trees seem to be best suited for deep terms
containing variables. For shallow ground terms, e.g. for clause sets stemming
from Bernays-Schönfinkel problems, Darwin’s implementation of substitution
trees actually produces slower performance than no indexing at all.

For comparison an alternative indexing scheme based on imperfect dis-
crimination trees has been implemented. Their performance is quite close
to substitution trees for non Horn problems and slightly superior for Horn
problems. This might be due to an inefficient implementation of the signifi-
cantly more complex substitution trees, too small indexes – rarely larger than
some ten thousand terms –, unsuitable terms or a bad query to maintenance
operation ratio.

4.10 Close Look-ahead

A branch is detected as unsatisfiable as soon as Close applies, which happens
when a context unifier with an empty remainder is computed for an input
clause. It is easy to see however, that when two contradictory Assert candidates
are computed, the branch containing them can be closed after one Assert
application. Now, due to the fact that candidate literals wait for their turn
in the candidate set, in unlucky cases two contradictory candidates might be
ignored for a long time. To avoid this problem, Assert candidates are stored in
a substitution tree (Section 4.9). Each new candidate is checked against the
tree for a contradiction. As soon as this check succeeds Close can be triggered
by adding the new candidate to the context. 14

It is not clear yet if this in general improves the performance by leading
to shorter derivations or decreases the performance by introducing too much
overhead. First tests seem to indicate the first, but further tests are needed.

14 Actually, it is not added but the derivation is immediately backtracked.

19

Page 21 of 171

Baumgartner, Fuchs, Tinelli

4.11 Programming Language

Darwin is implemented in OCaml 15 . OCaml is—among other things—a fast
strongly-typed functional language based on ML. OCaml—and thus Darwin—
is available for several Unix-like operating systems including Linux and Mac
OS X, and for the Windows family. OCaml has previously been successfully
used for the implementation of the theorem prover KRHyper 16 at the Univer-
sity of Koblenz and for the solver ICS 17 at SRI International, among others.

Though the programming background of the second author, the main de-
veloper of Darwin, was mostly in OO-style C++, he quickly enjoyed using
OCaml. Among other things OCaml’s strong-typing, garbage collection, ex-
tremely short compile times, and informative news group made up for the
paradigm shift. At the current stage of development we find that the higher
level of abstraction provided by OCaml constructs—and thus the better read-
ability and maintainability of the code, compared to e.g. C—amply compen-
sate for possible performance losses when compared to implementations in
lower level languages like C.

5 Performance Evaluation

As mentioned we have just started evaluating the performance against the
TPTP problem library 18 . Because Darwin’s input language is clause logic,
and Darwin does not (yet) have dedicated inference rules for equality, we
concentrated on the clausal problems without equality.

Furthermore, in order to compare Darwin with other current provers, we
separately list results for some of the problem sets used in the last two CASC
competitions, i.e. CASC-18 in 2002 and CASC-19 in 2003 19 . Equality was
handled by including the axioms of equality as provided in the TPTP.

All tests were run on a Pentium IV 2.4Ghz computer with 512MB of RAM.
The imposed time limit was 300 seconds for the tests on the clausal problems of
the TPTP without equality, and 500 seconds for the CASC tests; the memory
limit was 500 MB in both cases. Experiments showed that for the CASC
competitions slower machines by a factor of three were used. As most problems
are solved within 100 seconds the results are comparable nevertheless.

Table 1 summarizes the results for the former problems and Table 2 sum-
marizes the result for the CASC problems. For each problem set the name
and the number of problems are given, followed by the results for the tested
Darwin configurations. Each result is stated as the number of problems solved
and the average CPU time spent on it.

15 See http://caml.inria.fr/ .
16 See http://www.uni-koblenz.de/~wernhard/krhyper/ .
17 See http://www.icansolve.com/ .
18 See http://www.cs.miami.edu/~tptp/ .
19 Available at http://www.cs.miami.edu/~tptp/CASC/18/ and
http://www.cs.miami.edu/~tptp/CASC/19/.

20

Page 22 of 171

Baumgartner, Fuchs, Tinelli

Name # Problems Default Dyn.Bt. v Inact. Discr. -Subs.
HNE 753 591/6.5 591/6.5 591/6.5 600/7.6 592/6.0 591/6.4
NNE 1172 803/4.1 804/3.9 730/9.0 802/4.0 801/3.7 802/4.1

Table 1. Results for Darwin test runs on the clausal problems of the TPTP prob-
lem library (version 2.6) without equality, divided in Horn problems (“HNE”) and
non-Horn problems (“NNE”). Table entries are of the form “Number of problems
solved”/“average CPU time”. See text for further explanations.

Name # Problems Best Default Dyn.Bt. v Inact.

CASC-18

HNE 35 34 18/24.0 18/24.0 18/24.0 19/23.0
HEQ 35 33 9/23.6 9/23.6 9/23.6 9/24.2
EPS 35 27 28/11.1 30/3.8 29/26.9 28/10.0
EPT 35 34 33/16.8 32/9.9 28/7.1 33/18.1
NNE 35 33 16/7.4 16/7.7 11/6.8 17/19.7
SNE 35 28 9/14.5 9/15.5 6/0.0 9/14.1

CASC-19

HNE 20 18 10/64.9 10/64.9 10/64.9 10/33.8
HEQ 20 18 0/0.0 0/0.0 0/0.0 0/0.0
EPS 35 34 31/6.2 31/5.0 31/28.5 31/5.4
EPT 35 33 31/5.6 31/7.6 30/29.3 32/19.1
NNE 20 18 12/16.5 10/16.8 8/53.9 13/31.0
SNE 35 34 3/0.0 3/0.0 2/0.0 3/0.0

Table 2. Results for Darwin test runs on CASC-18 and CASC-19 problem sets.
Problem names: HNE – Horn with No Equality; HEQ – Horn with some (but not
pure) Equality; EPS – Effectively Propositional non-theorems (satisfiable clause
sets); EPT – Effectively Propositional Theorems (unsatisfiable clause sets); NNE –
Non-Horn with No Equality; SAT with No Equality. Table entries are of the form
“Number of problems solved”/“average runtime”. See text for further explanations.

In Table 2, “Best” is the number of problems solved by the best prover for
this problem set at the CASC competition. In both tables, “Default” refers
to Darwin with all inference rules enabled, backjumping enabled, the initial
context {¬v}, the initial depth bound set to 2, and the use of substitution
tree indexing. The remaining columns represent modifications of this default
setting: “Dyn.Bt.” means dynamic backtracking instead of backjumping is
used, “v” means the initial context is set to {v}, “Inact.” picks the best
inactive literal instead of the oldest, i.e. candidate selection is better informed
but leads to more memory consumption 20 , “Discr.” uses discrimination trees
instead of substitution trees and “-Subs.” does not apply the Subsume rule.

20 Note that we described this improved behavior in Section 4.8.

21

Page 23 of 171

Baumgartner, Fuchs, Tinelli

Note that the backtracking method and default interpretation does not
matter for Horn problems, as, first, no backtracking happens at all, and,
second, no splitting occurs 21 — the pseudo-literal ¬v (or v) of the initial
context is never used. Further note that Darwin is among the best provers
for the EPS and EPT divisions, which consist of clause sets without function
symbols except constants.

The results show that backjumping and dynamic backtracking are close in
the number of solved problems, though they do not solve exactly the same
problems. The “v” setting is clearly inferior to the “¬v” setting in terms
of performance. In addition, “v” and “Inact.” are the only configurations
exceeding the memory limit repeatedly in the CASC tests. “Inact.” makes
up for this with the best result for HNE. Discrimination trees are in general
noticeably faster than substitution trees for Horn problems, and similar for
non-Horn problems. Deactivating Subsume leads to a slight performance de-
crease. Altogether the best configuration seems to be “Default + Inact. +
Discr.” for Horn problems, and “Default + Inact.” for non-Horn problems, as
the current discrimination tree implementation does not support productivity
checks.

Updates of experimental results and more detailed information, including
Darwin’s time and memory consumption individually for each problem, can
be found on Darwin’s web page, http://www.mpi-sb.mpg.de/~baumgart/

DARWIN/.

6 Conclusions and Future Work

The purpose of this paper was to describe the design of the Darwin theo-
rem prover, its proof procedure, data structures and algorithms. One of the
main motivations for developing Darwin’s calculus, Model Evolution, was the
possibility of migrating to the first-order level some of those very effective
techniques developed by the SAT community for the DPLL procedure. This
goal has been achieved to a certain degree: the current version of Darwin
implements a first-order version of unit propagation, a form of simplification,
and backjumping, a form of intelligent backtracking. These features, which
are considered absolutely critical for the good performance of propositional
DPLL-based SAT solvers, where the most immediately implementable as the
Model Evolution calculus itself [2,3] was already designed with them in mind.

Yet, much remains to be done. Various alternatives and modifications to
Darwin’s data structures and algorithms have been identified in Section 4.
Among these, perhaps the most significant one concerns the selection heuris-
tics explained in Section 4.7.

It will be interesting to adapt to Darwin some of the heuristics that have
proven useful with the propositional DPLL procedure. For instance, we are

21 Assert and Close are sufficient for completeness, Split is not needed.

22

Page 24 of 171

http://www.mpi-sb.mpg.de/~baumgart/DARWIN/
http://www.mpi-sb.mpg.de/~baumgart/DARWIN/
http://www.mpi-sb.mpg.de/~baumgart/DARWIN/

Baumgartner, Fuchs, Tinelli

considering implementing a literal selection heuristics that prefers candidates
from recent conflict sets, i.e., recently responsible for the closure of a previous
branch [8]. Since conflict sets are already computed in Darwin as they are
used for backtracking (see Section 4.2) this heuristics should be quite easy to
incorporate. The incorporation of another staple technique for DPLL-based
solvers, lemma learning, is planned for the next version. Adding lemmas,
however, will require some more theoretical work on the calculus level first.

Fairness of derivations is currently realized through iterative deepening
over term depth. It will be interesting to experiment with alternatives like iter-
ative deepening over derivation length. Different iterative deepening strategies
are known to have drastical impact on the search space exploration of model
elimination provers, and it seems plausible to expect the same for Darwin.

We also reported on practical experiments carried out with problems from
the CADE-18 and CADE-19 system competitions, as well as on results on
parts of the TPTP problem library. When assessing the performance of Dar-
win compared to other provers, we believe one should take into account that
the Model Evolution calculus is a very recent development. A great deal of
knowhow has been developed over the last decades for the implementation
in particular of resolution and model elimination based systems. Although
the techniques employed there can be partially exploited (and we tried so for
Darwin), new algorithms and data structure tailored for the Model Evolution
calculus are probably needed. Similarly, more work is necessary to identify
successful proof strategies and heuristics for the calculus. The same applies to
other instance-based methods such as, e.g., the disconnection tableau calculus
[10], which presently seems to be the only calculus of this kind for which a
competitive prover exists [15]. Despite a lack of established knowhow we find
our first experimental results very encouraging. In particular, Darwin per-
forms very well on clause sets stemming from Bernays-Schönfinkel problems.
It is among the best provers for the EPS and EPT divisions of the TPTP
library.

Darwin is available from the authors on request; we would be glad if others
found it useful.

Acknowledgements

We thank the anonymous referees for their insightful comments on how to im-
prove the paper and for their valuable suggestions on how to improve Darwin’s
implementation as well.

The work of the second and third authors was partially supported by Grant
No. 237422 from the National Science Foundation.

23

Page 25 of 171

Baumgartner, Fuchs, Tinelli

References

[1] Peter Baumgartner. Fdpll – A First-Order Davis-Putnam-Logeman-Loveland
Procedure. In David McAllester, editor, CADE-17 – The 17th International
Conference on Automated Deduction, volume 1831 of Lecture Notes in Artificial
Intelligence, pages 200–219. Springer, 2000.

[2] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In
Franz Baader, editor, CADE-19 – The 19th International Conference on
Automated Deduction, volume 2741 of Lecture Notes in Artificial Intelligence,
pages 350–364. Springer, 2003.

[3] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus.
Fachberichte Informatik 1–2003, Universität Koblenz-Landau, Universität
Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2003.

[4] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[5] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, July 1960.

[6] J.-M. Gaillourdet, Th. Hillenbrand, B. Löchner, and H. Spies. The new
Waldmeister loop at work. In F. Baader, editor, Proceedings of the 19th
International Conference on Automated Deduction, volume 2741 of LNAI, pages
317–321. Springer-Verlag, 2003.

[7] Matthew L. Ginsberg, James M. Crawford, and David W. Etherington.
Dynamic backtracking, 1996.

[8] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver, 2002.

[9] Peter Graf. Substitution tree indexing. Research Report MPI-I-94-251, Max-
Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany,
October 1994.

[10] Reinhold Letz and Gernot Stenz. Proof and Model Generation with
Disconnection Tableaux. In Robert Nieuwenhuis and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, 8th International
Conference, LPAR 2001, Havana, Cuba, volume 2250 of Lecture Notes in
Computer Science. Springer, 2001.

[11] William W. McCune. OTTER 3.0 reference manual and guide. Technical
Report ANL-94/6, National Laboratory, Argonne, IL, 1994.

[12] F. Oppacher and E. Suen. HARP: A Tableau-Based Theorem Prover. Journal
of Automated Reasoning, 4:69–100, 1988.

[13] Alexandre Riazonov and Andrei Voronkov. Vampire 1.1 (system description).
In Proc. International Joint Conference on Automated Reasoning, volume 2083
of Lecture Notes in Computer Science. Springer-Verlag, 2001.

24

Page 26 of 171

Baumgartner, Fuchs, Tinelli

[14] S. Schulz. System Abstract: E 0.3. In H. Ganzinger, editor, Proc. of the 16th
CADE, Trento, number 1632 in LNAI, pages 297–301. Springer, 1999.

[15] Gernot Stenz. DCTP 1.2 - System Abstract. In Uwe Egly and Christian G.
Fermüller, editors, Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX 2002, Copenhagen, Denmark,
July 30 - August 1, 2002, Proceedings, volume 2381 of Lecture Notes in
Computer Science, pages 335–340. Springer, 2002.

[16] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo
theories. In Giovambattista Ianni and Sergio Flesca, editors, Proceedings of the
8th European Conference on Logics in Artificial Intelligence (Cosenza, Italy),
volume 2424 of Lecture Notes in Artificial Intelligence. Springer, 2002.

[17] Christoph Wernhard. System Description: KRHyper. Fachberichte Informatik
14–2003, Universität Koblenz-Landau, Universität Koblenz-Landau, Institut für
Informatik, Rheinau 1, D-56075 Koblenz, 2003.

[18] H. Zhang and M. E. Stickel. An efficient algorithm for unit propagation. In
Proceedings of the Fourth International Symposium on Artificial Intelligence
and Mathematics (AI-MATH’96), Fort Lauderdale (Florida USA), 1996.

25

Page 27 of 171

ESFOR 2004 Preliminary Version

Simple and Efficient Clause Subsumption with
Feature Vector Indexing

Stephan Schulz 1

ITC/irst, Trento, Italy
and

Technische Universität München, Germany

Abstract

We describe feature vector indexing, a new, non-perfect indexing method for clause
subsumption. It is suitable for both forward (i.e., finding a subsuming clause in a
set) and backward (finding all subsumed clauses in a set) subsumption. Moreover,
it is easy to implement, but still yields excellent performance in practice. As an
added benefit, by restricting the selection of features used in the index, our technique
immediately adapts to indexing modulo arbitrary AC theories with only minor loss
of efficiency. Alternatively, the feature selection can be restricted to result in set
subsumption.

Feature vector indexing has been implemented in our equational theorem prover
E, and has enabled us to integrate new simplification techniques making heavy use
of subsumption. We experimentally compare the performance of the prover for
a number of strategies using feature vector indexing and conventional sequential
subsumption.

Key words: automated theorem proving, saturation,
subsumption, indexing

1 Introduction

First-order theorem proving is one of the core areas of automated deduction.
In this field, saturating theorem provers have, in the last few years, developed
a significant lead compared to systems based on other paradigms, such as
top-down reasoning or instance-based methods.

There are a number of reasons for this. At least one of these reasons is
the compatibility of saturating calculi with a large number of redundancy
elimination techniques, as e.g. tautology deletion, rewriting, and clause sub-
sumption. Subsumption allows us to discard a clause (i.e., exclude it from

1 Email: schulz@eprover.org
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Page 28 of 171

Schulz

further proof search) if a (in a suitable sense) more general clause exists. In
many cases, subsumption can eliminate between 50% and 95% of all clauses
under consideration, with a corresponding decrease in the size of the search
state.

Subsumption of multi-literal clauses is an NP-complete problem [5]. If
some attention is paid to the implementation, the worst case is rarely (if ever)
encountered in practice, and single clause-clause subsumption tests rarely form
a critical bottleneck. However, the sheer number of possible subsumption
relations to test for means that a prover can spend a significant amount of
time in subsumption-related code. Even in the case of our prover E [12,13],
which, because of its DISCOUNT loop proof procedure, minimizes the use
of subsumption, frequently between 10% and 20% of all time was spent on
subsumption, with much higher values observed occasionally. The cost of
subsumption systematically increases if other simplification techniques based
on subsumption are implemented.

In a saturating prover, we are most often interested in subsumption rela-
tions between whole sets of clauses and a single clause. In forward subsump-
tion, we want to know if any clause from a set subsumes a given clause. In
backward subsumption, we want to find all clauses in a set that are subsumed
by a given clause.

We can use this observation to speed up subsumption, by using index-
ing techniques that only return candidates suitable for a given subsumption
relation from a set of clauses, thus reducing the number of explicit subsump-
tion tests necessary. A perfect index will return exactly the necessary clauses,
whereas a non-perfect index should return a superset of candidates for which
the desired relationship still has to be verified.

Term indexing techniques have been used in theorem provers for some time
now (see [7] for first implementations in Otter or [2,3,14] for increasingly up-
to-date overviews). However, lifting term indexing to clause indexing is not
trivial, because the associative and commutative properties of the disjunction
and the symmetry of the equality predicate are hard to handle. In many cases,
(perfect) term indexing is only used to retrieve subsumption candidates, i.e.,
to implement non-perfect clause indexing (see e.g. [17]). Moreover, often two
different indices are used for forward- and backward subsumption, as e.g. in
the very advanced indexing schemes currently implemented in Vampire [10].

We suggest a new indexing technique based on subsumption-compatible
numeric clause features. It is much easier to implement than known tech-
niques, and the same, relatively compact data structure can be used for both
forward- and backward subsumption. We have implemented the new tech-
nique for E 0.8, and in a more polished and configurable way, for E 0.81, with
excellent results.

In this paper, we will, after some initial definitions, describe the new tech-
nique. We will also discuss how it has been integrated into E, and how it also
serves to speed up contextual literal cutting, a subsumption-based simplifica-

2

Page 29 of 171

Schulz

tion technique that has given another boost to E. We present the results of
various experiments to support our claims.

2 Preliminaries

We are primarily interested in first order formulae in clause normal form in
this paper. We assume the following notations and conventions. Let F be a
finite set of function symbols. We write f |n ∈ F to denote f as a function
symbol with arity n. Functions symbols are written as lower case letters, we
usually use a, b, c for function symbols with arity 0 (constants), and f, g, h
for other function symbols. Let V be an enumerable set of variable symbols.
We use upper case letters, usually X, Y, Z to denote variables. The set of all
terms over F and V , Term(F ,V), is defined as the smallest set fulfilling the
following conditions:

(i) X ∈ Term(F ,V) for all X ∈ V

(ii) f |n ∈ F , s1, . . . , sn ∈ Term(F ,V) implies f(s1, . . . , sn) ∈ Term(F ,V)

We typically omit the parenthesis from constant terms, as for example in the
expression f(g(X), a) ∈ Term(F ,V).

An (equational) atom 2 is an unordered pair of terms, written as s' t. A
literal is either an atom, or a negated atom, written as s 6' t. We define a
negation operator on literals as s' t = s 6' t and s 6' t = s' t. If we want to
write about arbitrary literals without specifying polarity, we use s'̇t, or, in
less precise way, l, l1, l2, Note that ' is commutative in this notation.

A clause is a multiset of literals, interpreted as an implicitly universally
quantified disjunction, and usually written as l1 ∨ l2 . . . ∨ ln. Please note
that in this notation, the ∨ operator is associative and commutative (but not
idempotent). The empty clause is written as �, and the set of all clauses
as Clauses(F ,V). A formula in clause normal form is a multiset of clauses,
interpreted as a conjunction.

A substitution is a mapping σ : V → Term(F ,V) with the property that
Dom(σ) = {X ∈ V | σ(X) 6= X} is finite. It is extended to a function on
terms, atoms, literals and clauses in the obvious way.

A match from a term (atom, literal, clause) s to another term (atom,
literal, clause) t is a substitution σ such that σ(s) ≡ t, where ≡ on terms
denotes syntactic identity and is lifted to atoms, literal, clauses in the obvious
way, using the unordered pair and multiset definitions.

2 For our current discussion, the non-equational case is a simple special case and can be
handled by encoding non-equational atoms as equalities with a reserved constant $true.
We will still write non-equational literals in the conventional manner, i.e., p(a) instead of
p(a)'$true.

3

Page 30 of 171

Schulz

3 Subsumption

If we consider a (multi-)set of clauses, that is, a formula in clause normal
form, not all of the clauses necessarily contribute to the meaning of it. Often,
some clauses are redundant. Some clauses do not add any new constraints on
the possible models of a formula, because they are already implied by other
clauses. Depending on the mechanism of reasoning employed, we can delete
some of these clauses, thus reducing the size of the formula (and hence the
difficulty of finding a proof). In the case of current saturating calculi, sub-
sumption is a technique that allows us to syntactically identify certain clauses
that are implied by another clause, and can usually be discarded without loss
of completeness. We can specify the (multiset) subsumption rule as a deleting
simplification rule (i.e., the clauses in the precondition are replaced by the
clauses in the conclusion) as follows:

(CS)
σ(C) ∨ σ(R) C

C

where σ is a substitution, C
and R are arbitrary (partial)
clauses

In other words, a clause C ′ is subsumed by another clause C if there is an
instance σ(C) that is a sub-multiset of C ′.

This version of subsumption is used by most modern saturation procedures.
It is particularly useful in reducing search effort, since it allows us to discard
larger clauses in favor of smaller clauses. Smaller clauses typically have fewer
inference positions and generate fewer and smaller successor clauses.

Individual clause-clause subsumption relations are determined by trying to
find a simultaneous match from all literals in the potentially subsuming clause
to corresponding literals in the potentially subsumed clause. This is usually
implemented by a backtracking search over permutations of literals in the
potentially subsumed clause (and in the equational case, permutations of terms
in equational literals). The first order clause subsumption problem is well-
known to be NP-complete. However, there are a number of implementation
techniques that can usually avoid the worst case, so that in practice individual
subsumption attempts can be completed in acceptable time.

Most of the techniques used to speed up subsumption try to detect failures
early by testing necessary conditions. Those include compatibility of certain
clause measures (discussed in more detail below) and existence of individu-
ally matched literals in the potentially subsumed clause for each literal in the
potentially subsuming clause. Additionally, in many cases certain permuta-
tions of literals can be eliminated by partially ordering clauses with a suitable
ordering.

However, whereas individual subsumption attempts are reasonably cheap
in practice, the number of potential subsumption relations to test for in sat-
uration procedures is very high. Using a straightforward implementation of
subsumption, we have measured up to 100 000 000 calls to the subsumption

4

Page 31 of 171

Schulz

subroutine of our prover E in just 5 minutes on a 300 MHz SUN Ultra-60 for
some proof tasks. Thus, the overall cost of subsumption is significant.

3.1 Subsumption Variants

In addition to standard multiset subsumption, there are a number of other
subsumption variants and related techniques. We will shortly discuss some of
them.

The definition of set subsumption is identical to that of multiset subsump-
tion, except in that clauses are viewed as sets of literals (i.e., no multiple
occurrences of the same literal are allowed). This allows for a slightly stronger
subsumption relation: p(X) ∨ p(Y) can subsume p(a) with set subsumption,
but not with multiset subsumption. Set subsumption can be used in pre-
processing or by provers not based on saturation. For most saturation-based
calculi (especially those for which factorization is an explicit inference rule),
the fact that a clause can subsume some of its factors causes loss of complete-
ness.

Subsumption modulo AC is a stronger version of multiset or set subsump-
tion, where we do not require that the instantiated subsuming clause is a
subset of the subsumed clause, but only that it is equal to a subset modulo a
specified theory for associative and commutative function symbols. For exam-
ple, if f is commutative, then p(f(a, X)) subsumes p(f(b, a)) ∨ q(a). We are
not aware of any system currently using subsumption modulo AC, however,
it is generally believed to be useful for reasoning modulo AC.

Equality subsumption allows an equational unit clause to potentially sub-
sume another clause with an equational literal implied by it. It can be de-
scribed by the following simplification rule:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

It is typically only applied if s ' t cannot be used for rewriting. This rule
is implemented by E and a number of other provers, including at least the
completion-based systems Waldmeister [6] and DISCOUNT [1].

Finally, a simplification rule that has been popularized by implementation
in SPASS [19] and Vampire [9], and is sometimes called subsumption resolu-
tion, combines resolution and subsumption to cut a literal out of a clause. In
the context of a modern superposition calculus, we believe the rule can be
better described as contextual literal cutting :

(CLC)
σ(C) ∨ σ(R) ∨ σ(l) C ∨ l

σ(C) ∨ σ(R) C ∨ l

where l is the negation of l and
σ is a substitution

It can be implemented via a standard subsumption engine (by negating each
individual literal in turn, and then testing for subsumption) and is imple-
mented thus at least in E and Vampire. Depending on how and when this

5

Page 32 of 171

Schulz

Prover state: U ∪ P

U contains unprocessed clauses, P contains processed clauses.

Initially, all clauses are in U , P is empty.

while U 6= {}
g = delete best(U)
g = simplify(g, P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T) ∪ {g}
T = T ∪ generate(g, P)
foreach c ∈ T

c = cheap simplify(c, P)
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Remarks: simplify(c, S) applies all simplification inferences in which the main
(simplified) premise is c and all the other premises are clauses from S. This
typically includes full rewriting and (CLC). cheap simplify(c, S) works similarly,
but only applies inference rules with a particularly efficient implementation,
often including rewriting with orientable units, but not usually (CLC).
Similarly, in this context, a clause is trivial, if it can be shown redundant with
simple, local syntactic checks. If we test for redundancy, we also apply more
complex and non-local techniques.

Fig. 1. Saturation procedure of E

rule is applied, it can increase the number of required subsumption tests by
many orders of magnitude.

3.2 Saturation Procedures and Clause Set Subsumption

Figure 1 shows a sketch of the main proof procedure of our prover E. It is
representative of a modern high-performance prover using a variant of the
DISCOUNT loop proof procedure (in which unprocessed clauses are passive,
i.e., not even used as side premises for simplification). The alternative Otter
loop primarily differs in that simplification and subsumption are also per-
formed between clauses in U and using clauses from U as side premises for
simplification of all clauses.

Please observe that standard subsumption appears in exactly two different
places and exactly two different roles in this procedure: First, we test if the
given clause g is subsumed by any clause in P . In other words, we want to

6

Page 33 of 171

Schulz

know if a single clause is subsumed by any clause from a set. This is usually
called forward subsumption.

If the given clause is not redundant, we next want to find all clauses in P
that are subsumed by g. Again, we have an operation between a single clause
and a whole set, in this case called backward subsumption.

It is obvious that we can implement forward and backward subsumption
naively by sequentially testing each clause from P against g. This implemen-
tation is e.g. used in early versions of SPASS [19], and was used in E up to
version 0.71. However, this does not make use of the fact that we are inter-
ested in subsumption relations between individual clauses and usually only
slowly changing clause sets. The idea behind clause indexing is to preprocess
the clause set so that subsumption queries can be answered more efficiently
than by sequential search.

4 Feature Vector Indexing

Indexing for subsumption is used by a number of provers. Most existing
implementations [17,18,7] use a variant of discrimination tree indexing on
terms to build a index for forward subsumption, often for non-perfect indexing.
Indexing for backward subsumption is less frequent, and usually based on
a variant of path indexing. We will now present a new and much simpler
technique suitable for both forward and backward subsumption.

Our technique is based on the compilation of necessary conditions on nu-
meric clause features. Essentially, a clause is represented by a vector of feature
values, and subsumption candidates are identified by comparisons of feature
vectors. Feature vectors for clause sets are compiled into a trie data structure
to quickly identify candidate sets.

4.1 Subsumption-Compatible Clause Features

A (numeric) clause feature function (or just feature) is a function mapping
clauses to natural numbers, f : Clauses(F ,V)→ N. We call f compatible with
subsumption if f(C) ≤ f(C ′) whenever C subsumes C ′. In other words, if f
is a subsumption-compatible clause feature, then f(C) ≤ f(C ′) is a necessary
condition for the subsumption of C ′ by C. Unless we specify a particular
subsumption variant, we assume standard multiset subsumption.

We will define a number of clause features now, all of which are compatible
with multiset subsumption, and many of which are compatible with other
subsumption variants.

Let C be a clause. We denote the sub-multiset of positive literals in C by
C+, and similarly the sub-multiset of negative literals by C−. Please note that
both C+ and C− are clauses as well. |C| is the number of literals in C. |C|f is
the number of occurrences of the symbol f in C, e.g. |p(a, b)∨f(a, a) 6'a|a = 4.

Let t be a term, and let f |n be a function symbol. We define df (t) as

7

Page 34 of 171

Schulz

follows:

df (t) =


0 if f does not occur in t

max{1, df (t1) + 1, . . . , df (tn) + 1} if t ≡ f(t1, . . . , tn)

max{df (t1) + 1, . . . , df (tm) + 1} if t ≡ g(t1, . . . , tm), g|m 6= f

Intuitively, df (t) is the depth of the deepest occurrence of f in t (or 0). The
function is continued to atoms, literals and clauses as follows:

df (s' t) = max{df (s), df (t)}
df (s'̇t) = df (s' t)

df (l1 ∨ . . . ∨ lk) = max{df (l1), . . . , df (lk)}
The feature functions defined by the following expressions are compatible with
standard subsumption, subsumption modulo AC, and equality subsumption:
|C+|, |C−|, |C+|f (for all f), |C−|f (for all f). The argument is essentially
always the same: instantiation can only add new symbols, and a superset
(super-multiset) or superstructure always contains at least as many symbols
as the subset or substructure.

The feature functions defined by the following expressions are compati-
ble with standard subsumption, set subsumption, and equality subsumption:
df (C

+) (for all f), df (C
−) (for all f). The argument is similar: Instantiation

can only introduce function symbols at new positions, never take them away
at an existing depth.

If any two feature functions f1, f2 are compatible with a certain sub-
sumption type, then any linear combination of the two with non-negative
coefficients is also compatible with that subsumption type. That is, f(C) =
af1(C) + bf2(C) with a, b ≥ 0 is also a compatible feature function.

Many provers already use the criterion that a subsuming clause cannot
have more function symbols that the subsumed one. In our notation, this can
be described by the requirement that

∑
f∈F |C|f ≤

∑
f∈F |C ′|f . This will, on

average, already decide about half of all subsumption attempts. However, by
looking at and combining more fine-grained criteria, we can do a lot better.

4.2 Clause Feature Vectors and Candidate Sets

Let πi
n be the projection function for the ith element of a vector with n ele-

ments. A clause feature vector function is a function F : Clauses(F ,V)→ Nn.
We call F subsumption-compatible (for a given subsumption type) if πi

n ◦ F
is a subsumption compatible feature for each i ∈ {1, . . . , n}. In other words,
a subsumption compatible feature vector function combines a number of sub-
sumption compatible feature functions. We will now assume that F is a
subsumption-compatible feature function. If F (C) = v, we call v the fea-
ture vector of C.

We define a partial ordering ≤s on vectors by v ≤s v′ iff πi
n(v) ≤ πi

n(v′)
for all i ∈ {1, . . . , n}. By definition of the feature vector, if C subsumes C ′,

8

Page 35 of 171

Schulz

then F (C) ≤s F (C ′). This allows us to succinctly identify the candidate sets
of clauses for forward- and backward subsumption. Let C be a clause and P
be a clause set. Then

candFSF (P, C) = {c ∈ P |F (c) ≤s F (C)}

is a superset of all clauses in P that subsume C and

candBSF (P, C) = {c ∈ P | F (C) ≤s F (c)}

is a superset of all clauses in P that are subsumed by C. As our experiments
show, if a reasonable number of clause features are used in the clause feature
vector, these supersets are usually fairly small. Restricting subsumption at-
tempts to members of a suitable candidate set reduces the number of attempts
often by several orders of magnitude.

4.3 Index Data Structure

Whereas it is possible to store complete feature vectors with every clause in a
set, this approach is rather inefficient in terms of memory consumption, and
still requires the full comparison of all feature vectors. If, on the other hand,
we compile feature vectors into a trie-like data structure, with all clauses
sharing a vector stored at the corresponding leaf, large parts of the vectors
are shared, and candidate sets can be computed much more efficiently.

Assume a (finite) set P of clauses with associated feature vectors F (P) of
length n. A clause feature vector index for P and F is a tree of uniform depth
n (i.e., each path from the root to a leaf has length n). It can be recursively
constructed as follows: If n is equal to 0, the tree consists of just a leaf node,
which we associate with all clauses in P . Otherwise, let D = {π1

n(F (C)) |
C ∈ P}, let Pi = {C | π1

n(F (C)) = i | i ∈ D} (the set of all clause for which
the first feature has a given value i, and let F ′ = 〈π2

n, . . . , π
n
n〉 ◦ F (shortening

the original feature vectors by the first element). Then the index consist of
a root node with successors Ti, such that each Ti is an index for Pi and F ′.
Inserting and deleting is linear in the number of features and independent of
the number of elements in the index.

As an example, consider F defined by F (C) = 〈|C+|a, |C+|f , |C−|b|〉, the
clauses C1 = p(a) ∨ p(f(a)), C2 = p(a) ∨ ¬p(b), C3 = ¬p(a) ∨ p(b), C4 =
p(X)∨ p(f(f(b)))}, and the set of clauses P = {C1, C2, C3, C4}. The feature
vectors are as follows: F (C1) = 〈2, 1, 0〉, F (C2) = 〈1, 0, 1〉, F (C3) = 〈0, 0, 0〉,
F (C4) = 〈0, 2, 0〉. Figure 2 shows the resulting index.

4.4 Forward Subsumption

For forward subsumption, we do not need to compute the full candidate set
candFSF (P, C). Instead, we can just enumerate the elements and stop as soon
as a subsuming clause is found. Assume a clause set P , a feature function F

9

Page 36 of 171

Schulz

{C2}

{C3}

0

1

{C1,C2,C3,C4}

0
{C3,C4}

0
0

{C4}{C4}

2

1

{C2}
0

{C2}

2

{C1}
1

{C1} {C1}
0

{C3}

Fig. 2. Example of Clause Feature Vector Index

with feature vector length n, and an index I. We denote by I[v] the subtree of
I associated with value v. The clause to be subsumed is C. Figure 3a) shows
the algorithm for indexed subsumption.

Note that it is trivial to return the subsuming clause (if any), instead of
just a boolean value. We traverse the subtrees in order of increasing feature
values, so that (statistically) smaller clauses with a higher chance of subsuming
get tested first.

The subsumption test in the leaves of the tree is implemented by sequen-
tial search. In particular, finding the candidate sets and applying the actual
subsumption test are clearly separated, i.e., it is trivially possible to use any
subsumption concept as long as F is compatible with it.

4.5 Backward Subsumption

The algorithm for backward subsumption is quite similar, except that we tra-
verse nodes with feature values greater than or equal to that of the subsuming
clause, and that we cannot terminate the search early, since we have to find
(and return) all subsumed clauses. We use the same conventions as above.
Additionally, mv(I) is the largest feature value associated with any subtree in
I. Figure 3b) shows the algorithm.

4.6 Optimizing the Index Data Structure

Each leaf in the feature vector index corresponds to a given feature vector. If
we ignore the internal structure of the trie, and the order of features in the
vector, we can associate each leaf with an unordered set of tuples (f, f(C)) of
individual feature functions and corresponding feature value. It is easy to see
that any order of features in the feature vector will generate the same number
of leaves, and that each leaf is either compatible with a given set of feature
function/feature value tuples, or not. Thus, at least for a complete search
as in the backward subsumption algorithm, we always have to visit the same
number of leaves.

However, we can certainly minimize the internal number of nodes in the

10

Page 37 of 171

Schulz

(a) Forward subsumption

function search subsuming(I, d, C)
if I is a leaf node then

if a clause in I subsumes C
return true

else
return false

else
for i ∈ {0, . . . , πd

n(F (C))}
if search subsuming(I[i], d + 1, C)

return true
return false

function is subsumed(I, C) // Return true if clause in I subsumes C
return search subsuming(I, 1, C)

(b) Backward subsumption

function search subsumed(I, d, C)
if I is a leaf node then

return {C ′ ∈ I | C ′ subsumed by C}
else

res = {}
for i ∈ {πd

n(F (C)), . . . ,mv(I)}
res = res ∪ search subsumed(I[i], d + 1, C)

return res

function find subsumed(I, C) // Return clauses in I subsumed by C
return search subsumed(I, 1, C)

Fig. 3. Forward and backward subsumption with feature vector indexing

trie, and thus the total number of nodes. Consider for a simple example
feature vectors with two features f1, f2, where f1 yields the same value for all
clauses from a set P , whereas f2 perfectly separates the set into n individual
clauses. If we test f1 first, our tree has just one internal node (plus the root).
Traversing all leaves touches n + 2 nodes (counting the root). If on the other
hand we evaluate the more informative f2 first, we will immediately split the
tree into n internal nodes, each of which has just one leaf as the successor.
Thus, to traverse all leaves we would touch 2n + 1 nodes, or, for a reasonably
sized n, nearly twice as many nodes.

This example easily generalizes to longer vectors. In general, we want the
least informative features first in a feature vector, so that as many initial paths
as possible can be shared. This is somewhat surprising, since for most exclu-

11

Page 38 of 171

Schulz

sion tests it is desirable to have the most informative features first, so that
impossible candidates are excluded early. Of course, if we have totally unin-
formative features, we can just as well drop them completely, thus shrinking
the tree depth.

Unfortunately, we have to determine the feature vector function before
we start building the index, i.e., in practice before the proof search starts.
We can only estimate the informativeness of a given feature by looking at
the distribution of its values in the initial clause set, and assume that this is
typical for the later clauses.

For best results, we could view application of a feature function to a clause
as a probability experiment and the results on the initial clause set as a sam-
ple. We could then sort features by increasing estimated entropy 3 [15] or
even conditional entropy. However, we decided to use a much simpler esti-
mator first, namely the range of the feature value over the initial clause set.
We have implemented three different mappings: Direct mapping, where the
place of a feature in the vector is determined by the internal representation of
function symbols used by the system, permuted, where features are sorted by
feature value range, and optimized permuted, where additionally features with
no estimated usefulness (i.e., features which evaluate to the same value for all
initial clauses) are dropped off.

Our experimental results show that both permuted and optimized per-
muted feature vectors perform much better than direct mapped ones, with
optimized permuted ones being best if we allow only a few features, whereas
plain permuted ones gain if we allow more features. Generally, we can decrease
the number of nodes in an index by about 50% using permuted feature vec-
tors. We explain this behaviour by noting that the degree of informativeness
is generally estimated correctly, but the prediction whether a feature will be
useful at all is less precise. We have especially observed the situation that only
a single negative literal occurs in the initial clause set (e.g. all unit-equational
proof problems with a single goal), and hence all features restricted to neg-
ative literals have an initial range of zero, although a large and varied set of
negative literals is generated during the proof search.

5 Implementation Notes

We have implemented clause feature vector indexing in our prover E, using es-
sentially simple versions of standard trie algorithms for inserting and deleting
feature vectors (and hence clauses), and the algorithms described in section 4.4
and 4.5 for forward and backward subsumption. We are using subsumption
only between the set of processed clauses P and the given clause g and vice

3 The entropy of a probability experiment is the expected information gain from it, or, in
other words, the expected cost of predicting the outcome. In our case, a feature with higher
entropy splits the clause set into more (or more evenly distributed) parts. See e.g. [11] or,
for a more comprehensive view, [4].

12

Page 39 of 171

Schulz

versa, but we have also implemented contextual literal cutting using the in-
dex. It can be optionally applied either to the newly generated clauses during
simplification (using clauses from P for cutting) or between g and P , in both
directions.

Feature vector indexing is used for forward and backward non-unit mul-
tiset subsumption, all versions of contextual literal cutting, (unit) equality
backward subsumption, and backward simplify-reflect (equational unit cut-
ting, see [12]) inferences. Forward equality subsumption and forward simplify-
reflect have been implemented using discrimination tree indexing (on maximal
terms in the unit clause used) since early versions of E.

Our standard multiset subsumption code, used both for conventional sub-
sumption and to check indexed candidates for actual subsumption, already
is fairly optimized. It uses a number of simple criteria to quickly determine
unsuitable candidates, including tests based on literal- and symbol count, and
individual literal matching. Only if all these tests succeed do we start the
recursive permutation of terms and literals to find a common match.

The feature vector index is implemented in a fairly straightforward way,
using a recursive data structure. Note that all our features in practice yield
small integers. Hence we have implemented the mapping from a feature value
to the subtree as a (dynamic) array. The only special case we support is the
case that a node has exactly one successor. In this case we do not use an
array, but just store the feature value and a pointer to the successor, to avoid
the memory overhead of the array.

Clauses in a leaf node are stored in a simple set data structure (which is
implemented throughout E as a splay tree [16] using pointers as keys). Empty
subtrees are deleted eagerly.

It may be interesting to note that the first (and working) version of the
indexing scheme took only about three (part-time) days to implement and
integrate from scratch. It took approximately 7 more days to arrive at the
current (production-quality) version that allows for a large number of different
clause feature vector functions to be used and applies the index to many
different operations. Compared to other indexing techniques, feature vector
indexing seems to be easy to implement and easy to integrate into existing
systems.

6 Experimental Results

We used all 5180 clause normal form problems from TPTP 2.5.1, without
equality axioms, but otherwise unchanged. All test runs were performed on a
cluster of 300MHz SUN Ultra-60 workstations with a time limit of 300 seconds
(or equivalent configurations). The memory limit was 192 MB.

The indexed version of the prover uses a maximum feature vector length
of 75. Features used in the vector are |C+|, |C−|, |C+|f and |C−|f (for some
function symbols f). The vector might be shorter than 75 elements if only a

13

Page 40 of 171

Schulz

few symbols occur in the input formula. The results here were obtained with
(plain) permuted feature vectors; features are ordered by increasing value
range in the input clause set.

You can download detailed results of these and additional test runs at
http://www.eprover.org/feature_vector_indexing.html.

6.1 Results with Aggressive Contextual Literal Cutting

Most of the strongest search strategies we found so far apply contextual unit
cutting only to the given clause. To measure the effect of indexing for the
worst-case scenario, we ran the system with a strong standard strategy, but
with contextual literal cutting applied even to passive clauses, so that sub-
sumption attempts are maximized. In this case, the version without feature
vector indexing was able to solve 2671 problems within the time limit, whereas
the prover with indexing solved 2717 problems (a strict superset). On the
common subset, the indexed version needed 19857 s, whereas the plain sys-
tem used 32140 s, for a speed-up of nearly 40% for the whole prover. For
several harder examples, the indexed version ran as much as 5 times faster
than the conventional prover.

Figure 4 shows the scatter plot of times for the conventional over the
indexed version of the prover. Very few examples perform worse with indexing,
and the drop is usually not very significant. A number of examples cluster
around equal performance, and the majority shows moderate to large speed-
ups.

We manually reran some of the few cases where the indexed version of
the system was significantly slower than the non-indexed version on differ-
ent hardware (Generic Intel Pentium-III/Pentium-4 PCs with GNU/Linux
and a PowerPC G4 notebook with MacOS-X). In no case could we repro-
duce the slow-down (although it is reproducible on SUN hardware). Thus,
we currently believe that it is caused by some unfortunate interplay between
features of the SPARC architecture and our straight-forward recursive imple-
mentation. In particular, we suspect the large register window spills caused
by deep recursions on SPARC.

Figure 5 shows how many direct clause-clause subsumption calls have been
used by the conventional and the indexed version for the problems solved by
both. Note the double logarithmic scale necessary to adequately display the
large variation in numbers. The conventional version needs, over all problems,
about 30 times more calls than the indexed version. For individual problems,
the improvement factor varies from 1 (for some trivial problems) to approxi-
mately 7500 (for the problem SYN738-1, where the number of calls dropped
from 22 552 to 3). The largest number of subsumption calls was observed for
SYN711-1 with 444 793 509. For this problem, indexing reduced the number
of calls by a factor of nearly 200 to 2 229 754, and the run time from 235s to
79s.

14

Page 41 of 171

http://www.eprover.org/feature_vector_indexing.html
http://www.eprover.org/feature_vector_indexing.html
http://www.eprover.org/feature_vector_indexing.html

Schulz

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

C
on

ve
nt

io
na

l

Feature vector indexing

Run times with and without indexing

Fig. 4. Run times of indexed versus conventional implementation for aggressive
(CLC)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
on

ve
nt

io
na

l

Feature vector indexing

Clause-clause subsumption calls

Fig. 5. Subsumption calls of indexed versus conventional implementation

15

Page 42 of 171

Schulz

6.2 Results for the Automatic Mode

Most users use E in automatic mode, where the prover analyses the problem,
and then configures itself to use a strategy that has performed well on similar
problems. In this mode, contextual literal cutting is usually only applied to
the given clause, and thus the overall cost of subsumption-related techniques
is lower to begin with. We have performed various experiments to measure the
effect of feature vector indexing for this scenario as well. Figure 6 compares the
run times of E with and without feature vector indexing using the automatic
mode included with E 0.8. The conventional version solves 3405 problems,
whereas the version using feature vector indexing proves a superset of 3438
problems. On the subset solved by both systems, the indexed version uses
34438 s, whereas the conventional one uses 40238 s, for a speed-up of about
15%.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

C
on

ve
nt

io
na

l

Feature vector indexing

Run times with and without indexing

Fig. 6. Run times of indexed versus conventional implementation for E 0.8 auto-
matic mode

The plot is similar to Figure 4, with many problems, especially for lower
run times, showing similar performance for both versions, and another group
showing significant improvement. Of course, since overall subsumption cost is
lower for the automatic mode, the gains are not as pronounced as for the case
with aggressive contextual literal cutting.

16

Page 43 of 171

Schulz

7 Future Work

While we are very satisfied with the performance of our current implementa-
tion, there are a number of research problems we are actively working on.

First, with increased speed of hardware, it has become very hard to actually
quantify the time spent in different parts of a high-performance prover using
standard UNIX profiling tools (which only resolve to the 1/100th second level).
Thus, in this paper we only compare overall performance of the system with
and without feature vector indexing. We are in discussions with some of the
authors of the COMPIT framework [8] to extend it to cover (unit and non-
unit) subsumption, so that more detailed measurements and a comparison of
different indexing techniques become easier.

Secondly, up to now, we have only experimented with some simple and
obvious features. In particular, all of the features used with our currently
best parameter settings are AC compatible, and hence will not differentiate
between clauses that are equal modulo AC theories. Whereas this is desir-
able if subsumption modulo AC is used, it is a disadvantage for our calculus,
which only allows us to use some limited AC redundancy elimination. We will
investigate the effect of more complex features in these cases.

Finally, we are trying to develop similar simple, but effective algorithms
for other operations in the system, in particular for backward simplification
(where it might be possible to use a slightly modified version of feature vector
indexing) and paramodulation.

8 Conclusion

Feature vector indexing has proved to be a simple, but effective answer to
the subsumption problem for saturating first-order theorem provers. In our
experiments, it is able to reduce the number of subsumption tests by, on
average, about 97% compared to a naive sequential implementation, and thus
reduces cost for subsumption in our prover to a level that makes it hard to
measure using standard UNIX profiling tools.

In addition to the direct benefit, this gain in efficiency has enabled us
to implement otherwise relatively expensive subsumption-based simplification
techniques (like contextual literal cutting), further improving overall perfor-
mance of our prover.

References

[1] Denzinger, J., M. Kronenburg and S. Schulz, DISCOUNT: A Distributed
and Learning Equational Prover, Journal of Automated Reasoning 18 (1997),
pp. 189–198, special Issue on the CADE 13 ATP System Competition.

[2] Graf, P., “Term Indexing,” LNAI 1053, Springer, 1995.

17

Page 44 of 171

Schulz

[3] Graf, P. and D. Fehrer, Term Indexing, in: W. Bibel and P. Schmitt, editors,
Automated Deduction — A Basis for Applications, Applied Logic Series 9 (2),
Kluwer Academic Publishers, 1998 pp. 125–147.

[4] Jaynes, E., “Probability Theory: The Logic of Science,” Cambridge University
Press, 2003.

[5] Kapur, D. and P. Narendran, NP-Completeness of the Set Unification and
Matching Problems, in: J. Siekmann, editor, Proc. of the 8th CADE, Oxford,
LNCS 230 (1986), pp. 489–495.

[6] Löchner, B. and T. Hillenbrand, A Phytography of Waldmeister, Journal of AI
Communications 15 (2002), pp. 127–133.

[7] McCune, W., Experiments with Discrimination-Tree Indexing and Path
Indexing for Term Retrieval, Journal of Automated Reasoning 9 (1992),
pp. 147–167.

[8] Nieuwenhuis, R., T. Hillenbrand, A. Riazanov and A. Voronkov, On the
Evaluation of Indexing Techniques for Theorem Proving, in: R. Goré, A. Leitsch
and T. Nipkow, editors, Proc. of the 1st IJCAR, Siena, LNAI 2083 (2001), pp.
257–271.

[9] Riazanov, A. and A. Voronkov, The Design and Implementation of VAMPIRE,
Journal of AI Communications 15 (2002), pp. 91–110.

[10] Riazanov, A. and A. Voronkov, Efficient Instance Retrieval With Standard and
Relational Path Indexing, in: F. Bader, editor, Proc. of the 19th CADE, Miami,
LNAI 2741 (2003), pp. 380–396.

[11] Schulz, S., Information-Based Selection of Abstraction Levels, in: I. Russel and
J. Kolen, editors, Proc. of the 14th FLAIRS, Key West (2001), pp. 402–406.

[12] Schulz, S., E – A Brainiac Theorem Prover, Journal of AI Communications 15
(2002), pp. 111–126.

[13] Schulz, S., System Description: E 0.81, in: Proc. of the 2nd IJCAR, Cork,
Ireland, LNAI, 2004, (to be published).

[14] Sekar, R., I. Ramakrishnan and A. Voronkov, Term Indexing, in: A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, II, Elsevier
Science and MIT Press, 2001 pp. 1853–1961.

[15] Shannon, C. and W. Weaver, “The Mathematical Theory of Communication,”
University of Illinois Press, 1949.

[16] Sleator, D. and R. Tarjan, Self-Adjusting Binary Search Trees, Journal of the
ACM 32 (1985), pp. 652–686.

[17] Tammet, T., Towards Efficient Subsumption, in: C. Kirchner and H. Kirchner,
editors, Proc. of the 15th CADE, Lindau, LNAI 1421 (1998), pp. 427–441.

[18] Voronkov, A., The Anatomy of Vampire: Implementing Bottom-Up Procedures
with Code Trees, Journal of Automated Reasoning 15 (1995), pp. 238–265.

18

Page 45 of 171

Schulz

[19] Weidenbach, C., SPASS: Combining Superposition, Sorts and Splitting, in:
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, II,
Elsevier Science and MIT Press, 2001 pp. 1965–2013.

19

Page 46 of 171

ESFOR 2004 Preliminary Version

Things to know when implementing LPO

Bernd Löchner 1

FB Informatik
Technische Universität Kaiserslautern

Kaiserslautern, Germany

Abstract

The Lexicographic Path Ordering (LPO) poses an interesting problem to the imple-
mentor: How to achieve a version that is both efficient and correct? The method of
program transformation helps us to develop an efficient version step-by-step, making
clear the essential ideas, while retaining correctness. By theoretical analysis we show
that the worst-case behavior is thereby changed from exponential to polynomial.
Detailed measurements show the practical improvements of the different variants.
They allow us to assess experimentally various optimizations suggested for LPO.

Key words: Lexicographic Path Ordering, implementation,
program transformation.

1 Introduction

For the implementation of a practically successful prover it is important to
have efficient implementations of the most time-consuming subtasks. Whereas
much research has been spent, for example, into the development of efficient
indexing techniques (see [RSV01] for an overview), the implementation of or-
derings has received far less attention (a recent exception is [RV04]). However,
the time spent on determining ordering relations between terms can amount
to a significant part of the prover’s overall running time. For example, Wald-
meister [LH02] needs up to 50% of the total running time for ordering com-
parisons, although much effort has been spent into the optimization of the
corresponding routines and many ordering comparisons are avoided by using
unorientable equations only in a very restricted form for rewriting [BH96].

The aim of this paper is the development of an efficient version of the
Lexicographic Path Ordering (LPO) [KL80], which is one of the orderings in
widespread use. Several ideas lead from the direct translation of the usual def-
inition, which has an exponential behavior, to a non-obvious implementation

1 Email: loechner@informatik.uni-kl.de
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Page 47 of 171

Löchner

with polynomial requirements. Our approach is based on the methodology of
program transformations, which amounts in this case to the following: We for-
mulate the programs in a language that is close to functional programming or
algebraic specification. This concise and abstract notation allows us to focus
on the essential ideas in the development of the efficient version. We start with
some “obviously correct” implementation, which is as close as possible to the
original definition of the LPO. Then we refine the implementation in several
small steps. The equivalence of two successive versions can be shown by proof
with induction. As the used language can easily be translated into the input
language of some inductive theorem prover, these proofs can essentially be
performed within such a system. This is more elaborate than manual proofs,
but prevents the introduction of bugs by avoiding oversights.

To measure the progress between the different versions we translate them
in a straightforward way into the programming language C and integrate them
into Waldmeister. This allows us to test and compare them on thousands
of test cases occurring in real proof-attempts and shows the impact of the
different optimizations on a real prover running on real hardware.

2 Preliminaries

We use standard concepts from term rewriting (see e. g. [DP01]). The set
Term(F ,V) denotes the set of (first-order) terms built over the set of function
symbols F and the set of variables V . The length |t| of a term t is the number
of function symbols and variables it contains. The set of variables occurring
in term t is written as Var(t).

We describe the different implementations in a small algebraic specification
language. For boolean values it has a sort Bool with the two constructors
true, false :→ Bool. With their help we define disjunction and conjunction:

∨ : Bool Bool → Bool ∧ : Bool Bool → Bool
b1 ∨ b2 = if b1 then true else b2 b1 ∧ b2 = if b1 then b2 else false

This asymmetric definition expresses that the second argument is not evalu-
ated if the result is already determined by the first. If all arguments are defined,
both operations have the AC-property, i. e., the associativity and commuta-
tivity laws hold:

(b1 ∨ b2) ∨ b3 = b1 ∨ (b2 ∨ b3) b1 ∨ b2 = b2 ∨ b1

(b1 ∧ b2) ∧ b3 = b1 ∧ (b2 ∧ b3) b1 ∧ b2 = b2 ∧ b1

We assume the availability of the sorts Vid and Fid to represent variables
V and function symbols F . Then we define the datatype Term via two con-
structors using an additional sort Termlist for lists of terms.

V : Vid → Term [] : → Termlist
F : Fid Termlist → Term � : Term Termlist → Termlist

2

Page 48 of 171

Löchner

Note that for a term F(f, ts) there is no relationship encoded in the datatype
between the arity of f and the length of ts . It is therefore possible to con-
struct Terms that are not well-formed, i. e., do not represent elements of
Term(F ,V). To distinguish well-formed terms, we define the following predi-
cates (or rather boolean valued functions). We assume the availability of the
functions arity : Fid → Nat and lengthtl : Termlist → Nat.

well : Term → Bool welltl : Termlist → Bool
well(V(x)) = true welltl([]) = true

well(F(f, ts)) = arity(f) = lengthtl(ts) welltl(t � ts) = well(t) ∧ welltl(ts)
∧ welltl(ts)

The explicit use of the predicates is necessary in an inductive prover, which
does not allow implicit assumptions, such as the requirement that all terms
are well-formed. The definition of the helper function welltl lifts well from
Term to Termlist. The alternative is the use of higher-order functions which
would complicate the translation into the input language of some (first-order)
inductive prover. This pattern of some function over Term and some helper
function over Termlist, which call each other recursively, can also be observed
in the next definition.

The function contains tests whether a variable symbol occurs in a term.

contains : Term Vid → Bool containstl : Termlist Vid → Bool
contains(V(x), y) = x = y containstl([], y) = false

contains(F(f, ts), y) = containstl(ts, y) containstl(t � ts, y) = contains(t, y)
∨ containstl(ts, y)

Obviously, the worst-case running time of contains and containstl is linear in
the size of the first argument.

3 The reference implementation

Let us first recall the definition of the LPO which requires F to contain func-
tion symbols of fixed arity only.

Definition 3.1 Let >F be an ordering on F and s, t ∈ Term(F ,V). Then
s �lpo t iff either s ≡ f(s1, . . . , sn), t ≡ g(t1, . . . , tm), and

(α) si <lpo t for some i ∈ {1, . . . , n} or

(β) f >F g and s �lpo tk for all k ∈ {1, . . . ,m} or

(γ) f = g, there exists some i ∈ {1, . . . ,m} such that sj = tj for all j ∈
{1, . . . , i− 1} and si �lpo ti, and s �lpo tk for all k ∈ {1, . . . ,m}

or s ≡ f(s1, . . . , sn), t ≡ x, and

(δ) x ∈ Var(s),

where u <lpo v iff u ≡ v or u �lpo v for u, v ∈ Term(F ,V).

3

Page 49 of 171

Löchner

Proposition 3.2 The LPO �lpo for precedence >F is a reduction ordering on
Term(F ,V). The subterm relation �st is embedded in �lpo, i. e., �st ⊂ �lpo.2

The following program tries to follow this definition as close as possible. We
call it the reference implementation. 2 Function >Fid represents the precedence.

lpo1 : Term Term → Bool
lpo1(F(f, ss),F(g, ts)) = alpha1(ss,F(g, ts)) ∨ beta1(F(f, ss),F(g, ts))

∨ gamma1(F(f, ss),F(g, ts))
lpo1(F(f, ss),V(y)) = delta1(F(f, ss),V(y))

lpo1(V(x), t) = false

alpha1 : Termlist Term → Bool
alpha1([], t) = false

alpha1(s � ss, t) = s = t ∨ lpo1(s, t) ∨ alpha1(ss, t)

beta1 : Term Term → Bool
beta1(F(f, ss),F(g, ts)) = f >Fid g ∧majo1(F(f, ss), ts)

gamma1 : Term Term → Bool
gamma1(F(f, ss),F(g, ts)) = f = g ∧ lex1(ss, ts) ∧majo1(F(f, ss), ts)

delta1 : Term Term → Bool
delta1(F(f, ss),V(y)) = containstl(ss, y)

majo1 : Term Termlist → Bool
majo1(s, []) = true

majo1(s, t � ts) = lpo1(s, t) ∧majo1(s, ts)

lex1 : Termlist Termlist → Bool
lex1([], []) = false

lex1(s � ss, t � ts) = if s = t then lex1(ss, ts) else lpo1(s, t)

The functions beta1, gamma1, and delta1 are not strictly necessary; they are
introduced for clarity reasons. This is in contrast to the function alpha1, which
calls itself tail-recursively. The function majo1 implements the common part
of the cases β and γ in the definition, namely s �lpo tk for all k ∈ {1, . . . ,m}.
The lexicographic comparison is provided by lex1, which is only defined for
lists of the same length. This partiality reflects that LPO requires function
symbols of fixed arity. Therefore, lpo1 is only defined for well-formed terms,
i. e., arguments fulfilling the well predicate.

4 First optimizations

A quick analysis reveals that it is not advisable to evaluate the case α before
the cases β or γ. The intuitive explanation is that case α reduces the size
of the left argument, while the right argument remains the same. This seems
disadvantageous for showing the left argument to be greater than the right

2 The subscript 1 denotes that this is the first version of the implementation. It will increase
subsequently.

4

Page 50 of 171

Löchner

argument. Hence, reducing the size of the left argument should be delayed. 3

Our second version therefore swaps the order of the cases α, β, and γ:

lpo2 : Term Term → Bool
lpo2(F(f, ss),F(g, ts)) = beta2(F(f, ss),F(g, ts)) ∨ gamma2(F(f, ss),F(g, ts))

∨ alpha2(ss,F(g, ts))
lpo2(F(f, ss),V(y)) = delta2(F(f, ss),V(y))

lpo2(V(x), t) = false

The functions alpha2, . . . , are identical to alpha1, . . . , except that they call the
(·)2-versions, in particular lpo2.

Lemma 4.1 If s, t ∈ Term are well-formed then lpo1(s, t) = lpo2(s, t).

Proof. As under these conditions all functions are defined for their arguments
this is a consequence of the AC-property of ∨. 2

A second observation concerns case γ. If there is some i such that si �lpo ti
and sj = tj for all j < i the comparisons s �lpo tk for 1 ≤ k ≤ i are superfluous.
This is a corollary of the following lemma.

Lemma 4.2 If s �st s′ and s′ <lpo t then s �lpo t.

Proof. The LPO contains the subterm relation and is transitive. 2

To take advantage of this observation we modify the function gamma to use
the newly defined function lexM which combines the lexicographic comparison
with the call to majo: lexM(s, ss , ts) = lex(ss , ts)∧majo(s, ts) for s = F(f, ss).
We get 4

gamma3 : Term Term → Bool
gamma3(F(f, ss),F(g, ts)) = f = g ∧ lexM3(F(f, ss), ss, ts)

lexM3 : Term Termlist Termlist → Bool
lexM3(s, [], []) = false

lexM3(s, si � ss, ti � ts) = if si = ti then lexM3(s, ss, ts)
else lpo3(si, ti) ∧majo3(s, ts)

Corollary 4.3 If s, t ∈ Term are well-formed then lpo2(s, t) = lpo3(s, t). 2

5 First comparisons

A performance analysis shows that the two optimizations have a profound
effect on the running time. The three versions of LPO are translated into

3 Of course, case γ reduces also the size of the left argument, but, in contrast to case α, it
reduces in addition the size of the right argument.
4 As above, the remaining functions alpha3, . . . , are identical to the (·)2-counterparts except
for calling the new versions of the functions.

5

Page 51 of 171

Löchner

problem number of
calls to
ordering

time needed by ordering time needed
by other
operationslpo1 lpo2 lpo3

GRP180-1 161 446 896.000 255.600 226.800 0.840
LAT020-1 829 439 9.170 6.232 4.994 12.230
LCL109-6 141 266 6.539 3.532 2.355 0.930
RNG027-5 148 787 335.700 161.500 129.800 2.350
z22 2 249 12.260 0.495 0.349 0.060

TPTP10 138 399 908 2 450.000 1 922.000 1 631.000 3 032.000

Table 1
Time needed (in seconds) for ordering comparisons

C functions in a straightforward way 5 and are integrated into the theorem
prover Waldmeister. As test examples we choose proof tasks with different
characteristics. The first four examples are taken from TPTP [SS97]. The
example z22 is an encoding of a string-rewriting system as a term-rewriting
system. Therefore, there are only unary function symbols and the terms are
very deep and narrow with a variable at the leaf. Such examples seem to be
absent in TPTP.

Furthermore, we make measurements for all 776 UEQ-problems of TPTP-
2.6.0. For that, we first run Waldmeister using lpo1 with a time limit of
10 seconds and record how often the ordering routines are called. We then
perform the real measurements by running the prover with the different ver-
sions of LPO and aborting the run after the corresponding number of calls is
reached. We use TPTP10 to refer to the summarized results.

Table 1 contains running times measured on a machine with 1GHz Pen-
tium III and 4GByte RAM. For each example we give the number of calls the
prover makes to the ordering routines. The next three columns contain the
time spent in deciding the ordering relations. The last column gives the time
needed by the system without the time needed for the orderings. 6 Note the di-
versity of the examples which can be seen for example in the large differences
of the average time needed for one call to the ordering. The running times
document that especially the first optimization leads to substantial improve-
ments over the reference implementation. Nevertheless, the time spent in the
ordering is in most cases considerably larger than the time for the rest of the
system. TPTP10 shows different results for two reasons. First, the start over-

5 The tail-recursions used in some functions, such as in alpha, lex, etc., are turned into
while-loops.
6 This was determined by running the prover twice. In the first run each result of a call to
the ordering was written to a file. In the second run instead of calling the ordering procedure
the value of the protocol file was returned. By careful low-level coding we could achieve this
without any noticeable overhead, as profiles show.

6

Page 52 of 171

Löchner

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60 70 80

|s|+ |t|
(a)

nu
m

be
r

of
re

cu
rs

iv
e

ca
lls

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 10 20 30 40 50 60 70 80

|s|+ |t|
(b)

ti
m

e
in

na
no

se
co

nd
s

Fig. 1. Distribution of (a) number of recursive calls and (b) time needed to compute
lpo3(s, t) depicted over |s|+ |t| for GRP180-1.

head for initializing the prover is emphasized by running at most 10 seconds,
which shows in the last column. Second, the size of terms tends to increase
during the completion, hence larger input sizes occur more rarely in TPTP10

than in completed runs. This reduces the differences observed between the
variants of LPO.

Why does the prover spend so much time in LPO? Fine-grained measure-
ments reveal the following: A single call to the ordering may require a number
of recursive calls that is exponential in the size of the input. This can be seen
in Fig. 1a. The distribution of running times of single calls reflects the pattern,
cf. Fig. 1b. The following example shows the reason for this behavior, and that
the behavior is independent of the used term data structure.

Example 5.1 Consider two constants a, b ∈ F and two unary function sym-
bols f, g ∈ F with precedence a >F b >F f >F g. Let un ≡ fn(b) and
vm ≡ gm(a) Then the implementations lpo1, lpo2, and lpo3 all show expo-
nential behavior for the test whether un �?

lpo vn. As vn �lpo un holds, all
recursive calls return false. Therefore, in each invocation the cases α and β
are considered both. The situation for n = 3 is illustrated 7 in Fig. 2.

Now the source for the exponential behavior becomes clear: For un+1 �?
lpo

vm+1 the subproblem un �?
lpo vm is considered twice. Figure 3a shows how

often each subproblem is considered starting from n = m = 3. Obviously, this
is the top part of Pascal’s triangle of the binomial coefficients.

7 Strictly speaking one has to consider s <?
lpo t in the recursive calls via α. But this reduces

essentially to s �?
lpo t, because s 6= t can be determined immediately.

7

Page 53 of 171

Löchner

f3(b) �?
lpo g3(a) α−−−−→ f2(b) �?

lpo g3(a) α−−−−→ f(b) �?
lpo g3(a) α−−−−→ b �?

lpo g3(a)yβ

yβ

yβ

yβ

f3(b) �?
lpo g2(a) α−−−−→ f2(b) �?

lpo g2(a) α−−−−→ f(b) �?
lpo g2(a) α−−−−→ b �?

lpo g2(a)yβ

yβ

yβ

yβ

f3(b) �?
lpo g(a) α−−−−→ f2(b) �?

lpo g(a) α−−−−→ f(b) �?
lpo g(a) α−−−−→ b �?

lpo g(a)yβ

yβ

yβ

yβ

f3(b) �?
lpo a

α−−−−→ f2(b) �?
lpo a

α−−−−→ f(b) �?
lpo a

α−−−−→ b �?
lpo a

Fig. 2. Calling graph for test of f3(b) �?
lpo g3(a).

1 α−−−−→ 1 α−−−−→ 1 α−−−−→ 1yβ

yβ

yβ

yβ

1 α−−−−→ 2 α−−−−→ 3 α−−−−→ 4yβ

yβ

yβ

yβ

1 α−−−−→ 3 α−−−−→ 6 α−−−−→ 10yβ

yβ

yβ

yβ

1 α−−−−→ 4 α−−−−→ 10 α−−−−→ 20

(a)

69 α−−−−→ 34 α−−−−→ 14 α−−−−→ 4yβ

yβ

yβ

yβ

34 α−−−−→ 19 α−−−−→ 9 α−−−−→ 3yβ

yβ

yβ

yβ

14 α−−−−→ 9 α−−−−→ 5 α−−−−→ 2yβ

yβ

yβ

yβ

4 α−−−−→ 3 α−−−−→ 2 α−−−−→ 1

(b)

Fig. 3. (a) Number of invocations of subproblems during the test f3(b) �?
lpo g3(a).

(b) Costs T (n, m) associated with each subproblem of f3(b) �?
lpo g3(a).

To determine the costs T (n, m) of testing un �?
lpo vm we count the number

of recursive calls. For n,m ∈ {0, . . . , 3} the values of T (n,m) are depicted in
Fig. 3b. We get the following recurrences:

T (n, 0) = n + 1

T (0, m) = m + 1

T (n + 1, m + 1) = 1 + T (n + 1, m) + T (n, m + 1)

Here too, we have a connection to the binomial coefficients:

T (n, m) =

(
n + m + 2

m + 1

)
− 1

8

Page 54 of 171

Löchner

This can be shown via induction on n + m:

T (n, 0) = n + 1 =

(
n + 2

1

)
− 1

T (0, m) = m + 1 =

(
m + 2

m + 1

)
− 1

T (n + 1, m + 1) = 1 + T (n + 1, m) + T (n, m + 1)

= 1 +

(
(n + 1) + m + 2

m + 1

)
− 1 +

(
n + (m + 1) + 2

(m + 1) + 1

)
− 1

=

(
(n + 1) + (m + 1) + 2

(m + 1) + 1

)
− 1

Using Stirling’s formula we get the asymptotic expression

T (n, n) ≈ 4n+1√
π(n + 1)

which clearly describes an exponential growth. 2

For such situations there are two standard techniques to avoid the expo-
nential behavior. The first is dynamic programming [Bel57]. Here a table is
introduced which contains one entry for each subproblem. The top-down re-
cursion is replaced by a bottom-up computation, which fills each table entry
with the help of already determined ones. In our case, we assign in a leftmost-
outermost way each subterm of a term t a unique number from 1, . . . , |t|.
Hence, a table of size |s| · |t| is sufficient for lpo(s, t). For computing the en-
tries from large indices downwards to small indices, the work for each entry
is determined by the arity of the leading function symbols – the ordering re-
lationships between subterms are already known. This leads to an algorithm
with running time in Θ(|s| · |t|). But the structure of the algorithm is changed
in a nontrivial way.

For the second technique, memoization [Mic68], the top-down recursion is
retained. The result of each function call is stored in a so-called memo-table.
When the function is called again with the same arguments, the value from
the table is returned and so the recomputation is avoided. This can be thought
of as using the table of dynamic programming, but filling in the values of the
table lazily. A more typical implementation is with a hash table. The running
time of the resulting algorithm is O(|s| · |t|) in the worst case, recomputations
do not occur. If only a fraction of the |s| · |t| subproblems is needed, this
method is faster than dynamic programming. If (nearly) all subproblems are
considered, dynamic programming is probably faster; the code is simpler and
avoids the overhead of hashing, especially the equality tests for the arguments.

In the literature [Sny93] the use of dynamic programming is recommended
to get a polynomial algorithm. Our aim is to achieve the same worst-case
running time without the use of additional data structures.

9

Page 55 of 171

Löchner

6 A polynomial version

As a preparation step we first replace the conjunctions in beta and gamma by
if -expressions using the comparisons of function symbols as guards:

beta(F(f, ss),F(g, ts)) = if f >Fid g then majo(F(f, ss), ts) else false

gamma(F(f, ss),F(g, ts)) = if f = g then lexM(F(f, ss), ss, ts) else false

Then they are inlined into lpo and combined into one if -elif -expression as the
guards are mutually exclusive:

lpo(F(f, ss),F(g, ts)) =

if f >Fid g then majo(F(f, ss), ts)
elif f = g then lexM(F(f, ss), ss, ts)
else false

 ∨ alpha(ss,F(g, ts))

Finally, we distribute alpha into the different branches and simplify:

lpo(F(f, ss),F(g, ts)) = if f >Fid g then majo(F(f, ss), ts) ∨ alpha(ss,F(g, ts))
elif f = g then lexM(F(f, ss), ss, ts) ∨ alpha(ss,F(g, ts))
else alpha(ss,F(g, ts))

The performed transformations are typical for an optimizing compiler and do
not change the time consumption of the implementation significantly.

The first insight leading to real improvements is that if majo(F(f, ss), ts) =
false, then alpha(ss , F(g, ts)) = false as well. This means that in contrast to
the previous optimizations we can make use of negative results from recursive
calls. The optimization is justified by the following lemma, which is formulated
positively (i. e., as contraposition of the observation):

Lemma 6.1 Let s ≡ f(s1, . . . , sn) and t ≡ g(t1, . . . , tm). If there is some
i ∈ {1, . . . , n} such that si <lpo t then s �lpo tj for all j ∈ {1, . . . ,m}.

Proof. Because LPO contains the subterm relation, this is a consequence of
transitivity. 2

This enables us to omit the call to alpha in the first branch of the if -
expression. For the second branch we combine lexM and alpha into lexMA for
s = F(f, ss) and t = F(f, ts):

lexMA(s, t, ss, ts) = lexM(s, ss, ts) ∨ alpha(ss, t)

Performing the alpha-test is useless for subterms shown equal by the lexico-
graphic test:

Lemma 6.2 Let s ≡ f(s1, . . . , sn) and t ≡ f(t1, . . . , tn). If si ≡ ti for some
i ∈ {1, . . . , n}, then si 6<lpo t.

Proof. Clear, as we have t �lpo ti ≡ si. 2

This leads to the following version of lexMA:

lexMA(s, t, [], []) = false
lexMA(s, t, si � ss, ti � ts) = if si = ti then lexMA(s, t, ss, ts)

else (lpo(si, ti) ∧majo(s, ts)) ∨ alpha(si � ss, t)

10

Page 56 of 171

Löchner

We turn the conjunction into an if -expression and distribute the call to alpha
into both branches. After some small simplifications we get:

lexMA(s, t, si � ss, ti � ts) = if si = ti then lexMA(s, t, ss, ts)
elif lpo(si, ti) then majo(s, ts) ∨ alpha(si � ss, t)
else alpha(si � ss, t)

Now, two further optimizations are possible. Using Lemma 6.1 the first call to
alpha can be completely eliminated. For the second call to alpha we already
know from the evaluation of the guard that si 6�lpo ti. Hence si 6<lpo t, and si

can be dropped from the argument list.
Summing up, we get the following version of LPO:

lpo4 : Term Term → Bool
lpo4(F(f, ss),F(g, ts)) = if f >Fid g then majo4(F(f, ss), ts)

elif f = g then lexMA4(F(f, ss),F(g, ts), ss, ts)
else alpha4(ss,F(g, ts))

lpo4(F(f, ss),V(y)) = delta4(F(f, ss),V(y))
lpo4(V(x), t) = false

lexMA4 : Term Term Termlist Termlist → Bool
lexMA4(s, t, [], []) = false

lexMA4(s, t, si � ss, ti � ts) = if si = ti then lexMA4(s, t, ss, ts)
elif lpo4(si, ti) then majo4(s, ts)
else alpha4(ss, t)

Corollary 6.3 If s, t ∈ Term are well-formed then lpo3(s, t) = lpo4(s, t). 2

∗ ∗ ∗

It remains to show that this version needs time that is polynomial bound in
the size of the arguments. We assume, that the comparison of two function
symbols can be performed in constant time.

Lemma 6.4 Evaluating lpo4(s, t) needs O(|s| · |t|) running time in the worst
case.

Proof. Induction on |s| + |t|. If t is a variable, the time needed is O(|s|) as
contains and containstl run in linear time. Otherwise, let s ≡ f(s1, . . . , sn)
and t ≡ g(t1, . . . , tm). The time needed without the recursive calls is mainly
determined by the arity of f and g and can therefore be bound by a constant
c. Thus, it is sufficient to analyze the recursive calls. We proceed by case
analysis.

(i) f >F g. Then s will be compared with each tj, j ∈ {1, . . . ,m}. By
induction hypothesis, each of them will need O(|s| · |tj|) time in the worst
case, which gives

c +
m∑

j=1

O(|s| · |tj|) = O(|s| · |t|) .

11

Page 57 of 171

Löchner

(ii) f = g. If s ≡ t, this will be determined in O(|s|+ |t|) time. Otherwise,
there is some i with si 6= ti. For each j ≤ i the test for sj =tj can be performed
in O(|sj|+ |tj|) time. If si �lpo ti, then s is compared against tk for k > i. By
induction hypothesis we get

c+
i∑

j=1

O(|sj|+|tj|)+O(|si|·|ti|)+
n∑

k=i+1

O(|s|·|tk|) ≤
n∑

j=1

O(|s|·|tj|) = O(|s|·|t|) .

In the other case, we have si 6�lpo ti and the remaining subterms of s are
compared to t. By induction hypothesis we have

c+
i∑

j=1

O(|sj|+|tj|)+O(|si|·|ti|)+
n∑

k=i+1

O(|sk|·|t|) ≤
n∑

j=1

O(|sj|·|t|) = O(|s|·|t|) .

(iii) f 6≥F g. In the worst case each subterm sj of s is compared to t both
for sj = t and sj �lpo t. Applying induction hypothesis leads to

c +
n∑

j=1

(
O(|sj|+ |t|) + O(|sj| · |t|)

)
= O(|s| · |t|) .

2

The following example shows that for certain inputs lpo4(s, t) needs time
proportional to |s| · |t|.

Example 6.5 Consider two constants a, b ∈ F , a unary function symbol
f ∈ F , and a binary one g ∈ F with precedence a >F b >F f >F g. Then
the terms ui and vi are recursively defined by u0 ≡ a and ui+1 ≡ f(ui), resp.
v0 ≡ b and vi+1 ≡ g(v0, vi). Therefore, |ui| = i + 1 and |vi| = 2i + 1, and
ui 6≡ vj for all i, j ≥ 0. The evaluation of lpo4(ui, vj) makes (i + 1)(j + 1) + j
recursive calls. This can be shown by induction on i + j. Let j = 0. The
comparison of u0 with v0 needs one call – both terms have no subterms. As
f 6≥F b the call of lpo4(ui+1, v0) results via alpha4 in one call to lpo4(ui, v0); the
number of recursive calls for lpo4(ui, v0) is therefore i + 1. For the comparison
of ui with vj+1 ≡ g(v0, vj) two recursive calls to lpo4(ui, v0) and lpo4(ui, vj)
occur, because g is in the precedence smaller than f and than a. This makes
1 + (i + 1) + (i + 1)(j + 1) + j + 1 = (i + 1)(j + 2) + j + 2 calls by use of
induction hypothesis.

It can be seen in Figure 4 that the measured running times reflect quite
well the number of recursive calls giving experimental support to the analysis
above. 2

Corollary 6.6 The worst-case running time of lpo4(s, t) is Θ(|s| · |t|). 2

In some situations we get a better bound:

12

Page 58 of 171

Löchner

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nu
m

be
r o

f r
ec

ur
si

ve
 c

al
ls

tim
e

in
 m

ic
ro

se
co

nd
s

recursive calls
running time

|ui|+ |vi|

Fig. 4. Number of recursive calls and running times for lpo4(ui, vi), i = 0, . . . , 200,
(cf. Example 6.5).

Lemma 6.7 If the maximal arity of function symbols is one, the running time
of lpo4(s, t) is O(|s|+ |t|) in the worst case.

Proof. Depending on the relationship of the top symbols at most one recur-
sive call occurs, for which the size of the arguments is one or two symbols
smaller. 2

Therfore, lpo4 can handle Example 5.1 within linear time.

7 Bidirectional comparisons

During theorem proving we are often not only interested if a term is greater
than an other with respect to LPO, but in which ordering relation the two
terms are. As LPO establishes on terms a partial ordering, we can have for
terms s and t either s ≡ t, s �lpo t, t �lpo s, or that s and t are incomparable.
To capture this information we introduce a new sort Res with constructors
Eq, Gt, Lt, Nc :→ Res for each of the situations above. The function clpo de-
termines the ordering relationship of two terms. For i = 1, . . . , 4 its definition
is the following:

clpoi : Term Term → Res

clpoi(s, t) = if s = t then Eq
elif lpoi(s, t) then Gt
elif lpoi(t, s) then Lt
else Nc

With this definition it may happen that both invocations of lpo4 will tra-
verse both terms comparing the same subterms – only in different directions.

13

Page 59 of 171

Löchner

Consider the (pathologic) example s ≡ fn(x) and t ≡ fn(y), which are incom-
parable. To determine this, the function clpo4 makes 3(n + 1) steps. Our aim
is to develop a variant that avoids duplicated work. Our transformations will
combine the traversals into one in most cases, so the resulting function clpo5

will make n + 1 steps for this example.
We use clpo4 as starting point. First, we do some case splitting. If one or

both arguments are variables, it is sufficient to unfold the definitions and to
do some simplifications:

clpo5(F(f, ss),V(y)) = if containstl(ss, y) then Gt else Nc
clpo5(V(x),F(g, ts)) = if containstl(ts, x) then Lt else Nc

clpo5(V(x),V(y)) = if x = y then Eq else Nc

The remaining case is more interesting. Here too, we start by unfolding
the definitions:

clpo(F(f, ss),F(g, ts)) =

if f = g ∧ ss = ts then Eq

elif

if f >Fid g then majo(F(f, ss), ts)
elif f = g then lexMA(F(f, ss),F(g, ts), ss, ts)
else alpha(ss,F(g, ts))

 then Gt

elif

if g >Fid f then majo(F(g, ts), ss)
elif g = f then lexMA(F(g, ts),F(f, ss), ts, ss)
else alpha(ts,F(f, ss))

 then Lt

else Nc

Then we reorganize the nested if -expressions by using the comparisons of the
leading function symbols as the main guards:

clpo(F(f, ss),F(g, ts)) =

if f = g then if ss = ts then Eq
elif lexMA(F(f, ss),F(g, ts), ss, ts) then Gt
elif lexMA(F(g, ts),F(f, ss), ts, ss) then Lt
else Nc

elif f >Fid g then if majo(F(f, ss), ts) then Gt
elif alpha(ts,F(f, ss)) then Lt
else Nc

elif g >Fid f then if majo(F(g, ts), ss) then Lt
elif alpha(ss,F(g, ts)) then Gt
else Nc

else if alpha(ss,F(g, ts)) then Gt
elif alpha(ts,F(f, ss)) then Lt
else Nc

As can be seen, the second and the third branch are nearly symmetric –
except return values. This can be remedied with the following function flip :
Res → Res:

14

Page 60 of 171

Löchner

flip(Eq) = Eq flip(Lt) = Gt
flip(Nc) = Nc flip(Gt) = Lt

Now it suffices to introduce three helper functions to get a concise version of
clpo:

clpo(F(f, ss),F(g, ts)) = if f = g then cLMA(F(f, ss),F(g, ts), ss, ts)
elif f >Fid g then cMA(F(f, ss), ts)
elif g >Fid f then flip(cMA(F(g, ts), ss))
else cAA(F(f, ss),F(g, ts), ss, ts)

The initial specifications of these functions are as follows:

cMA : Term Termlist → Res
cMA(s, ts) = if majo(s, ts) then Gt

elif alpha(ts, s) then Lt
else Nc

cLMA : Term Term Termlist Termlist → Res
cLMA(s, t, ss, ts) = if ss = ts then Eq

elif lexMA(s, t, ss, ts) then Gt
elif lexMA(t, s, ts, ss) then Lt
else Nc

cAA : Term Term Termlist Termlist → Res
cAA(s, t, ss, ts) = if alpha(ss, t) then Gt

elif alpha(ts, s) then Lt
else Nc

It remains to optimize them in turn. We start with cMA by case splitting
on ts . For ts = [] we get after some simplifications cMA(s, []) = Gt. The other
case is:

cMA(s, t � ts) = if lpo(s, t) ∧majo(s, ts) then Gt
elif s = t ∨ lpo(t, s) ∨ alpha(ts, s) then Lt
else Nc

The two calls to lpo and the equality test of s and t can be covered by a single
call to clpo:

cMA(s, t � ts) = case clpo(s, t)
Gt : if majo(s, ts) then Gt

elif alpha(ts, s) then Lt
else Nc

Eq, Lt : Lt
Nc : if alpha(ts, s) then Lt else Nc

We can now fold back the definition of cMA, i. e., call cMA(s, ts) in the case
clpo(s, t) = Gt.

For space reasons we omit the transformations of cLMA. We finally get the
following definition of clpo5. Note that the definitions of lpo5, alpha5, etc., are
identical to their lpo4-counterparts.

15

Page 61 of 171

Löchner

clpo5 : Term Term → Res

clpo5(F(f, ss),V(y)) = if containstl(ss, y) then Gt else Nc
clpo5(V(x),F(g, ts)) = if containstl(ts, x) then Lt else Nc

clpo5(V(x),V(y)) = if x = y then Eq else Nc
clpo5(F(f, ss),F(g, ts)) = if f = g then cLMA5(F(f, ss),F(g, ts), ss, ts)

elif f >Fid g then cMA5(F(f, ss), ts)
elif g >Fid f then flip(cMA5(F(g, ts), ss))
else cAA5(F(f, ss),F(g, ts), ss, ts)

cMA5 : Term Termlist → Res
cMA5(s, []) = Gt

cMA5(s, t � ts) = case clpo5(s, t)
Gt : cMA5(s, ts)
Eq, Lt : Lt
Nc : if alpha5(ts, s) then Lt else Nc

cLMA5 : Term Term Termlist Termlist → Res
cLMA5(s, t, [], []) = Eq

cLMA5(s, t, si � ss, ti � ts) = case clpo5(si, ti)
Eq : cLMA5(s, t, ss, ts)
Gt : cMA5(s, ts)
Lt : flip(cMA5(t, ss))
Nc : cAA5(s, t, ss, ts)

cAA5 : Term Term Termlist Termlist → Res
cAA5(s, t, ss, ts) = if alpha5(ss, t) then Gt

elif alpha5(ts, s) then Lt
else Nc

If we compare the transformations in this section with the optimizations in
Sections 4 and 6, we see that no further domain-specific knowledge about LPO
is needed. The transformations in this section rely solely on some standard
Unfold/Fold-calculus [BD77].

Corollary 7.1 If s, t ∈ Term are well-formed then clpo4(s, t) = clpo5(s, t). 2

With an analysis that is similar to the analysis of lpo4 we can show that
the running time of clpo5 is Θ(|s| · |t|) in the worst case.

8 Further measurements and further variants

The optimizations of Section 6 lead to a dramatic improvement in the time
consumption of LPO. Table 2 shows that lpo4 is significantly faster than lpo3

Depending on the example the speedup is between 5 and more than 1000.
When we compare the time needed by lpo4 with that for the rest we see
that the overall running time of the prover is no longer dominated by the
time for the ordering. The optimizations for bidirectional comparisons show,

16

Page 62 of 171

Löchner

problem time needed by ordering

lpo4 lpo5 lpo6 lpo7 lpo8 lpo9 lpo10 lpo11

GRP180-1 0.149 0.128 0.148 0.252 0.189 0.148 0.171 0.290
LAT020-1 0.809 0.769 0.828 1.284 1.136 0.859 0.867 1.338
LCL109-6 0.169 0.142 0.184 0.335 0.227 0.185 0.188 0.329
RNG027-5 0.451 0.443 0.491 0.788 0.594 0.509 0.526 0.909
z22 0.004 0.003 0.004 0.006 0.005 0.004 0.005 0.012

TPTP10 186.100 168.800 190.700 289.700 263.100 194.700 184.300 281.300

Table 2
Time needed (in seconds) for ordering comparisons

contrary to our expectations, only moderate improvements. Columns lpo4 and
lpo5 differ in using clpo4 and clpo5 for bidirectional comparisons. Depending on
the example we get improvements of up to 15 per cent. Measurements indicate
that the multiple traversals are successfully avoided. It seems that the more
complicated code reduces these benefits.

The running time of lpo4 is Θ(|s| · |t|) in the worst case, as shown in Sec-
tion 6. The dynamic-programming algorithm sketched in Section 5 has to
determine the ordering relationship between each subterm of s with each sub-
term of t, i. e. exactly M = |s| · |t| pairs. It is therefore interesting to determine
the actual number N of pairs that are compared by the optimized top-down
algorithm lpo4. Figure 5 contains the quotient N/M for each invocation of the
ordering of example RNG027-5. The quotient is only for a small number of
invocations higher than 0.4, the larger the input, the smaller the quotient. It is
therefore highly unlikely that an implementation of the dynamic programming
algorithm can be competitive with lpo4.

∗ ∗ ∗

Some further variations are worth discussion. We use as starting point lpo4,
because it is simpler in structure than lpo5.

The variant lpo6. We want to avoid the possibly double traversal of
subterms for the tests s = t and s �lpo t which occur in the case α and
the lexicographic tests. Similar to the modifications in Section 7 we combine
both tests into one. The function lpo6 returns then the values Eq, Gt, and Nc.
Measurements show, however, that this has a small negative effect on the time
requirements, it does not lead to a further improvement. A detailed analysis
reveals the reason. We have to distinguish two cases: If s = t, which accounts
for 10 to 20% of the cases, the new version is slower, because the code is more
complicated. If s 6= t, the equality test detects that pretty fast. On the average,

17

Page 63 of 171

Löchner

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

N/M

|s|+ |t|

Fig. 5. Let N be the number of compared pairs of subterms of s and t performed
by lpo4 and let M = |s| · |t|, the number of compared pairs a dynamic programming
version would need. Depicted is N/M over the combined length of s and t for
RNG027-5.

it compares less than 2 symbols to find s 6= t. 8 So the possible gain is rather
small for the analyzed examples, which explains why the transformation does
not pay off.

The next two variations exploit the following property of LPO: If s �lpo t
then Var(s) ⊇ Var(t). The idea is to use the contraposition – Var(s) 6⊇ Var(t)
implies s 6�lpo t – as a sufficient pretest to restrict or to stop the computation.
Bit-oriented machine-instructions allow us to handle a fixed subset V0 ⊂ V
very efficiently. With |V0| = 32 it fits well the characteristics of the machines
we work on (Pentium III). The time to compute Var0(s) = Var(s)∩V0 is Θ(|s|);
the time to compare two such variable sets is O(1). Limiting the pretest to
Var0(s) 6⊇ Var0(t) reduces the power as prefilter. However, Waldmeister
minimizes for various reasons the number of different variables in the proof
state, hence terms with variables not in V0 occur rarely in practice.

The variant lpo7. We decorate in a preprocessing step each term (in-
cluding all subterms) with the accompanying variable sets. This is linear in
the size of s and t. After that we use in each recursive call the comparison of
the variable sets as a pretest. For variables in V0 the case δ becomes trivial to
decide and needs O(1) time, which is an additional motivation for this variant.
The experimental results show that the pretests speed up the computation of
LPO, the overhead for the precomputation is not compensated though.

The variant lpo8. This variant uses variable sets in a weaker form. It
is suggested in [Wei01]. Only at the top-level the sets Var(s) and Var(t) are
determined and used as a pretest for lpo8 or as a restriction for clpo8. An

8 For most examples the number of symbol comparisons shows a negative-exponential dis-
tribution.

18

Page 64 of 171

Löchner

analysis shows that the preprocessing step is now cheaper, because the costly
write-operations for each variable set into the subterm are avoided. But the
benefits are smaller as well. In our measurements, the use of variable sets does
not pay off.

The last three variants try to use additional knowledge that is available in
special cases.

The variant lpo9. This variant uses the so-called “Pacman-Lemma”: 9

For unary function symbols f we have f(s) �lpo f(t) iff s �lpo t. Then it
is possible in lpo to skip the call to lexMA and perform a direct tail-call to
itself. We can implement this in an imperative setting by two assignments and
a goto. Our measurements show that the benefits are tiny, mostly encoded
string-rewriting systems profit a little bit, other examples may suffer a slight
slow-down.

The variant lpo10. This variant has specialized code for cases where at
least one argument is a constant. Then the rather complex recursion can be
replaced by simpler loops. Nevertheless, it does not seem to pay off, the single
examples show a small slow-down, TPTP10 indicates a small speed-up.

The variant lpo11. Because LPO contains the subterm relation, this
variant uses a check for s �st t as a sufficient pretest for s �lpo t. This can
be a win, because s �st t is cheaper to evaluate. However, our measurements
show that the subterm-pretest applies too rarely in practice to justify the extra
costs.

When we summarize the measurements we see that lpo4 shows the best
combination of efficiency and coding complexity. Only lpo5 gives noticeable
running-time improvements, but these are moderate (about 10% for TPTP10)
and the implementation has roughly twice the size. Of the other variants, some
show no marked improvements, some are actually disimprovements. But why
does folklore suggest them? Our guess is: because they help to improve nonop-
timal versions. For instance, the “Pacman-Lemma” applied to lpo3 gives for
some examples dramatic improvements over lpo3. It captures some of the in-
sights that lead from lpo3 to lpo4 by avoiding in special situations the call to
alpha and thus recomputations that lead to exponential behavior. 10 Never-
theless, the improvements are far from uniform. Applied to the polynomial
lpo4 the potential of these optimizations is much smaller and the overhead of
the more complicated code may dominate.

There is one final topic we want to discuss briefly. Up to now we have made
no assumption about the term data structure. We conjecture that underly-

9 This colloquial term stems from the visualization of what happens to common prefixes
of the terms under consideration. Take as examples f(g(f(g(s)))) �?

lpo f(g(f(g(t)))) – the
prefixes are efficiently nibbled away and s �?

lpo t remains.
10 Consider a variant of Example 5.1: Let a >F b >F f and test fn(b) �?

lpo fn(a). The
function lpo3 needs exponential time – the analysis of Example 5.1 applies with small mod-
ifications. With the “Pacman-Lemma” this test becomes linear. However, for Example 5.1
the lemma is not applicable.

19

Page 65 of 171

Löchner

ing term representations that keep subterms individual, such as tree-terms,
flat-terms, or Prolog-terms (see e. g. [RSV01]), behave quite similar for LPO
comparisons. Our algorithms require access to the top-symbol and to the sub-
terms from left to right, which is supported by all three term representations
at similar costs. However, if we have a data structure that supports sharing
of identical subterms, we can take profit. First, the test for term equality is
now a simple pointer comparison. Second, it is then rather cheap to augment
the terms with additional information. So we expect that lpo7 should be an
improvement on lpo4 in such an environment, as the costs for the explicit
computation of the variable sets disappear. Such sets are computed once at
term-construction time, the costs are then amortized over many ordering com-
parisons. Third, it may even become feasible to keep a global history in form
of a memo-table of the results of LPO. Then it is possible to share results
between different invocations of the ordering.

9 Related work and implementation status

With Snyder [Sny93] we share the finding that the number of publications
about the efficient implementation of orderings is really small compared to
the number of publications about the definition of new orderings. The thesis
of Steinbach contains a short overview about the time complexities of orderings
[Ste94, Chap. 6.2]. It seems to be agreed in the literature that the standard way
to achieve a polynomial version of LPO and related orderings is via dynamic
programming [KNS85]. Snyder devised an O(n·log n) algorithm for comparing
ground terms with LPO based on total precedences [Sny93].

In [Wei01] Weidenbach acknowledges that the top-down implementation of
LPO may result in exponential behavior. He then goes on and compares the
top-down implementation with an implementation of [Sny93] and concludes
that the latter gives no advantages in practice. Inspection of the source code
of SPASS [W+02] shows that it contains a top-down implementation of the
Recursive Path Ordering with Status (RPOS). This is a well-known generaliza-
tion of LPO, where each function symbol has assigned a status (left-to-right,
right-to-left, or multi-set). If all function symbols have status left-to-right, we
get LPO as a special case. Then the RPOS-implementation of SPASS behaves
like lpo6. That this is actually a polynomial version is not mentioned.

Analyzing the source code of other systems that participated in CASC [S+]
we find no implementation of the dynamic programming algorithm. Snyder’s
method seems to be implemented in SPASS only. In Otter [McC] we find
an implementation of RPOS which specializes essentially to lpo4 if all func-
tions symbols have status left-to-right. Waldmeister’s original LPO is an
elaborate version of lpo5. Several costly pretest are used in fear of exponen-
tial behavior. The straightforward implementation of lpo4 is more than three
times faster. The other systems that we analyzed use a version similar to
lpo1 or lpo2, sometimes enriched with optimizations for special cases. Often

20

Page 66 of 171

Löchner

some form of caching (of different implementation quality) is used to avoid
exponential behavior. 11

10 Conclusions

In this work we described and compared several implementations of LPO.
Simple translations of the definition show an exponential behavior, because
they consider subproblems repeatedly. To achieve a polynomial version the
use of dynamic programming is recommended in the literature, which incurs
the use of an additional data structure. However, we can achieve the same
worst-case behavior by modifying the recursive calls. These optimizations rely
on simple properties of LPO and avoid the use of additional data structures.
A further variant performs bidirectional comparisons, which lead to additional
speed-ups. We find these optimizations in several provers, but we know of no
reference in the literature. It is unclear to us, if it was known before that with
these optimizations the top-down version of LPO is polynomial.

Experiments show that the optimizations lead to tremendous speed-ups
for our test cases. Nevertheless, as the best version to compare the terms s
and t requires O(|s| · |t|) time in the worst case, the time spent in LPO can still
not be neglected for large terms. Therefore, one should be sparing with calls
to LPO – if possible. It remains open, if for nonground terms a sub-quadratic
version exists.

In this work we concentrated on the basic LPO test s �lpo t. An impor-
tant extension is to determine for terms s and t and substitution σ whether
σ(s) �lpo σ(t) holds. By passing σ as an additional parameter in the recur-
sive calls and looking up bindings of variables if necessary, we can improve
considerably on explicitly constructing σ(s) and σ(t) before calling the basic
ordering test. In some situations s and t are fixed and σ is varying. Then,
we can achieve further improvements by preprocessing s and t. In [RV04]
Riazanov and Voronkov consider this and similar problems for KBO.

To describe the different variants of LPO we used a small algebraic speci-
fication language to keep the presentation concise. The translation of the dif-
ferent specifications into the input language of the inductive theorem prover
QuodLibet [A+03] was straightforward. We later realized that other induc-
tive provers have problems with mutual recursive functions and partiality (e. g.
lex1 is only partially defined). Trying to prove properties of the different ver-
sions with QuodLibet revealed implicit assumptions in the code. For exam-
ple, to show lpo1(s, t) = lpo2(s, t) we need that well(s) = well(t) = true, i. e.,
that the arguments are well-formed terms. Our examples spawned some in-
terest into the development of tactics that are specialized in the support of
mutual recursive functions. This is ongoing work.

11 After reading a preliminary version of this work, Schulz replaced his old LPO-
implementation with lpo4 in his theorem prover E [Sch02]. Some TPTP-problems show
an overall speedup of 20. (Personal communication, May 2004.)

21

Page 67 of 171

Löchner

For developing the different versions we used the paradigm of program
transformations. This helped not only to focus on the essential ideas, but also
to prevent errors in the implementation. In the C translations of all considered
variants we discovered three bugs, all of which were caught easily by comparing
the different versions during test-runs. One bug occurred because of a copying
error, the other two by replacing recursive calls with iteration constructs. This
low number of errors is far better than what is usually achieved by traditional
coding practice. This experience suggests to use this two-level development
approach for other subtasks in a prover, especially, if they need a significant
amount of the running time and an efficient implementation is not obvious.

Acknowledgments

The curiosity of Christian Schmidt renewed my interest into the topic. While
trying to answer some of his questions, I discovered that lpo4 runs in poly-
nomial time, which was new to me. The numerous remarks of one of the
anonymous reviewers helped to improve the presentation considerably.

References

[A+03] J. Avenhaus, U. Kühler, T. Schmidt-Samoa, C.-P. Wirth. How to Prove
Inductive Theorems? QUODLIBET! In F. Baader, ed., Proc. of the 19th
Intern. Conference on Automated Deduction, vol. 2741 of LNCS, pp. 328–
333. Springer, 2003. See http://www-avenhaus.informatik.uni-kl.de/
quodlibet.html.

[BD77] R. M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, January 1977.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

[BH96] A. Buch and Th. Hillenbrand. Waldmeister: Development of a High
Performance Completion-Based Theorem Prover. SEKI-Report 96-01,
Univ. Kaiserslautern, 1996.

[DP01] N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, eds., Handbook of Automated Reasoning, vol. I, chapter 9,
pp. 535–610. Elsevier Science, 2001.

[KL80] S. Kamin and J.-J. Levy. Two generalizations of the recursive path
ordering. Departement of Computer Science, University of Illinois, Urbana,
IL, 1980.

[KNS85] D. Kapur, P. Narendran, and G. Sivakumar. A path ordering for proving
termination of term rewriting systems. In H. Ehrig et al., eds., Coll.
on Trees in Algebra and Programming, vol. 185 of LNCS, pp. 173–187.
Springer, 1985.

22

Page 68 of 171

http://www-avenhaus.informatik.uni-kl.de/quodlibet.html
http://www-avenhaus.informatik.uni-kl.de/quodlibet.html

Löchner

[LH02] B. Löchner and Th. Hillenbrand. A Phytography of Waldmeister. AI
Communications, 15(2–3):127–133, 2002. See http://www.waldmeister.
org

[McC] W. McCune. Otter: An Automated Deduction System. See http:
//www-unix.mcs.anl.gov/AR/otter/

[Mic68] D. Michie. Memo functions and machine learning. Nature, 218:19–22,
1968.

[RSV01] I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In
A. Robinson and A. Voronkov, eds., Handbook of Automated Reasoning,
vol. II, chapter 26, pp. 1853–1964. Elsevier Science, 2001.

[RV04] A. Riazanov and A. Voronkov. Efficient checking of term ordering
constraints. In D. Basin and M. Rusinowitch, eds. Proc. 2nd IJCAR,
LNCS, Springer, 2004.

[S+] G. Sutcliffe et al. The CADE ATP System Competition (CASC). See
http://www.tptp.org/CASC.

[Sch02] S. Schulz. E – A Brainiac Theorem Prover. J. of AI Communications,
15:111–126, 2002. See http://www.eprover.org

[Sny93] W. Snyder. On the complexity of recursive path orderings. Information
Processing Letters, 46:257–262, 1993.

[SS97] C. B. Suttner and G. Sutcliffe. The TPTP problem library (TPTP v2.1.0).
Technical Report 97/08, Department of Computer Science, James Cook
University, Townsville, Australia, 1997. See http://www.tptp.org.

[Ste94] J. Steinbach. Termination of Rewriting. PhD thesis, Universität
Kaiserslautern, 1994. See http://www-madlener.informatik.uni-kl.
de/seki/1994/Steinbach.PhDThesis.ps.Z.

[W+02] Ch. Weidenbach, U. Brahm, Th. Hillenbrand, E. Keen, Ch. Theobald, and
D. Topic. SPASS Version 2.0. In A. Voronkov, ed., Proc. 18th Intern.
Conference on Automated Deduction, vol. 2392 of LNCS. Springer, 2002.
See http://spass.mpi-sb.mpg.de/.

[Wei01] Ch. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, eds., Handbook of Automated Reasoning,
vol. II, chapter 27, pp. 1965–2013. Elsevier Science, 2001.

23

Page 69 of 171

http://www.waldmeister.org
http://www.waldmeister.org
http://www-unix.mcs.anl.gov/AR/otter/
http://www-unix.mcs.anl.gov/AR/otter/
http://www.tptp.org/CASC
http://www.eprover.org
http://www.tptp.org
http://www-madlener.informatik.uni-kl.de/seki/1994/Steinbach.PhDThesis.ps.Z
http://www-madlener.informatik.uni-kl.de/seki/1994/Steinbach.PhDThesis.ps.Z
http://spass.mpi-sb.mpg.de/

ESFOR 2004 Preliminary Version

An Empirical Evaluation of Automated
Theorem Provers in Software Certification

Ewen Denney 1

QSS / NASA Ames Research Center
Moffett Field, CA, USA

Bernd Fischer 2 Johann Schumann 3

RIACS / NASA Ames Research Center
Moffett Field, CA, USA

Abstract

We describe a system for the automated certification of safety properties of NASA software.
The system uses Hoare-style program verification technology to generate proof obligations
which are then processed by an automated first-order theorem prover (ATP). We discuss
the unique requirements this application places on the ATPs, focusing on automation, proof
checking, and usability. For full automation, however, the obligations must be aggressively
preprocessed and simplified, and we demonstrate how the individual simplification stages,
which are implemented by rewriting, influence the ability of the ATPs to solve the proof
tasks. Our results are based on 13 certification experiments that lead to 366 top-level safety
obligations and ultimately to more than 25,000 proof tasks which have each been attempted
by Vampire, Spass, e-setheo, and Otter. The proofs found by Otter have been proof-checked
by IVY.

Key words: software certification, automated theorem proving, program
synthesis, proof checking, verification condition generator, Hoare logic

1 Introduction

Software certification aims to show that the software in question achieves a certain
level of quality, safety, or security. Its result is a certificate, i.e., independently
checkable evidence of the properties claimed. Certification approaches vary widely,
ranging from code reviews to full formal verification, but the highest degree of

1 Email: edenney@email.arc.nasa.gov
2 Email: fisch@email.arc.nasa.gov
3 Email: schumann@email.arc.nasa.gov

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Page 70 of 171

Denney, Fischer, Schumann

confidence is achieved with approaches that are based on formal methods and use
logic and theorem proving to construct the certificates.

We have developed a certification approach which uses Hoare-style techniques
to demonstrate the safety of aerospace software which has been automatically gen-
erated from high-level specifications. Our core idea is to extend the code generator
so that it simultaneously generates code and the detailed annotations, e.g., loop
invariants, that enable a safety proof. A verification condition generator (VCG)
processes the annotated code and produces a set of safety obligations, which are
provable if and only if the code is safe. An automated theorem prover (ATP) then
discharges these obligations and the proofs, which can be verified by an indepen-
dent proof checker, serve as certificates. This approach largely decouples code
generation and certification and is thus more scalable than, e.g., verifying the gen-
erator or generating code and complete safety proofs in parallel. The aim of this
work is to increase trust in the code generator.

In this paper, we evaluate the extent to which the current generation of ATPs is
capable of supporting the formal certification of software. In our view, this covers
three main aspects. First, full automation is crucial since the practicability of our
approach hinges on it. Second, the ability to generate proof objects and to carry out
proof checking is essential to create explicit certificates. Third, there are a range
of traceability issues which have a significant bearing on the ability of an ATP to
create meaningful certificates.

Program certification is a demanding application for ATPs because the number
of proof obligations is potentially very large and program verification is generally a
hard problem domain. However, in our case there are several factors which make a
successful ATP application possible. First, we certify separate aspects of safety and
not full functional correctness. This separation of concerns allows us to show non-
trivial properties like matrix symmetry but results in more tractable obligations.
Second, the extensions of the code generator are specific to the safety properties to
be certified and to the algorithms used in the generated programs. This allows us to
fine-tune the annotations which, in turn, also results in more tractable obligations.
Third, we aggressively simplify the obligations before they are handed over to the
prover, taking advantage of domain-specific knowledge.

In this paper, we evaluate three hypotheses. The first hypothesis is that the
current generation of high-performance ATPs is—in principle—already powerful
enough for practical application in program certification. The second hypothesis
is that ATPs can still not be considered entirely as black boxes but require careful
integration with the application at hand; in particular, the application must carefully
preprocess the proof tasks to make them more tractable. The final hypothesis is
that proof checkers for first-order logic have not yet reached the same level of
maturity as the ATPs themselves, despite the fact that proof checking is, prima
facie, conceptually simpler than proof finding.

We have tested our hypotheses by running five high-performance provers on
seven different versions of the 366 safety obligations resulting from certifying five
different safety policies for four different programs—in total more than 25,000

2

Page 71 of 171

Denney, Fischer, Schumann

proof tasks per prover. In Section 2 we give an overview of the system architecture,
describing the safety policies as well as the generation and preprocessing of the
proof tasks. In Section 3, we outline the experimental set-up used to evaluate the
theorem provers over a range of different preprocessing levels. The detailed results
are given in Section 4; they confirm our first two hypotheses: the provers are gener-
ally able to solve the emerging obligations but only after substantial preprocessing.
However, for almost all programs and all polices, a few hard obligations remain,
and a successful certification (i.e., proof of all obligations) can be achieved only af-
ter even more tuning. Section 5 then discusses the proof checking experiments, and
Section 6 looks at traceability issues. Finally, Section 7 draws some conclusions.

Conceptually, this paper continues the work described in [35,36] but the ac-
tual implementation of the certification system has been completely revised and
substantially extended. We have expanded the range of both algorithms and safety
properties which can be certified; in particular, our approach is now fully integrated
with the AutoFilter system [37] as well as with the AutoBayes system [12] and
the certification process is now completely automated. We have also implemented
a new generic VCG which can be customized for a given safety policy and which
directly processes the internal code representation instead of Modula-2 as in the
previous version. All these improvements and extensions to the underlying frame-
work result in a substantially larger experimental basis than reported before. A
shorter version of this paper appears as [5].

Related Work Our approach is related to proof-carrying code (PCC) [22]. PCC
works on the machine-code level instead of the source-code level (as we do) and
concentrates on very simple safety policies (mainly array-bounds safety) which
leads to comparatively simple proof obligations. Hence, PCC is complementary
to our approach, and a certifying compiler [23] could be used to ensure that the
compilation step does not compromise the demonstrated safety policies. PCC also
spawned an entire cottage industry of proof checkers, e.g., [1]; however, these use
various higher-order logics and so are not applicable for our purposes.

Program verification is a popular application domain for theorem provers; we
mention only a few systems here. KIV [26,28] is an interactive verification en-
vironment which can use different ATPs but relies heavily on term rewriting and
user guidance. Sunrise [15] is a fully automatic system but uses custom-designed
tactics in HOL to discharge the obligations. ESC/Java [10] is an automatic verifica-
tion system but relies on the user to provide additional information on the program,
e.g., loop invariants. Houdini [9] is an automatic annotation assistant which guesses
invariants, but a significant amount of user interaction remains.

2 System Architecture

Our certification tool is built as an extension to the AutoBayes and AutoFilter

program synthesis systems. AutoBayes works in the statistical data analysis do-
main and generates parameter learning programs while AutoFilter generates state
estimation code based on variants of the Kalman filter algorithm. Figure 1 gives

3

Page 72 of 171

Denney, Fischer, Schumann

Certification

Analysis

Simplifier

Checker

Proof Certificate

VCG

Theorem

Prover

VCs

Proof

Propagator

Propagated Code

SVCs

Synthesizer
Annotated Code

Synthesis

policy

Safety

Specification

Fig. 1. Certification system architecture

an overview of the overall system architecture. Both underlying synthesis systems
take as input a high-level problem specification and generate code that implements
the specification. This process is based on the repeated application of schemas.
Schemas are generic algorithms which are instantiated in a problem-specific way
after their applicability conditions have been proven to hold for the given problem
specification. The synthesizers first generate C++-style intermediate code which
is then compiled down into any of the different supported languages and runtime
environments.

For the certification tool, we extended the schemas such that the synthesis sys-
tems generate code that is marked up with annotations relevant to the chosen safety
policy. These annotations encode local safety information which is then propagated
throughout the program. In the next stage, the analysis is carried out by a VCG ap-
plying rules from the safety policy to generate verification conditions which are
then simplified by a rewrite system. Finally, certification is achieved by sending
these simplified verification conditions to an automated theorem prover and check-
ing the resulting proofs.

The individual components are described in some detail in the subsequent sec-
tions. We distinguish trusted and untrusted components, shown in red (dark grey)
and blue (light grey), respectively. In particular, the correctness of our certification
system does not depend on the correctness of the two largest subsystems: the syn-
thesizer, and the theorem prover; instead, we need only trust the safety policy, the
VCG, and the proof checker.

This lets us adopt an approach to certification which we call product-oriented
certification, in contrast to process-oriented approaches, which rely on the quali-
fication (i.e., verification) of the tools being used. A product-oriented approach is
more feasible when using complex tools like theorem provers and hence is more
scalable.

4

Page 73 of 171

Denney, Fischer, Schumann

safety policy safety condition domain theory
array ∀a[i] ∈ c . alo ≤ i ≤ ahi arithmetic
init ∀ read-var x ∈ c . init(x) propositional
in-use ∀ input-var x ∈ c . use(x) propositional
symm ∀matrix-exp m ∈ c . ∀i, j . m[i, j] = m[j, i]matrices

norm ∀ vector v ∈ c . Σ
size(v)
i=1 v[i] = 1 arithmetic, summations

Table 1
Safety conditions for different policies

2.1 Safety Properties and Safety Policies

The certification tool automatically certifies that a program satisfies a given safety
property, i.e., an operational characterization that the program “does not go wrong”.
It uses a corresponding safety policy, i.e., a set of Hoare-style proof rules and aux-
iliary definitions which are specifically designed to show that programs satisfy the
safety property of interest. The distinction between safety properties and policies
is explored in [3].

We further distinguish between language-specific and domain-specific proper-
ties and policies. Language-specific properties can be expressed in the constructs
of the underlying programming language itself (e.g., array accesses), and are sen-
sible for any given program written in the language. Domain-specific properties
typically relate to high-level concepts outside the language (e.g., matrix multipli-
cation), and must thus be expressed in terms of program fragments. Since these
properties are specific to a particular application domain, the corresponding poli-
cies are not applicable to all programs.

We have defined five different safety properties and implemented the corre-
sponding safety policies. Array-bounds safety (array) requires each access to an
array element to be within the specified upper and lower bounds of the array. Vari-
able initialization-before-use (init) ensures that each variable or individual array
element has been assigned a defined value before it is used. Both are typical ex-
amples of language-specific properties. Matrix symmetry (symm) requires certain
two-dimensional arrays to be symmetric. Sensor input usage (in-use) is a variation
of the general init-property which guarantees that each sensor reading passed as an
input to the Kalman filter algorithm is actually used during the computation of the
output estimate. These two examples are specific to the Kalman filter domain. The
final example (norm) ensures that certain one-dimensional arrays represent normal-
ized vectors, i.e., that their contents add up to one; it is specific to the data analysis
domain.

The safety policies can be expressed in terms of two families of definitions.
For each command the policy defines a safety condition and a substitution, which
captures how the command changes the environmental information relevant to the
safety policy. The rules of the safety policy can then be derived systematically from
the standard Hoare rules of the underlying programming language [3].

From our perspective, the safety conditions are the most interesting aspect since
they have the greatest bearing on the form of the proof obligations. Table 1 sum-
marizes the different conditions and the domain theories needed to reason about

5

Page 74 of 171

Denney, Fischer, Schumann

them. Both variable initialization and usage as well as array bounds certification
are logically simple and rely just on propositional and simple arithmetic reason-
ing, respectively, but can require a lot of information to be propagated through-
out the program. The symmetry policy needs reasoning about matrix expressions
expressed as a first-order quantification over all matrix entries. The vector norm
policy is formalized in terms of the summation over entries in a one-dimensional
array, and involves symbolic reasoning over finite sums.

2.2 Generating Proof Obligations

For certification purposes, the synthesis system annotates the code with mark-up
information relevant to the selected safety policy. These annotations are part of the
schema and thus are instantiated in parallel with the code fragments. The annota-
tions contain local information in the form of logical pre- and post-conditions and
loop invariants, which is then propagated through the code. The fully annotated
code is then processed by the VCG, which applies the rules of the safety policy to
the annotated code in order to generate the safety conditions. As usual, the VCG
works backwards through the code. At each line, the safety conditions are gener-
ated and the safety substitutions are applied. The VCG has been designed to be
“correct-by-inspection”, i.e., to be sufficiently simple that it is straightforward to
see that it correctly implements the rules of the logic. Hence, the VCG does not
implement any optimizations, such as structure sharing on verification conditions
(VCs) or even apply any simplifications; in particular, it does not actually apply
the substitutions but maintains explicit formal substitution terms. Consequently,
the generated VCs tend to be large and must be simplified separately; the more
manageable simplified verification conditions (SVCs) which are produced are then
processed by a first order theorem prover. The resulting proofs can be sent to a
proof checker, e.g., Ivy [19].

The structure of a typical safety obligation (after substitution reduction and
simplification) is given in Figure 3. It corresponds to the initialization safety of an
assignment within a nested loop (given in Figure 2, including the generated invari-
ants but omitting the postconditions). Most of the hypotheses consist of annotations
which have been propagated through the code and are, in the best case, merely ir-
relevant to the line at hand but, in the worst case, prevent the prover from finding
a proof. The proof obligation also contains the local loop invariants together with
bounds on for-loops. Finally, the conclusion is generated from the safety condi-
tions for the statement given by the corresponding safety policy. Although safety
obligations with more complex conclusions can arise with the symm and norm poli-
cies, they always have this general form.

2.3 Processing Proof Obligations and Connecting the Prover

The simplified safety obligations are exported as a number of individual proof obli-
gations using TPTP first order logic syntax. A small script then adds the axioms
of the domain theory, before the completed proof task is processed by the theorem

6

Page 75 of 171

Denney, Fischer, Schumann

for(i = 0; i <= 5; i++)
/*{ inv forall x,y:int . 0<=x<=i-1 && 0<=y<=5 =>

tmp2_init[x][y]==init
}*/
for(j = 0; j <= 5; j++)
/*{ inv forall x,y:int . 0<=x<=5 && 0<=y<=5 =>

(x<i => tmp2_init[x][y]==init) &&
(x==i && y<j => tmp2_init[x][y]==init)

}*/
tmp2[i][j] = id[i][j] - tmp1[i][j];

Fig. 2. Generated Code with Annotations

. . . ∀ x, y · 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ⇒ sel(id init, x, y) = init

∧ ∀ x, y · 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ⇒ sel(tmp1 init, x, y) = init

}

environmental
information

. . . ∀ x, y · 0 ≤ x ≤ i − 1 ∧ 0 ≤ y ≤ 5 ⇒ sel(tmp2 init, x, y) = init

∧ ∀ x, y · 0 ≤ y ≤ 5 ∧ 0 ≤ x ≤ 5 ⇒

(x < i ⇒ sel(tmp2 init, x, y) = init ∧

(y < j ∧ x = i ⇒ sel(tmp2 init, x, y) = init)))



















invariants

. . . 0 ≤ i ≤ 5 ∧ 0 ≤ j ≤ 5
}

index bounds
⇒ (sel(id init, i, j) = init ∧ sel(tmp1 init, i, j) = init)

}

safety condition

Fig. 3. Structure of a safety obligation

prover. Parts of the domain theory are generated dynamically in order to facilitate
reasoning with (small) integers. The domain theory is described in more detail in
Section 3.3.

The connection to a theorem prover is straightforward. For provers that do not
accept the TPTP syntax, the appropriate TPTP2X-converter is used before invoking
the theorem prover. In the experiments, run-time measurement and prover control
(e.g., aborting provers) were performed with the same TPTP tools as in the CASC
competition [32].

3 Experimental Setup

3.1 Program Corpus

As a basis for the certification experiments we generated annotated programs from
four different specifications which were written prior to and independently of the
experiments. The size of the generated programs ranges from 431 to 1157 lines
of commented C-code, including the annotations. Table 3 in Section 4 gives a
more detailed breakdown. The first two examples are AutoFilter specifications.
ds1 is taken from the attitude control system of NASA’s Deep Space One mis-
sion [37]. iss specifies a component in a simulation environment for the Space
Shuttle docking procedure at the International Space Station. In both cases, the

7

Page 76 of 171

Denney, Fischer, Schumann

generated code is based on Kalman filter algorithms, which make extensive use of
matrix operations. The other two examples are AutoBayes specifications which
are part of a more comprehensive analysis of planetary nebula images taken by
the Hubble Space Telescope (see [7,11] for more details). Although these data
analysis applications are not safety-critical, they can run onboard a spacecraft thus
making the software subject to qualification. seg describes an image segmentation
problem for which an iterative (numerical) statistical clustering algorithm is synthe-
sized. Finally, gau fits an image against a two-dimensional Gaussian curve. This
requires a multivariate optimization which is implemented by the Nelder-Mead
simplex method. The code generated for these two examples has a substantially
different structure from the state estimation examples. First, the numerical opti-
mization code contains many deeply nested loops. Also, some of the loops are
convergence loops which have no fixed upper bounds but are executed until a dy-
namically calculated error value gets small enough. In contrast, in the Kalman
filter code, all loops are executed a fixed (i.e., known at synthesis time) number
of times. Second, the numerical optimization code accesses all arrays element by
element and contains no operations on entire matrices (e.g., matrix multiplication).
The example specifications and all generated proof obligations can be found at
http://ase.arc.nasa.gov/autobayes/ijcar.

3.2 Simplification

Proof task simplification is an important and integral part of our overall architec-
ture. However, as observed before [13,8,30], simplifications—even on the purely
propositional level—can have a significant impact on the performance of a theo-
rem prover. In order to evaluate this impact, we used six different rewrite-based
simplifiers to generate multiple versions of the safety obligations. We focus on
rewrite-based simplifications rather than decision procedures because rewriting is
easier to certify: each individual rewrite step T ; S can be traced and checked
independently, e.g., by using an ATP to prove that S ⇒ T holds.

Baseline The baseline for all simplifications is given by the rewrite system T∅

which eliminates the extra-logical constructs (including explicit formal substitu-
tions) which the VCG employs during the construction of the safety obligations.
Our original intention was to axiomatize these constructs in first-order logic and
then (ab-) use the provers for this elimination step, but that turned out to be infea-
sible. The main problem is that the combination with equality reasoning produces
tremendous search spaces.

Propositional Structure The first two proper simplification levels only work on
the propositional structure of the obligations. T∀,⇒ splits the few but large obliga-
tions generated by the VCG into a large number of smaller obligations. It consists
of two rewrite rules ∀x · P ∧ Q ; (∀x · P) ∧ (∀x · Q) and P ⇒ (Q ∧ R) ;

(P ⇒ Q) ∧ (P ⇒ R) which distribute universal quantification and implication,
respectively, over conjunction. Each of the resulting conjuncts is then treated as an
independent proof task. Tprop simplifies the propositional structure of the obligations

8

Page 77 of 171

http://ase.arc.nasa.gov/autobayes/ijcar

Denney, Fischer, Schumann

more aggressively. It uses the rewrite rules

¬ true ; false ¬ false ; true
true ∧ P ; P false ∧ P ; false
true ∨ P ; true false ∨ P ; P

P ⇒ true ; true P ⇒ false ; ¬P

true ⇒ P ; P false ⇒ P ; true
P ⇒ P ; true (P ∧ Q) ⇒ P ; true
P ⇒ (Q ⇒ R) ; (P ∧ Q) ⇒ R ∀x · true ; true

in addition to the two rules in T∀,⇒. The rules have been chosen so that they pre-
serve the overall structure of the obligations as far as possible; in particular, con-
junction and disjunction are not distributed over each other and implications are not
eliminated. Their impact on the clausifier should thus be minimal.

Ground Arithmetic This simplification level additionally handles common ex-
tensions of plain first-order logic, i.e., equality, orders, and arithmetic. The rewrite
system Teval contains rules for the reflexivity of equality and total orders as well as
the irreflexivity of strict (total) orders, although the latter rules are not invoked on
the example obligations. In addition, it normalizes orders into ≤ and > using the
rules

x ≥ y ; y ≤ x ¬x > y ; x ≤ y

x < y ; y > x ¬x ≤ y ; x > y

Since the programs and thus the generated safety obligations contain occurrences
of the different symbols, these eliminations have to be applied explicitly by the
simplifier. However, the choice of the specific symbols is to some extent arbitrary;
choosing for example < instead of > makes no difference. We could even replace
the two rules on the right with a single rule x > y ; ¬x ≤ y and thus eliminate
all but one ordering symbol but instead decided to minimize the term size rather
than the signature size.

Teval also contains rules to evaluate ground integer operations (i.e., addition,
subtraction, and multiplication), equalities, and partial and strict orders. More-
over, it converts addition and subtraction with one small integer argument (i.e.,
n ≤ 5) into Pressburger notation, using rules of the form n + 1 ; succ(n) and
n− 1 ; pred(n). For many safety policies (e.g., init), terms of this form are intro-
duced by relativized bounded quantifiers (e.g., ∀x · 0 ≤ x ≤ n − 1 ⇒ P (x)) and
contain the only occurrences of arithmetic operators. A final group of rules handles
the interaction between succ and pred, as well as with the orders.

succ(pred(x)) ; x pred(succ(x)) ; x

succ(x) ≤ y ; x < y succ(x) > y ; x ≥ y

x ≤ pred(y) ; x < y x > pred(y) ; x ≥ y

Language-Specific Simplification The next level handles constructs which are
specific to the program verification domain, in particular array-expressions and

9

Page 78 of 171

Denney, Fischer, Schumann

conditional expressions, encoding the necessary parts of the language semantics.
The rewrite system Tarray adds rewrite formulations of McCarthy’s array axioms
[18], i.e., sel(upd(a, i, v), j) ; i = j ? v : sel(a, j) for one-dimensional arrays
and similar forms for higher-dimensional arrays. Some safety policies are formu-
lated using arrays of a given dimensionality which are uniformly initialized with a
specific value. These are represented by a constarray-term, for which similar rules
are required, e.g., sel(constarray(v, d), i) ; v.

Nested sel/upd-terms, which result from sequences of individual assignments
to the same array, lead to nested conditionals which in turn lead to an exponential
blow-up during the subsequent language normalization step. Tarray thus also contains
two rules true? x: y ; x and false?x: y ; y to evaluate conditionals.

In order to properly assess the effect of these domain-specific simplifications,
we also experimented with a rewrite system Tarray*, which applies the two sel-rules
in isolation.

Policy-Specific Simplification The most aggressive simplification level Tpolicy uses
a number of rules which are fine-tuned to handle specific situations that frequently
arise with the individual safety policies. The init-policy uses a rule

∀x · 0 ≤ x ≤ n ⇒ (x 6= 0 ∧ . . . ∧ x 6= n ⇒ P) ; true

which is derived from the finite induction axiom to handle the result of simplifying
nested sel/upd-terms. For in-use, we need a single rule def =use ; false, which
follows from the fact that the two tokens def and use used by the policy are dis-
tinct. For symm, we make use of a lemma about the symmetry of specific matrix
expressions: A + BCBT is already symmetric if (but not only if) the two matrices
A and C are symmetric, regardless of the symmetry of B. The rewrite rule

sel(A + BCBT, i, j) = sel(A + BCBT, j, i)

; sel(A, i, j) = sel(A, j, i) ∧ sel(C, i, j) = sel(C, j, i)

formulates this lemma in an element-wise fashion.
For the norm-policy, the rules become a lot more specialized and complicated.

Two rules are added to handle the inductive nature of finite sums:

∑pred(0)
i=0 x ; 0

P ∧ x =
∑pred(n)

i=0 Q(i) ⇒ x + Q(n) =
∑n

i′=0 Q(i′)

; P ∧ x =
∑pred(n)

i=0 Q(i) ⇒
∑n

i=0 Q(i) =
∑n

i=0 Q(i)

The first rule directly implements the base case of the induction; the second rule,
which implements the step case, is more complicated. It requires alpha-conversion
for the summations as well as higher-order matching for the body expressions, both
of which are, however, under explicit control of this specific rewrite rule and not
the general rewrite engine, and are implemented directly as Prolog predicates. Note
that the right hand side can easily be simplified into true by the application of

10

Page 79 of 171

Denney, Fischer, Schumann

further rules. A similar rule is required in a very specific situation to substitute an
equality into a summation:

P ∧ (∀i · 0 ≤ i ≤ n ⇒ x = sel(f, i)) ⇒
∑n

i=0 sel(f, i) = 1

; P ∧ (∀i · 0 ≤ i ≤ n ⇒ x = sel(f, i)) ⇒
∑n

i=0 x = 1

The above rules capture the central steps of some of the proofs for the norm-policy
and mirror the fact that these are essentially higher-order inferences.

Another set of rewrite rules handles all occurrences of the random number gen-
erator by asserting that the number is within its given range, i.e., l ≤ rand(l, u) ≤
u. Since no other property of random numbers is used, rand is treated as an unin-
terpreted function symbol.

Normalization The final preprocessing step transforms the obligations into pure
first-order logic. It eliminates conditional expressions which occur as top-level
arguments of predicate symbols, using rules of the form P ?T :F = R ; (P ⇒
T = R) ∧ (¬P ⇒ F = R) and similarly for partial and strict orders. A number
of congruence rules move nested occurrences of conditional expressions into the
required positions. Finite sums, which only occur in obligations for the norm-
policy, are represented with a de Bruijn-style variable-free notation.

Control The simplifications are performed by a small but reasonably efficient
rewrite engine implemented in Prolog (cf. Table 3 for runtime information). This
engine does not support full AC-rewriting but flattens and orders the arguments of
AC-operators. The rewrite rules, which are implemented as Prolog clauses, then do
their own list matching but can take the list ordering into account. The rules within
each system are applied exhaustively. However, the two most aggressive simpli-
fication levels Tarray and Tpolicy are followed by a structural “clean-up” phase. This
consists of the language normalization followed by the propositional simplifica-
tions Tprop and the finite induction rule. Similarly, Tarray* is followed by the language
normalization and then by T∀,⇒ to split the obligations. Table 2 shows the number
of rewrite rules for each simplification level, as well as for language normalization
and clean-up.

T∅ T∀,⇒ Tprop Teval Tarray Tarray∗ Tpolicy

simplification N/A 3 17 42 42 2 61
language norm. 8 8 8 8 8 8 8
clean-up N/A N/A N/A N/A 31 3 31

Table 2
Number of rewrite rules used in consecutive phases of different simplifications

3.3 Domain Theory

Each safety obligation is supplied with a first-order domain theory. In our case,
the domain theory consists of a fixed part which contains 44 axioms, and a set
of axioms which is generated dynamically for each proof task. The static axioms
define the usual properties of equality and the order relations, as well as axioms

11

Page 80 of 171

Denney, Fischer, Schumann

for Pressburger arithmetic and for the domain-specific operators (e.g., array ac-
cesses and matrix operations). This part axiomatizes 22 different predicate and
function symbols. The dynamic axioms are added because most theorem provers
cannot calculate with integers, and to avoid the generation of large terms of the
form succ(. . . succ(0) . . .). For all integer literals n,m in the proof task, we gener-
ate the corresponding axioms of the form m > n. For small integers (i.e., n ≤ 5),
we also generate axioms for explicit successor-terms, i.e., n = succn(0) and add a
finite induction schema of the form ∀x·0 ≤ x ≤ n ⇒ (x = 0∨x = 1∨. . .∨x = n).
In our application domain, these axioms are needed for some of the matrix opera-
tions; thus n can be limited to the statically known maximal size of the matrices.
The default set of axioms contains all the formulas required for each of the safety
policies.

3.4 Theorem Provers

For the experiments, we selected several high-performance theorem provers for
untyped first-order formulas with equality. Most of the provers participated in the
CASC-19 [31] prover competition in the FOL category. We used two versions
of e-setheo [21] which were both derived from the CASC version. For e-setheo-
csp03F, Flotter V2.1 [33,34] was used to convert the formulas into a set of clauses
instead of the clausifier provided by the TPTP toolset [32]. e-setheo-new is a recent
development version with several improvements over the original e-setheo-csp03
version. However, neither of the two versions of e-setheo was tuned in any way
for this set of proof tasks. Both versions of Vampire [29] have been taken directly
“out of the box”—they are the versions which were used at CASC-19. Spass 2.1
was obtained from the developer’s website [33]. For comparison purposes, we also
used Otter V3.2 [20], which has been essentially unchanged since 1996.

In the experiments, we used the default parameter settings and none of the spe-
cial features of the provers. The only exception is Otter, where the developer pro-
vided an alternative parameter setting since the defaults proved unsuitable. For
each proof obligation, we limited the run-time to 60 seconds; the CPU time actu-
ally used was measured with the TPTP-tools on a 2.4GHz standard Linux PC with
4GB memory.

4 Empirical Results

4.1 Generating and Simplifying Obligations

Table 3 summarizes the results of generating the different versions of the safety
obligations. For each of the example specifications, it lists the size of the generated
programs (without annotations), the applicable safety policies, the size of the gen-
erated annotations (before propagation), and then, for each simplifier, the elapsed
time T and the number N of generated obligations. The elapsed times include syn-
thesis of the programs as well as generation, simplification, and file output of the
safety obligations; synthesis alone accounts for approximately 90% of the times

12

Page 81 of 171

Denney, Fischer, Schumann

T∅ T∀,⇒ Tprop Teval Tarray Tarray∗ Tpolicy

ex loc P loa T N T N T N T N T N T N T N

ds1 431 array 0 5.5 11 5.3 103 5.4 55 5.5 1 5.5 1 5.6 103 5.5 1
init 87 9.5 21 14.1 339 11.3 150 11.0 142 10.5 74 20.1 543 11.4 74
in-use 61 7.3 19 12.9 453 7.7 59 7.6 57 7.4 21 16.2 682 8.1 21
symm 75 4.8 17 5.7 101 4.7 21 4.9 21 66.7 858 245.6 2969 70.8 865

iss 755 array 0 24.6 1 28.1 582 24.8 114 24.2 4 24.0 4 27.9 582 24.7 4
init 88 39.5 2 65.9 957 42.3 202 41.8 194 39.2 71 82.6 1378 39.7 71
in-use 60 33.4 2 68.1 672 36.7 120 35.7 117 32.6 28 79.1 2409 31.6 1
symm 87 33.0 1 34.9 185 28.1 35 27.9 35 71.0 479 396.8 3434 66.2 480

seg 517 array 0 3.0 29 3.3 85 2.9 8 2.9 3 3.0 3 3.3 85 3.0 1
init 171 6.5 56 12.1 464 7.8 172 7.7 130 7.6 121 12.8 470 7.6 121
norm 195 3.8 54 5.0 155 3.8 41 3.6 30 3.8 32 5.2 157 3.6 14

gau 1039 array 20 21.0 69 24.9 687 21.2 98 21.0 20 20.9 20 24.3 687 21.3 20
init 118 49.8 85 65.5 1417 54.1 395 53.2 324 53.9 316 66.2 1434 54.3 316

Table 3
Generation of safety obligations

listed under the array safety policy. In general, the times for generating and simpli-
fying the obligations are moderate compared to both generating the programs and
discharging the obligations. All times are CPU times and have been measured in
seconds using the Unix time command.

Almost all of the generated obligations are valid, i.e., the generated programs
are safe. The only exception is the in-use-policy which produces one invalid obli-
gation for each of the ds1 and iss examples. This is a consequence of the original
specifications which do not use all elements of the initial state vectors. The invalid-
ity is confined to a single conjunct in one of the original obligations, and since none
of the rewrite systems contains a distributive law, the number of invalid obligations
does not change with simplification.

The first four simplification levels show the expected results. The baseline T∅

yields relatively few but large obligations which are then split up by T∀,⇒ into a
much larger (on average more than an order of magnitude) number of smaller obli-
gations. The next two levels then eliminate a large fraction of the obligations. Here,
the propositional simplifier Tprop alone already discharges between 50% and 90% of
the obligations while the additional effect of evaluating ground arithmetic (Teval) is
much smaller and generally well below 25%. The only significant difference oc-
curs for the array-policy where more than 80% (and in the case of ds1 all) of
the remaining obligations are reduced to true. This is a consequence of the large
number of obligations which have the form ¬n ≤ n ⇒ P for an integer constant
n representing the (lower or upper) bound of an array. The effect of the domain-
specific simplifications is at first glance less clear. Using the array-rules (Tarray*) only
generally leads to an increase over T∀,⇒ in the number of obligations; this even sur-
passes an order of magnitude for the symm-policy. However, in combination with
the other simplifications (Tarray), most of these obligations can be discharged again,
and we generally end up with fewer obligations than before; again, the symm-policy
is the only exception. The effect of the final policy-specific simplifications is, as

13

Page 82 of 171

Denney, Fischer, Schumann

should be expected, highly dependent on the policy. For in-use and norm a further
reduction is achieved, while the rules for init and symm only reduce the size of the
obligations.

4.2 Running the Theorem Provers

Table 4 summarizes the results obtained from running the theorem provers on
all proof obligations (except for the invalid obligations from the in-use-policy),
grouped by the different simplification levels. Each line in the table corresponds to
the proof tasks originating from a specific safety policy (array, init, in-use, symm,
and norm). Then, for each prover, the percentage of solved proof obligations and
the total CPU time are given. Note that TATP also includes the actual CPU times for
failed proof attempts.

For the fully simplified version (Tpolicy), all provers are able to find proofs for
all tasks originating from at least one safety policy; e-setheo-csp03F can even dis-
charge all the emerging safety obligations This result is central for our application
since it shows that current ATPs can in fact be applied to certify the safety of syn-
thesized code, confirming our first hypothesis.

For the unsimplified safety obligations, however, the picture is quite different.
Here, the provers can only solve a relatively small fraction of the tasks and leave
an unacceptably large number of obligations to the user. The only exception is the
array-policy, which produces by far the simplest safety obligations. This confirms
our second hypothesis: aggressive preprocessing is absolutely necessary to yield
reasonable results.

Let us now look more closely at the different simplification stages. Breaking
the large original formulas into a large number of smaller but independent proof
tasks (T∀,⇒) boosts the relative performance considerably. However, due to the
large absolute number of tasks, the absolute number of failed tasks also increases.
With each additional simplification step, the percentage of solved proof obligations
increases further. Interestingly, however, T∀,⇒ and Tarray seem to have the biggest
impact on performance. The reason seems to be that equality reasoning on deeply
nested terms and formula structures can then be avoided, albeit at the cost of the
substantial increase in the number of proof tasks. The results with the simplification
strategy Tarray∗ , which only contains the language-specific rules, also illustrates this
behavior. The norm-policy clearly produces the most difficult safety obligations,
requiring essentially inductive and higher-order reasoning. Here, all simplification
steps are required to make the obligations go through the first-order ATPs.

The results in Table 4 also indicate there is no single best theorem prover. Even
variants of the “same” prover can differ widely in their results. For some proof obli-
gations, the choice of the clausification module makes a big difference. The TPTP-
converter implements a straightforward algorithm similar to the one described in
[17]. Flotter uses a highly elaborate conversion algorithm which performs many
simplifications and avoids exponential increase in the number of generated clauses.
This effect is most visible on the unsimplified obligations (e.g., T∅ under init),

14

Page 83 of 171

Denney, Fischer, Schumann

e-setheo03F e-setheo-new SPASS Vampire6.0 Vampire5.0 Otter
P N % TATP % TATP % TATP % TATP % TATP % TATP

T∅
ar 110 96.4 192.4 94.5 284.9 96.4 73.4 95.5 178.1 95.5 102.1 83.6 870.3
in 164 76.8 3000.8 13.1 1759.8 75.0 2898.3 8.5 9224.9 8.5 8251.0 6.6 6534.7
iu 19 57.9 610.8 44.4 612.2 68.4 512.8 57.9 773.1 47.4 645.5 35.7 16.0
sy 18 50.0 387.7 8.3 266.1 38.9 555.3 16.7 744.9 16.7 723.6 16.7 847.9
no 54 51.9 1282.4 51.9 1341.0 51.9 1224.2 50.0 1316.5 48.1 1327.1 31.5 1537.7

T∀,⇒

ar 1457 99.0 903.4 94.2 5925.0 99.8 217.0 99.9 240.5 99.8 152.4 99.5 714.5
in 3177 88.4 3969.4 91.7 20784.8 97.4 8732.2 95.0 14482.2 93.5 14203.4 92.0 19310.5
iu 1123 59.3 819.1 96.4 4100.3 99.1 1733.5 95.3 4183.7 94.3 4206.8 96.6 3014.2
sy 286 93.4 1785.9 90.6 2341.0 88.5 3638.7 90.2 3315.8 91.3 1789.2 80.8 2160.1
no 155 85.8 1422.1 73.5 2552.5 84.5 1572.0 87.7 1359.9 87.1 1276.0 76.1 2051.6

Tprop

ar 275 99.3 278.2 76.4 4080.8 99.3 157.5 99.3 187.5 99.3 132.6 97.1 621.4
in 919 94.7 4239.4 73.0 17472.2 92.8 5469.7 84.9 10598.0 83.2 10546.8 78.8 13461.6
iu 177 86.4 1854.0 77.4 2768.2 94.9 1008.3 70.1 3806.2 65.0 3960.6 78.5 2729.2
sy 56 66.1 1476.2 51.8 1944.4 48.2 1911.3 58.9 1596.7 58.9 1424.8 19.6 2002.2
no 41 46.3 1361.2 41.5 1484.6 41.5 1478.2 53.7 1286.7 51.2 1275.3 9.8 2036.2

Teval

ar 28 100.0 16.2 100.0 19.7 100.0 10.4 100.0 12.7 100.0 1.7 100.0 20.7
in 790 94.6 3944.2 94.1 8288.0 93.3 4380.1 82.5 10239.0 82.0 9040.2 85.7 7983.6
iu 172 86.0 1852.2 83.1 2305.2 94.8 1023.1 69.8 3718.1 67.4 3561.1 64.0 3715.3
sy 56 66.1 1451.1 66.1 1500.4 51.8 1716.0 62.5 1455.5 58.9 1389.8 26.8 1828.2
no 30 53.3 859.4 13.3 1575.8 50.0 940.5 66.7 736.7 53.3 858.0 50.0 1007.7

Tarray

ar 28 100.0 15.4 100.0 19.8 100.0 10.4 100.0 12.7 100.0 1.7 100.0 20.2
in 582 100.0 527.6 100.0 823.9 99.7 875.8 100.0 1401.3 99.0 785.1 95.7 2468.7
iu 47 100.0 323.9 100.0 343.2 100.0 171.3 100.0 262.6 87.2 525.2 85.1 613.7
sy 1337 100.0 1104.3 99.9 1629.3 99.4 746.4 99.1 963.9 99.0 922.7 98.2 872.9
no 32 59.4 678.4 18.8 1583.1 59.4 709.7 62.5 791.7 50.0 858.6 59.4 896.2

Tarray∗

ar 1457 99.9 916.4 94.2 5918.0 99.9 210.8 99.9 240.6 99.9 153.1 99.5 711.9
in 3825 99.7 3412.3 96.3 13536.1 99.5 4574.9 99.8 4952.1 98.4 6000.1 95.5 13680.4
iu 3089 99.8 2438.4 99.4 5139.0 99.8 889.2 99.8 793.5 99.6 925.9 99.5 1427.8
sy 6403 99.9 5317.4 99.7 11787.7 99.7 3385.1 99.6 3277.3 99.6 1807.0 83.5 1682.8
no 157 86.0 1306.8 72.6 2670.8 86.0 1351.3 86.6 1449.9 86.0 1276.2 76.4 2078.3

Tpolicy

ar 26 100.0 15.0 100.0 17.7 100.0 9.9 100.0 12.0 100.0 1.6 100.0 19.7
in 582 100.0 529.2 100.0 827.9 99.5 875.2 100.0 1418.9 99.0 782.5 95.7 2456.7
iu 20 100.0 281.7 100.0 329.7 100.0 170.7 100.0 262.6 70.0 524.8 65.0 601.1
sy 1345 100.0 1104.6 99.9 1640.5 99.4 760.0 99.1 1048.8 99.0 926.9 99.3 501.1
no 14 100.0 9.0 57.1 375.8 100.0 26.2 100.0 108.0 71.4 241.8 100.0 69.7

Table 4
Results and times for array (ar), init (in), in-use (iu), symm (sy), and norm (no) policy.

where Spass and e-setheo-csp03F—which both use the Flotter clausifier—perform
substantially better than the other provers.

Since our proof tasks are generated directly by a real application and are not

15

Page 84 of 171

Denney, Fischer, Schumann

T∅ (N=365) T∀,⇒(N=6198) Tprop (N=1468) Teval (N=1076) Tarray (N=2026) Tpolicy(N=1987)

Fig. 4. Distribution of easy (Tproof < 1s, white), medium (Tproof < 10s, light grey), difficult
(Tproof < 60s, dark grey) proofs, and failing proof tasks (black) for the different simplifica-
tion stages (prover: e-setheo-csp03F). N is the total number of proof tasks at each stage.

hand-picked for certain properties, many of them are (almost) trivial—even in the
unsimplified case. Figure 4 shows the resources required for the proof tasks as a
series of pie charts for the different simplification stages. All numbers are obtained
with e-setheo-csp03F; the figures for the other provers look similar. Overall, the
charts reflect the expected behavior: with additional preprocessing and simplifi-
cation of the proof obligations, the number of easy proofs increases substantially
and the number of failing proof tasks decreases sharply from approximately 16%
to zero. The relative decrease of easy proofs from T∀,⇒ to Tprop and Teval is a conse-
quence of the large number of easy proof tasks already discharged by the respective
simplifications.

4.3 Difficult Proof Tasks

Since all proof tasks are generated in a uniform manner through the application
of a safety policy by the VCG, it is obvious that many of the difficult proof tasks
share some structural similarities. We have identified three classes of hard exam-
ples; these classes are directly addressed by the rewrite rules of the policy-specific
simplifications.

Most safety obligations generated by the VCG are of the form A ⇒ B1∧. . .∧Bn

where the Bi are variable disjoint. These obligations can be split up into n smaller
proof obligations of the form A ⇒ Bi and most theorem provers can then handle
these smaller independent obligations much more easily than the large original.
The second class contains formulas of the form symm(r) ⇒ symm(diag-updates(r)).
Here, r is a matrix variable which is updated along its diagonal, and we need to
show that r remains symmetric after the updates. For a 2x2 matrix and two updates
(i.e., r00 = x and r11 = y), we obtain the following simplified version of an actual
proof task:

∀i, j · (0 ≤ i, j ≤ 1 ⇒ sel(r, i, j) = sel(r, j, i)) ⇒
(∀k, l · (0 ≤ k, l ≤ 1 ⇒

sel(upd(upd(r, 1, 1, y), 0, 0, x), k, l) = sel(upd(upd(r, 1, 1, y), 0, 0, x), l, k))).

This already pushes the provers to their limits—e-setheo cannot prove this while
Spass succeeds here but fails if the dimensions are increased to 3x3, or if three
updates are made. In our examples, matrix dimensions up to 6x6 with 36 updates
occur, yielding large proof obligations of this specific form which are not provable
by current ATPs without further preprocessing.

16

Page 85 of 171

Denney, Fischer, Schumann

Another class of seemingly trivial but hard examples, which frequently shows
up in the init-policy, results from the expansion of deeply nested sel/upd-terms.
These problems have the form

∀i, j ·0 ≤ i ≤ n∧0 ≤ j ≤ n ⇒ (¬(i = 0∧j = 0)∧. . .∧¬(i = n∧j = n) ⇒ false)

and soon become intractable for the clausifier, even for small n (n = 2 or n = 3),
although the proof would be easy after a successful clausification.

4.4 Policy-Specific Domain Theories

The domain theory described in Section 3.3 and used in the experiments summa-
rized in Table 4 contains all axioms required to prove any of the obligations; in
particular, it also contains axioms which are specific to the symbols used only in
one policy and which should thus not be required for any obligation from the other
policies. However, experience shows that the ATPs have problems detecting such
redundant axioms [8,27,30].

e-setheo03F Vampire 5.0
reduced theory full theory reduced theory full theory

simp. policy % Tproof Tmean % Tproof Tmean % Tproof Tmean % Tproof Tmean

T∅ array 96.4 61.5 0.56 96.4 131.2 1.19 96.6 0.4 0.01 95.5 3.1 0.03
init 86.6 868.8 5.30 76.8 928.9 5.66 4.5 0.0 0.00 8.5 22.0 0.13
in-use 57.9 32.0 1.68 57.9 62.4 3.28 47.4 7.4 0.4 47.4 7.5 0.40

T∀,⇒ array 99.9 633.2 0.43 99.0 782.1 0.54 99.9 22.6 0.02 99.8 31.9 0.02
init 98.6 7259.1 2.28 88.4 2155.1 0.68 93.5 1730.5 0.54 93.5 1845.2 0.58
in-use 98.0 686.5 0.61 59.3 456.6 0.41 94.4 216.0 0.19 94.3 228.3 0.20

Tprop array 99.3 125.6 0.46 99.3 156.8 0.57 99.3 8.4 0.03 99.3 12.1 0.04
init 95.2 5467.7 5.95 94.7 1274.4 1.39 83.0 1107.5 1.21 83.2 1258.5 1.37
in-use 87.0 179.0 1.01 86.4 283.4 1.60 65.5 100.0 0.57 65.0 101.6 0.57

Teval array 100.0 12.7 0.45 100.0 16.2 0.58 100.0 1.5 0.05 100.0 1.7 0.06
init 94.7 5240.3 6.63 94.6 1342.1 1.70 82.3 491.4 0.62 82.0 478.3 0.61
in-use 86.6 244.8 1.42 86.0 281.7 1.64 66.9 93.0 0.54 67.4 123.4 0.72

Tarray array 100.0 12.4 0.44 100.0 15.4 0.55 100.0 1.4 0.05 100.0 1.7 0.06
init 100.0 354.5 0.61 100.0 527.6 0.91 99.3 443.1 0.76 99.0 423.3 0.73
in-use 100.0 31.4 0.67 100.0 203.4 4.33 87.2 39.5 0.84 87.2 42.9 0.91

Tarray∗ array 99.9 616.3 0.42 99.9 795.4 0.55 99.9 23.0 0.02 99.9 32.5 0.02
init 99.8 2353.4 0.62 99.7 2807.3 0.73 98.2 1923.4 0.50 98.4 2200.5 0.58
in-use 99.8 1485.6 0.48 99.8 2015.9 0.65 99.6 65.7 0.02 99.6 81.9 0.03

Tpolicy array 100.0 11.7 0.45 100.0 15.0 0.58 100.0 1.4 0.05 100.0 1.6 0.06
init 100.0 363.3 0.62 100.0 529.2 0.91 99.3 443.2 0.76 99.0 420.7 0.72
in-use 100.0 19.4 0.97 100.0 187.9 9.39 70.0 39.0 1.95 70.0 42.5 2.13

Table 5
Proof results and times—policy-specific domain theories

In order to evaluate the effect of redundant axioms in our case, we used a re-
duced domain theory for the array, init, and in-use safety polices and then re-ran
e-setheo-csp03F and Vampire5.0. The reduced domain theory uses the same dy-
namic axiom generator as the full theory but omits seven axioms that specify the

17

Page 86 of 171

Denney, Fischer, Schumann

behavior of matrix operations (i.e., addition, subtraction, multiplication, transposi-
tion, and inversion) which do not occur in the obligations resulting from the above
policies. The reduced set thus contains 37 axioms and 17 symbols.

Table 5 summarizes this experiment and gives the results and times for both
the reduced and the original full domain theory. Note that Tproof only includes the
CPU times for successful proof attempts; Tmean is the average CPU time for these
cases. There is no uniform trend, however—depending on the ATP, the applied
simplifications, and the safety policy, either more or less tasks are proven while the
proofs can become faster or slower. This non-uniform behavior is likely to be a
consequence of the internal architecture of the provers. Both e-setheo and Vampire
implement multiple search strategies and then derive a schedule from the proof
task. However, e-setheo’s scheduling algorithm seems to be more sensitive to the
changes than Vampire’s. e-setheo never fails to prove proof tasks by switching to
the reduced domain theory and sometimes finds a substantial number of additional
proofs, in particular for unsimplified or almost unsimplified tasks. The average
proof times are usually slightly better but they can vary widely—up to one order of
magnitude in both directions (e.g., init with Tprop and in-use with Tpolicy). In contrast,
the variation in Vampire’s results and proof times is a lot smaller and appears to be
statistically insignificant.

5 Proof Checking

For certification purposes, explicit evidence must be provided that none of the in-
dividual tool components can yield incorrect results. The VCG is designed so that
it can be manually inspected for correctness and, similarly, the rewrite rules used
for simplification can be inspected and even individually proven correct. How-
ever, the state-of-the-art high performance ATPs in our system use complicated
calculi, elaborate data structures, and optimized implementations to increase their
deductive power and obtain fast results. This makes a formal verification of their
correctness impossible in practice. Although they have been extensively validated
by the theorem proving community (using the TPTP benchmark library), the ATPs
remain the weakest link in the certification chain.

As an alternative to formally verifying the ATPs, they can be extended to gener-
ate sufficiently detailed proofs which can then be independently checked by a small
and thus verifiable algorithm. This is the same approach we have taken in extend-
ing the synthesis system to generate annotated code, rather than directly verifying
the synthesizer. However, although this idea is very simple in theory, there are cur-
rently (as of 2004) almost no proof checkers for high-performance ATPs. This has
a number of practical reasons:

• Many ATPs simply do not generate the required detailed proofs, mainly due to
implementation effort and run-time requirements.

• On-going changes in the ATP require frequent updates and re-verification of the
proof checker.

18

Page 87 of 171

Denney, Fischer, Schumann

• Most ATPs contain a large number of high-level inference rules (such as split-
ting) which cannot easily be expanded into sequences of low-level inferences,
making the proof checker more complicated and thus hard to verify.

• Almost all ATPs work on problems in CNF, so the proof checking can only be
done on that level, and not on the FOL level. Since clausification is often a large
part of a proof, this reduces the confidence that proof checking can bring.

The notable exception is the IVY system [19] that we used in our experiments.
IVY combines a clausifier and the Otter theorem prover with a proof checker. Be-
cause IVY is implemented within the ACL2 logic [16], both the clausifier and the
proof checker have been verified. IVY thus provides the same functionality as a
verified prover for first-order logic, but achieves relatively good performance by
using Otter to find the proofs. However, the formal verification of the IVY clausi-
fier and proof checker are based up finite domains [19] but since the implementation
of IVY does not actually rely on the finiteness, the system can be used for arbitrary
proof tasks.

Another limitation of IVY is shared by all existing clausification algorithms.
Clausifiers usually take a first-order formula apart and reorganize the pieces us-
ing non-logical graph-based techniques. Thus, establishing traceability between
the clauses (or literals) and the positions they had in the original formula would
require substantial effort and has not yet been attempted in practical implementa-
tions. While this restriction makes it impossible to translate the clausal proof back
into a first-order representation, it also has a negative influence on the prover’s be-
havior. Many ATPs can be sped up considerably if it is known which parts of the
formula are axioms and which belong to the conjecture. This distinction allows
the prover to apply goal-oriented rules. Our application naturally provides this in-
formation, but this is ignored by IVY. Thus, the Otter prover used within IVY can
only use Otter’s auto-mode which is rather weak for our proof obligations. Experi-
ments also revealed that IVY has problems in handling the full axiom set. With the
policy-specific domain theory of Section 4.4, we obtained the following results for
the fully simplified tasks: 100% in 34.8s for the array property, 89.2% in 4929.2s
for init, and 65.0% in 657.5s for in-use.

6 Traceability

The successful application of an automated theorem prover to verification and, in
particular, to certification problems such as we have described here, places more re-
quirements on an ATP than just raw deductive power. Since the aim of certification
is to provide explicit evidence that software meets a specified standard of safety, it
is important that domain experts can assess the evidence for successful checks of
the safety properties and any places where it is violated.

Safety checks are typically carried out during code reviews [24], where review-
ers look in detail at each line of the code and check the individual safety proper-
ties statement by statement. The successful outcome of a code review, therefore,

19

Page 88 of 171

Denney, Fischer, Schumann

consists of the code, where each statement is labelled with either “complies with
property P ”, or with information about the violation. This requires two things: (i)
tracing information which links the safety obligations (or their proofs) to specific
lines of code in the program being certified, and (ii) a summary which relates this
detailed information back to the specification and the safety policy, while drawing
attention to specific areas of concern.

Existing techniques for addressing the tracing problem [14], however, need to
be extended for our purposes. The required information about code locations needs
to be threaded through all stages of our certification architecture (cf. Figure 1).
Only then can the tracing information be obtained and displayed in the appropriate
way. Even if we just want to know if a certain line in the code fulfills a safety
property, the location information still needs to be threaded through the VCG and
the simplifier.

To get more detailed information, however, the tracing has to be threaded through
the ATP and into the proof it generates. For example, the analysis needs to reveal
which other lines of code are actually required to satisfy a property. For variable
initialization safety this can mean computing on which line the variable that is ac-
cessed in the current statement was initialized. The extraction of this information
requires knowledge of which parts of the formula contributed to the proof, as well
as their location information. This problem is aggravated by the fact that most
theorem provers work on clausal normal form, which usually looses the important
location information.

In general, useful information extracted from an ATP can be used for purposes
of auto-generating documentation. In [6], we describe a safety documentation tool,
which generates a natural language description explaining the safety of a program,
by converting the VCs into text. This could be extended by carrying out some
symbolic evaluation from the simplifier as an intermediate step to using the full
proofs.

7 Conclusions

We have described a system for the automated certification of safety properties of
NASA state estimation and data analysis software. The system uses a generic VCG
together with explicit safety policies to generate policy-specific safety obligations
which are then automatically processed by a first-order ATP. We have evaluated
several state-of-the-art ATPs on more than 25,000 proof tasks generated by our
system. With “out-of-the-box” provers, only about two-thirds of the tasks could be
proven but after aggressive simplification, most of the provers could solve almost
all emerging tasks. In order to see the effects of simplification more clearly, we
experimented with several preprocessing stages. Figure 5 shows (on the left) the
overall results for the different stages and provers.

However, the percentage of solved proof tasks is a very ATP-centric metric; it
is also somewhat artificial because it can easily be boosted by splitting the orig-
inal obligations into a larger number of small proof tasks (cf. the results for T∅

20

Page 89 of 171

Denney, Fischer, Schumann

0

10

20

30

40

50

60

70

80

90

100

e-setheo03F

e-setheo-new

SPASS

Vampire6.0

Vampire5.0

Otter

0

10

20

30

40

50

60

70

80

90

100

T∅ T∀,⇒ Tprop Teval Tarray Tarray* Tpolicy T∅ T∀,⇒ Tprop Teval Tarray Tarray* Tpolicy

Fig. 5. Comparison of proof results and certification results

and T∀,⇒). An empirically more meaningful metric for the success of this ATP-
application is the percentage of solved certification tasks, i.e., the relative number
of cases in which the ATP solves all safety obligations resulting from the applica-
tion of a safety policy to an individual program. Figure 5 shows this metric (on the
right) for the different simplification stages and provers. This change in perspec-
tive leads to a dramatic change in the interpretation of the same results. The two
major differences are: (i) the numbers go down and (ii) the variation between the
provers becomes larger. Both differences result from a few hard proof tasks which
are distributed evenly over the different certification tasks. Consequently, empirical
success is a lot harder to come by if it is defined in terms of the application rather
than in terms of the TPTP corpus. However, as our experiments show it is clearly
not impossible.

It is well-known that, in contrast to traditional mathematics, software verifica-
tion hinges on large numbers of mathematically shallow (in terms of the concepts
involved) but structurally complex proof tasks, yet current provers are not well
suited to this. Since the propositional structure of a formula is of great importance,
we believe that clausification algorithms should integrate more simplification and
split goal tasks into independent subtasks. Likewise, certain application-specific
constructs (e.g., sel/upd) can easily lead to proof tasks which cannot be handled
by current ATPs. The reason is that simple manipulations on deep terms, when
combined with equational reasoning, can result in a huge search space.

Our certification approach relies on proof checking to ensure that the proofs
are correct. However, the ATPs fare less well when assessed in these terms and
more research efforts should go into the development of proof checkers for high-
performance provers. Moreover, it is very difficult to get useful information from
the ATPs which can then be used as a basis for documentation. Since we believe
that software certification is potentially one of the main application areas for auto-
mated theorem proving, this is clearly another area in need of further work.

With our approach to certification of auto-generated code, we are able to au-
tomatically produce safety certificates for code of considerable length and struc-
tural complexity. By combining rewriting with state-of-the-art automated theorem

21

Page 90 of 171

Denney, Fischer, Schumann

proving, we obtain a safety certification tool which compares favorably with tools
based on static analysis (see [4] for a comparison). Our current efforts focus on
extending the certification system in a number of areas. One aim is to develop a
certificate management system, along the lines of the Programatica project [25]. In
another thread of future work we will experiment with other reasoning systems and
decision-based tools (such as PVS, Vampire, and Simplify) to process our verifica-
tion conditions. We also plan to combine our work on certification with automated
safety and design document generation [6] tools that we are developing. Finally,
we continue to integrate additional safety properties.

References

[1] A. Appel, N. Michael, A. Stump, and R. Virga. “A Trustworthy Proof Checker”. JAR,
31(3–4):191–229, 2003.

[2] W. Bibel and P. H. Schmitt, (eds.). Automated Deduction — A Basis for Applications.
Kluwer, 1998.

[3] E. Denney and B. Fischer. “Correctness of Source-Level Safety Policies”. In Proc. FM
2003: Formal Methods, LNCS 2805, pp. 894–913. Springer, 2003.

[4] E. Denney, B. Fischer, and J. Schumann. “Adding Assurance to Automatically
Generated Code”. In Proc. 8th IEEE Intl. Sympl. High Assurance System Engineering,
pp. 297–299. IEEE Comp. Soc. Press, 2004.

[5] E. Denney, B. Fischer, and J. Schumann. Using Automated Theorem Provers to Certify
Auto-Generated Aerospace Software, 2004. In Proc. IJCAR’04. To appear.

[6] E. Denney and R. P. Venkatesan. “A generic software safety document generator”. In
Proc. 10th AMAST. To appear, 2004.

[7] B. Fischer, A. Hajian, K. Knuth, and J. Schumann. Automatic Derivation of Statistical
Data Analysis Algorithms: Planetary Nebulae and Beyond. In Proc. 23rd MaxEnt, 2004.
http://ase.arc.nasa.gov/people/fischer/.

[8] B. Fischer. Deduction-Based Software Component Retrieval. PhD thesis, U. Passau,
2001. http://elib.ub.uni-passau.de/opus/volltexte/2002/23/.

[9] C. Flanagan and K. R. M. Leino. “Houdini, an Annotation Assistant for ESC/Java”. In
Proc. FME 2001: Formal Methods for Increasing Software Productivity, LNCS 2021, pp.
500–517. Springer, 2001.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
“Extended static checking for Java”. In: PLDI, pp. 234–245. ACM, 2002.

[11] B. Fischer and J. Schumann. “Applying AutoBayes to the Analysis of Planetary
Nebulae Images”. In Proc. 18th ASE, pp. 337–342. IEEE Comp. Soc. Press, 2003.

[12] B. Fischer and J. Schumann. “AutoBayes: A System for Generating Data Analysis
Programs from Statistical Models”. J. Functional Programming, 13(3):483–508, 2003.

[13] B. Fischer, J. Schumann, and G. Snelting. “Deduction-Based Software Component
Retrieval”. Volume III of Bibel and Schmitt [2], pp. 265–292. 1998.

[14] R. Fraer. “Tracing the Origins of Verification Conditions”. In Proc. 5th AMAST, pp.
241–255, 1996.

22

Page 91 of 171

http://ase.arc.nasa.gov/people/fischer/
http://elib.ub.uni-passau.de/opus/volltexte/2002/23/

Denney, Fischer, Schumann

[15] P. Homeier and D. Martin. “Trustworthy Tools for Trustworthy Programs: A Verified
Verification Condition Generator”. In Proc. TPHOLS 94, pp. 269–284. Springer, 1994.

[16] M. Kaufmann and J S. Moore. “An Industrial Strength Theorem Prover for a Logic
Based on Common Lisp”. Software Engineering, 23(4):203–213, 1997.

[17] D. Loveland. Automated Theorem Proving: A Logical Basis. North–Holland, 1978.

[18] J. McCarthy. “Towards a Mathematical Science of Computation”. In Proc. IFIP
Congress 62, pp. 21–28. North-Holland, 1962.

[19] W. McCune and O. Shumsky. “System description: IVY”. In Proc. 17th CADE, LNAI
1831, pp. 401–405. Springer, 2000.

[20] W. McCune and L. Wos. “Otter—The CADE-13 Competition Incarnations”. JAR,
18(2):211–220, April 1997.

[21] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann. and K. Mayr. “The
Model Elimination Provers SETHEO and E-SETHEO”. JAR, 18:237–246, 1997.

[22] G. C. Necula. “Proof-Carrying Code”. In Proc. 24th POPL, pp. 106–19. ACM, 1997.

[23] G. C. Necula and P. Lee. “The Design and Implementation of a Certifying Compiler”.
In: PLDI, pp. 333–344. ACM, 1998.

[24] S. Nelson and J. Schumann. “What makes a Code Review Trustworthy?”. In Proc.
37th Annual Hawaii International Conference on System Sciences. IEEE, 2004.

[25] The Programatica Team. “Programatica Tools for Certifiable, Auditable Development
of High-assurance Systems in Haskell”. In Proc. High Confidence Software and Systems
Conf., Baltimore, MD, April 2003.

[26] W. Reif. “The KIV Approach to Software Verification”. In KORSO: Methods,
Languages and Tools for the Construction of Correct Software, LNCS 1009, pp. 339–
370. Springer, 1995.

[27] W. Reif and G. Schellhorn. “Theorem Proving in Large Theories”. Volume III of
Bibel and Schmitt [2], pp. 265–292. 1998.

[28] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured Specifications and
Interactive Proofs with KIV. Volume II of Bibel and Schmitt [2], pp. 225–241, 1998.

[29] A. Riazanov and A. Voronkov. “The Design and Implementation of Vampire”. AI
Communications, 15(2–3):91–110, 2002.

[30] J. Schumann. Automated Theorem Proving in Software Engineering. Springer, 2001.

[31] G. Sutcliffe and C. Suttner. CASC Home Page. http://www.tptp.org/CASC.

[32] G. Sutcliffe and C. Suttner. TPTP Home Page. http://www.tptp.org.

[33] C. Weidenbach. SPASS Home Page. http://spass.mpi-sb.mpg.de.

[34] C. Weidenbach, B. Gaede, and G. Rock. “Spass and Flotter version 0.42”. In Proc.
13th CADE, LNAI 1104, pp. 141–145. Springer, 1996.

[35] M. Whalen, J. Schumann, and B. Fischer. “AutoBayes/CC — Combining Program
Synthesis with Automatic Code Certification (System Description)”. In Proc.
18th CADE, LNAI 2392, pp. 290–294. Springer, 2002.

[36] M. Whalen, J. Schumann, and B. Fischer. “Synthesizing Certified Code”. In Proc.
FME 2002, LNCS 2391, pp. 431–450. Springer, 2002.

[37] J. Whittle and J. Schumann. Automating the Implementation of Kalman Filter
Algorithms, 2004. In review.

23

Page 92 of 171

http://www.tptp.org/CASC
http://www.tptp.org
http://spass.mpi-sb.mpg.de

ESFOR 2004 Preliminary Version

MoMM - Fast Interreduction and Retrieval in
Large Libraries of Formalized Mathematics

Josef Urban 1

Dept. of Theoretical Computer Science

Charles University

Malostranské nám. 25, Praha, Czech Republic

Abstract

MoMM (in the narrower sense) is a tool allowing fast interreduction of a high number
of clauses, dumping and fast-loading of the interreduced clause sets, and their use for
real-time retrieval of matching clauses in an interactive mode. MoMM’s main task is
now providing these services for the world’s largest body of formalized mathematics
- the Mizar Mathematical Library (MML), which uses a richer formalism than just
pure predicate logic. This task leads to a number of features (strength, speed, memory
efficiency, dealing with the richer Mizar logic, etc.) required from MoMM, and we
describe the choices taken in its implementation corresponding to these requirements.

An important part of MoMM (in the wider sense) are the tools exporting the richer
logic of MML into the clause-like format suitable for fast interreduction, and the tools
allowing the use of MoMM as an interactive advisor for the authors of Mizar articles.
These tools and choices taken in their implementation are also described here. Next we
present some results of the interreduction of MML, which provide an interesting informa-
tion about subsumption and repetition in the MML and can be used for its refactoring.
This interreduction reveals that more than 2 percent of the main MML theorems are
subsumed by others, and that for more than 50 percent of the internal lemmas proved
by Mizar authors MoMM can provide a useful advice for their justification. Finally
some problems and possible future work are discussed.

1 Motivation, Basic Ideas and Related Work

1.1 Motivation

The primary goal in the design of MoMM was to have a fast tool for fetching
matching theorems from the Mizar Mathematical Library (MML) [Rudnicki 1992],
[Rudnicki and Trybulec 1999] , which already now contains some 40000 theorems.
The typical usage of such a tool is assistance during authoring Mizar articles. A

1 Email: urban@kti.ms.mff.cuni.cz

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Page 93 of 171

Urban

user writes a formula which he wants to justify, possibly with a partial justification,
like
A3: ψ by A1,A2;

and the tool tries to find Mizar theorems which subsume it (here we would look
for a theorem subsuming formula “(A1 & A2) implies ψ”) and thus complete
the justification. E.g. if in our example theorem Th1 was found, the following
inference
A3: ψ by A1,A2,Th1;

should then usually be accepted by the Mizar checker [Wiedijk 2000].

This goal is closely related to that of the interreduction of a set of clauses.
We do not want to load redundant theorems into our tool, and once it has the
subsumption functionality, we can use it to find the subsumed theorems first and
not to load them for the normal interactive usage. Detecting subsumed theorems
is not only useful for our tool, it is generally useful for the maintenance of a large
body of mathematics like the MML.

Having a good interreduction tool in turn leads to even more interesting appli-
cations. The main (exported) Mizar theorems usually have longer proofs written
in the Jaskowski [Jaskowski 1934] style containing a number of lemmas with var-
ious degrees of difficulty. While the main Mizar theorems are often used (and
thus also searched for) by Mizar authors and the probability of an unspotted re-
dundant theorem should be quite low, the various lemmas used for proving the
main theorems are usually forgotten once they served their purpose in the proof.
If such lemmas are correctly exported from the context provided by the layered
supposition structure of the Jaskowski-style proofs, they become universally valid
formulas, which can be interreduced and used for subsumption in the same way
as the main Mizar theorems (and together with them). Such large-scale (there are
now almost 900000 clauses generated from the Mizar lemmas) interreduction can
give us

• the strongest versions of such internal lemmas

• the usage counts of these strongest versions, which give a general “usefulness”
criterion for classification of all lemmas (as well as theorems), and can be used
e.g. for upgrading the most frequent lemmas into regular Mizar theorems

• the possibility of “refactoring” of the Jaskowski-style proofs by replacing the
proofs of repeated or subsumed lemmas with just a single reference to the
strongest versions

• an interesting general statistics about subsumption and repetition in a large
body of formal mathematics

As we show later in this article, the last item already now really justifies one
of the interpretations of the acronym MoMM:

Most of Mizar Matches

I.e. more than a half of the lemmas written by the Mizar authors are subsumed
by another lemma or theorem. This does not necessarily mean that the subsumed

2

Page 94 of 171

Urban

lemmas are redundant at the particular point of a Mizar proof. Replacing one big
proof step with two smaller proof steps, typically with an explicit instantiations
of the universal formulas that justify them, can be useful both for the limited (but
fast) Mizar checker and for the human readers. This statistics just means that
for more than a half of the lemmas a useful advice can be given by MoMM. This
is a strong evidence that formalization together with quite simple “brute force”
methods (“store and index everything, unless it is redundant”) can give some very
real benefits to mathematicians. We can only speculate about similar statistics for
all of mathematics, if we ever succeed in providing some common formal language
for it or at least for a large part of it. The author’s personal opinion is that
it is quite a safe bet to replace ’Mizar’ with ’Mathematics’ in the above given
acronym interpretation. Again, that does not have to mean that only less than
a half of e.g. the “original” results published in mathematical journals is really
original, but we conjecture that for many lemmas a useful advice could be given
in exactly the same way as we do for Mizar and that the repetition rate might
be even higher due to the limitation of the human memory and text processing,
the lack of a common formal language and the lack of a semantically searchable
central repository.

1.2 Related Work and Basic Ideas

Mizar substantially differs from many other proof assistants [Wiedijk 2003] in the
following aspects important for the work presented here:

• It is practically a classical first-order system 2 , which makes it suitable for co-
operation with the first-order theorem proving technology. Many other proof
assistants use some kind of higher-order logic, some use non-classical logics.

• It has a large, maintained and internally consistent repository of formalized
mathematics written mostly by humans, which can be used as a source for all
kinds of data-mining experiments.

Especially the second aspect forces us to look for solutions which are as efficient
as possible in terms of memory consumption and speed, while systems with hun-
dreds or at most thousands of theorems can afford to neglect such issues to a great
extent. Closer to the MoMM’s area of application in the given aspects could ac-
tually be large ontologies and common sense systems like OpenCyc [OpenCycUrl]
or Cyc, where first-order representation seems to be used (at least at some level).

Related is also the normal database technology that is being used e.g. in the
MMLQuery [Bancerek 2003] system for Mizar and also in corresponding projects
done for other systems. This technology is good for various symbol-based queries,
like “Give me all theorems containing all symbols from theorem T1”, but it is
hard to extend to queries involving the term structure.

2 Its axiomatics is the Tarski-Grothendieck set theory [Tarski 1939,TARSKI] which is very close
to ZFC. Therefore the language allows infinite schemes of axioms (like Replacement) and the-
orems parameterized by second-order variables. The usage of such second-order features is
however quite rare and limited by the language.

3

Page 95 of 171

Urban

On the other side, there is the full automated theorem proving, used e.g. in
the MPTP [Urban 2004] project. Initial experiments with selecting suitable hints
and attempting a proof of an arbitrary theorem from the MML are described
in [Urban 2004], but at the time of writing this article, MPTP is not yet an
interactive tool available to Mizar authors. This functionality is planned in some
short time, but even when it is implemented, a full theorem proving attempt will
typically take a longer time, and will be able to use only a (well chosen) fraction
of MML theorems, because of the high sensitivity of full theorem proving to the
initial number of formulas.

What we want for a system like MoMM are thus just the very efficient in-
dexing methods developed for automated theorem provers (ATPs), which have
already enabled ATPs to quickly find matchings or unifications in clause sets
containing millions of clauses, without those parts of ATPs which generate new
clauses. MoMM is based on such indexing methods implemented in the E prover
[Schulz 2002], and it started as a modified version of the CSSCPA subsumption
tool written by Stephan Schulz and Geoff Sutcliffe.

2 Basic Description

The MoMM system is available at
http://kti.ms.mff.cuni.cz/~urban/MoMM/MoMM.tar.gz and it now consists of
the following parts

(i) The main matching and interreduction tool (also called MoMM), based on
version 0.7 of the E prover [Schulz 2002], particularly on the CSSCPA tool
written by Stephan Schulz and Geoff Sutcliffe.

(ii) The programs exporting the MML into a clause-like (TPTP-like) format suit-
able for MoMM.

(iii) The interreduced clausebases created from MML. Some of them are comple-
mented with termbanks which speed up their fast-loading.

This distribution is tailored to the real-time interaction during authoring Mizar
articles, therefore the clausebases are already suitably interreduced and for some
of them terms are dumped into termbanks, which accelerates their fast-loading
for the real-time interaction. The “raw” (i.e. noninterreduced) clausebases corre-
sponding to the MML version 4.04.834 can be downloaded from
http://kti.ms.mff.cuni.cz/~urban/MoMM/MoMM834_raw.tar.gz . The export
programs (relcprem and tptpexp available in the distribution) can be used to
build the “raw” clausebases from any compatible Mizar distribution.

An important part of the MoMM’s functionality is implemented in the Mizar
mode for Emacs [Urban 2002], which is available in the standard Mizar distribu-
tion and therefore does not have to be included in the MoMM distribution. This
part provides a user interface allowing real-time interaction with MoMM during
authoring Mizar articles.

The MoMM production and usage stages can be described as follows:

4

Page 96 of 171

http://kti.ms.mff.cuni.cz/~urban/MoMM/MoMM.tar.gz
http://kti.ms.mff.cuni.cz/~urban/MoMM/MoMM834_raw.tar.gz

Urban

(i) Exporting MML to the clause-like format. Currently both the main Mizar
theorems (about 64000 clauses) and all Mizar internal lemmas (about 860000
clauses) are exported.

(ii) Interreducing the exported clausebases. This has many options and can also
provide useful statistics and hints for refactoring of the MML.

(iii) Fast-loading MoMM with suitable clausebases during authoring new Mizar
articles.

(iv) Using a modified Mizar verifier (very similar to the exporting tool) which
generates MoMM queries from the currently authored article (typically from
the parts which are not accepted by the Mizar checker, i.e. lacking sufficient
justification).

(v) The generated queries are associated to their counterparts in the Mizar arti-
cle, and the author can use the interactive Emacs functions for sending the
queries to the MoMM process.

(vi) If such a query is successful (i.e. a match was found by MoMM) and it is
a MML theorem, it can be used for direct justification of the corresponding
Mizar formula. If the match is an unexported Mizar lemma, the author is
presented with its exact position in the MML and can copy its justification
into his article.

3 Implementation of MoMM

As noted, the main matching and interreduction tool is based on the E prover
and derived from the CSSCPA tool. The E prover is a clausal first order the-
orem prover, the main data structures are clauses made of literals. E is an
equational prover, so predicates and functors are treated almost in the same
way by the implementation. Atomic formulas are represented as pairs of terms,
expressing their equality, and a special term TRUE accompanies in these pairs
all the “terms” which have a non-equality predicate in the top position. E’s
main indexing data structure is the perfect discrimination tree, described e.g. in
[Ramakrishnan et all 2001]. There are other efficient indexing techniques, e.g. the
code trees or context trees [Niewenhuis et all 2001], however perfect discrimina-
tion trees are still among the most efficient, and apart from being used in E, e.g.
the very efficient Waldmeister equational prover [Hillenbrand 2003] has been using
them for several years.

One of the first things that had to be changed in E’s implementation of the
perfect discrimination trees was its usage of dynamic array indexed by the functor
codes at each node. We want to load all MML theorems into MoMM, and want
to make it possible for normal Mizar users, without any special hardware. The
problem is that MML has a very large signature - about 7000 constructors. Having
an array 7000 integers long at each tree node consumes memory very quickly. After
some experimenting the dynamic array was replaced with a splay tree of functor
codes at each node, and the memory consumption dropped very significantly. The

5

Page 97 of 171

Urban

expected drop in speed actually did not come (about 1 percent), which was quite
surprising 3 .

To speed up the subsumption a bit further, a signature pretest for pairs of
clauses was implemented. Each term keeps an array of its symbols, which is cheap
thanks to the banks of shared terms used in E. Such array is also created for each
clause, and we reject the subsumption, if the subsumer contains symbols that
are not in the candidate for subsumption. The speed up was about 50 percent.
Recently, similar functionality has been implemented by Stephan Schulz in a more
advanced way in E 0.8, so the plan is to switch to his implementation.

Quite significant modifications of the E’s algorithms and data structures have
been done in order to efficiently implement a fast, type-aware subsumption algo-
rithm that would resemble that of Mizar. These modifications are explained later
in this article, after the explanation of the Mizar type system which motivates
them. Despite all these modifications, there still are parts of mathematics formal-
ized in Mizar, which are very hard to deal with in MoMM, and the worst-case
complexity of subsumption can be observed on them. Such parts are e.g. the
formalizations of various geometric configurations and properties (e.g. the AFF
series of Mizar articles and its relatives), where there often occur formulas with
many literals based on just one predicate, with either variables or very shallow
terms, and with very few type constraints. Since computing subsumption be-
tween two such formulas can be very time consuming, we have implemented a
hard last-resort limit, which is currently set to 1000 literal matchings before we
give up with the particular subsumption attempt. This setting has been adjusted
experimentally and (depending on the MML version) it causes roughly hundreds
of subsumption attempts to be aborted. If this should become a serious problem,
more “targeted” versions of such a hard limit are easy to implement.

4 Exporting Mizar for MoMM

4.1 Export of the Mizar language

Mizar is a system for formalizing mathematics by humans, consisting of several
parts. The main “product” of Mizar is its large and growing mathematical li-
brary, containing more than 800 articles from various fields of mathematics. One
of the main concerns of the Mizar designers is the suitability of the Mizar language
for such large scale formalization, which leads to its quite complicated structure.
On the proof level, Mizar is based on the Jaskowski’s system of suppositions
[Jaskowski 1934], which is often put among natural deduction systems. The lan-
guage of formulas is basically first order logic, but since MML is built on a variant

3 The measurement of the slowdown caused by this was not exhaustive, but was done on prob-
lems with “normal” small signature. The option of using splay trees instead of dynamic arrays
is now controlled by a compiler directive and can thus be used for the whole E prover. Getting
some large-scale statistics e.g. by running the two versions on the complete TPTP should not
be a problem. Stephan Schulz has pointed out that the good performance can be due to the fact
that the splay trees rebalance themselves for frequent queries.

6

Page 98 of 171

Urban

of ZFC (Tarski-Grothendieck set theory), a language expressing infinite schemes
of axioms is sometimes needed. This means that some second-order constructs are
also allowed, though they appear only in quite a small part of MML. The symbols
in Mizar can be overloaded in different ways (some frequently used mathematical
symbols like “∗” or “+” have more than 100 (re)definitions in the MML) which
is indispensable for human authoring. It is important to know, that beneath this
(sometimes complicated) notation there is a semantic layer, in which all symbols
are disambiguated into the so called “constructors”. This constructor representa-
tion is then used for proof checking. There is a default naming scheme for this
constructor representation used already now e.g. by MMLQuery or by MPTP. It
is based on numbering of the constructors as they are defined in the Mizar articles,
so e.g. the first mode (type constructor) in the article SUBSET 1 (with the user
symbol “Element”) gets the name “m1 subset 1”. The transformation from the
constructor format back into the user format is generally difficult, not unique, and
sometimes probably impossible. Being a semantic tool, MoMM obviously has to
use this constructor representation too 4 .

4.2 The Mizar type system, Mizar-like Horn theories and their implementation
in MoMM

Mizar employs a number of automations, that can be generally called “the Mizar
type system”. Examples and explanation of these type rules are presented in
[Urban 2003], we will just try to explain the main ideas here.

The Mizar types are formed by clusters of attributes (e.g. empty, finite, real,
measurable, etc.) that play the linguistic role of adjectives, and by type radices
(e.g. set, Function, Lattice), which provide the main inheritance relationship.
Both attributes and types are semantically predicates, however they differ from
Mizar predicates by the existence of the type and cluster hierarchies. E.g. every
type has to define its parent type, and obviously, if a formula is quantified with a
variable of type T, it can be correctly applied only to variables of type T or more
special. Functors also have to define their result types, and similar mechanisms
are also used for attributes.

The Mizar type system (without the attributive part) as exported in MoMM
can actually be thought of as a Horn theory with some strong “stratification”
properties allowing fast traversal of the type hierarchies. We will call it here a
Mizar-like Horn theory and try to give a bit abstract description that should be
useful for further understanding of the type representation employed in MoMM. It
might be useful also as an example of one particular way of dealing with dependent

4 Having more user-friendly names for the Mizar constructors would be useful for all the tools
working with the semantic layer of Mizar and also for communication with other formalization
projects. However keeping such names in an external table outside the MML would quickly
make such a table outdated, since the MML is very often revised. The proper solution seems
to be keeping unique user-friendly names inside Mizar articles. This would however require a
simple addition to the Mizar language, and some additional effort either from the Mizar authors
or from the Library Committee, and it is therefore hard to negotiate.

7

Page 99 of 171

Urban

type hierarchies which are preferred in several proof assistants [Wiedijk 2003] to
the simple non-dependent type hierarchies for their expressivity, but are generally
more difficult to implement in a decidable and fast way.

Definition 1 (Mizar-like Horn theory M)

(M1) The signature of a Mizar-like Horn theory M is finite and consists of the dis-
joint sets of functor symbols FM and type symbols TM . There is a given linear
ordering <M of the set of all symbols (i.e. FM ∪ TM). The motivation for this
is the order in which the symbols are defined in the MML.

(M2) A Mizar-like Horn theory M is a union of its type hierarchy part THM and
functor types part FTM , i.e. M = THM ∪ FTM . These parts are explained in
the following conditions.

(M3) The type hierarchy part of M is a finite set of Horn clauses of the form:
t1(X, T1, ..., Tm) :- t2(X, Y1, ..., Yn).
Such clauses mean that if X has a (parameterized) type t2, then it also has its
parent type t1, and they must satisfy the following two conditions:

(M3.1) t1, t2 ∈ TM and t1 <M t2 (i.e. the parent type t1 has to be introduced earlier in
the MML).

(M3.2) T1, ..., Tm are terms over {fl ∈ FM : fl <M t2} ∪ {Y1, ..., Yn}, i.e. they use
only the signature defined earlier than t2, cannot introduce new variables and
the “typed variable” X is not allowed in them.

(M4) The functor types part of M is a finite set of Horn clauses of the form:
t(f(X1, ..., Xn), T1, ..., Tm).
Such clauses mean that t is the (parameterized) result type of the functor f , and
they must satisfy the following two conditions (similar to (M3.1) and (M3.2)):

(M4.1) t ∈ TM , f ∈ FM and t <M f (i.e. the result type t has to be introduced earlier
in the MML).

(M4.2) T1, ..., Tm are terms over {fl ∈ FM : fl <M f} ∪ {X1, ..., Xn}, i.e. they use only
the signature defined earlier than f , and cannot introduce new variables.

Note that in this definition nothing prevents multiple inheritance both for the
types and for the functors. The usage of multiple inheritance in Mizar is how-
ever quite limited (to the Mizar structures). Also note that the parent and result
type clauses are completely insensitive to the types of arguments. This may feel
counterintuitive to Mizar users, who are accustomed to the vast parametric poly-
morphism in Mizar (e.g. a more special result type can be given for a functor, when
it has more special argument types), however this is really a faithful description
of how Mizar behaves at the constructor level. The parametric polymorphism is
dealt with in Mizar simply by having formally different constructors (i.e. functors
and types) with different parent or result types when polymorphism occurs. The
bottom line of this approach is that equality of the various polymorphic variants is
internally used in many places in Mizar, while it is not captured by the notion of a
Mizar-like Horn theory, and actually neither by the current MoMM’s subsumption
algorithm, which is based on that notion. This makes the matching in MoMM

8

Page 100 of 171

Urban

a bit weaker than in Mizar and it could probably be improved in the future by
similar techniques as in Mizar, i.e. by keeping tables of the same polymorphic
variants and doing the matching “modulo” them.

We want that the MoMM’s subsumption algorithm (described below) was
aware of the Mizar type hierarchies. For that, we need to be able to determine the
types of terms during the matchings and quickly traverse the parent type hierar-
chy. For the relatively simple Mizar-like Horn theory of the nonattributive part
of the Mizar type system it is implemented in MoMM in the following way. The
Horn theory of the Mizar types is exported as a special typetable 5 , which for each
functor or type tells how to obtain its result or parent type (if it is nontrivial).
This information is then used by MoMM, for proper computing of the complete
set of types for each (nonvariable) term. The types of variables obviously have to
be kept in the clauses. Hence e.g. for the functor k4 relset 1 (user symbol dom)
the exported typetable entry is:
type(k4 relset 1(A1,A2,A3),m1 subset 1(k4 relset 1(A1,A2,A3), k1 zfmisc 1(A1))).

To get a type of a term with the top-level functor k4 relset 1, MoMM will first
match its arguments against the variables A1, A2, A3, and then instantiate the
parent type

m1_subset_1(k4_relset_1(A1,A2,A3),k1_zfmisc_1(A1))

with the resulting substitution. Thanks to the usage of banks of shared terms in
E, we do this only once for each term, and remember the beginning of its type
hierarchy in an added “type” slot of the term structure. The type hierarchy is
always finite, thanks to the strong “stratification” properties of Mizar-like Horn
theories, and the type literals forming it can be normally shared in the common
E’s termbanks, thanks to the above mentioned insensitivity of the Mizar-like Horn
theory clauses to the types of its argument terms 6 . This mechanism allows us to
access the complete (nonattributive) type hierarchy for a given nonvariable term
when it is needed, i.e. not only its immediate parent type, but all of its ancestor
types. This implementation has currently one drawback: it pretends that there is
no multiple inheritance in Mizar. Having multiple inheritance requires generally an
array of parent types instead of just one “type” slot of the term structure and some
modifications of the type hierarchy traversing algorithms, and its implementation
is not yet fully debugged. So for the rare cases (some structure types) when Mizar
uses multiple inheritance, we export only the first parent type to the typetable.
This is a limitation which may make the typed subsumption fail in cases when it
succeeds in Mizar, but it is not too serious thanks to the low frequency of such
cases.

To handle the types of variables, we use the fact that they are normalized
in clauses and keep their types in a fixed array associated to the clause, where
look-up can be done according to their numbers. Variables can be given only
one initial type in Mizar formulas, and its ancestor hierarchy is again normally

5 This is the file all.typ in the MoMM distribution.
6 Note that this would be hard to do, if the parent type of some term could vary e.g. with
varying of the types of variables contained in it.

9

Page 101 of 171

Urban

accessible through its “type” slot. The situation is more complicated with Mizar
attributes, we explain it in the next subsection.

4.3 Attributive extensions of the Mizar-like Horn theories and their implemen-
tation in MoMM

The attributive part of the Mizar type system is a bit more complicated and it
is no longer a Horn theory, because negated versions of attributes (e.g. “non
empty”) are allowed in its formulation 7 . It is also more relaxed than the strongly
stratified Mizar-like Horn theory and while direct and fast inheritance algorithms
are sufficient for the non-attributive part, graph-based or fixpoint algorithms are
needed for the attributive part. It differs also by generally taking into account the
types of arguments 8 .

Definition 2 (Mizar-like type theory with attributes MA)

(MA1) MA extends the notion of a Mizar-like Horn theory M by extending M ’s signa-
ture with a finite set of attribute symbols AMA (disjoint from FMA and TMA).
Although in practice the MML ordering <M applies also to AMA, it has no
significance for the conditions given here.

(MA2) MA adds to the type hierarchy part THMA and functor types part FTMA the
conditional clusters part CCMA and functor clusters part FCMA, i.e. MA =
THMA∪FTMA ∪CCMA∪FCMA. The conditions for THMA and FTMA are the
same as above.

(MA3) The conditional clusters part of MA is a finite set of (generally non-Horn)
clauses (or rather “rules”) of the form:
(not)a1(X) :- (not)a2(X),, (not)an(X), t(X, T1(Ȳ), ..., Tm(Ȳ)), τ(Ȳ).
Such clauses mean that if the variable X has attributes (not)a2,, (not)an and
a (parameterized) type t (with the types of its parameters’ variables Ȳ specified
by the set of type and attribute declarations τ(Ȳ)), then it also has the attribute
(not)a1. The reason for writing the clause in an implicative form is that the
Mizar implementation really makes use of only this implicative version of the
clause, other implicative variants have to be stated explicitly if the user wants
that Mizar used them too. The additional formal specifications are:

(MA3.1) a1, ..., an ∈ AMA, t ∈ TMA, T1(Ȳ), ..., Tm(Ȳ) are terms not containing X with
all variables in the set Ȳ = {Y1, ...Yl} and τ(Ȳ) consists of type declarations
for the variables (i.e. atoms ti(Yi, T

i
1
(Ȳ i),, T i

m
i

(Ȳ i) where i ∈ 1, ..., l, Ȳ i ⊆
Ȳ \ {Y1, ..., Yi}) and attribute declarations for the variables (i.e. literals

7 It can be trivially changed into a Horn theory by creating new symbols for the negated
attributes and adding their dependencies, and this is actually used in some parts of the Mizar
implementation, but such renaming is not currently used in the MoMM export. The Horn-like
presentation is more elucidating as it suggests one-directional (rule-like) usage of the clauses,
which is actually used in Mizar. In this sense, the formal clause-like presentation is a bit
incorrect, since adding new permutations of existing rules really changes Mizar’s behavior.
8 If the following definition is too formal to understand, the reader is encouraged to have a look
at the large number of examples in the MML, which usually give the intuition quite quickly.

10

Page 102 of 171

Urban

(not)ai
1
(Yi), ..., (not)a

i
n

i

(Yi) where i ∈ 1, ..., l).

(MA4) The functor clusters part of MA is a finite set of (generally non-Horn) clauses
(or rather “rules”) of the form:
(not)a(T) :- τ(Ȳ).
Such clauses add the attribute (not)a (a ∈ AMA) to the (nonvariable) term T
(with the types of its parameters’ variables Ȳ specified by the set of type and
attribute declarations τ(Ȳ)). The restrictions on τ(Ȳ) are as in (MA3.1), the
implicative form is used for the same reason as in (MA3).

Later in the article we will need to point out to the fact that any M and MA
satisfy the following natural “monotonicity” condition and its extension to the
application of any term context. For its justification, just have a look at the kinds
of clauses present in M and MA.

(Monot) Let Y be a variable declared with the (parameterized) type t and attributes
(not)ai, and let T be a term having t (with the same parameters) as its (not
necessarily most special) result type, and also (at least) the attributes (not)ai.
Let θM,MA(Y) be the complete set of type and attribute literals generated by
M and MA for Y , and let θM,MA(T) be the same thing generated for T . Then
θM,MA(Y) subsumes θM,MA(T) with the substitution {Y/T} (i.e. all types and
attributes generated for Y will also be generated for T). Similarly, for any term
context α(.) holds that θM,MA(α(Y)) subsumes θM,MA(α(T)).

Apart from the problem with generally slower (“graph-chasing”) algorithms
for collecting attributes of a given Mizar term, the most problematic aspect of
the attributive part of Mizar for a tool like MoMM is that unlike the simple re-
sult and parent type hierarchies which are absolute across MML (i.e. one functor
constructor always gets the same result type, no matter what MML article it is
used in), the attributive part can vary in different articles. The attributive part
is controlled by a special “clusters” directive in each Mizar article and it is a
modular, “information-hiding” method for controlling the context in which Mizar
does the verification. For dealing with the attributive theory, using some “global”
method similar to the global typetable described in the previous subsection is
therefore not only significantly more difficult, but could also give some quite un-
expected results to the Mizar authors. That’s why we now use Mizar for collecting
the terms’ attributes as they are used in the particular articles and for passing
them to MoMM, without any further attribute computation in MoMM. Unlike in
Mizar-like Horn theories, the attributive theories are in general sensitive to the
arguments’ types. This (together with the article-locality of the attributive theo-
ries) prevents us from storing terms’ attributes at some special “attributes” slot
of the shared term structure (which would be similar to the way we store types).
The complete attribute information is therefore kept locally for each clause. For
variables, this is again done in a fixed array indexed by their number in the clause.
The attributive literals of nonvariable terms are kept in a splay tree.

11

Page 103 of 171

Urban

4.4 A simple example of the export

We will now explain with an example the format used by MoMM, and how the
Mizar articles is exported into it. Consider the Mizar theorem PARTFUN2:17
(17-th theorem in article PARTFUN2):

f is one-to-one & x in dom f & y in dom f & f/.x = f/.y implies x = y;

The variables used in this theorem have been earlier in the article (context) re-
served with the following types:

reserve C,D for non empty set;

reserve f for PartFunc of C,D;

reserve x,y for set;

The meaning of this theorem is that for one-to-one partial functions from C to D,
an element of its domain is determined by its value. The first step done by Mizar
is to add the quantifications explicitly:

for C,D being non empty set,

for f being PartFunc of C,D,

for x,y being set holds

f is one-to-one & x in dom f & y in dom f & f/.x = f/.y implies x = y;

The second step is translating the user symbols into the constructors:

for C,D being non v1_xboole_0 m1_hidden,

for f being v1_funct_1 v1_relat_1 m2_relset_1 of C,D,

for x,y being m1_hidden holds

f is v2_funct_1 & r2_hidden(x, k4_relset_1(f) &

r2_hidden(y, k4_relset_1(f) &

r1_hidden(k4_finseq_4(f,x), k4_finseq_4(f,y)) implies

r1_hidden(x,y)

This transformation to absolute notation alone suffices to make the theorem very
difficult to read. As noted above, attributes and types are just specially handled
predicates, so a formula of the form “for x being T holds P(x)” is translated to
“for x holds T(x) implies P(x)”. Hence our formula becomes:

for C,D,f,x,y holds

(not v1_xboole_0(C) & m1_hidden(C) &

not v1_xboole_0(D) & m1_hidden(D) &

v1_funct_1(f) & v1_relat_1(f) & m2_relset_1(f,C,D) &

m1_hidden(x) & m1_hidden(y)

)

implies

(v2_funct_1(f) & r2_hidden(x, k4_relset_1(f) &

r2_hidden(y, k4_relset_1(f) &

r1_hidden(k4_finseq_4(f,x), k4_finseq_4(f,y)) implies

r1_hidden(x,y)

)

12

Page 104 of 171

Urban

The type “set” (m1 hidden) has no semantic content, everything in Mizar
is “set”, so such atomic formulas can be completely eliminated. Additionally,
we clausify the formula (which is completely successful here, as there are only
universally quantified variables), replace the Mizar equality (r1 hidden) with E’s
equality (equal), and put the “context information” (i.e. the type and attribute
literals) in the end. The result is in file partfun2.ths in the MoMM distribution:

accept: pos(partfun2, 1, 17, 219, 69, 0)

input_clause(th,axiom,

[--v2_funct_1(C5)

, --r2_hidden(C1,k4_relset_1(C3,C4,C5))

, --r2_hidden(C2,k4_relset_1(C3,C4,C5))

, --equal(k4_finseq_4(C3,C4,C5,C1),k4_finseq_4(C3,C4,C5,C2))

, ++equal(C1,C2)

, --v1_relat_1(C5)

, --v1_funct_1(C5)

, --m2_relset_1(C5,C3,C4)

, ++v1_xboole_0(C3)

, ++v1_xboole_0(C4)

, --$true], 6).

Note that k4 relset 1 (dom) has arity 3 here. This is the effect of the hidden
arguments C and D in the type of the variable f. Since “dom” is defined for such
types, it uses these arguments explicitly on the constructor level.

The number of literals obtained in this way is usually quite high, mainly be-
cause of the context literals. Clauses with 40 context literals are no exceptions.
As we explained above, the context information is handled specially in MoMM.
The number 6 following the literal list tells MoMM that the context literals start
at that position.

The initial line gives the status (accept) of the clause, and its Mizar position.
It contains

(i) The article name

(ii) The kind of the exported clause (1 for theorems, 2 for definitional theorems,
3 for functor property formulas, etc.).

(iii) Theorem or definition number if the kind is 1 or 2, otherwise 0.

(iv) Line number in the Mizar article.

(v) Column number in the Mizar article.

(vi) The serial number of the clause generated from this Mizar formula - some-
times there are hundreds or thousands of clauses created from a single for-
mula.

The status is used to tell MoMM what it should do with the clause. Status
“accept” e.g. means that tautology check and both forward and backward sub-
sumptions should be tried. There are several other statuses, documented in the
MoMM help, e.g. the status “nsaccept” is used for fast loading of a clause base,

13

Page 105 of 171

Urban

without trying any reductions.

4.5 Export of the proof lemmas

We not only export the main Mizar theorems, as e.g. the PARTFUN2:17 given
above, but the great majority of the MoMM clauses is created by exporting the
internal lemmas introduced inside the proofs of the main Mizar theorems. There
are two kinds of these lemmas, those with a Simple Justification and those with
a Proof. The Simple Justification lemmas generally look as follows in Mizar:
A3: ψ by A1,A2,PARTFUN2:17;

This tells Mizar, that the formula ψ should be provable by the local references
A1,A2 and the MML theorem PARTFUN2:17. Both the formula ψ and the formulas
denoted by A1 and A2 can apart from the standard Mizar signature contain also
local constants, created on various levels of the Jaskowski-style proofs. The Mizar
checker is presented with the types of these local constants, the negation of ψ and
the formulas A1, A2 and PARTFUN2:17, and tries to infer a contradiction. The
Simple Justification lemmas are now exported as implications
for local constants holds

∧

references implies conjecture;
This would be in our case
for local constants holds A1 ∧ A2 ∧ PARTFUN2 : 17 implies ψ;
The changing of the local constants to the universally quantified variables (with
corresponding types) is justified by the standard theorem about constants and
the fact that the only knowledge the checker has about them are their types. The
reference PARTFUN2:17 is a Mizar theorem, whose validity does not depend on
any possible suppositions done along the proof path to ψ. Therefore it can be
removed from the exported lemma, which then contracts just to
for local constants holds A1 ∧ A2 implies ψ;
Note that in this kind of export only the universally valid theorems can be re-
moved in this way, the references A1 and A2 might be proved with the use of
some local supposition, and thus not be generally removable. Another kind of
export of the internal lemmas could be implemented e.g. by collecting all of the
suppositions made along the proof path to ψ. Such other kinds of export are not
yet implemented.

The export of the internal lemmas with a Proof is similar. Each Proof can
be thought of as a block of justification steps. If we collect all the references used
inside the block, which are not introduced in the block (i.e. are external to it), it
gives as the set of formulas from which the proved lemma logically follows. Again,
the universally valid theorems can be removed from that set and we can generalize
over all of the local constants.

5 Typed Subsumption in MoMM

We have described above several performance improvements to the basic indexing
and subsumption mechanism in E, however the crucial point was implementation
of a typed subsumption, which treats the context (i.e. type and attribute) literals

14

Page 106 of 171

Urban

specially, in accordance with a given Mizar-like Horn theory M and its (rule-like)
attributive extension MA.

First, let us realize that the semantics of a clause C = {L1, ..., Ln1} with
variables Ȳ with initial types given by context literals Θ = {θ1,, θl} is simply
∧

Θ →
∨

C. The normal subsumption in E takes two lists of literals - subsum list
and sub cand list and tries to find a substitution σ such that σ(subsum list) ⊆
sub cand list. This works in theory for typed clauses too, if we put all of the
context literals generated by the given Mizar-like Horn theory M and its (rule-like)
attributive extension MA directly into them and treat them as normal clauses. In
more detail, suppose that we have two clauses C1 = {L1

1, ..., L
n1

1 , τ
1
1 , ..., τ

m1

1 } and
C2 = {L1

2
, ..., Ln2

2
, τ 1

2
, ..., τm2

2
}, where Lj

i are the normal literals and τ j

i give the full
context informations (i.e. full type hierarchies and full attribute information for
all terms in Ci). The sets {τ 1

i , ..., τ
m

i

i } are generated by the exhaustive application
of M and MA to the terms appearing in Li = {L1

i , ..., L
n

i

i } using the initial types
and attributes Θi = {θ1

i ,, θ
l
i

i } of the sets of variables Ȳi of Ci. Note that in
this “explicit context generating” process new terms (but not new variables) can
appear, due to the general parametric form of the clauses in M and MA, but
this process is finite, due to the stratification and finiteness properties of M and
MA and their signature, i.e. given finite initial Θi and Li , the number of the full
explicit context literals τ j

i is also finite.

Now suppose that we have found a substitution σ = {Y 1

1
/T 1

2
,, Y l1

1
/T l1

2
} such

that σ(C1) ⊆ C2. That particularly means that all Li
1 matched. It also means that

all of the initial types of variables from C1, e.g. θi
1

= ti
1
(Y i

1
, S1

1
, ..., Sn

i

1) matched,
i.e. that there was a type literal τ i

2
= ti

2
(T i

2
, S1

2
, ..., Sn

i

2
) ∈ C2 such that σ(θi

1
) = τ i

2
,

and similarly for the initial attributes of these variables. In other words, all the
bindings Y i

1
/T i

2
are correctly typed, since the bound terms have at least as special

types (with attributes) as required by the variable declarations for Y i
1 . It is easy

to see that the converse holds too, i.e. if there is a correctly typed substitution
giving subsumption on the “normal” literal parts of C1 and C2, it already gives
complete subsumption of C2 by C1 (i.e. also on all the context literals). Just
observe (best by looking at the kinds of clauses (or rules) forming M and MA)
that all of the context literals generated by M and MA for C1 will be generated
for the corresponding terms of C2 too (the (Monot) property given above).

An inspection of the previous argument can confirm the intuitive requirement,
that adding only the initial variable types and attributes Θ1 to L1 is enough, if we
are looking for a subsumption of C2 by C1. This again follows from the (Monot)
property, i.e. once we know that the initial variable types and attributes matched,
we also know that their full context matched, and also any term context applied
to them. This improves the efficiency of the typed subsumption significantly, since
we do not have to include all the additional context literals into the subsumers.
This fact can also be used to decrease the sizes (both in the memory and in the
filesystem) occupied by the clausebanks, if we know that they will only be used
for forward subsumption of other formulas and no backward subsumption will be
applied to them. In that case, the attributive context of all nonvariable terms can

15

Page 107 of 171

Urban

be removed from them.

The current implementation of the algorithm additionally organizes the literals
in such a way, that the “type checking” was done as early as possible, cutting off
the ill-typed bindings. Note however that the types are parameterized, so the
“type checking” can bind new variables. Therefore our implementation should be
thought of as a special version of a normal subsumption, steered by the additional
type information, rather than thinking of it as of two strictly divided “normal”
and “type checking” parts. The sketch of the subsumption algorithm that we
implement is following:

(i) Start with subsum list equal to the normal literals of the subsumer, and
sub cand list to those of the candidate.

(ii) Each time a new variable V is bound, collect its initial types and attributes
into Θ(V) (they are kept in the fixed arrays associated with the clause, as
explained above). Also collect the complete types and attributes of the corre-
sponding term TV into τ(TV) (the types are obtained by traversing the type
hierarchy starting at the TV ’s “type” slot, the attributes are fetched from the
splay tree associated with the clause, as explained above).

(iii) With the current partial substitution, try to find a subsumption between
Θ(V) and τ(TV), this may extend the current partial subsumption.

(iv) If success, continue the suspended subsumption job, with the extended sub-
stitution, otherwise try backtracking the type subsumption, and if no success
the previous matchings.

Note that the type subsumptions are not special in any way in this, and particu-
larly, they may also trigger further type subsumptions, when they really instantiate
some variable parameterizing the types. To implement this ’eager’ type checking,
we need a stack of ’subsumption jobs’, that we postponed because of the newly
arrived type subsumption jobs.

6 Processing Modes

MoMM has two basic purposes: interreduction of a set of clauses, and loading a
(possibly interreduced) set of clauses quickly for giving hints interactively. The
processing mode is influenced both by command line options, and by the clause
statuses. The status can tell MoMM e.g. that a clause should be accepted un-
conditionally, or that all checks should be used, and the clause accepted if not
redundant, or that the clause should just be checked and never accepted. The
clauses are capable of keeping the “subsumption” information, i.e. the positions
of clauses which they subsumed (recursively). This can be used after the interre-
duction for all kinds of data-mining applications.

For the 65702 theorem clauses generated from MML (version 7.0.04) we use
a complete mutual interreduction, with a complete Mizar typetable loaded. The
interreduced clause base is then dumped using numerical abbreviations for terms,
into the file all.ths.cb, and the corresponding termbank into the file all.ths.tb.

16

Page 108 of 171

Urban

These files are then typically fast-loaded without any interreductions in a “read-
only” mode, and used for printing theorems that subsume the interactive queries.

The clauses generated from the internal lemmas are first interreduced by the
theorems from their articles, and then all the lemmas generated from one article
are mutually interreduced. This first fast interreduction usually removes a very
large portion of the internal lemmas (cca 40 percent). Such (partially) interreduced
clausebanks are then compressed and available for the interactive use in the same
way as the theorems.

7 Results

The complete interreduction of the 65702 typed theorem clauses from MML 7.0.04
takes about 9 minutes on Pentium 4 3GHz, and about 180M RAM. The subsequent
fast loading of the interreduced theorem clause bank takes 14 seconds and 140M
RAM on the same machine. It is possible to load MoMM only with a part of the
MML theorems, but is seems that these time and space requirements are today
within the reach of most Mizar users.

Recently we have also tried an interreduction of the 860000 clauses generated
from the internal Mizar lemmas, but without the backward subsumption. This
interreduction took 36 minutes on Pentium 4 3GHz, and 1.4 GB RAM. More than
a half of the clauses was subsumed, and the strongest clauses have subsumed a
very high number (thousands) of others and thus suggest many useful changes to
the structure of the MML. The graph of the cumulative subsumption counts is
given below.

Fig. 1. Cumulative subsumption counts of the internal lemmas

0

50000

100000

150000

200000

250000

300000

350000

400000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

"00test.tp6"

After the interreduction of the MML theorems, we are left with 64009 clauses,
so 1695 clauses generated from MML theorems are redundant, usually subsumed.
This finding alone confirms the necessity of tools like MoMM for management
of large libraries of formalized mathematics. There is quite a lot of attention
paid to the compactness and integrity of MML, however even the best informed
maintainers cannot keep precise track of some 40000 theorems. The informations
about redundant theorems is available for further analysis in the interreduced
clause bank all.ths.cb in the distribution, because each time a clause C1 subsumes

17

Page 109 of 171

Urban

clause C2, the position information of C2 is added to the “subsumed” list of C1.
The subsumption theorem pairs found by MoMM can be also viewed at
http://ktiml.mff.cuni.cz/~urban/MoMM/pos1.cb2 .

8 Problems and Future Work

There are still number of possibilities for improving the basic type subsumption
algorithm, both in the Mizar export and in MoMM. As noted, clusters are im-
plemented differently than types, because their hierarchy in Mizar is more com-
plicated. Also the export of Mizar structures pretends that they only have one
ancestor in the type hierarchy, while they usually inherit from more than one par-
ent structure. This is rather a problem of the export, and the appropriate tables
in MoMM, the subsumption algorithm itself can deal already now with multiple
inheritance.

The second order features of Mizar are not exported now, providing a solution
for this part of Mizar would be useful too. It is hard to say, how difficult that
would be. Generally, a certain kind of a “brute force” principle works for us even if
there are now such holes in the implementation: If a second order feature is often
used, it will be often formulated in its most frequently used first order instances,
and these we will capture. This is true, because we not only export theorems, but
also other (correctly generalized) parts of Mizar proofs, e.g. subproofs and simple
justifications.

Stronger mechanisms than just subsumption can be probably quite easily
added, going in the direction of a limited theorem prover. We might print not
just the exact match if it is found, but also try to select the “best” matches (e.g.
in terms of the number of literals subsumed, etc.), and show them to users.

The dealing with types now differs from the MPTP export. Some compatibility
between the two would be useful, to be able to use MoMM as a fast postfilter e.g.
when using the MPTP translation with some prover as a theorem discovery tool.

9 Acknowledgments

Obviously my thanks go to Stephan Schulz, for implementing and GPL-ing the
E prover, which is not just very efficient, but also extremely cleanly written and
documented. Thanks also to Geoff Sutcliffe, who is (at least) a co-author of the
idea of the CSSCPA filter, which is a real Father of MoMM.

References

[Bancerek 2003] Bancerek G. [2003], Information Retrieval in MML, In Andrea
Asperti, Bruno Buchberger, James Davenport (eds.), Mathematical Knowledge
Management, Proceedings of MKM 2003, LNCS 2594.

[Fellbaum 1998] Christiane Fellbaum (editor), WordNet: An Electronic Lexical
Database. The MIT Press, May 1998, ISBN 0-262-06197-X.

18

Page 110 of 171

http://ktiml.mff.cuni.cz/~urban/MoMM/pos1.cb2

Urban

[Hillenbrand 2003] Thomas Hillenbrand: Citius altius fortius: Lessons learned from the
Theorem Prover WALDMEISTER. Electr. Notes Theor. Comput. Sci. 86(1): (2003)

[Jaskowski 1934] Jaskowski, S. (1934) On the Rules of Suppositions in Formal Logic”
Studia Logica v.1.

[Niewenhuis et all 2001] Robert Nieuwenhuis, Thomas Hillenbrand, Alexander Riazanov
and Andrei Voronkov On the Evaluation of Indexing Techniques for Theorem
Proving Int. Joint Conf. On Automated Reasoning (IJCAR), Siena, Italy, 2001.

[OpenCycUrl] OpenCyc home page at http://www.opencyc.org/

[Ramakrishnan et all 2001] Ramakrishnan I. V. R. C. Sekar, Andrei Voronkov [2001]:
Term Indexing. Handbook of Automated Reasoning 2001: 1853-1964

[Rudnicki 1992] Rudnicki P. [1992], An Overview of the Mizar Project, Proceedings of
the 1992 Workshop on Types for Proofs and Programs, Chalmers University of
Technology, Bastad.

[Rudnicki and Trybulec 1999] Rudnicki, P. and Trybulec, A. [1999], On Equivalents of
Well-foundedness. An experiment in Mizar, Journal of Automated Reasoning, Vol.
23, pp. 197 - 234, Kluwer Academic Publishers, 1999.

[Schulz 2002] Schulz S. [2002], E – A Brainiac Theorem Prover, Journal of AI
Communications, Vol. 15, pp. 111-126.

[Schulz 2001] Schulz S. [2001], Learning Search Control Knowledge for Equational
Theorem Proving, In F. Baader and G. Brewka and T. Eiter (Eds.), Proceedings of
the Joint German/Austrian Conference on Artificial Intelligence (KI-2001), LNAI
Vol. 2174, pp. 320–334, Springer.

[Sutcliffe and Suttner 1998] Sutcliffe G. and Suttner C.B. [1998], The TPTP Problem
Library: CNF Release v1.2.1, Journal of Automated Reasoning, Vol. 21/2, pp. 177-
203.

[Tarski 1939] Tarski A. [1939], On Well-ordered Subsets of any Set, Fundamenta
Mathematicae, vol.32 (1939), pp.176-183

[TARSKI] Trybulec A., Tarski Grothendieck Set Theory, Journal of Formalized
Mathematics, 1, 1989.

[Urban 2003] Urban J. [2003], Translating Mizar for First Order Theorem Provers.
In Andrea Asperti, Bruno Buchberger, James Davenport (eds.), Mathematical
Knowledge Management, Proceedings of MKM 2003, LNCS 2594.

[Urban 2002] Urban J. [2002], MizarMode: Emacs Authoring Environment for Mizar,
available online at http://kti.mff.cuni.cz/~urban/MizarModeDoc/html/

[Urban 2004] Josef Urban. MPTP - Motivation, Implementation, First Experiments.
Accepted to editors Ingo Dahn, Deepak Kapur and Laurent Vigneron - Journal
of Automated Reasoning, First-Order Theorem Proving Special Issue. Kluwer
Academic Publishers (supposed publication: end of 2004). Available online at
http://kti.ms.mff.cuni.cz/~urban/MPTP/mptp-jar.ps.gz.

19

Page 111 of 171

http://www.opencyc.org/
http://kti.mff.cuni.cz/~urban/MizarModeDoc/html/
http://kti.ms.mff.cuni.cz/~urban/MPTP/mptp-jar.ps.gz

Urban

[Wiedijk 2000] Wiedijk F. [2000], CHECKER - notes on the basic inference step in
Mizar. available at http://www.cs.kun.nl/˜freek/mizar/by.dvi

[Wiedijk 2003] Wiedijk F. [2003] Comparing mathematical provers, In Andrea
Asperti, Bruno Buchberger, James Davenport (eds.), Mathematical Knowledge
Management, Proceedings of MKM 2003, LNCS 2594, pp. 188-202.

20

Page 112 of 171

Page 113 of 171

Page 114 of 171

Page 115 of 171

Page 116 of 171

Page 117 of 171

Page 118 of 171

Page 119 of 171

Page 120 of 171

Page 121 of 171

Page 122 of 171

Page 123 of 171

Page 124 of 171

Page 125 of 171

Page 126 of 171

Page 127 of 171

Page 128 of 171

Page 129 of 171

Page 130 of 171

Page 131 of 171

Page 132 of 171

Page 133 of 171

Page 134 of 171

Page 135 of 171

Page 136 of 171

Page 137 of 171

Page 138 of 171

Page 139 of 171

Page 140 of 171

Page 141 of 171

Page 142 of 171

Page 143 of 171

Page 144 of 171

Page 145 of 171

Page 146 of 171

Page 147 of 171

Page 148 of 171

Page 149 of 171

Page 150 of 171

Page 151 of 171

Page 152 of 171

Page 153 of 171

Page 154 of 171

Page 155 of 171

Page 156 of 171

Page 157 of 171

Page 158 of 171

Page 159 of 171

Page 160 of 171

Page 161 of 171

Page 162 of 171

Page 163 of 171

Page 164 of 171

Page 165 of 171

Page 166 of 171

Page 167 of 171

Page 168 of 171

Page 169 of 171

Page 170 of 171

Page 171 of 171

	00-Preface.pdf
	02-Baumgartner.pdf
	Introduction
	The Model Evolution Calculus
	Technical Preliminaries
	The Derivation Rules
	Derivation Tree

	The Proof Procedure
	Implementation
	Term Database
	Backjumping and Dynamic Backtracking
	Iterative Deepening over Term Depth
	Initial Default Interpretation
	Unification with Offsets
	Context Unifiers
	Selection Heuristic
	Inactive Candidates
	Substitution Tree Indexing
	Close Look-ahead
	Programming Language

	Performance Evaluation
	Conclusions and Future Work
	References

	03-Schulz.pdf
	Introduction
	Preliminaries
	Subsumption
	Subsumption Variants
	Saturation Procedures and Clause Set Subsumption

	Feature Vector Indexing
	Subsumption-Compatible Clause Features
	Clause Feature Vectors and Candidate Sets
	Index Data Structure
	Forward Subsumption
	Backward Subsumption
	Optimizing the Index Data Structure

	Implementation Notes
	Experimental Results
	Results with Aggressive Contextual Literal Cutting
	Results for the Automatic Mode

	Future Work
	Conclusion
	References

	04-Loechner.pdf
	Introduction
	Preliminaries
	The reference implementation
	First optimizations
	First comparisons
	A polynomial version
	Bidirectional comparisons
	Further measurements and further variants
	Related work and implementation status
	Conclusions
	References

	06-Denney.pdf
	Introduction
	System Architecture
	Safety Properties and Safety Policies
	Generating Proof Obligations
	Processing Proof Obligations and Connecting the Prover

	Experimental Setup
	Program Corpus
	Simplification
	Domain Theory
	Theorem Provers

	Empirical Results
	Generating and Simplifying Obligations
	Running the Theorem Provers
	Difficult Proof Tasks
	Policy-Specific Domain Theories

	Proof Checking
	Traceability
	Conclusions
	References

	07-Urban.pdf
	Motivation, Basic Ideas and Related Work
	Motivation
	Related Work and Basic Ideas

	Basic Description
	Implementation of MoMM
	Exporting Mizar for MoMM
	Export of the Mizar language
	The Mizar type system, Mizar-like Horn theories and their implementation in MoMM
	Attributive extensions of the Mizar-like Horn theories and their implementation in MoMM
	A simple example of the export
	Export of the proof lemmas

	Typed Subsumption in MoMM
	Processing Modes
	Results
	Problems and Future Work
	Acknowledgments
	References

	08-Wos.pdf
	09-Beeson.pdf
	10-Anderson.pdf

