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Abstract

Different Automated Theorem Proving (ATP) systems solve different parts of different
problems in different ways. Given a set of proofs produced by ATP systems based on ade-
quately common principles, it is possible to create new proofs by combining proof components
extracted from the proofs in the set. It is not generally easy to say that one of the original
or new proofs is better or worse than another, but ways to show that two proofs are different
are available. This paper describes a process of proof combination to form new proofs that
are different from the original set of proofs.

1 Introduction

Proofs form an essential part of mathematics and modern sciences [11]. Proofs allow human
users and machines to understand [4, 25] and verify [12, 21] the processes that yield scientific
discoveries, logical conclusions, and other forms of results. This work deals specifically with
formal proofs generated by Automated Theorem Proving (ATP) systems for first-order logic,
but the framework and techniques are applicable to a broad range of proof-like structures, e.g.,
informal arguments, dataflows, scientific data manipulation, etc. Some examples of such use
cases are described in Section 6.

The proofs used in this work come from problems expressed as a set of axioms and a conjec-
ture to be proved, such as those in the Thousands of Problems for Theorem Provers (TPTP)1

problem library [22]. The proofs are directed acyclic graphs in which the leaf nodes come from
the problem, other nodes are inferred from parent nodes, and the root nodes provide an assur-
ance that the conjecture is a theorem of the leaf axioms. Specifically, the ATP systems that
have been used produce proofs by contradiction, in which an initial inference step negates the
leaf conjecture, all other inferences are at least satisfiability preserving, and the root nodes are
false. These are typical of proofs found in the Thousands of Solutions from Theorem Provers
(TSTP)2 solution library, which contains solutions to TPTP problems. All the problems and
proofs are written in the TPTP language [24].

Given a set of proofs and an equivalence relation between nodes of the proofs, a new proof
can be formed by selecting a replaced node in a target proof, finding an equivalent replacing
node in a contributing proof, and replacing the sub-DAG rooted at the replaced node by the
sub-DAG rooted at the replacing node. The resultant combined proof is different from the target
and contributing proofs. Combining can be iterated in a controlled fashion to generate a series of
new combined proofs based on the set of original proofs. The overall process might require that
the set of original proofs be proofs for the same problem, or be based on a common background
theory – this depends on the application context.

There has been previous work related to this, in the direction of compressing propositional
proofs, e.g., [2, 18, 5]. A key difference between that work and this is that here the goal is to

Pascal Fontaine, Aaron Stump (eds.); PxTP 2010, pp. 1-14
1http://www.tptp.org
2http://www.tptp.org/TSTP/
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produce proofs that are different from the original proofs, rather than proofs that are shorter (see
Section 3). Further, this work is in the context of first-order logic, which adds extra demands on
the process. At a higher level there has been work studying techniques for presenting alternative
proofs and proofs at different levels of granularity [3, 1]. The data structure presented in [1]
provides a similar functionality to that of the PML data structure described in Section 2. That
research was aimed to support proof development in an interactive mathematical proof assistant,
and was related to an application in proof explanation and proof adaptation for tutoring systems
[19]. Again, the goal here of producing different proofs, based on proofs produced by ATP
systems, makes this work somewhat distinct.

The rest of this paper is structured as follows: Section 2 describes the PML language, and
the translation of TPTP format proofs into PML for the proof combining process. Section 3
describes quantitative measures of proofs, which are used to guide the proof combination process.
Section 4 describes the proof combination process, and Section 5 presents an example application
of the process. Section 6 concludes.

2 Proofs in PML

The Proof Markup Language (PML) [15] is a semantic web based representation for exchanging
explanations, including provenance information that records the sources of knowledge, justifi-
cation information that describes the steps for deriving the conclusions or executing workflows,
and trust information that captures trustworthiness assertions about knowledge and sources.
In contrast to the TPTP language, there is less focus on the logical data and the fine-grained
reasoning processes - PML supports arbitrary logical data and inference steps including, e.g.,
extraction of data from non-logical sources, conversion to logical forms, clausification and first-
order inferences, etc. The proof combining described in this work is done using PML because
of its ability to explicitly represent alternative justifications for a conclusion. The XML-based
format also allows for easy parsing and processing.

PML classes are OWL [13] classes, and PML data is therefore expressible in the RDF/XML
syntax. PML is used to build OWL documents representing both proofs and proof provenance
information. For this work, the representation of proofs is of primary interest. The two main
constructs of proofs in PML are NodeSets and InferenceSteps. A NodeSet is used to host a
set of alternative justifications for one conclusion. A NodeSet contains:

• A URI that is its unique identifier.

• The conclusion of the proof step.

• The expression language in which the conclusion is written.

• Any number of InferenceSteps, each of which represents an application of an inference
rule that justifies the conclusion.

An InferenceStep contains:

• The inference rule that was applied to produce the conclusion.

• The antecedent NodeSets of the inference step.

• Bindings for variables in the inference.

• Any number of discharged assumptions.

• The original sources upon which the conclusion depends.

• The inference engine that performed the inference step.

• A time stamp recording when the inference step was performed.
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A proof consists of a collection of NodeSets, with a root NodeSet as the final goal, linked
recursively to its antecedent NodeSets.

The translation of a TSTP proof into PML is done by parsing the TSTP file and extracting
the necessary information into PML object instances [16]. A proof is translated into a PML
NodeSet collection, with each formula in the solution being translated as a singleton member
of the collection. Additionally, the conjecture of the corresponding TPTP problem is translated
into a PML Query, and the English header field of the problem into a PML Question. The
Query contains a pointer to the Question and to all NodeSet collections (from different ATP
systems) that provide a solution. The Query thus provides a starting point for accessing all the
proofs for that problem.

It is important for this work that the PML representation can store multiple justifications
(InferenceSteps) for a formula in a proof (a NodeSet). In ATP terms, PML can associate
multiple inference steps with a formula, in the sense that the formula is the result of each of
the inference steps. This allows a single PML structure to capture multiple proofs, and a single
proof can be extracted by choosing one inference step leading to each formula. A limited version
of this is used in the proof combining process, described in Section 4. The PML representation
is generally convenient for representating alternative derivations, as it is independent of the
underlying reasoning process. This independence will be leveraged in future work representing
scientific provenance information - see Section 6.

The way that PML captures multiple proofs in one structure is akin to using a reasoning
calculus with either a weakening or a juxtaposition rule [7]. In such calculi the “alternative”
sub-DAGs leading to a node are combined by the application of one of these rules. In the same
way that alternative proofs can be extracted from the PML representation, alternative proofs
can be extracted from these richer calculi’s proofs, e.g., by using cut elimination on a proof that
uses weakening [6].

3 Different Proofs (are Good Proofs)

Section 4 describes how proof combining steps are wrapped in a greedy hill-climbing algorithm.
Hill-climbing uses a heuristic function that guides the search to an (locally) optimal solution.
For this work the heuristic function evaluates and ranks proofs based on three artifacts:

• the leaf formulae (axioms and conjecture)

• the inferred formulae

• the inference steps (where an inference step is identified with its parent and inferred
formulae).

However, as is explained in [23], it turns out to be difficult, if not unreasonable, to directly
rank proofs according to such artifacts. Instead, it is possible to say only that proofs are
different from each other. Different proofs may be preferable, depending on the user’s point
of view. For examples: in mathematics, different proofs can demonstrate different levels of
mathematical “elegance”, or show that a theorem can be proved from different axiomatic bases;
in formal methods, different proofs can be easier or harder to verify, or provide different insights
into the structure or process being analyzed; in planning, different proofs can correspond to
different sequences of actions that lead to the same goal state; in knowledge based reasoning,
different proofs can be built from different knowledge bases, allowing independent agents with
different knowledge to reach a common conclusion; in security analysis, different proofs can rely
on different ground observations, thus increasing trust in the intelligence information that is
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Figure 1: Jaccard Distances

generated. Thus the heuristic function used in this work prefers new combined proofs that are
maximally different from other proofs.

Evaluating proofs by counting formulae and inference steps is not necessarily meaningful.
Comparing the numbers of axioms used in proofs can be meaningless because different axioms
contain different amounts of information - using many axioms that each contain a small amount
of information is incomparable with using fewer axioms that each contain a large amount of
information. Comparing the numbers of inferred formulae or the numbers of inference steps
in proofs can be meaningless because of the in-principle differences between inference rules - a
proof that uses inference rules that take “large” steps, e.g., hyperresolution, is likely to have less
steps and less inferred formulae than one that uses rules that take “smaller” steps, e.g., binary
resolution. It is also easy to create proofs with less or more inferences, by combining inferences
into larger steps, or splitting inferences into smaller steps. Thus, rather than counting the proof
artifacts, it is better to compare sets of the artifacts. For this work the Jaccard similarities [10]
between sets of proof artifacts are measured. The following propositional problem illustrates
this (this example is only for illustration - the problem is trivial):

Axioms : {a, b, a⇔ d, d⇔ e, e⇔ b}
Conjecture : a & b

Two different proofs by contradiction are shown in Figure 1. The inferences are numbered for
identification. The sets of artifacts – leaf formulae, inferred formulae, and inferences – for the
left-hand proof are:

Leaves : {a & b, a, a⇔ d, d⇔ e, e⇔ b}
Inferred : {¬a|¬b, a,¬a|d,¬d|e,¬e|b, d, e, b, false}
Inferences : {1, 2, 3, 4, 5, 6, 7, 8, 9}

and for the right-hand proof:
Leaves : {a & b, a, e⇔ b, b}
Inferred : {¬a|¬b, a,¬e|b,¬b|e, b, e, false}
Inferences : {1, 2, 5, 8, 9, 10, 11, 12}

The Jaccard similarity between the sets of leaf formulae is 0.50, between the sets of inferred
formulae it’s 0.60, and between the sets of inferences it’s 0.42.

Given Jaccard similarities between pairs of proofs, a set of proofs is evaluated in terms of the
differences between the proofs. The measurement is done using a modified version [23] of the
generalized clustering coefficient [14]. This measure views the proofs as vertices of a complete
weighted graph, with the Jaccard similarities for a chosen proof artifact as the edge weights.
For each pair of edges coincident on a vertex, the pair defines a triplet (of vertices) closed by the
edge between the vertices at the other ends of the edges. The weight of a triplet is the average
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of the pair of edges’ weights. The clustering coefficient Csw
3 is:

Csw =

∑
all triplets triplet weight× closing edge weight∑

all triplets triplet weight

For a set of proofs that are all the same, so that all edge weights are 1.0, Csw = 1.0. For a set of
proofs that are all completely different, so that all edge weights are 0.0, Csw = 0.0 (noting that
it is necessary to not do the math, to avoid a division by zero). For two proofs, Csw is defined
to be the Jaccard similarity between the two sets of chosen artifacts. Csw is undefined for single
proofs.

A chosen proof artifact is recorded as a superscript on Csw: Lf for leaf formulae, If for
inferred formulae, and Is for inference steps, e.g., CLfsw . For example, for three (somewhat
similar) proofs A, B, and C, with leaf set Jaccard similarities A-B = 0.66, B-C = 0.50, and
A-C = 0.50, the triplet formed from the edges A-B and A-C has weight 0.58. Then

CLfsw =
0.29 + 0.29 + 0.33

0.58 + 0.58 + 0.50
= 0.5482

Replacing C with a (quite different) proof D, so that the leaf set Jaccard similarities are A-B =
0.66, B-D = 0.34, and A-D = 0.34,

CLfsw =
0.17 + 0.17 + 0.22

0.50 + 0.50 + 0.34
= 0.4212

For a chosen proof artifact α, a high Cαsw indicates that the proofs in the set are highly clustered
with respect to α. Conversely a low Cαsw indicates that the proofs are rather different from each
other with respect to α. Thus for this work D would be preferred over C with respect to leaf
sets.

4 Combining Proofs

Reiterating from Section 1, given a set of proofs and an equivalence relation between nodes of
the proofs, a new proof can be formed by selecting a replaced node in a target proof, finding
an equivalent replacing node in a contributing proof (which can be the target proof itself or a
different proof), and replacing the sub-DAG rooted at the replaced node in the target proof by
the sub-DAG rooted at the replacing node of the contributing proof. Any nodes in the replaced
sub-DAG that are used in another part of the target proof are retained, and any duplicated
axioms from the problem (leaf formulae of the proof) are merged.

Figure 2 illustrates a combining step based on two original proofs for the simple propositional
example introduced in Section 3. The left hand upper proof is the target proof, with the node
containing the formula e as the replaced node, so that the outlined sub-DAG is replaced. The
right hand upper proof is the contributing proof, with the node containing the formula e as
the replacing node (based on syntactic equivalence), so that the outlined sub-DAG replaces the
sub-DAG in the target proof. The lower proof is the combined proof. Note that the nodes
containing a in the target proof are retained in the combined proof because they are also used
in another part of the target proof. Note also that the node containing e ⇔ b is merged as
the parent of the node containing ¬e | b from the target proof, and as the parent of the node
containing ¬b | e in the replacing sub-DAG.

3‘C’ - Clustering coefficient, ‘sw’ - scaled weight.
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Figure 2: One combining step

The Csw value of Section 3 is used to compare original and combined proofs. Given a set
of original proofs, a proof artifact α, and a proof P to be evaluated, Cαsw(P ) is the Cαsw value
for the set consisting of the original proofs plus (a distinct copy of) P . Following the example
above, using the leaf formulae as the proof artifact of interest, the Jaccard similarity between
the target and contributing proofs is 0.66, and between each of the two original proofs and the
combined proof it’s 0.50. CLfsw (Target) is 0.7576, and CLfsw (Combined) is 0.4241. The combined
proof is thus (as might be expected) more different than the target proof, from the set of original
proofs with respect to leaf sets.

The heuristic of “maximal difference from the original proofs” is the basis for the greedy
hill-climbing algorithm that is used to generate a series of new combined proofs based on a
set of original proofs. The algorithm is shown in Figure 3. The algorithm gives preference to
self-combining steps, in which the target proof is also used as the contributing proof, over non-
self-combining steps that graft in sub-DAGs from an original proof. Self-combining steps serve to
“optimize” the target proof, e.g., collapsing sequences of equivalent nodes. The heuristic is used
to rank alternative combined proofs, and also to determine if the best combined proof is better
than the target proof (in which case the (local) maxima has not yet been reached). The heuristic
aims to find non-self-combined proofs that are different (i.e., with smaller Csw values) from the
original proofs, first with respect to their leaf sets, then with respect to their inferred formula
sets, and lastly with respect to their inferences. When selecting the initial target proof from the
set of original proofs, a proof with the largest CIfsw is chosen. This preference selects an original
proof that has the most formulae that can be used as replaced formulae, hence maximizing the
number of possible combined proofs that can be formed. The initial selection also relies on a
preference ordering on the ATP systems, which has to be provided by the user.

Figure 4 shows a sequence of combinations as generated by the hill-climbing algorithm, with
the two upper proofs of Figure 2 as the original proofs. For this simple illustrative example
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/* Choose the first target from the original proofs */

BestProofs = the subset of OriginalProofs with maximal CIfsw;1

Target = the proof in BestProofs from the most preferred ATP system;2

/* Start hill-climbing */

repeat3

/* Try combine with itself as the contributing proof */

CombinedProofs = Combine(Target,{Target});4

if CombinedProofs 6= ∅ then5

BestProofs = BestByArtifacts(CombinedProofs);6

else7

/* Try combine with original proofs as the contributing proof */

CombinedProofs = Combine(Target,OriginalProofs);8

BestProofs = BestByArtifacts(CombinedProofs ∪ {Target});9

end10

/* Select the next target proof */

if Target ∈ BestProofs then11

Exit with Target as final proof;12

else13

Target = any proof in BestProofs;14

end15

until Target == null ;16

/* Function to select the best target proof based on artifacts */

Function BestByArtifacts(Proofs) begin17

/* Prefer proofs with different axioms from the original proofs */

BestProofs = the subset of Proofs with minimal CLfsw ;18

/* Next prefer proofs with the same/different inferred formulae as the

original proofs (see explanation in text) */

BestProofs = the subset of BestProofs with minimal CIfsw;19

/* Finally prefer proofs with different inference steps */

BestProofs = the subset of BestProofs with minimal CIssw;20

return BestProofs;21

end22

Figure 3: Hill-climbing combining proofs

syntactic equivalence is adequate for identifying replaced and replacing nodes (see Section 5 for
stronger notions of equivalence). The original proof A is selected as the initial target. The first
iteration combines Original Proof A with itself as the contributing proof, collapsing the sequence of
two nodes containing the formula a, to produce Combined Proof 1. The second iteration continues
with Combined Proof 1 as the target proof and Original proof B as the contributing proof. The
sub-DAG root at the node containing b is replaced, to produce Combined Proof 2. Another
iteration does not produce any more different proofs, and the hill-climbing stops. Table 1 shows
the Csw values for the four proofs.

The implementation of the combining process takes advantage of PML’s ability to store
multiple justifications (PML InferenceSteps) for a formula in a proof (a PML NodeSet), as
explained in Section 2. For each node in the target proof, all equivalent ancestor nodes in
the target proof, and all equivalent nodes in the original proofs, are identified. The inferences
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Figure 4: A sequence of combining steps

Proof CLfsw CIfsw CIssw
Original A 1.0000 0.8483 0.5616
Original B 1.0000 0.8483 0.5616
Combined 1 1.0000 0.8736 0.5616
Combined 2 0.6250 0.6405 0.4235

Table 1: Csw values for sequence of combining steps

that produce these equivalent nodes are added as alternative justifications for the node in the
target proof. In this way all the possible justifications for all the nodes in the target proof are
captured in one PML structure. Each combined proof is then extracted by selecting a different
inference for a node (the replaced node) in the target proof. Note that if the different inference
came from the target proof itself, then a self-combining step has been implemented, otherwise
a non-self-combining step has been implemented.

The greedy nature of the hill-climbing means that the process does not necessarily find the
most different possible combined proof, i.e., the process is not “complete”. A broader search,
e.g., a beam search or best-first search, might produce more different proofs. A full search of
the space of combining possibilities might be necessary to find the most different proof. This is
a topic for further investigation.
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5 Example Use

The proof combining process has been tested on a range of problems and their proofs. The
problems are all in full first-order logic, and the proofs were produced by the ATP systems EP
1.2 [20], Metis 2.3 [9], SInE 0.4 [8], and Vampire 0.6 [17]. In each case the proofs from the same
problem were combined, i.e., all the proofs had axioms from the problem’s axiom set. In the cases
where different problems use the same axiom set it is possible to combine proofs for different
problems, but this has been left for future work. As the problems and solutions are in full first-
order logic, a simple syntactic notion of equivalence is inadequate. For example, under syntactic
equivalence the commutativity, associativity, and reversibility of logical operators would result
in “obviously equivalent” formulae not being recognized as such, e.g., ∀X(q(X)⇐ p(X)) would
not be recognized as equivalent to ∀X(p(X) ⇒ q(X)). More subtlely, as the ATP systems all
convert the problems to clause normal form, Skolem function symbols are typically introduced,
and different ATP systems use different naming conventions for these symbols. Therefore a more
general notion of formula equivalence was implemented, taking into account the properties of
logical operators, possible reordering of quantifications, and naming of Skolem symbols.

As an exemplar use of proof combining, a simplification of the general education rules for
obtaining a Bachelor of Science degree from the College of Arts and Sciences at the University
of Miami4 was encoded. The rules require that students complete requirements in English
composition, Humanities, Natural science, Mathematics, Social science, a Second language, and
Writing. In most of these areas there are alternative ways of completing the requirements. The
encoding is provided in Appendix A. A proof of the conjecture that “it is possible to complete
the general education requirements” finds one possible combination of the alternatives. By
combining a few different proofs, new combinations of the alternatives are found. The combining
process used proofs by EP and Metis. As noted in Section 4, the algorithm relies on a preference
ordering on the ATP systems’ – for these experiments the order chosen was EP then Metis.5

Three original proofs, two by EP and one by Metis, were used. The combining process chose
one of the EP proofs as the initial target. The proof DAG is shown in the left hand side of
Figure 5, as rendered by IDV [25]. An examination of the axioms used shows that EP chose
Art (Humanities), Biology (Natural science), Computer Science (Mathematics), Anthropology
(Social science), Arabic (Second language), and Philosophy (Writing). Philosophy could have
been used to also satisfy the Humanities requirement, but EP chose to take the extra Art
course. The combining process first does 13 self-combining steps, which collapse sequences
of equivalent formulae in EP’s proof. Following that there are five non-self-combining steps
interleaved with 28 self-combining steps. The five non-self-combining steps replace sub-DAGs
representing alternative ways of satisfying the various general education requirements. The 28
self-combining steps collapse sequences of equivalent formulae in the replacing sub-DAGs from
the non-self-combining steps.

The right hand side of Figure 5 shows the final combined proof. An examination of the axioms
used shows that the combined proof chose Art History (Humanities, from Metis’ proof), Biology
(Natural science, from the initial EP proof), Statistics (Mathematics, from the other EP proof),
Psychology (Social science, from the other EP proof), Japanese (Second language, from the
other EP proof), and a specialized writing course (Writing, from the other EP proof). The first
of the five non-self-combining steps makes a comprehensive change to the EP proof, replacing
the sub-DAG rooted at the second-to-deepest node in the target proof by the corresponding
sub-DAG from the other EP proof - this step effectively replaced the original EP proof by the

4http://www.miami.edu/bulletins
5This ordering was only weakly motivated, based on experience with the systems.
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other EP proof. The second non-self-combining step replaces the sub-DAG for the Humanities
with that from Metis’ proof. The third non-self-combining step replaces the sub-DAG for the
Science with that from the original EP proof. All those three steps reduce the CLfsw value. The
last two non-self-combining steps replace parts of the proof in which there is no choice about
the education requirements, but using different sequences of inferences that produce different
CIfsw values.

Table 2 shows the Csw values for the three original proofs, the target proof after the 13 self-
combining steps, and the final combined proof. All the heuristic values are smaller in the final
combined proof. The greedy nature of the hill-climbing algorithm leads to a proof (and hence
the way of completing the general education requirements) that is different from the original
three, according to the measures described in Section 3.

Figure 5: The initial and final proofs

6 Conclusion

This paper has described a process for combining proofs to produce new different proofs. The
process uses measures of proof difference based on the Jaccard similarities between sets of proof
artifacts (leaf formulae, inferred formulae, and inference steps), and implements a hill-climbing
approach that generates proofs that are successively more different from the original proofs. An
example has shown how this process can be applied in a practical application.
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Proof CLfsw CIfsw CIssw
EP chosen 0.6466 0.7105 0.6155
EP other 0.6274 0.7045 0.6475
Metis 0.6466 0.6475 0.5166
After 13 0.6466 0.7063 0.5791
Combined 0.6270 0.6815 0.5428

Table 2: Csw values for the original and combined proofs

There are four items of work planned for the immediate future. The first is to do more
extensive testing, to confirm that the process is useful over a broad range of problem domains,
and exploit the full potential of proof combining. This testing will use problems from the TPTP
and proofs from the TSTP. The second is to combine proofs that come from different problems
that use the same axiom set, e.g., a suite of problems that are based on a common axiomatization
of set theory. The third is to try broader search algorithms, to produce proofs that are more
different from the original proofs, and hence regain some of the completeness lost by the greedy
hill-climbing. The fourth is to further generalize the notion of formula equivalence, e.g., using
ATP to prove that two formulae are equivalent (modulo different Skolem symbol names), or to
prove that the formula in the replacing node implies the formula in the replaced node.

In the longer term the proof combining process will be applied to a broad range of proof-
like structures, with a range of motivations for producing combined proofs. One motivation
comes from settings where there are multiple sources of information, and some sources may
be less certain than others. When proofs can be combined and the same conclusions reached
from alternative sources, trust may be increased. Identifying different derivations for the same
conclusion may be of value when considering explanation strategies. Sometimes one derivation to
a conclusion may be more useful for computation and another derivation may be more useful for
presenting explanations. For example, a refutation style approach may be useful for computation
while a more direct forward chaining style approach may be more appropriate for an explanation.
Some derivations may be best for some users while others may be best for different users. For
example, some users may prefer derivations that depend more heavily on certain reasoning tools.

A particular type of “proof-like structure” to which the proof combining process can be
applied is scientific provenance traces. It is important to note two aspects of scientific activities
to understand the connection between these distinct areas of endeavor:

• It is typical for scientists to document the provenance of their scientific products, i.e., the
way the scientists collect and process data to derive their scientific products, so that they
can claim the reproducibility of their scientific activities.

• The provenance of scientific products and underlying activities is often a description of
derivation traces that are simply less formal than proofs in logic. Proofs are a special
case of provenance information, where the conclusion of each step of a derivation is a
formal sentence (as opposed to a generic piece of information), and inference rules are
often defined as patterns over these sentences.

With this understanding, the proof combining process should be transferable to scientific prove-
nance. For example, it is common for geoscientists to combine multiple types of evidence to get
an idea of the subterranean features that exist within some geographical region. For gravity
data about the earth, geoscientists are often concerned only with anomalies in the data, which
often indicate the presence of a water table or oil reserve. In a contour map, such anomalies
are illustrated as a set of contour lines with very close proximity, indicating a drastic change

11



Combining Proofs to form Different Proofs Sutcliffe, et al.

in gravity (or whatever data is being mapped). However, these anomalies have the potential to
be artificial – simply imperfections introduced during the map generation process. The use of
seismograms can produce a higher resolution three-dimensional tomography of the same subter-
ranean features identified by gravity contour maps. If the contour map and a 3D tomography
of a given region are compared, it should be possible to determine if the anomalies are artificial
imperfections or features to be further investigated. If the provenance of these scientific products
are further compared, it may even be possible to identify the cause of the imperfection. How-
ever, without the use of automated “proof” combining techniques, these comparisons have to be
manually identified and enabled by geoscientists who understand the interdependencies between
data. Common aspects of provenance traces such as “subterranean features” and “regions of
interest” may allow the proof combining process to be applied.
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A Appendix

fof(get_degree,conjecture,

degree ).

fof(degree,axiom,

( ( composition & humanities & science & math & social_science & language & writing )

=> degree ) ).

fof(composition,axiom,

( ( eng105 & eng106 )

=> composition ) ).

fof(composition_courses,axiom,

( eng105 & eng106 ) ).

fof(humanities,axiom,

( ( art & literature & religion & phi115 )

=> humanities ) ).
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fof(art,axiom,

( ( artXXX | arhXXX | danXXX | mcyXXX | thaXXX )

=> art ) ).

fof(artXXX,axiom,artXXX ). fof(arhXXX,axiom,arhXXX ). fof(danXXX,axiom,danXXX ).

fof(mcyXXX,axiom,mcyXXX ). fof(thaXXX,axiom,thaXXX ).

fof(literature,axiom,

( eng2XX

=> literature ) ).

fof(literature_courses,axiom,

( eng2XX ) ).

fof(religion,axiom,

( relXXX

=> religion ) ).

fof(religion_courses,axiom,

( relXXX ) ).

fof(phi115,axiom,

( phi115 ) ).

fof(science,axiom,

( ( bilXXX | chmXXX | ecsXXX | geoXXX | mscXXX | phyXXX )

=> science ) ).

fof(bilXXX,axiom,bilXXX ). fof(chmXXX,axiom,chmXXX ). fof(ecsXXX,axiom,ecsXXX ).

fof(geoXXX,axiom,geoXXX ). fof(mscXXX,axiom,mscXXX ). fof(phyXXX,axiom,phyXXX ).

fof(math,axiom,

( ( mth162 & ( cscXXX | staXXX) )

=> math ) ).

fof(mth162,axiom,mth162 ). fof(cscXXX,axiom,cscXXX ). fof(staXXX,axiom,staXXX ).

fof(social_science,axiom,

( ( apyXXX | ecoXXX | gegXXX | hisXXX | intXXX | polXXX | psyXXX | socXXX )

=> social_science ) ).

fof(apyXXX,axiom,apyXXX ). fof(ecoXXX,axiom,ecoXXX ). fof(gegXXX,axiom,gegXXX ).

fof(hisXXX,axiom,hisXXX ). fof(intXXX,axiom,intXXX ). fof(polXXX,axiom,polXXX ).

fof(psyXXX,axiom,psyXXX ). fof(socXXX,axiom,socXXX ).

fof(language,axiom,

( ( arb2XX | chi2XX | fre2XX | ger2XX | gre2XX | heb2XX | ita2XX | jap2XX |

lat2XX | por2XX | spa2XX )

=> language ) ).

fof(arbXXX,axiom,arb2XX ). fof(chiXXX,axiom,chi2XX ). fof(freXXX,axiom,fre2XX ).

fof(gerXXX,axiom,ger2XX ). fof(greXXX,axiom,gre2XX ). fof(hebXXX,axiom,heb2XX ).

fof(itaXXX,axiom,ita2XX ). fof(japXXX,axiom,jap2XX ). fof(latXXX,axiom,lat2XX ).

fof(porXXX,axiom,por2XX ). fof(spzXXX,axiom,spa2XX ).

fof(wwwXXX_writing,axiom,

wwwXXX => writing ).

fof(wwwXXX,axiom,wwwXXX).

fof(hisXXX_writing,axiom,

hisXXX => writing ).

fof(eng2XX_writing,axiom,

eng2XX => writing ).

fof(phi115_writing,axiom,

phi115 => writing ).
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