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Abstract

This work describes the Interactive Derivation Viewer (IDV) tool for graphical ren-
dering of derivations that are written in the TPTP language. IDV provides an
interactive interface that allows the user to quickly view various features of the
derivation. A particularly novel feature of IDV is its ability to provide a synopsis
of a derivation by identifying interesting lemmas within a derivation, and hiding
less interesting intermediate formulae. IDV is deployed online as part of the Syste-
mOnTPTP interface, thus providing ready access via any web browser.
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1 Introduction

The proofs output by automated reasoning systems provide useful informa-
tion to system users, e.g., the proof structure, lemmas that may be useful in
future proofs, which axioms are most used, etc. Even derivations that do not
form completed proofs are of interest, as they may provide insights leading
to changes in the problem formulation or the system application, that result
in a proof being found - automated reasoning systems are often debugged in
this way. However, the proofs output by automated reasoning systems are
often unsuitable for human consumption. For first-order automated theorem
proving (ATP) systems, the reasons include:

• The conversion of problems stated in “natural” first-order form (FOF) to
clause normal form (CNF).

• The use of proof by contradiction, which introduces formulae that are not
logical consequences of the axioms.

• The use of fine grained inference steps, such as binary resolution, that ex-
aggerate the size of a proof.
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Several types of tools have been developed to make the output from ATP
system easier for humans to understand. These include graphical renderings
of derivations [10], structuring of proofs by identification of lemmas [1], trans-
lation of resolution refutation proofs to natural deduction proofs [4], and full
translation of proofs to natural language form [2]. This work describes the In-
teractive Derivation Viewer (IDV) tool for graphical rendering of derivations
that are written in the TPTP [13] language [12]. IDV provides an interactive
interface that allows the user to quickly view various features of the deriva-
tion. A particularly novel feature of IDV is its ability to provide a synopsis of
a derivation by identifying interesting lemmas within a derivation, and hid-
ing less interesting intermediate formulae. IDV is deployed online as part of
the SystemOnTPTP interface [11], thus providing ready access via any web
browser.

Section 2 describes the basic IDV tool and it’s rendering process. Sec-
tion 3 describes the production of proof synopses. Section 4 explains how IDV
is deployed on the web, and provides an illustrative application. Section 5
concludes and discusses future developments planned for IDV.

2 Basic IDV

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae
(possibly derived) from the input problem, whose interior nodes are formulae
inferred from parent formulae, and whose root nodes are the final derived
formulae. For example, a CNF refutation proof is a derivation whose leaf
nodes are the clauses formed from the axioms and the negated conjecture,
and whose root node is the false clause. The information required to record
a derivation is, minimally, the leaf formulae, and each inferred formula with
references to its parent formulae. More detailed information that may be
recorded and useful includes: the role of each formula, e.g., axiom, conjecture,
plain derived, etc; the name of the inference rule used in each inference step;
sufficient details about each inference step to deterministically reproduce the
step; and the semantic relationship of each inferred formula with respect to its
parents, e.g., logical consequence, counter theorem, etc. The TPTP language
is sufficient for recording all this, and more.

A derivation written in the TPTP language is a list of annotated formulae.
Each annotated formula contains a name, a role, the logical formula, a source
record, and a field for recording arbitrary useful information, as required for
user applications. The source of each inferred formula is an inference record
containing the inference rule name, a status record containing the semantic
relationship of the formula to its parents as an SZS ontology value [14], and a
list of references to its parent formulae.

IDV takes a derivation in the TPTP language and renders the DAG using
Java’s Swing components. IDV can run as a standalone application, or as a
web browser applet; this description focuses on the web option, because it
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provides ready (remote) access to IDV without any installation required.

2.1 Interface

Figure 1 shows the rendering of the derivation output by the ATP system
EP 0.91 [9] for the TPTP problem PUZ001+1. 2 The IDV window is divided
into three panes: the top control strip pane provides control buttons and
sliders, the main middle pane shows the rendered DAG, and the bottom pane
gives the text of the annotated formula for the node pointed to by the mouse.

The buttons and sliders in the control strip pane are, from left to right:
• Zoom in - zooms in 50%
• Fit vertical - scales the rendering to fit the height of the middle pane
• Fit horizontal - scales the rendering to fit the width of the middle pane
• Zoom out - zooms out 50%
• Display height - sets the number of text lines in the bottom pane
• Synopsis level - sets the minimal interestingness level for display - see Sec-

tion 3.
• Redraw - redraws the derivation. This is typically used after extracting a

synopsis - see Section 3.
• Synopsis undo - sets the minimal interestingness level to its previous value.
• Synopsis redo - sets the minimal interestingness level to its next value, after

any undo steps.
• About button

The rendering of the derivation DAG uses shape and color to visually
provide information about the derivation. Each node corresponds to a formula
in the derivation, with FOF nodes outlined in black and CNF nodes outlined
in orange. The role of the formulae is indicated by the shape of the node:
triangle for axioms, hexagons for lemmas, inverted trapezium for hypotheses,
house for conjectures, inverted house for negated conjectures (as done when
converting a FOF problem to CNF), circle for plain derived formulae, and
square for false formulae. A node may be annotated above with a = sign in
a circle to indicate that equality reasoning was used in its inference, e.g., a
paramodulation inference. A node may be annotated inside at the top with
a red circle to indicate that the formula is not a logical consequence of its
parents, e.g., in Skolemization and splitting inferences, as indicated by the SZS
status. A node may be annotated below with a red triangle to indicate that
it is the parent of a splitting inference, e.g., an explicit split as implemented
by SPASS [15] or a pseudo-split as implemented by Vampire [7,8] or E [9].

2 PUZ001+1 is the “Aunt Agatha” problem, which describes a scenario in which three
people live in a mansion, and Aunt Agatha is killed. The goal is to prove that Aunt Agatha
killed herself. All TPTP problems, their solutions, and IDV renderings of the solutions,
are available online via http://www.tptp.org/ - follow the Problems link to reach the
problems, the TSTP link to reach the solutions, and the View IDV Tree link at the top of
any solution page (that has the solution in TPTP format) to generate the IDV rendering.
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Fig. 1. EP’s Proof by Refutation of PUZ001+1

The user can interact with the derivation rendering in two ways. First,
moving the mouse over any node causes the annotated formula corresponding
to the node to be shown in the bottom pane. At the same time, the moused-
over node is highlighted in blue, all nodes leading down from leaf nodes into
the moused-over node are highlighted in green, and all nodes leading down
from the moused-over node to root nodes are highlighted in red. The effect
is evident in Figure 1. The green highlighting shows from which formulae the
moused-over node is derived, and the red highlighting shows which formulae
are derived from the moused-over node. The intensity of the highlighting de-
creases according to the minimal path length from the moused-over node to
the highlighted node. This allows easy differentiation between closer and more
distant ancestors and descendants. A particularly useful effect is to identify
which axioms (leaf nodes) are the closest ancestors. The second form of in-
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teraction is to click on any node. This creates a pop-up window containing
the annotated formulae of the clicked node and its parents, as shown in Fig-
ure 2. The annotated formula of the clicked node is shown twice once above
the parents and again below, allowing for bidirection reading of the inference
step.

Fig. 2. Pop-up in EP’s Proof by Refutation of PUZ001+1

2.2 Implementation

IDV reads in a derivation in TPTP format. It is sensitive to the form of the
formulae, either FOF or CNF. The rendering is performed in two phases: the
first phase determines the layout of the DAG nodes and edges, and the second
phase implements the graphical display of the derivation DAG.

The layout of the DAG is determined in a five-pass algorithm, similar to
that in [3]. The first pass assigns a rank to each node. The rank is the level of
the node in the rendered tree, with the top row containing the nodes at level
1, and increasing downwards. The rank is used in the third pass to determine
the Y coordinate of each node. The first row of FOF nodes (leaf nodes) are
placed in the first rank. A depth first search (DFS) is then used to assign
increasing rank to the rest of the FOF nodes. Next the first row of CNF
nodes are placed in the rank above the maximum FOF node rank. Finally,
the DFS algorithm is run again to assign increasing rank to the rest of the
CNF nodes. After ranks are assigned to all nodes, the edges are partitioned as
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follows: If an edge connects two nodes that are more than one rank apart, the
edge is replaced by a chain of virtual nodes and edges. The virtual nodes are
given incremental ranks between the two end nodes’ ranks. If a non-virtual
node has more than one chain of virtual nodes leading down from it, the chains
are combined as far as possible, dividing immediately above the end nodes of
the chains.

The second pass directly follows the algorithm from [3], setting the left-to-
right vertex order within ranks by an iterative heuristic incorporating a weight
function and local transpositions to reduce edge crossings. The introduction
of the virtual nodes at each rank guarantees that edge crossings can only occur
between adjacent ranks.

The third pass sets an initial X coordinate and final Y coordinate for each
node. The rank with the largest number of nodes determines the maximum
width of the graph. With the left-to-right vertex ordering within ranks from
the second pass, equidistant X coordinates are given to the nodes in each
rank, between 0 and maximum width of the graph. The final Y coordinate is
based linearly on the nodes’ ranks.

The fourth pass finds the optimal X coordinate for each node. For this pass
spring embedding is used. 3 Spring embedding is a graph drawing technique
that models a graph as a system of springs and then uses energy minimization
to space the nodes. The following forces are balanced: edge spring force for
keeping edges at a certain length, node-to-node repulsive forces to keep nodes
from being too close, gravity force that keeps all edges pointing downwards,
and repulsive boundary forces to keep the nodes from spreading too far apart
horizontally. After the fourth pass the X and Y coordinates are fixed - the
nodes cannot be moved by user interaction.

The fifth pass generates Bezier curves to draw edges between nodes. If two
non-virtual nodes are connected by a chain of virtual nodes, then the chain of
virtual nodes is used to plot the points of the Bezier curve.

The layout determined by the first phase does not guarentee that nodes will
not overlap (or hence, given the use of virtual nodes to guide edge generation,
that edges will not pass through nodes). The extent to which node overlaps
are avoided is determined by the number of iterations in the spring embedding.
The number of iterations in the current implementation has been found to be
sufficient to avoid most overlaps. After the layout has been determined, the
interface and DAG are rendered.

IDV is implemented in Java, mainly using basic Swing components. The
TPTP formulae are read in using StreamTokenizer. The IDV window is a
JFrame, and the rendering is a JPanel. A MouseMotionListener is used in
the JPanel to detect when the mouse moves over a node, to implement the
node coloring feature. A MouseListener is used in the JPanel to detect when
a node is clicked, to implement the pop-up window feature. The JFrame is

3 Thanks to Christian Duncan for providing the original spring embedding code.
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implemented with ActionListener and ChangeListener to detect the user’s
manipulations in the control strip.

3 Derivation Synopses

As mentioned in Section 1, one of the features of derivations output by ATP
systems is the use of fine grained inference steps such as binary resolution,
which exaggerate the size of a proof. Derivations output by humans typically
use coarser grained inference steps, leaving intermediate steps “to the reader”.
The inferred formulae of such coarser grained inference steps are logical con-
sequences of their leaf ancestors, at various levels of saliency - humans often
single out certain of the logical consequences to be specifically designated as
lemmas. By considering only those logical consequences above a certain level
of saliency (hiding those below that level), a synopsis of the detailed derivation
is formed. In a synopsis the lowest visible ancestors of a hidden formula be-
come the parents of the highest visible descendents. A synopsis hides the fined
grained inference steps and the intermediate formulae, thus making is easier
for a user to grasp an overview of the proof. The user may later choose to
examine the details. Synposes may similarly be used to summarize extremely
large derivations.

IDV is able to form a synopsis of a proof by CNF refutation. This is
achieved by rating the interestingness of inferred CNF formula, and hiding
the nodes whose formula rating is below a user specified threshold. The inter-
estingness rating of inferred CNF formulae is computed by the AGInT system
[6] - see Section 3.3, and the user sets a threshold using the slider in the control
strip pane.

3.1 Interface

The interestingness of each formula is a value in the range 0.0 to 1.0. Some
formulae have a preset interestingness rating: leaf formulae are set at 1.0,
the topmost CNF formula are set at 1.0, the intermediate formulae between
leaf FOF formulae and topmost CNF formulae are set at 0.0, all formulae
derived from the negation of a conjecture are set at 1.0, and root formulae
are set at 1.0. The interestingness of values for the other formulae, i.e., the
internal CNF formulae of the derivation, are computed by the AGInT system,
as described in Section 3.3. Initially the threshold slider in the top pane is set
to an interestingness value of 0.0, and all nodes are displayed in the rendering.
As the slider is moved up the interestingness threshold increases, and nodes
whose formula rating is below the threshold are hidden. Figure 3 shows the
derivation in Figure 1, with a interestingness threshold of 0.5.

After extracting a synopsis it is possible to zoom in, rendering only the
visible nodes. This is done in IDV with the redraw button in the control
strip. Figure 4 shows the synopsis derivation rendering of Figure 3. After a
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Fig. 3. Interesting nodes of EP’s Proof by Refutation of PUZ001+1

redraw the threshold slider may be moved and the derivation redrawn again, to
produce a different level of synopsis. Note that after a redraw, if the threshold
is moved to below the interestingness level used for the redraw, the hidden
nodes are do not immediately become visible - another redraw is required.
The user is warned of this state by the threshold value being shown in red.
Sequences of redraws can be undone and redone using the synopsis undo and
redo buttons.

While using the slider to adjust the interestingness level, the layout of the
nodes does not change - simply more or less of the nodes are hidden. This
provides a identity mental map of the derivation (a mental map is the user’s
memory of the rendering [5]). When redrawing a synopsis it important to
maintain the mental map as far as possible. To this end, all nodes that are
not hidden in a synopsis are kept in the same order as in the original. The
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Fig. 4. Synopsis of EP’s Proof by Refutation of PUZ001+1

Bezier curves that connect the visible nodes are recomputed, but maintain the
same form as in the original.

As mentioned in Section 2.1, when a node is clicked a pop-up window
appears containing the annotated formula of the node and its parents. After a
reddraw, the parents shown in a pop-up window are the parents of the formula
in this rendering, i.e., they might not be the formulae’s original parents. If
some parent information is different than the original, then the pop-up window
informs the user of this.

3.2 Implementation

Interestingness ratings are stored in a record in the useful info fields of an-
notated formulae. There are two ways for formulae to have interestingness
ratings. First, the annotated formulae input to IDV may already have in-
terestingness values. Second, the input formulae do not have interestingness
ratings, and the AGInT system has to be called by IDV. In this case AGInT is
called as soon as the user uses the threshold slider in the control pane.

When the redraw button is clicked by the user, the derivation synopses
is rendered as follows: First, non-virtual nodes in the DAG are set to be
interesting if their interestingness rating is greater than the threshold value,
and all virtual nodes are set to be uninteresting. Each rank is then checked
to see if it contains any interesting nodes. If a rank contains at least one
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interesting node the rank is retained, otherwise the rank is empty and all
nodes in ranks below are moved up a rank (i.e., their rank is decremented).
The original rank of each node is stored for redrawing purposes. After the
ranks are updated the Y coordinates of the nodes in the retained ranks are
updated, as in Section 2.2. Finally, the Bezier curves are updated to uniquely
connect each interesting node to its closest interesting ancestors, which are
found using a DFS search up the DAG. All uninteresting nodes remain hidden
after a redraw.

When the synopsis undo/redo button is clicked, the current interesting
threshold value changes to the last value pushed onto the undo/redo stack
and above redraw procedure is called.

3.3 Interestingness Ratings

The interestingness ratings of derived CNF formulae in a derivation are com-
puted by the runtime filter and static ranker components of the AGInT system.
AGInT is a system that discovers interesting theorems of a given set of axioms.
AGInT uses a deductive approach to discovery - it uses an ATP system to gen-
erate CNF logical consequences of the given set of axioms, filters the logical
consequences to extract interesting theorems, and then computes an interest-
ingness rating for each theorem. This basic process takes place in the context
of an outer level control loop that regularly refocuses the generation of logical
consequences, thus enabling AGInT to proceed deeply into the search space of
logical consequences. Details are given in [6].

In the context of IDV, the derived CNF formulae of a derivation are given
to AGInT as the logical consequences of the topmost CNF formulae (i.e., the
topmost CNF formulae are considered to be the axioms from which the formu-
lae are derived). AGInT’s runtime filter and static ranker are used to compute
interestingness values for the formulae. Figure 5 shows the combined archi-
tecture of these two components.

Runtime Filter

Pre-processor

1st 
pass

Update 
sliding windows

Obviousness, Weight, Complexity,  
Surprisingness, Intensity, Adaptivity, Focus

Store

2nd 
pass

2nd pass

Usefulness,  
Normalization and Averaging

Static Ranker

Fig. 5. Architecture of AGInT’s Runtime Filter and Static Ranker

The task of the runtime filter is to aggressively filter out and discard boring
formulae. Each formula must first pass the pre-processor, and must then pass
the majority (i.e., at least four) of the seven filters: obviousness, weight, com-
plexity, surprisingness, intensity, adaptivity, and focus. Each filter maintains
a sliding window defined by the best distinct scores from the filter’s evaluation
of the formulae seen so far. The upper and lower bounds of each window are
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initialized to the worst possible score for that filter. If an incoming formula
is scored equal to or better than the lower bound, it passes the filter, and the
score is used to update the window. Initializing the upper and lower bounds
to the worst possible score allows all formulae through until the window starts
sliding up. As a result some boring formulae early in the stream may pass
the runtime filter. Therefore the formulae that pass the runtime filter in the
first pass are stored, and after all formulae have been processed the stored
formulae are filtered again, with the windows fixed from the first pass. This
removes any that do not meet the final lower bounds.

The individual filters are as follows:
Pre-processor: The preprocessor detects and discards obvious tautologies, e.g.,
clauses that contain an atom and it’s negation, and clauses containing a true
atom.

Obviousness: Obviousness estimates the difficulty of proving a formula.
The obviousness score of a formula is the number of inferences in its derivation.
A higher score is better.

Weight: Weight estimates the effort required to read a formula. Formulae
that contain very many symbols (variables, function and predicate symbols)
are less interesting. The weight score of a formula is the number of symbols
it contains. A lower score is better.

Complexity: Complexity estimates the effort required to understand a for-
mula. Formulae that contain very many different function and predicate sym-
bols, representing many different concepts and properties, are less interesting.
The complexity score of a formula is the number of distinct function and
predicate symbols it contains. A lower score is better.

Surprisingness: Surprisingness measures new relationships between con-
cepts and properties. Formulae that contain function and predicate symbols
that are seldom seen together in a formula are more interesting. The symbol-
pair surprisingness score of a pair of symbols is the number of axioms that
contain both symbols divided by the number of axioms that contain either
symbol. The surprisingness score of a formula is the sum of the symbol-pair
surprisingness scores, over all pairs of distinct symbols in the formula. A lower
score is better.

Intensity: Intensity measures how much a formula summarizes information
from the leaf ancestors in its derivation tree. The plurality score of a formula
(or set of formulae) is number of function and predicate symbols in the for-
mula divided by the number of distinct function and predicate symbols in the
formula. The intensity score of a formula is the plurality of its leaf ancestors
divided by the plurality of the formula itself. A higher score is better.

Adaptivity: Adaptivity measures how tightly the universally quantified
variables of a formula are constrained. The adaptivity score of a clause is the
number of distinct variables in the clause divided by the number of variable
occurrences in the clause. A lower score is better.

Focus: Focus measures the extent to which a formula is making a posi-

11



Trac, Puzis, Sutcliffe

tive or negative statement. Let FPL and FNL be the fractions of positive
and negative literals in a clause. The focus score of a clause is 1 + FPL ∗
log2(FPL) + FNL ∗ log2(FNL). Clauses with up to three literals are con-
sidered to have perfect focus because their polarity distribution is limited. A
higher score is better.

The formulae that pass the runtime filter are considered to be interesting.
The task of the static ranker is to compute a final interestingness rating for
the formulae. This is done in two phases: first a usefulness score is computed
for each formula, and second, all the scores are individually normalized and
then averaged.

Usefulness: Usefulness measures how much an interesting formula has con-
tributed to proofs of further interesting formulae, i.e, its usefulness as a lemma.
The usefulness score of a formula is the ratio of its number of interesting de-
scendents (i.e., descendents that have passed the runtime filter) over its total
number of descendents. A higher score is better.

Normalization and Averaging: The scores of the formulae, from each of the
runtime filter and static evaluations, are normalized into the range 0.0 to 1.0.
The formulae with the worst score are given a final score of 0.0, the formulae
with the best score are given a final score of 1.0, and all other scores are linearly
interpolated in between. If the worst and best score of a particular filter are
equal, then that filter does not differentiate between the formulae, and those
scores are removed. The remaining scores of each formula are averaged to
produce a final interestingness rating.

4 Deployment and an Application

IDV is deployed online as part of the SystemOnTPTP interface at
http://www.tptp.org/cgi-bin/SystemOnTPTPFormMaker

The IDV code is wrapped as a web browser applet, and all computation for the
rendering is done on the client side. The annotated formulae that constitute
the derivation to be rendered may be passed to the applet as a parameter
within the <APPLET> tags in the encompassing web page, or retrieved from
a URL specified as a parameter within the <APPLET> tags. The AGInT code
is deployed as a server side cgi-bin script, and is invoked by the IDV code
via a POST call when interestingness ratings are required. Figure 6 shows the
deployment architecture.

IDV has been used to analyze proofs of theorems, to identify key steps
in the proofs. As an example EP’s proof of the TPTP problem SET615+3
is considered. This problem proves that for any three sets X, Y , and Z,
(X ∪ Y )\Z = (X\Z)∪ (Y \Z). Figure 7 shows EP’s derivation DAG - clearly
a hairy beast which is hard to comprehend as a whole. Figure 8 shows a
synopsis of the derivation. It is very easy to see which nodes are key points
in the synopsis, e.g., the one with the blue (darkest) coloring has the formula
X = (X ∪ Y )\(Y \X). Another key node has the formula X ∪ (Y \Z) =
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HTML web page 
with <APPLET> tags

IDV applet Browser loads applet 

Derivation
IDV retrieves derivation 

(if not passed in HTML) 

AGInT 
service

Browser loads web page 

IDV POSTs derivation 

AGInT returns ratings 

Server Side Client SideInternet

Fig. 6. Deployment of IDV

(X ∪ Y )\(Z\X).

5 Conclusion

This paper has presented the design, implementation, deployment, and appli-
cation of an interactive derivation viewer, implemented as the IDV tool. IDV
provides strong visual information showing the structure of a derivation, with
original details available as text. IDV provides interactive features that enable
a user to visually highlight and examine salient parts of a derivation. In par-
ticular, the ability to extract proof synopses sets IDV apart from other existing
derivation viewers. The use of “interestingness ratings”, which are artificially
intelligently determined, to provide a sliding scale of proof synopsis, is partic-
ularly powerful and certainly highly novel. The online deployment makes IDV
easily available to users (who use the TPTP language for their derivations),
without any need for software installation.

Future work planned for IDV includes finer grained synopsis of the FOF
to CNF parts of derivations, which are currently considered to be not inter-
esting at all. Future work on the implementation includes tighter integration
with the SystemOnTPTP interface, so that interestingness ratings are com-
puted in advance of their need, improving the performance on extremely large
derivations, and improving the Bezier curve drawing in synopses of very large
derivations. When the features have been optimized and implementation is
stable, user evaluation will also be desirable.
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