
System Description: GrAnDe 1.0

Stephan Schulz1 and Geoff Sutcliffe2

1 Institut für Informatik, Technische Universität München
schulz@informatik.tu-muenchen.de

2 Department of Computer Science, University of Miami
geoff@cs.miami.edu

1 Introduction

The validity problem for full first-order logic is only semi-decidable. However,
there are many interesting problems that, when expressed in clause normal form,
have a finite Herbrand universe. They fall into a decidable subclass of first-
order logic. Traditionally, such problems have been tackled using conventional
first-order techniques. Some implementations, e.g. DCTP [SL01], are decision
procedures for this class of problems. An alternative approach, justified by Her-
brand’s theorem, is to generate the ground instances of such a problem and use
a propositional decision system to determine the satisfiability of the resulting
propositional problem. The applicability of the grounding approach has led to
these problems being called “effectively propositional” (EPR) problems. The
TPTP problem library [SS98] v2.4.1 contains 574 EPR problems. Many of these
are group theory problems (101 problems) and CNF translations of formulae in
propositional multi-modal logic (206 problems).

There have been claims that first-order techniques are at least as good as
the grounding approach on EPR problems. In order to test these claims we
implemented the grounding approach in the system PizEAndSATO, and entered
it (as a demonstration system) into the EPR division of CASC-JC [SSP02,Sut01].
Despite its prototypical nature, PizEAndSATO 0.2 achieved second place. The
winner, E-SETHEO csp01, is a compositional system that used both a grounding
approach and several different first-order procedures sequentially.

This paper describes the latest incarnation of our system, GrAnDe 1.0 (short
for Ground And Decide). GrAnDe has two principal components: the ground-
ing procedure eground [Sch02] and the propositional prover ZChaff [MMZ+01].
ZChaff was chosen from a field of powerful and mature propositional systems
[HS01].1 The absence of an adequately powerful and accessible grounding tool,
on the other hand, necessitated the development of eground from scratch.

This paper provides details of our contributions: The construction of eground,
the combination of the systems, and an evaluation. For details about ZChaff, see
[MMZ+01]. GrAnDe is available on the web at

http://www.cs.miami.edu/~tptp/ATPSystems/GrAnDe/

1 ZChaff replaced SATO [ZS00] due to ZChaff’s ability to deal with larger proposition
numbers.

2 The Grounding Procedure eground

An EPR problem is certainly (un)satisfiable if the set of all ground instances of
its clauses is (un)satisfiable. However, with n constant symbols, a single clause
with m variables has nm ground instances. Thus, the set of all ground instances
is often too large to compute with reasonable (or even reasonably unreasonable)
resources. An aim in developing eground was to find smaller sets of ground in-
stances that are still equiconsistent with the original set of clauses. In order to
achieve this, three techniques were combined: clause splitting, structural con-
straints on variable instantiation, and propositional simplification.

Basic clause splitting takes a clause C ∨ D, in which C and D do not share
any variables, and replaces it by two clauses C ∨ p and D ∨ ¬p, where p is a
new propositional symbol. This does not change the satisfiability of the clause
set – any model of the original clause set can be extended to a model of the
modified clause set, and any model of the modified clause set satisfies the original
one [Sch02]. The latest version of eground also splits a clause if C and D have
common variables, but each part has some variables not occurring in the other.
In this case, the variables occurring in both C and D are the arguments of p. If a
clause has more than two parts that can be separated then hyper-splitting [RV01]
is used, i.e., a clause with k parts is replaced in one step by k split clauses and
a single link clause.

Clause splitting is performed in eground before starting to instantiate the
clauses. Although splitting increases the number of clauses, it typically signif-
icantly reduces the number of ground instances. If C contains mC variables,
and D contains mD variables, C ∨ D has nmC nmD ground instances, where n
is the number of constants. The two split clauses have only nmC + nmD ground
instances.

Structural constraints are used to prohibit variable instantiations that would
lead to the generation of pure literals in the resulting ground clauses, and thus
approximate the hyper-linking condition [LP92]. An overview of structural con-
straints is given here; for a full formal definition see [Sch02]. A local structural
constraint is induced for each triple polarity/predicate symbol/position. Con-
sider a symbol P with arity k. The local structural constraint with positive
polarity at position p ∈ {1 . . . k} is induced by all negative literals with symbol
P . If there exists such a negative literal L such that L|p is a variable, the position
is unconstrained. Otherwise, the constraint has the form P |p = c1∨. . .∨P |p = ci,
where the ci are exactly the constants that appear at position p in the negative
literals with predicate symbol P . Any instance of a positive literal with symbol
P that does not fulfill the structural constraint will be pure, and hence ground
clauses containing such instances are not needed. Constraints with negative po-
larity are induced by all positive literals in the same way. The local structural
constraints for each variable in a clause are conjoined and simplified into a min-
imal conjunctive normal form. The acceptable instantiations for each variable
can then be read directly off the constraints, so that the generation of the ground
instances is done very efficiently. If there are no possible instantiations for some
variable in a clause, then no instances of the clause are generated.

2

Splitting and structural constraints are somewhat complementary. Clause
splitting works one clause at a time, while structural constraints are induced
by the whole clause set. If variables occur in only a small number of literals,
the chance that the clause can be split increases. If a variable occurs in many
positions, the likelihood that it is constrained increases.

The third technique used to reduce the size of the ground clause set is proposi-
tional simplification. Tautology deletion and forward unit subsumption are used
to delete redundant ground clauses, and forward unit resolution is used to reduce
the size of the generated ground clauses. The forward unit simplifications use
existing propositional units to subsume and simplify newly generated ground
clauses. Due to the internal data structures used, these simplifications are done
at negligible cost.

Despite the optimizations, there are still problems where eground runs out
of time or, more often, out of memory.2 However, this does not necessarily mean
that the effort has been in vain. While the satisfiability of the original clause
set can be shown only by satisfying all non-redundant ground instances, unsat-
isfiability may be shown using only a subset of the instances. In order to allow
GrAnDe to take advantage of this possibility, eground can be configured to out-
put a set of ground clauses when it runs out of time or memory. In this situation
the normal generation procedure is stopped, and a single ground instance of each
input clause is added to the already generated clause set. The resultant clause
set is incomplete (with respect to the test for unsatisfiability).

The ground clauses generated are converted to propositional clauses and
output in DIMACS format [DIM], followed by a message indicating whether the
clause set is complete or incomplete.

3 Combining the systems

A Perl script called And is used to combine eground and ZChaff. The script
invokes eground on the EPR problem, allowing it maximally 66% of the CPU
time limit. The propositional clauses written by eground are captured into a
temporary file, which is used as the input for ZChaff. ZChaff is allowed whatever
CPU time has not been used by eground (more than 34% of the CPU time limit
in the cases where eground terminates early, either because it runs out of memory
or because it has generated a complete ground clause set). The completeness
marker line written by eground is used by And for interpreting the output of
ZChaff. If eground has generated an incomplete clause set and ZChaff reports
that it is satisfiable, then no result is reported by GrAnDe. If eground has
generated an incomplete clause set and ZChaff reports that it is unsatisfiable, or
if eground has generated a complete clause set, then ZChaff’s result is reported
by GrAnDe as the overall result.

2 Because eground generates output in DIMACS format, it can only print the result
once the number of clauses and the largest proposition number are known.

3

4 Experimental Results

GrAnDe 1.0 has been tested on the 574 CNF EPR problems in TPTP v2.4.1. Of
these, 413 are unsatisfiable and 161 are satisfiable. Three systems that use first-
order techniques were also tested: DCTP 1.0 [SL01], SPASS 1.03 [Wei99], and
Vampire 2.0 [RV99]. DCTP is a decision procedure for EPR problems; SPASS is
complete for unsatisfiable problems and known to be very strong on satisfiable
problems in general; Vampire 2.0 was the winner of the MIX division of CASC-
JC. Unfortunately, we were unable to get a working hyper-linking prover, as
e.g., OSHL [PZ00], for comparison. PizEAndSATO 0.2 was also tested, to gauge
progress in our development. The testing was done on a SUN Ultra-80, with a
450MHz CPU and 400 MB of RAM. A 300 second overall CPU time limit was
imposed for each problem. The results are summarized in Table 1.

Table 1. Results

System Total Unsatisfiable Satisfiable
574 413 161

DCTP 1.0 489 352 137
SPASS 1.03 498 397 101
Vampire 2.0 498 403 95
PizEAndSATO 0.2 543 407 136
GrAnDe 1.0 546 408 138

Of the 574 problems, eground was able to create a complete ground clause
set for 546 problems. Of these, ZChaff reported 138 as satisfiable, 407 as unsat-
isfiable, and timed out on one problem. Of the 28 problems for which eground
was unable to create a complete clause set, ZChaff reported 8 as satisfiable (i.e.
no result for GrAnDe), one as unsatisfiable (i.e. the problem was solved despite
eground being unable to generate a complete clause set), and timed out on 19
problems.

509 of the problems solved by GrAnDe were solved in less than one second
of CPU time, and only 16 problems required more than 10 seconds. Of these 16
“hard” problems, only one required more than 60 seconds. This is the problem
for which eground generated an incomplete clause set that ZChaff still found to
be unsatisfiable. For the other 15 “hard” problems, eground always took most
of the CPU time, but never more than 40 seconds. There thus seem to be three
major scenarios (with the 300 second CPU time limit): either i) the problem
is easy for GrAnDe, or ii) eground completes reasonably quickly (within 40
seconds) and ZChaff can decide the clause set, or iii) eground hits a resource
limit and ZChaff is unable to decide the resulting incomplete, typically very
large, clause set in the remaining time.

4

5 Possible Improvements

Despite the fact that eground is the most powerful grounding procedure we
are aware of, at the moment it still is the weakest link in GrAnDe. There are
a number of possible improvements to the program. Two important ideas are
the use of more simplification in eground, e.g., the use of simple indexing for
non-unit subsumption (and possibly subsumption resolution), and the use of
more restrictive local unification constraints instead of the simple structural
constraints. Additionally, it might be possible to generate better (smaller and
more diverse) incomplete clause sets if complete grounding is not possible.

References

[DIM] DIMACS. Satisfiability Suggested Format. ftp://dimacs.rutgers.edu/
pub/challenge/satisfiability/doc/satformat.tex.

[HS01] H. Hoos and T. Stützle. SATLIB: An Online Resource for Research on
SAT. In I. Gent, H. van Maaren, and T. Walsh, editors, Proc. of the 3rd
Workshop on the Satisfiability Problem, 2001. http://www.satlib.org/.

[LP92] S-J. Lee and D.A. Plaisted. Eliminating Duplication with the Hyper-
Linking Strategy. Journal of Automated Reasoning, 9(1):25–42, 1992.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In D. Blaauw and L. Lavagno, editors,
Proc. of the 39th Design Automation Conference, pages 530–535, 2001.

[PZ00] D.A. Plaisted and Y. Zhu. Ordered Semantic Hyper-linking. Journal of
Automated Reasoning, 25(3):167–217, 2000.

[RV99] A. Riazanov and A. Voronkov. Vampire. In H. Ganzinger, editor, Proc. of
the 16th International Conference on Automated Deduction, number 1632
in Lecture Notes in Artificial Intelligence, pages 292–296. Springer, 1999.

[RV01] A. Riazanov and A. Voronkov. Splitting without Backtracking. In B. Nebel,
editor, Proc. of the 17th International Joint Conference on Artificial Intel-
ligence , pages 611–617. Morgan Kaufmann, 2001.

[Sch02] S. Schulz. A Comparison of Different Techniques for Grounding Near-
Propositional CNF Formulae. In S. Haller and G. Simmons, editors, Proc.
of the 15th Florida Artificial Intelligence Research Symposium. AAAI Press,
2002. To appear.

[SL01] G. Stenz and R. Letz. DCTP - A Disconnection Calculus Theorem Prover.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Proc. of the International
Joint Conference on Automated Reasoning, number 2083 in Lecture Notes
in Artificial Intelligence, pages 381–385. Springer, 2001.

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[SSP02] G. Sutcliffe, C. Suttner, and J. Pelletier. The IJCAR ATP System Compe-
tition. Journal of Automated Reasoning, To appear, 2002.

[Sut01] G. Sutcliffe. CASC-JC. http://www.cs.miami.edu/ tptp/CASC/JC/, 2001.
[Wei99] C. Weidenbach, et al. SPASS Version 1.0.0. In H. Ganzinger, editor, Proc.

of the 16th International Conference on Automated Deduction, number 1632
in Lecture Notes in Artificial Intelligence, pages 378–382. Springer, 1999.

[ZS00] H. Zhang and M. Stickel. Implementing the Davis-Putnam Method. Journal
of Automated Reasoning, 24(1/2):277–296, 2000.

5

