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Abstract

Key concerns in the development of more powerful ATP systems are
to provide breadth of coverage – an ability to solve a large range of prob-
lems, and to provide greater depth of coverage – an ability to solve more
difficult problems, within the same resource limits. This work describes
the design and implementation of CSSCPA, a compositional competition-
cooperation parallel ATP System. CSSCPA combines existing high per-
formance ATP systems in a framework that allows them to work inde-
pendently, but also allows communication of intermediate results. The
performance data shows that CSSPCA has high breadth and depth of
coverage.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and
use of systems that automate sound reasoning: the derivation of conclusions
that follow inevitably from facts. Current ATP systems are capable of solving
non-trivial problems, e.g., EQP [McC00a] solved the Robbins problem [McC97].
However, the search complexity of most interesting problems is enormous, which
has two consequences for ATP. First, in order to solve certain types of hard
problems, it is typically necessary to tune an ATP system for the problems.
Such tuning almost inevitably has the consequence that the system can no longer
solve some other problems, i.e., gain in one direction is at the cost of loss in
another.1 Second, there are many problems that still cannot currently be solved
within realistic resource limits. Therefore, key concerns in the development of
more powerful ATP systems are to provide breadth of coverage – an ability to

1It would be marvelous if the characteristics of ATP problems were sufficient to correctly
identify every type of problem for which tuning has resulted in successful solution, for then
the appropriately tuned features of an ATP system could be automatically invoked when the
type of problem is recognized. However, thus far such recognition seems impossible.
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solve a large range of problems, and to provide greater depth of coverage – an
ability to solve more difficult problems, within the same resource limits.

One approach to providing breadth of coverage is the development of com-
positional ATP systems. Compositional systems are built from multiple compo-
nent systems, and use one or more of the components when attempting to solve
a problem. Compositional systems may be characterized by the way in which
the components are run: Time slicing systems select one or more components,
allocate some fraction of the available CPU time to each of the selected com-
ponents, and then run the components one after the other until a solution is
found. Examples of time slicing systems are Gandalf [Tam97] and more recent
versions of Vampire [RV99]. Competition systems similarly select components
and allocate CPU time, but then run the components in parallel (or at least con-
currently, according to the number of CPUs available) until a solution is found.
Examples of competition systems are RCTHEO [Ert92] and SSCPA [SS99].

Both time slicing and competition systems rely on the phenomenon that
components can be selected so that there is a significant difference in the set
of problems that each can solve quickly – the properties of sub-linearity and
complementarity [SW99]. Time slicing systems have the advantage that they
are inherently well suited to single CPU machines, and the components can
be given ‘dedicated’ access to the CPU in the order of likelihood of solving the
problem. Competition systems have the advantage that they can take advantage
of multiple CPU architectures (especially SMP machines), and there is no need
to decide which components are more likely to solve the problem. For both
time slicing and competition systems, greater diversity across the components
provides greater breadth of coverage.

The components of a simple compositional system do not cooperate, with
no communication of control information or intermediate results. Such compo-
sitional systems can solve at most the union of the problems that the individual
components can solve within the same total CPU time limit, i.e., there is no
gain in depth of coverage (and some problems that can be solved by individual
components within the full CPU time limit may not be solved within the frac-
tion of the CPU time limit allocated to the components in the compositional
setting). The capabilities of a compositional system can be significantly affected
by the addition of cooperation. The communication of control information is
problematic if the components are diverse (as recommended above), because
they have different search spaces and the control information from one compo-
nent is typically inappropriate for another. One coarse grained way of effecting
the communication of control information is to have components with different
control strategies, and to start and stop the components according to evidence
of their success in the context of the overall system. This approach is taken in
the DISCOUNT system [ADF95].

The communication of intermediate results is significantly easier. For time
slicing systems, the intermediate results generated by an unsuccessful compo-
nent in the sequence are passed on to subsequent components. Examples of
time-slicing-cooperation systems are Gandalf [Tam97] and the e-iterator strat-
egy within E-SETHEO [SW99]. For competition systems, a protocol has to be
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established to allow communication of intermediate results during runtime. For
competition systems in particular, communication between diverse component
systems often has synergistic effects, leading to “super linear” speed ups. This
is due to cross fertilization between the components, as a component may re-
ceive useful intermediate results that it would not generate itself. Examples of
competition-cooperation systems are HPDS [Sut92] and TECHS [DF99]. The
addition of cooperation to a compositional system is an effective way of in-
creasing the depth of coverage of the system. The synergistic effects allow the
system to solve problems that none of the component systems are able to solve
independently. As before, diversity is important, as this provides more extreme
cross fertilization.

The above survey suggests that a Competition-Cooperation Compositional
system, running genuinely in Parallel on a multi-CPU machine (a CCCP sys-
tem), has high prospects for attaining both breadth and depth of coverage.2
The following sections of this paper examine a particular instance of the de-
sign and implementation of a CCCP system. Section 2 looks at the issues and
choices in the design of such a system. Sections 3 and 4 describe the design and
implementation of the CSSCPA3 system, highlighting the benefits of the design
decisions made, and difficulties encountered. Section 5 provides performance
data, and Section 6 concludes the paper.

2 Design Issues for a CCCP ATP System

There are three main issues that need to be addressed in the design of a CCCP
system:

• How the components will be controlled and monitored. Aspects of this
include how the components will be started, how the resource usage of the
components will be allocated and limited, and how the components will
be stopped when a solution is found or the resource limits are exceeded.

• What data formats will be used. The data formats for the input problem,
the intermediate results that are communicated, and the output, all need
to be considered.

• The granularity and mode of communication between the components.
Options here range from fine grained point-to-point communication, where
small intermediate results are transferred immediately and directly to
other components, through to coarse grained bulk transfer of many in-
termediate results at widely spaced intervals.

The choices for each of these issues are constrained to a large degree by the
nature of the component systems. There are three common types of compo-
nent systems, each with quite different characteristics, which affect the range of
options available in the design.

2Other approaches to using parallelism in ATP are surveyed in [SS94] and [Bon00].
3Pronounced “sea skipper”.
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The highest degree of design flexibility is available when the components are
designed and developed in-house. In this case there is access to and understand-
ing of the design and implementation of the components, and it is easily possi-
ble to make adaptations in the components specifically for the CCCP system.
From the control perspective, it is possible to directly manage the component
processes, and to have the components internally limit their resource usage. A
single data format can be designed and used consistently for input, communica-
tion, and output. Both fine and coarse grained communication of intermediate
results are possible. In particular, if a common data format is used, there is no
overhead of format conversion, which is particularly attractive if the commu-
nication between components is fine grained. The drawback of using in-house
components is that significant effort has to be expended in order to design and
implement components that have sufficiently high performance. In many cases
there is simply not enough expertise and programmer-power to achieve this.
HPDS is an example of a CCCP system that benefited from the advantages and
also suffered from the disadvantages of this approach.

An intermediate degree of design flexibility is available when using high per-
formance components developed elsewhere, but for which the source code is
available and understandable. Such components can be modified as required
to run in the CCCP system. Modifications can be made to make component
control easily possible, internal translation of data formats can be implemented,
and communication hooks can be inserted. The main advantage of this option
is the adoption of existing high performance systems, which may have required
significant effort and expertise to develop. However, the effort required to make
the necessary modifications to someone else’s code is often prohibitive. Further,
as new versions of the components are released by their developers, it is neces-
sary to port the modifications to the new versions. As a result, it is difficult to
keep such a CCCP system upgraded to the most recent component technology.
TECHS is an example of such a CCCP system.

The least design flexibility is available when using high performance com-
ponents developed elsewhere, without any intention of making modifications.
There are significant advantages and disadvantages of this approach. Control-
ling the execution and monitoring the CPU usage of a component may be dif-
ficult, especially if the component runs multiple processes. Although starting
a component may be easy, it may then be difficult to monitor and limit its
resource usage, or to stop all processes of the component.4 The data formats
of the components are likely to be incompatible, and it is necessary to imple-
ment external format translation for at least the input and communication data.
Almost certainly the components will not accept intermediate results during
runtime, thus making a coarse grained communication model necessary. These
drawbacks require solutions at both the logical and practical levels. If solutions

4For example, under UNIX, if a process in the middle of a three level process hierarchy
terminates, leaving the bottom level process to communicate with the top level process using
files, the bottom process is no longer in the process hierarchy of the top process. It is then
difficult to stop the bottom level process, and the CPU time of the bottom process is not
accumulated as child CPU usage in the top level process.
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can be found, however, there are some attractive aspects to this approach, all
stemming from the fact that the components are used without modification.
First, the highest performance components can be used, and their performance
will not be degraded through modifications required to fit them into the CCCP
system. Second, it is not necessary to have access to the components’ sources.
This makes it possible to use components that for some reason, e.g., proprietary
constraints, can be distributed only in binary form. Third, as the CCCP system
can be concerned with only the external presentation of the components, it is
likely to be easy to replace a component by a newer version. This is because
the external presentation of a (component) system often remains the same while
internal structures are (possibly significantly) changed.

3 The Design of CSSCPA

CSSCPA is a CCCP system for problems in the CNF of first order classical logic,
expressed in the TPTP CNF syntax [SS98]. CSSCPA uses existing high per-
formance components, without any modification. The components must have
an option to produce, on their standard output, intermediate clauses that are
logical consequences of the input problem. In addition to the component ATP
systems, CSSCPA employs a formula librarian (the FLi) that can do subsump-
tion and also detect unit contradictions in the clauses it holds.

When given an ATP problem, CSSCPA first sends a copy of the problem to
the FLi, where it is stored. CSSCPA then selects components to use, based on
a database of information about the eligible components’ strengths for various
problem types. CSSCPA starts the components, and parses their standard
outputs for logical consequences. Each logical consequence is forwarded to the
FLi. If at any time a component finds a solution, then CSSCPA is stopped and
success is reported.

The FLi keeps an incoming clause only if keeping it improves the overall
quality of its clause set, in the sense that a better clause set is one that is easier
to refute. For example, the FLi’s clause set is improved if an incoming logical
consequence subsumes a clause in the set (see Section 4 for further details of the
clause set evaluation). Whenever the quality of clause set in the FLi improves,
the FLi reports the improvement to CSSCPA. When the clause set in the FLi
has improved significantly relative to the original input problem, CSSCPA stops
the components. CSSCPA then collects the improved clause set from the FLi,
and restarts with the improved clause set as the input problem.

When a proof is found, CSSCPA outputs the original problem file, the se-
quence of improved problem files, and the component system’s proof. The
clauses in the improved problem files are annotated to indicate their source,
either from the original input problem, or from one of the component ATP
systems. This provides sufficient information to construct a monolithic proof,
which can be checked using standard techniques.

CSCCPA creates a sequence of successively easier problems to solve. This
technique is called iterative easing. The arrangement is clearly sound, provided
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that the component systems output only logical consequences. On a macro level
CSSCPA may be viewed as a time-slicing compositional system, in which each
CSSCPA iteration is one component system.

4 The Implementation of CSSCPA

The overall process architecture of the CSSCPA implementation is shown in
Figure 1.

Figure 1: The CSSCPA Architecture
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When given an ATP problem, CSSCPA uses the tptp2X utility to expand
any include statements in the problem, and forwards the input problem clauses
to the FLi. The FLi is an external module of the E ATP system [Sch01], and thus
employs the efficient data structures and formula manipulation routines in the E
implementation. When the FLi has received and stored all the input clauses, it
reports the number of clauses, number of literals, and sum weight of the clause
set, on its standard output. This information is captured by CSSCPA as the
quality of the input problem clauses. The FLi then sits in a loop, reading clauses
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(the logical consequences from the component ATP systems) on its standard
input, processing them, and reporting any improvements of the clause set quality
on its standard output. CSSCPA monitors the standard output of the FLi. If
the reported quality of the FLI’s clause set passes a threshold, CSSCPA stops
the execution of the component systems and collects the improved clause set
from the standard output of the FLi. If the clause set does not contain a
unit contradiction, CSSCPA restarts using the improved clause set as the input
problem.

The selection and execution of components for CSSCPA is done by the SS-
CPA system [SS99]. To select components, SSCPA runs a SystemRecommender
program. The SystemRecommender accesses a database of information about
the eligible components’ strengths. The database is built from an evaluation of
performance data for the ATP systems on TPTP problems [SS01]. The database
assigns problems to one of 16 Specialist Problem Classes (SPCs) based on syn-
tactic problem characteristics, and ranks the systems within each SPC. When a
new problem is presented, its SPC is identified and the best performing systems
for the SPC are then known. SSCPA divides the CPU time remaining equally
between the selected systems. SSCPA then invokes SystemOnTPTP [Sut00] to
run each of the selected components on the problem. Note that the set of se-
lected components may change between iterations in CSSCPA, due to changes
in the characteristics of the clause set.

Each instance of SystemOnTPTP accesses a database of information about
the ATP systems to determine the format in which its ATP system requires the
problem. The SystemOnTPTP then uses the tptp2X utility to do the necessary
transformations and formatting.

SystemOnTPTP uses a control process (called TreeLimitedRun) to control
and monitor its ATP system. The control process starts the ATP system, mon-
itors the resource usage of the system, imposes resource usage limits, and has
sufficient information to be able to stop all the processes that the system has
running when a resource limit is exceeded (the CPU time allocated, a wall clock
time limit, and a memory limit). The control program monitors the CPU usage
of the ATP system’s processes by scanning the /proc file system. The wall clock
limit is implemented by an alarm system call within the control process. The
memory limit is imposed through use of the setrlimit system call. When the
CPU or wall clock time limit is reached, the control process scans the /proc file
system for the system’s processes, and uses a kill system call to stop them all.

The control process runs the specified ATP system inside a component wrap-
per. The wrapper scans the standard output of the ATP system and extracts
clauses that are logical consequences of the input problem. The wrapper then
translates the clauses to TPTP format before writing them to its standard out-
put. The standard output of the wrapper is captured by the corresponding
instance of SystemOnTPTP, which echoes the information to its standard out-
put. SSCPA collates the standard outputs from the SystemOnTPTP instances,
and writes them to its standard output. This is captured by CSSCPA, and the
logical consequences are then forwarded to the standard input of the FLi.

In the current implementation of CSSCPA, the quality of the FLi’s clause set

7



is measured in two ways: the total weight (symbol count) of the clause set, and
the average clause weight. The quality of the clause set improves when either of
these decreases. The total weight decreases when an incoming clause subsumes
clauses whose sum weight is greater than that of the incoming clause. The
average clause weight decreases when an incoming clause’s weight is less than
the current average clause weight. The clause set in the FLi is considered to
have “improved significantly” when either of the quality measures goes down by
some fraction of the input clause set’s measures. The fractions are parameters
to CSSCPA.

CSSCPA, SSCPA, SystemOnTPTP, and the component wrappers are all
implemented in perl. The FLi and TreeLimitedRun are implemented in C.
tptp2X is implemented in Prolog. The perl implementation of key compo-
nents may be a bottleneck in the communication, but at this stage it seems to
be acceptable. It is noteworthy that all inter-process communication uses the
standard input and output streams. At the bottom level, this is necessary for
capturing the logical consequences from the component ATP systems, given the
commitment to using unmodified components. The decision to use standard IO
streams for the other levels followed as a consequence.

5 Performance

Initial testing of CSSCPA has been done using the 1745 TPTP problems that
are non-Horn, have some (but not only) equality literals, and have an infinite
Herbrand universe (i.e., a very general class of problems). The same three com-
ponents were selected all the time, they being SPASS 1.03 [WAB+99], E 0.62
[Sch01], and Otter 3.0.6 [McC00b], all running in their default “auto” modes
(splitting was turned off in SPASS, so that only logical consequences were gen-
erated). A 300 second time limit was imposed, individually when testing the
individual component systems, and as a total in the CSSCPA setting. Table 1
summarizes the results. The SSCPA column shows the results for the naive
mode of SSCPA, in which the three components are run in competition parallel
with a CPU time limit of 100 seconds for each component. The SSCPA∗ col-
umn shows the SSCPA results with a CPU time limit of 300 seconds for each
component.

Table 1: CSSCPA Results

CSSCPA E Otter SPASS SSCPA SSCPA∗

Solved by 686 616 364 630 673 723
CSSCPA, not by other 131 329 91 75 52
other, not by CSSCPA 65 11 39 62 89

CSSCPA solved 52 problems that none of the components solved within 300
seconds, and 25 SWC problems with a TPTP difficulty rating of 1.00, i.e., 25
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problems that no existing ATP system is known to be able to solve. These
results show that CSSCPA has high depth of coverage. CSSCPA solves more
problems than any component, and 13 more problems than their composition in
SSCPA. These results show that CSSCPA has high breath of coverage (although
it would be even better if CSSCPA subumed (solved a superset of the problems
solved by) the components and SSCPA).

It is interesting that there are 62 problems solved by SSCPA but not by
CSSCPA. The essential differences between SSCPA and CSSCPA are the com-
munication of intermediate results and a reduction of the CPU time limit on
each component in successive CSSCPA iterations. Clearly the “improvements”
in the problem and the reduced time limits affect the components’ abilities to
solve those problems.

It should be noted that CSSCPA’s performance on a given problem can
change from run to run, due to changes in the operating system’s scheduling
of the component ATP systems, which affects the order in which logical conse-
quences are forwarded to the FLi.

6 Conclusion

The need for powerful ATP systems that have both breadth and depth of
coverage has motivated the design and implementation of the compositional
competition-cooperation parallel ATP system CSSCPA. CSSCPA combines ex-
isting high performance ATP systems in a framework that allows them to work
independently, but also allows communication of intermediate results. The per-
formance data shows that CSSPCA has high breadth and depth of coverage.

It is planned to extend the range of component systems available to CSS-
CPA. In particular, the use of analytic provers, e.g., model elimination or tableau
based provers, with lemma generation capabilities, seems attractive. It is ex-
pected that there will be strong cross fertilization between saturation systems
and analytic systems, due to their different deduction and search strategies.

The soundness of CSSCPA is dependent on the soundness of the components,
and also (from a practical viewpoint) the correct capturing and forwarding of
logical consequences. It is planned to independently verify CSSCPA proofs
by converting the sequence of improved problems into a monolithic proof, and
applying standard proof checking techniques.

Acknowledgement: Thanks to Stephan Schulz for implementing the FLi.
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