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Abstract 
The use of meteor ionisation trails as ‘cheap satellites’ to reflect radio waves between two points 
on the earth's surface is an established technique, called Meteor Burst Communications (MBC). 
For MBC systems to take advantage of the different amplitude and duration patterns of different 
trail types it is necessary to predict these patterns from features of initial signals reflected from the 
trails. The work described in this paper attempts to predict trail amplitude, duration, and trail type 
using neural networks. Results include a picture of what features of the beginning of the trail are 
most and least important for recognising various characteristics of the rest of the trail, some 
significant results as regards trail type prediction, and high correlations between actual and 
predicted peak amplitudes of trails. The latter is an important result. 
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1. Introduction 
Billions of meteors1 enter the earth's atmosphere every day.There is an inverse 
relationship between meteor size and meteor frequency [LM+90]. Although the vast 
majority of the meteors are small (around the size of a grain of sand), their solar orbital 
velocity is high enough that on entering the upper atmosphere (between 80 and 120km 
from the earth's surface) and burning up, they leave ionisation trails tens of kilometres 
long.  
While Nagaoka [Nag29] was the first to postulate a connection between meteors and 
radio reflections, his initial hypothesis that the meteors would be impediments to radio 
communication was soon discovered to be incorrect. Picard [Pic31] and Skellet [Ske32] 
independently determined that meteors, or more specifically the trails of ionisation that 
they leave in their wake, could enhance radio reflection. The use of meteor ionisation 
trails as ‘cheap satellites’ to reflect radio waves between two points on the earth's 
surface (limited by the earth's curvature to about 2000km apart) has since become an 
established technique. This form of communication is called Meteor-Burst 
Communications (MBC).  
The advantages of MBC include: 
• Low price. Ionised trails are free and the communication hardware is relatively 

cheap [Whi88, CR87]. 
• Robustness. The ground stations are simple and reliable [BB77, Cro77, Day82]. 

Meteor trails ‘cannot be shot down’, which makes MBC attractive for military 
applications [Hel87, Oet80, Boy88]. The transmission is largely impervious to 
electrical interference, such as polar and auroral disturbances [Hel87, DG+57]. 

                                                                    
1Strictly speaking, they are meteoroids immediately prior to entering the atmosphere, 
and meteors thereafter 



• Suitability for remote use. MBC systems have a range of up to 2000km, and due to 
their robustness and low power consumption the ground stations have low 
maintenance requirements [Mor88]. 

• Resistance to ground interception and jamming. The small footprint of the 
reflection means that to intercept or jam the signal requires being close to the 
receiving ground station [Hel87]. 

A number of large-scale MBC systems are in place. Important systems include: 
• The United States Department of Agriculture's SnoTel telemettry system [BB77, 

Cro77, Day82], which comprises some 500 stations in the American West. 
• The Alaska Air Command system of the US Air Force [KR86, Hof88, Sch90]. 
• The Chinese MBC network used by the Chinese military for communications from 

base stations in Beijing, Lanzhou and Urumqi to remote army camps, operating as 
the standard link for low priority traffic and the backup link for high priority traffic 
[Sch90]. 

A detailed review of MBC systems appears in [MF93]. 
The major difficulty with MBC is that an ionisation trail must be correctly orientated in 
the correct area of the sky between stations for communication to take place. The 
average time between usable trails varies according to known daily and seasonal cycles 
in meteor arrival rates, as well as being dependent on the transmitter power and the 
antennas used. Current state-of-the-art systems have delays of less than a second 
between usable trails. The channel is still sporadic however, and this means that MBC is 
most suited to data transmission, as opposed to real-time voice or video. 
This paper first describes the different types of meteor trails, and the effect of the 
differnet types on the communications capacity of the MBC channel. The advantages of 
being able to accurately predict future trail amplitude and duration characteristics on the 
basis of signal reception in the early part of a trail are explained. After this various 
neural net approaches to the prediction of trail type, duration, and peak amplitude are 
discussed, and important results highlighted. 

2. The Problem 
It has long being established that there are different types of meteor trails with different 
duration and amplitude characteristics [Sug64, HB67, Ost85, Wei87]. Figure 1 and 
Figure 2 below show examples of trails recorded over an 1100km link between Arniston 
and Pretoria in South Africa [ML+89]. The recording starts when a signal received from 
the transmitter achieves a certain signal-to-noise ratio (10dB), for at least 20ms. 
Thereafter samples of the signal amplitude in dBm are taken every 5ms until the signal 
dips below a turn-off threshhold. (Actually the system monitors for a period of 400ms 
after this to ensure that the turn-off has not been premature. For example, the situation 
where one trail with a noise spike in the middle is recorded as two distinct trails is 
avoided.) 
Theory suggests two basic trail types, underdense and overdense [WBG84], recorded 
examples of these are shown in Figure 1 and Figure 2 respectively. In practise a number 
of other features interfere with the classic fast-rising, slow-dropping, short-duration 
(400ms or so) triangle of an underdense trail, and the high-amplitude, longer-duration 
(seconds) smooth parabola of an overdense trail. In particular, upper atmosphere winds 
tend to distort these patterns considerably, as in the case in Figure 2. The TrailStar 



expert system [ML+89] distinguishes 29 distinct trail types, based on trail features (see 
Section 2.1 for a description of some trail features). While some of these 29 types are 
clearly subtypes of the two classic shapes, other cases are not clearly recognisable as 
being either underdense or overdense. 
 

 
Figure 1: Underdense trail 

 

 
Figure 2: Overdense trail 

Note on figures: Each figure shows two views of the same trail. The lower axes give a 
‘real’ view of the trail, with one pixel plotted for each sample (samples taken every 
5ms), while the upper axes give a ‘shape’ view, where the trail is scaled to fill the entire 
X-axis. The ‘shape’ view is useful in studying individual trails, while the ‘real’ view is 
used for comparing trails. 
The different trail shapes have major implications for MBC. Knowing the future shape 
of a trail would allow for more effective utilisation of channel capacity: longer duration 
trails provide more opportunity for data transmission, and higher-amplitude trails can 
support higher data rates. Importantly, the long durations and high amplitudes of the 



overdense subtypes means that they contribute the bulk of throughput, despite being the 
least-commonly occurring trails [LMM90]. At the same time, if wait time for short 
messages (which don't require a great deal of bandwidth) is at issue then MBC systems 
need to make optimal use of the far more commonly occurring underdense subtypes 
[ML92]. 
For communication systems to take advantage of different trail shapes it is necessary to 
predict the trail shape from the features of the initial part of the trail. The “initial part” of 
a trail is limited here to the first 50ms to 100ms, as many entire trails in the underdense 
subtypes are as short as 300ms. The TrailStar system is inadequate for this task, as it 
only classifies the trails based on features of the entire trail. The TrailStar system cannot 
identify many of the 29 types from only this initial data, and does not consider trail 
amplitude and duration within types. For example, it might be known that a trail is of 
the sinusoidal overdense type, and thus would typically have a duration of between 2 
seconds and 5 seconds, and have a peak amplitude of 15 dBm to 20 dBm above the 
background noise. However, the precise peak amplitude (and hence maximum data rate 
attainable) and duration (and hence usable time) would not be known, and this 
information could be more useful than the trail type. The work described in this paper 
attempts to predict trail amplitude, trail duration, and trail type as three distinct tasks, 
using neural networks. 
2.1 Trail Features and Types 
The TrailStar system uses over 100 features to classify trails. However, many of the 
features are based on trail reflection information which is not available in the first 50ms 
to 100ms of a trail. Twenty six features have been determined to be calculable from the 
early period of a trail together with the background noise level and the time since the 
previous trail was recorded. The 26 feature descriptors are: 

F1: The offset of the best straight line fit. 
F2: The slope of the best straight line fit. 
F3: The variance of the samples from the best straight line fit. 
F4: The minimum amplitude found. 
F5: The maximum amplitude found. 
F6: The number of samples found at the peak amplitude (possible plateaus). 
F7 The position at which the peak amplitude is first encountered. 
F8: The number of local minima. 
F9: The number of local maxima. 
F10: The number of extrema. 
F11: The offset of the best straight line fit up to the peak amplitude. 
F12: The slope of the best straight line fit up to the peak amplitude. 
F13: The variance of the samples from the best straight line fit up to the peak 

amplitude. 
F14: The offset of the best straight line fit from the peak amplitude onwards. 
F15: The slope of the best straight line fit from the peak amplitude onwards. 
F16: The variance of the samples from the best straight line fit from the peak 

amplitude onwards. 
F17: The position where the initial amplitude rise ends. 
F18: The position where the fall from the peak amplitude begins (not the same 

as F7 when upper plateaus at peak amplitude are encountered). 



F19: The position where the greatest dBm difference from the best straight line 
fit is found. 

F20: The τ value of the slope from the peak amplitude to the end. 
F21: The x2 coefficient of the best parabola fit. 
F22: The x coefficient of the best parabola fit. 
F23: The constant of the best parabola fit. 
F24: The variance of the samples from the best parabola fit. 
F25: The background noise level. 
F26: The time since the previous trail. 

 
Note that the features in this list are with respect to only the first 50 or 100ms of a trail, 
i.e., the first 10 or 20 samples. 

3. The Neural Network Solution 
The availability of a large database of trail recordings with known type, duration and 
amplitude, suggested a neural network approach to predicting these values from initial 
trail data. For the neural network classification the 29 trail subtypes were grouped into 
three generic classes: the underdense class, the overdense class, and a ‘non-classic’ class 
comprising those subtypes which are not overtly underdense or overdense, or had 
features of both (see Figure 3 for an example). This was necessary as many of the 29 
subtypes determined in [ML+89] are not distinguishable from the early part of the trail. 
In terms of the categorization done by TrailStar, the underdense class contains trail 
types 5, 9, 10, 11, 12, 13, 14, 16, 17, 18, 24 and 29; the overdense class contains trail 
types 19, 20, 21, 26, 27, and 28; and the non-classic class contains trail types 2, 3, 4, 6, 
7, 8, 15, 22, 23 and 25. Trail type 1 (erroneous data) is excluded from consideration. 
 

 
Figure 3: A sample 'non-classic' class trail 

Trail recordings of 100000 trails were selected at random from the database of trail 
recordings. From the trail data the 26 features were calculated from the initial trail 
samples, as inputs to the neural network. These features were calculated for the first 20 
samples (100ms), and also for the first 10 samples (50ms) to see if faster prediction is 
possible. The trails were also classified by TrailStar into one of the 29 TrailStar types 



using the entire trail data, and then put into one of the three classes. The trail class, 
duration, and peak amplitude formed the expected output for neural network training. 
The input/output combinations were divided into two groups; a training group of 96000 
examples, and a test group of just over 4000 examples. Supervised learning was then 
used to train the network to predict trail class, duration, and amplitude, from the 26 trail 
features. Neuralware’s Neuralworks version 2.0 [Neu93] was used to build the required 
neural networks. 
3.1 Trail Type Nets and Results 
Trail classification proved to be a particularly vexing problem. Initially a 
backpropagation network was used with 26 input Processing Elements (one for each 
input feature descriptor), 58 PEs in a hidden layer, and one output PE (the trail class). 
Training this network gave either convergence without generalisation (low RMS error 
but low correlation of actual/predicted too) or did not converge at all. The next attempt 
was to use an LVQ network, as LVQ networks are supposedly well suited to 
classification type problems [Neu93]. In this network three output fields were used, 
allowing three different ‘bit patterns’ (000, 010, 111) to represent the three trail classes. 
This approach also failed, with the network converging on the most common trail types, 
non-classic and underdense. 
Neither the backpropagation nor the LVQ network was predicting overdense trails at all, 
and it seemed likely that this was due to the relatively low number of overdense trails in 
the training data (as one would expect; they only form a small proportion of trails). To 
counter this perceived swamping of the overdense trails, 5000 trails of each of the three 
classes were extracted from the 96000, based on the fact that there were just over 5000 
overdense trails available. This formed a new training set of 15000 examples with equal 
representation of each trail class. The 4000 test trails were left unaltered. While this step 
did lead to some predictions of overdense trails, correlations were still poor. Guessing 
that this might be due to the network being overexposed to ‘happenstance’ features (and 
so failing), a subset of the input features was used. The features were selected according 
to their relative importance in the TrailStar typing scheme. The subset contained just 
nine features, these being F2, F3, F4, F5, F7, F10, F22, F23, and F24. This improved 
performance somewhat, giving predicted/actual correlations of approximately 0.4. It 
was felt that better could be achieved, and at this stage it was decided to add an 
additional hidden layer to the network to aid in the recognition of more complex 
patterns. This layer consisted of five PEs, making the network configuration 9 input 
layer PEs, 58 first hidden layer PEs, 5 second hidden layer PEs, and 1 output layer PE. 
It is from this configuration that the final results were obtained. 
The eventual weights on the inputs (for the case where the features were derived from 
20 trail samples) were as follows : 



F2: 0.259 
F3: -0.946 (The variance of the samples from the best straight line fit) 
F4: -0.268 
F5: -0.261 
F7: 1.000 (The position at which the peak amplitude is first encountered) 
F10: -0.667 
F22: 0.048 (The x coefficient of the best parabola fit) 
F23: -0.523 
F24: -0.975 (The variance of the samples from the best parabola fit) 

Only the x coefficient of the best parabola fit seemed to have negligible effect (weighted 
less than 0.1). It is interesting that the parabola and line variance measures had high 
weights (greater than 0.9 in magnitude) after training; such measures seem to be 
important descriptors. The strong role played by the peak amplitude position (weight of 
1) was less expected and constitutes an important finding. 
 

Trail class Predictions 
 Total Ud Od Non-C Correct 

Underdense 1942 881 76 985 45% 
Overdense 286 11 109 166 38% 
Non-classic 1791 188 471 1132 63% 
Total 4019 1080 656 2283 53% 

Table 1: Results of class prediction; 20 samples 
 

Trail class Predictions 
 Total Ud Od Non-C Correct 
Underdense 1966 701 83 1182 36% 
Overdense 278 12 103 163 37% 
Non-classic 1776 129 558 1089 61% 
Total 4020 842 744 2434 47% 

Table 2: Results of class prediction; 10 samples 

It is clear from the data in Table 1 and Table 2 that the network is fairly proficient at 
distinguishing between underdense and overdense trails, with only a very small number 
of underdense trails being predicted as overdense, and vice versa. The problem 
remaining is that the network easily confuses underdense and overdense with non-
classic. Of course this should be expected, as the non-classic class contains precisely 
those trails that have both overdense and underdense features. 
The fact that around 50% of predictions are correct, together with the above described 
underdense/overdense discrimination, is particularly encouraging. The correlations look 
worse due to the effect of the non-classic group. Notwithstanding that, the correlations 
of 0.534 (prediction based on 20 samples) and 0.428 (prediction based on 10 samples) 
are encouraging.  
3.2 Duration Nets and Results 
A good prediction of trail duration is highly unlikely. Some types of trails, such as 
rectified sines (see Figure 4), repeat a basic pattern n times. There is no way to detect, 



on the basis of the first 50ms or 100ms, just what n is going to be. However an attempt 
at neural network prediction was made. 
 

 
Figure 4: Rectified sine trail 

The backpropagation network used here had 26 input PEs, 58 PEs in a hidden layer, and 
one output PE (the duration). After extensive training (several million epochs) no 
further convergence seemed to be occurring, and the weights were fairly evenly 
distributed amongst inputs, indicating that most of the inputs were having a significant 
effect on the network. Input weights were as follows after training: 

F1: -0.470 F2: 0.585 F3: -0.948 F4: -0.244 F5: 0.167 
F6: -0.579 F7: 0.789 F8: -0.677 F9: -0.818 F10: -0.712 
F11: -0.712 F12: 0.813 F13: -0.998 F14: -0.239 F15: -0.856 
F16: -0.952 F17: 0.789 F18: 0.789 F19: 0.867 F20: 0.552 
F21: 0.052 F22: 0.138 F23: -0.517 F24: -0.934 F25: -0.999 
F26: 0.000 

(Values shown are for the 20 sample case, the 10 sample results are similar.) 
The features with weights of particular interest are: 

F3: -0.948 (The variance of the samples from the best straight line fit) 
F13: -0.998 (Variance from the best straight line fit up to the peak amplitude) 
F16: -0.952 (The variance from the best straight line fit from the peak 

amplitude onwards) 
F21: 0.052 (The x2 coefficient of the best parabola fit) 
F24: -0.934 (The variance of the samples from the best parabola fit) 
F25: -0.999 (The background noise level) 
F26: 0.000 (The time since the previous trail was encountered) 

After the classification results it came as no surprise that the variance measures were of 
great importance (weighted greater than 0.9 in magnitude). The high weight assigned to 
background noise is somewhat puzzling, and merits further investigation. As regards 
low (less than 0.1 in magnitude) weights only F21 and F26 seem to have minimal effect. 



Scatter graphs of the actual vs predicted trail durations for the 20 sample case are shown 
in Figure 5 below. The right-hand graph shows the more common duration trails (up to 
1000ms) at higher resolution. 
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Figure 5: Duration prediction, 20 samples 

It is apparent that the prediction is not particularly accurate, as was expected. The 
Pearson coefficients of correlation are 0.303 for the 20 sample case and 0.206 for the 10 
sample case. Although these coefficients are statistically significant due to the large 
sample size, they indicate only a weak positive correlation between actual and predicted 
results. Such results are better than nothing, but work on finding more effective 
discriminators must continue. 
3.3 Amplitude Nets and Results 
For the amplitude prediction a backpropagation network using 26 input PEs, a hidden 
layer of 80 PEs, and a single output PE, was used. The network was trained on the 
96000 training examples for both the 10 and 20 sample cases. Input weights were as 
follows after training: 

F1: -0.182 F2: 0.308 F3: -0.887 F4: -0.111 F5: 0.042 
F6: -0.263 F7: 0.263 F8: -0.667 F9: -1.000 F10: -0.818 
F11: -0.744 F12: 0.813 F13: -0.998 F14: -0.118 F15: -0.847 
F16: -0.998 F17: 0.789 F18: -0.158 F19: 0.867 F20: 0.552 
F21: -0.292 F22: 0.370 F23: -0.470 F24: -0.990 F25: -0.999 
F26: 0.000 

(Values shown are for the 20 sample case, the 10 sample results are similar) 
The features with weights of particular interest are: 

F3: -0.887 (The variance of the samples from the best straight line fit) 
F5: 0.042 (The maximum amplitude found) 
F9: -1.000 (The number of local maxima) 
F13: -0.998 (Variance from the best straight line fit up to the peak amplitude) 
F16: -0.998 (The variance from the best straight line fit from the peak 

amplitude onwards) 
F24: -0.990 (The variance of the samples from the best parabola fit) 
F25: -0.999 (The background noise level) 
F26: 0.000 (The time since the previous trail was encountered) 



The above makes fascinating reading. It is particularly startling that the peak amplitude 
found in the early part of a trail seems to be of virtually no significance in predicting the 
peak amplitude of the entire trail. This merits further investigation. The only other 
feature that has little effect (weighted less than 0.1 in magnitude) is the wait time since 
the previous trail, a result in keeping with the duration findings. 
As regards important (weight greater than 0.9 in magnitude) features, once again the 
variances stand out, with F13, F16 and F26 all exceeding 0.9 in absolute value. F3 is 
only slightly less important (magnitude of 0.887). Background noise again has a high 
weight, in keeping with the duration results, and this deserves further study. Of 
particular interest is that the number of local maxima found has the greatest magnitude 
weight of any input (1.0 in magnitude). A more detailed analysis of this important result 
is necessary. 
Results from these networks were most impressive, as can be seen from Figure 6 below, 
which shows the 10 sample case. The correlation is even stronger in the 20 sample case. 
(The vertical striation in the Figure is because amplitude is measured discretely). 
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Figure 6: Amplitude prediction, 10 samples 

The correlation coefficients produced were 0.911 for the 20 sample case, and 0.823 for 
the 10 sample case. These are high positive correlations. Having such a reliable 
predictor of the eventual peak amplitude from sampling just the first 50ms of the trail 
has tremendous and obvious implications for vast improvements in MBC throughput. 

4. Conclusion 
This paper has describes an emperical study into the use of neural nets to predict future 
characteristics of meteor trails. Being able to predict in real-time what communication 
capacity the upcoming trail will have, enables greater utilisation of the trail than is 
currently possible. Results include: 
• A most necessary (for future work) picture of what features at the beginning of the 

trail are most and least important for recognising various characteristics of the rest 
of the trail. 

• Some expected, though still disappointing, poor correlations between predicted and 
actual durations. 



• Some significant results as regards trail type prediction. 
• High correlations between actual and predicted peak amplitudes of trails, even on 

the basis of data from just 50 ms at the beginning of trails. This is an important 
result with immediate implications for the design of MBC systems. This result 
justifies the entire research effort. 

MBC systems have the potential to provide cheap and reliable communications in 
remote and developing areas. This is particularly relevant to the Pacific Rim, where 
large distances and inaccesiblity make the cost of installing traditional communication 
systems prohibitive. The Chinese MBC system [Sch90] is a working example of this. 
The improved performance that can be realised from real-time prediction of trail 
patterns will considerably enhance such systems. 
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