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Abstract. There are syntactically identifiable situations in which reduction does not 
occur in chain format linear deduction systems, i.e. situations in which linear-input 
subdeductions are performed. Three methods of detecting these situations are 
described in this paper. The first method (Horn subset analysis) focuses on Horn 
input chains while the second (LISS analysis) and third (LISL analysis) are 
successive generalisations of the first method. A significant benefit that may be 
derived from detecting linear-input subdeductions is the applicability of a truth value 
deletion strategy in such subdeductions. The completeness of the deletion strategy is 
proved, and its efficacy indicated. 

 

1. Introduction 

The exponential size of the search space of the resolution procedure necessitates the use 
of refinements which restrict the search space. Many refinements of the resolution 
procedure have been developed, one category of which is the linear refinements. The 
earliest linear deduction systems were the R~ 3 refinement [Luckham, 1970], s-linear 
resolution [Loveland, 1970], and the strategy of preference of a 'new' conjunction 
[Zamov, 1969]. After these initial three systems, two streams of development are evident. 
One stream developed refinements based on the merging restriction [Andrews, 1968], 
whilst the other developed the chain format systems. The results presented in this paper 
are for chain format linear deduction systems. 
 
The first chain format systems developed were the Model Elimination procedure 
[Loveland, 1969] and Linear resolution with Selection function (SL-resolution) 
[Kowalski, 1971]. Subsequent chain format systems include Ordered Linear deduction 
[Chang, 1973], the Graph Construction procedure [Shostak, 1976], Selective Linear 
Model deduction [Brown, 1974], and Linear resolution with Unrestricted Selection based 
on Trees (LUST)-resolution [Minker 1982]. There have also been many implementations 
of chain format systems, e.g. [Fleisig, 1974], [Stickel, 1986], [Sutcliffe, 1990], 
[Tarver, 1990]. The results presented in this paper are not immediately applicable to the 
Graph Construction procedure and Selective Linear Model deduction, due to their 
mechanisms for reusing portions of deductions. However, a simple modification to these 
deduction systems (as discussed in the conclusion) makes the results applicable. 
 
Linear-input deduction is a refinement of linear deduction which does not permit any 
form of ancestor resolution, i.e. linear deduction using only the extension operation. 
Linear-input deduction is complete for sets of Horn clauses, but is not complete for sets of 
non-Horn clauses. [Ringwood, 1988] provides an interesting synopsis and references for 
the history of linear-input deduction systems. The use of reduction makes linear deduction 



complete for sets of non-Horn clauses. There are syntactically identifiable situations in 
which reduction does not occur in linear deduction systems, i.e. situations in which 
linear-input subdeductions are performed, and three methods of analysing sets of input 
chains have been developed for detecting these situations. The first method focuses on 
Horn input chains while the second and third are successive generalisations of the first 
method. Other work [Wakayama, 1990] has also noted that ancestor resolution and 
factoring are not always necessary for obtaining a refutation when the input set is 
non-Horn. The methods of analysis presented here are, however, more general than 
Wakayama's, which is restricted to entire input sets.  
 
The detection of linear-input subdeductions is useful for (and was largely motivated by) 
the imposition of truth value deletion in linear deduction systems. The use of semantic 
information appears to have the potential to significantly improve the performance of 
deduction systems. This has been noted in the literature, e.g. "An emphasis on semantics 
rather than on syntax has far greater potential for producing a dramatic impact on the 
power of automated reasoning programs" [Wos, 1988, p. 257] (Research towards a 
"semantically orientated strategy" is Problem 5 in [Wos, 1988]), and "... if searches in 
symbolic computation are not to fall prey to combinatorial explosion, they must 
incorporate domain-specific knowledge in such a way so as to give direction to the 
search." [McRobbie, 1988, p. 198]. Up to this point, truth value deletion has been 
considered incompatible with linear deduction. The isolation of linear-input 
subdeductions, through linear-input analysis, makes it possible to use truth value deletion 
in linear deductions. This is described in section 3 of this paper. 

2. Linear-Input Analysis 

2.1 Horn Subset Analysis 

It has been noted that "...in many proofs, most of the input clauses are Horn clauses..." 
[Plaisted, 1982, p. 231]. Examination of linear refutations of some input sets reveals that 
once the positive B-literal of a Horn input chain has been extended against, no reductions 
are performed until that B-literal (in the guise of an A-literal) is truncated. Horn subset 
analysis detects these subdeductions. 
 
The input predicate set of a set of input chains contains the predicate structures1 that 
appear in the input set. To detect situations in which reduction does not occur in a linear 
deduction from a negative top chain in an input set (lemma 1.1 relies on a negative top 
chain), the Horn subset  of the input predicate set is extracted. A predicate structure is in 
the Horn subset iff (i) it does not occur positively in a non-Horn input chain, and (ii) for 
every Horn input chain in which the predicate structure occurs positively, every predicate 
structure in the chain is in the Horn subset. 

Example 
The Horn subset of {~r~p~q, ~pq, p~q, pq, r~t~s, t~u, u, s}, 
with ~r~p~q as the top chain, is {r, t, s, u}. 

 
                                                             
1A predicate structure is the predicate symbol and arity of a literal. 



The Horn subset divides the input chains into two groups, based on whether or not all 
literals in the chain have predicate structures that are in the Horn subset. Any predicate 
structures, literals, or input chains which only contain predicate structures that are in the 
Horn subset, are called Horn subset objects. 
 
In a linear deduction from a negative top chain no reduction against Horn subset literals is 
performed, and once a Horn subset B-literal is selected, no reduction against literals 
rightwards from the selected B-literal is performed until that B-literal (in the guise of an 
A-literal) is truncated. Further, only the positive B-literal of a Horn subset input chain is 
ever resolved against in an extension operation. These properties are now proved. 
(Concepts similar to those used here were informally introduced in [Sutcliffe, 1989].) 
 
Lemma 1.1 
In a linear deduction from a negative top chain : (i) no positive Horn subset A- or B-literal 
occurs in a centre chain. (ii) negative B-literals in Horn subset input chains are never 
resolved against in extension operations. (iii) no reduction against Horn subset A- or 
B-literals is performed.  
 
The proof of part (i) is by contradiction. If a positive Horn subset A- or B-literal occurs in 
a centre chain then the A-literal immediately to its left must be a Horn subset A-literal, as 
its complement originates from the same input chain as the first literal. Further, the Horn 
subset A-literal to the left must be positive, for otherwise the first literal occurs positively 
in a non-Horn input chain. Iteratively, all the A-literals to the left of a positive Horn 
subset A- or B-literal must be positive. However, the leftmost A-literal in the centre chain 
must be negative as the top chain is negative. Contradiction. Hence : (i) no positive Horn 
subset A- or B-literal occurs in a centre chain. (ii) as there can only be negative Horn 
subset B-literals in a centre chain, negative B-literals in Horn subset input chains can 
never be resolved against in extension operations. (iii) as complementary Horn subset A- 
and B-literals cannot occur in any centre chain, no reduction against such literals is 
performed. QED 
 
Theorem 1.2 
In a linear deduction from a negative top chain : (i) every A- and B-literal to the right of a 
Horn subset A-literal in a center chain, is also a Horn subset literal. (ii) no reduction 
against A- and B-literals rightwards from a Horn subset A-literal is performed. (iii) once a 
Horn subset B-literal is selected, no reduction against literals rightwards from the selected 
B-literal is performed until that B-literal (in the guise of an A-literal) is truncated. 
 
By lemma 1.1, once a Horn subset B-literal in a centre chain has been selected, it is 
necessarily extended against. From the definition of the Horn subset, the B-literals added 
to the centre chain in the extension are Horn subset B-literals. Therefore : (i) iteratively, 
every A- and B-literal to the right of the selected Horn subset B-literal (now an A-literal) 
is a Horn subset literal. (ii) by lemma 1.1, no reduction against A- and B-literals 
rightwards from a Horn subset A-literal is performed. (iii) the structure of chain format 
linear deductions and part (ii) ensure that no reduction against literals rightwards from the 



selected B-literal is performed until that B-literal (in the guise of an A-literal) is 
truncated. QED 

2.2 Linear-Input Subsets for Literal Structures 

Horn subset analysis focuses on Horn input chains, and does not provide adequate 
analysis for input chains which are non-Horn but are Horn in a renaming of the input set. 
Many results based on the polarity of literals can be generalised to be based on a division 
of the literal structures2 that appear in the input set, e.g. P1 resolution [Robinson, 1965] 
generalises to PP resolution [Meltzer, 1966], hyper-resolution [Robinson, 1965] 
generalises to AM-clashes [Slagle, 1967]. Similarly, Horn subset analysis generalises to 
results for non-Horn chains, in the form of Linear-Input Subset for literal Structures 
(LISS) analysis. The generalisation from Horn subsets to LISSs comes at the cost of a 
more complex analysis. Rather than a direct examination of the input set, LISS analysis 
requires examination of an abstraction of the deduction search tree. 
 
For an input chain, the corresponding chain structure set  contains the literal structures 
that occur in the chain. To detect situations in which reduction does not occur in a 
deduction from a chosen top chain, the linear-input subset  of the literal structures that 
occur in the input set is extracted. This is done by building an extension tree whose nodes 
are literal structures. The extension tree has a mythical root whose offspring are the 
elements of the chain structure set corresponding to the chosen top chain. For each 
non-root literal structure in an extension tree, its offspring are those literal structures that 
(i) are in chain structure sets that contain a literal structure complementary to the parent 
literal structure, (ii) are not the complementary literal structure, and (iii) do not have 
themselves as ancestors in the extension tree unless, between the offspring and the 
ancestor, there exists a literal structure which does not have itself as an ancestor above the 
offspring's ancestor. A literal structure is in the LISS iff for every occurrence in the 
extension tree (i) it is not complementary to an ancestor, and (ii) all of its descendants are 
in the LISS. 

Example 
The first few level of the LISS tree for {r~p~q, ~pq, p~q, pq, 
~r~t~s, tu, ~u, s}, with r~p~q as the top chain, are : 
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2A literal structure is the sign, predicate symbol and arity of a literal. 



 
Circled literal structures are leaves of the tree, as dictated by item (iii) in the 
definition of these trees. Boxes literal structures are complementary to an ancestor. 
The lower levels of the tree reveal no new information. The LISS is thus 
{r, ~t, u, ~s}. No Horn subset exists for this top chain, as it is non-negative. 
With ~r~t~s as the top chain, the Horn subset is {s} and the LISS is 
{~t, u, ~s}. 

 
Any literal structures or literals which only contain literal structures that are in the LISS, 
are called LISS objects. 
 
In a linear deduction from a chosen top chain, no reduction against LISS B-literals is 
performed, and once a LISS B-literal is selected, no reduction against literals rightwards 
from the selected B-literal is performed until that literal (in the guise of an A-literal) is 
truncated. These properties are now proved. 
 
Lemma 2.1 
In a linear deduction from a chosen top chain no reduction against LISS A- or B-literals is 
performed. 
 
The root to tip sequence of literal structures in a branch of the extension tree corresponds 
to possible left to right sequences of A- and B-literal structures in centre chains of a 
deduction from the chosen top chain. Each node corresponds to a possible A-literal in a 
centre chain, and literal structures that are lower in the branch correspond to possible 
B-literals to the left of that A-literal in a centre chain. Therefore : (i) no LISS B-literal in a 
centre chain has a structure complementary to an A-literal to its left (LISS definition part 
(i)), and no reduction against LISS B-literals is performed. (ii) no LISS A-literal has a 
B-literal with a complementary structure to its right (LISS definition part (ii)), and no 
reduction against LISS A-literals is performed. QED 
 
Theorem 2.2 
In a linear deduction from a chosen top chain : (i) every A- and B-literal to the right of a 
LISS A-literal in a center chain, is also a LISS literal. (ii) no reduction against A- or 
B-literals rightwards from a LISS A-literal is performed. (iii) once a LISS B-literal is 
selected, no reduction against literals rightwards from the selected B-literal is performed 
until that B-literal (in the guise of an A-literal) is truncated. 
 
The proof is analogous to that of theorem 1.2. 

2.3 Linear-Input Subsets for Literals 

In building the extension tree, LISS analysis makes the assumption that every pair of 
literals with complementary literal structures can unify. A more accurate analysis is 
possible, by working directly with the literals in the input set. Linear-Input Subset for 
Literals (LISL) analysis does this. 
 



To detect situations in which reduction does not occur in a deduction from a chosen top 
chain, the linear-input subset  of the literals in the input set is extracted. This is done by 
building an extension tree whose nodes are literals from the input set. The method used is 
similar to that for LISS analysis. For each non-root parent literal in a LISL extension tree, 
its offspring are those literals that (i) are in chains that contain a literal complementarily 
unifiable with the parent literal, (ii) are not the complementarily unifiable literal, and 
(iii) do not have themselves as ancestors in the extension tree unless, between the 
offspring and the ancestor, there exists a literal which does not have itself as an ancestor 
above the offspring's ancestor. A literal structure is in the LISL iff for every occurrence in 
the extension tree (i) it is not complementarily unifiable with an ancestor, and (ii) all of its 
descendants are in the LISL. Note that although the extension tree uses unifiability, 
unification is never consummated. 

Example 
The first few levels of the LISL tree for {r~p(a)~q, ~p(a)q, p(a)~q, 
p(a)q, ~r~t~s, tu, ~u, s~p(b), p(b)}, with r~p(a)~q as the top 
chain, are : 
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Circled literal structures are leaves of the tree, as dictated by item (iii) in the 
definition of these trees. Boxes literal structures are complementarily unifiable 
with an ancestor. The lower levels of the tree produce no new information. The 
LISL is thus {r1, ~t5, u6, ~s5, ~p(b)8} (where the superscripts indicate 
the chain number that the literal is in). The LISS is {~t, u}. 

 
The results and theorem proofs for LISL analysis are analogous to those for LISS 
analysis. The results are simply stated here. 
 
Lemma 3.1 
In a linear deduction from a chosen top chain no reduction against LISL A- or B-literals is 
performed. 
 



Theorem 3.2 
In a linear deduction from a chosen top chain : (i) every A- and B-literal to the right of a 
LISL A-literal in a center chain, is also a LISL literal. (ii) No reduction against A- or 
B-literals rightwards from a LISL A-literal is performed. (iii) Once a LISL B-literal is 
selected, no reduction against A- and B-literals rightwards from the selected B-literal is 
performed until that B-literal (in the guise of an A-literal) is truncated. 

2.4 Taking Advantage of Linear-Input Subsets 

The above results show that once a Horn subset/LISS/LISL B-literal (henceforth, Horn 
subset/LISS/LISL objects will be referred to generically as linear-input objects) has been 
selected, a linear deduction system starts a linear-input subdeduction. The subdeduction 
end when that B-literal (in the guise of an A-literal) is truncated. The selected B-literal is 
called the top literal of the subdeduction. 
 
In a linear-input subdeduction the reduction operation can be explicitly ignored, so that no 
effort is expended attempting to find A-literals to reduce against. If Horn subset analysis 
is used then only the positive literals of Horn subset input chains need ever be considered 
when searching for a suitable input chain in an extension operation. A more significant 
benefit that may be derived from linear-input analysis is the completeness of a truth value 
deletion strategy in linear-input subdeductions. Truth value deletion strategies reject 
clauses/chains in a deduction, based upon their interpretation value in a given 
interpretation. In linear-input deductions, deletion of center chains which are not FALSE 
in all models of the side chains used, is a complete strategy (see [Bundy, 1983, p 147] for 
example). This truth value deletion system can be transferred to linear-input 
subdeductions. 

3. Truth Value Deletion in Linear Deduction Systems 

Def'n : A side chain model  of a deduction is an interpretation that is a model of the side 
parent chains used in the deduction. 
 
Def'n : The rightwards subchain of a literal in a center chain consists of the literal and all 
literals to its right. 
 
A truth value deletion system which requires all rightwards subchains of the top literal in 
a linear-input subdeduction to be interpreted as FALSE, in all side chain models of the 
subdeduction, is complete. The system arises from the following results. 
 
Lemma 4.1 
In a linear refutation in which only extension and truncation operations are performed, all 
centre chains are interpreted as FALSE in all side chain models of the refutation. (In 
determining the interpretation value of a centre chain, only B-literals are considered.) 
 
In this situation a linear refutation is reduced to a linear-input refutation. The lemma then 
follows directly from [Bundy, 1983, Thm 2, p 147]. QED 
 



Lemma 4.2 
In a linear-input subdeduction, all rightwards subchains of the top literal are interpreted as 
FALSE in all side chain models of the subdeduction. (In determining the interpretation 
value of a rightwards subchain, only B-literals are considered.) 
 
Let C1R1,...,Cn-1Rn-1,Cn be the centre chains of a linear-input subdeduction, so that R1 
is the top literal, each Ri is a rightwards subchain of the top literal, and Rn-1 is the top 
literal in the guise of an A-literal. Theorems 1.2, 2.2 and 3.2 show that no literal in any Ci 
is used in deduction operations that affect the Ri. Therefore there is a refutation from the 
top chain R1 using only extension and truncation operations. By lemma 4.1, all the Ri are 
interpreted as FALSE in all side chain models of the refutation. Thus in the linear-input 
subdeduction all the Ri are interpreted as FALSE in all side chain models of the 
subdeduction. QED 
 
Lemma 4.3 
In a linear-input subdeduction, all rightwards subchains of the top literal are 
simultaneously interpreted as FALSE in all side chain models of the subdeduction. (In 
determining the interpretation value of a rightwards subchain, only B-literals are 
considered.) 
 
Consider a ground universe instance of a linear-input subdeduction. By lemma 4.2 all 
rightwards subchains of the top literal are (because they are ground) simultaneously 
interpreted as FALSE in all side chain models of the ground subdeduction. Side chain 
models of the original non-ground subdeduction are also side chain models of the ground 
subdeduction. All rightwards subchains of the top literal in the original subdeduction 
therefore simultaneously have ground universe instances that are interpreted as FALSE in 
all side chain models of the original subdeduction. Thus, in a linear-input subdeduction, 
all rightwards subchains of the top literal are simultaneously interpreted as FALSE in all 
side chain models of the subdeduction. QED 
 
Theorem 4.4 
In a linear-input subdeduction, all rightwards subchains of the top literal are 
simultaneously interpreted as FALSE in all side chain models of the subdeduction. (In 
determining the interpretation value of a rightwards subchain, all literals, including 
A-literals, are considered.) 
 
In a linear-input subdeduction, all A-literals in rightwards subchains of the top literal also 
occur as B-literals in ancestor rightwards subchains. The ancestor rightwards subchains 
are simultaneously subject to the truth value restriction. Therefore lemma 4.3 can be 
extended to include A-literals when determining interpretation values. QED 
 
Theorem 4 establishes the completeness of a truth value deletion system for chain format 
linear deduction systems when a linear-input subdeduction is being performed. The 
deletion system is called the rightwards subchain truth value deletion system. The 
imposition of the rightwards subchain system relies on being able to predict which input 
chains can be used as side chains of each linear-input  subdeduction, so that side chain 



models can be supplied. This property is called side chain predictability. If Horn subset 
analysis is used then side chain predictability is available immediately, as only 
non-negative Horn subset input chains are used as side parent chains. For LISS analysis, 
side chain predictability is obtained by inspection of the extension tree. For a linear-input 
subdeduction from a given top literal, the input chains that may be used as side parent 
chains are those that were used in building extension subtrees rooted at the LISS element 
corresponding to the top literal. Thus a set of possible side parent chains is associated 
with each LISS element. There are then two options for building side chain models : 
• Different side chain models may be built for each LISS element, based upon the 

associated input chains. Although this may require significant effort, there may be 
some benefit in constructing models that are local to linear-input subdeductions, as the 
models need only reflect truth value information relevant to the subdeductions. As is 
noted in [Plaisted, 1982, p 238], "This is interesting because it corresponds to the fact 
that in the human theorem proving process attention is given to various specialized 
models at various stages of the proof". 

• Side chain models of the union of the sets associated with the LISS elements may be 
built. This approach is only possible if the union is a proper subset of the input set. If 
all input chains are possible side parent chains, the LISS subset may be reduced by 
adding a new condition for membership of the LISS subset : (iii) the chosen top chain 
is not used in forming any descendant of the literal structure. If this condition is 
added, then the top chain of the deduction cannot be a side parent chain in any 
linear-input subdeduction, and models of the union are possible. If this latter approach 
only excludes the top chain from being a side parent chain then an additional truth 
value restriction, that requires the top chain of the deduction to be interpreted as 
FALSE in the side chain models, may be imposed. This is possible because at least 
one instance of one input chain used in a refutation must be interpreted as FALSE in 
every truth value interpretation of an unsatisfiable input set. 

Side chain predictability for LISL analysis is the same as for LISS analysis. 

4. Conclusion 
LISS and LISL analysis have been found to be significantly more effective than Horn 
subset analysis for finding linear-input subdeductions. An advantage of the 
generalisations is that no restrictions are placed on the nature of the top chains of 
deductions. LISS analysis and the truth value deletion system have been implemented as 
part of the Semantically Guided Linear Deduction (SGLD) system [Sutcliffe, 1992]. The 
generation of the LISS is a simple iterative task, and is done before deductions are started. 
Truth value deletion is then applied as appropriate. 
 
Following are some performance figures, for SGLD, which indicate the efficacy of the 
linear-input analysis and truth value deletion. Results are given for each of SGLD's search 
strategies, and for two initial bounds for the consecutively bounded depth first search 
used. The results are in the form <total number of deduction operations> : 
<time taken in seconds>. The column labelled LIA indicates whether or not linear-input 
analysis and truth value deletion have been used. 
 



The first example is a program verification problem, similar to the shortburst and burstall 
problems from Reboh [1972]. This problem is, however, non-Horn. The truth value 
interpretation used, for the rows where LIA is 'Yes', knows the structure of the program's 
state space. 
 

Search Style LIA Initial Depth Bound 
  Top chain length 6 

Literal Selected No 177 : 3 84 : 2 
 Yes 75 : 1 22 : <1 
Literal Ordered No 199 : 3 100 : 2 
 Yes 95 : 2 38 : 1 
Cell Selected No 307 : 5 127 : 2 
 Yes 156 : 3 55 : 1 
Cell Ordered No 307 : 5 127 : 2 

 Yes 156 : 3 55 : 1 
Table 1. Results for the Program Verification Problem 

 
The second example is the second group theory problem in [Chang, 1970] - In an 
associative system with an identity element, if the square of every element is the identity, 
then the system is commutative. The truth value interpretation used is an Abelian group of 
four elements (including the identity), which conforms to the hypotheses of the problem. 
Here the linear-input analysis finds that the entire deduction must be linear-input, so that 
truth value deletion is applied throughout. As the input set is Horn, this is not surprising. 
However, it does indicate that linear-input analysis encompasses detection of Horn-ness. 
 

Search Style LIA Initial Depth Bound 
  Top chain length 7 

Literal Selected No 1413 : 23 1227 : 20 
 Yes 725 : 13 555 : 10 
Literal Ordered No 1389 : 23 1203 : 21 
 Yes 734 : 13 564 : 10 
Cell Selected No 2890 : 50 2487 : 44 
 Yes 1623 : 30 1236 : 23 
Cell Ordered No 2890 : 51 2487 : 44 

 Yes 1623 : 30 1236 : 23 
Table 2. Results for the Group Theory Problem 

 
The final example is Schubert's Steamroller problem. The truth value interpretation used 
is aware of sorts, knows that only animals eat, and that only two animals can be compared 
in size. 
 



Search Style LIA Initial Depth Bound 
  Top chain length 12 

Literal Selected No 15669 : 287 1162 : 22 
 Yes 3680 : 51 1343 : 22 
Literal Ordered No 15681 : 300 1005 : 19 
 Yes 3728 : 52 1358 : 22 
Cell Selected No 60038 : 1128 61247 : 1512 
 Yes 11030 : 230 4638 : 105 
Cell Ordered No 59229 : 1112 32634 : 786 

 Yes 10973 : 230 5051 : 113 
Table 3. Results for Schubert's Steamroller Problem 

 
In all except for two combinations of strategy, the search space of SGLD is reduced (in 
some cases dramatically) by the use of linear-input analysis and truth value deletion. In 
most cases, the time taken is also reduced, in the best case by almost an order of 
magnitude. The user specified initial bounds (the righthand columns of results) are the 
values for which SGLD gives the best results without linear-input analysis and truth value 
deletion. This column illustrates that linear-input analysis and truth value deletion are of 
utility, even with a careful choice of deduction system parameters. The overall utility of 
the truth value deletion depends mainly on the manner in which the interpretation used is 
stored and manipulated. The implementation used in SGLD is moderately efficient.  
 
The combination of linear-input analysis and truth value deletion clearly has the potential 
to be of benefit in chain format linear deduction systems. In some aspects it is analogous 
to the Simplified Problem Reduction Format's truth value deletion, the success of which 
"seems to have something to do with the fact that Horn clauses are common in typical 
problems." [Plaisted, 1982, p 238] The system presented here has, however, the potential 
for greater success as a more general notion than Horn-ness is used to determine when 
truth value deletion is applicable.  
 
In the introduction it was noted that linear-input analysis is not immediately applicable in 
the Graph Construction procedure and Selective Linear Model deduction. The problem in 
these two systems is that reduction against C-literals (confusingly called A-literals in 
SLM) can be performed within, what would otherwise be, linear-input subdeductions. 
This added possibility is easily dealt with, in one of two ways. Firstly, all linear-input 
C-literals are inserted at the left most end of center chains, indicating that they are logical 
consequences of the side parent chains that participated in their production. Therefore the 
C-literals are TRUE in all models of such side parent chains. Lemma 4.1 is easily 
extended to cover reduction against such C-literals, and the truth value deletion system is 
still applicable. The second approach is to add such C-literals to the input set as unit 
chains, rather than inserting them at the left most end of the centre chain. If this option is 
chosen, then no reduction against linear-input C-literals can be performed, and all the 
results of this paper apply. The option of adding unit input chains also has other 
advantages, as the unit chains can be used throughout deductions. 
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