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First-Order Theorem Proving

Given: A set of first-order axioms and a hypothesis

A = {A1, . . . , An}, H

Question: Do the axioms logically imply the hypothesis?

A
?

|= H

Can this question be answered automatically?
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The Two Steps of Refutational Theorem Proving

The hard step

I

I

The impossible step

I

I
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The Two Steps of Refutational Theorem Proving

The hard step: Convert A |= H into S where. . .

I S is a set of first-order clauses
I S is unsatisfiable if and only if A |= H holds

The impossible step

I

I
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The Two Steps of Refutational Theorem Proving

The hard step: Convert A |= H into S where. . .

I S is a set of first-order clauses
I S is unsatisfiable if and only if A |= H holds

The impossible step: Decide wether S is unsatisfiable

I But we can show unsatisfiability
I . . . given infinite resources!
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The Two Steps of Refutational Theorem Proving

The hard step: Convert A |= H into S where. . .

I S is a set of first-order clauses
I S is unsatisfiable if and only if A |= H holds

The impossible step: Decide wether S is unsatisfiable

I But we can show unsatisfiability
I . . . given infinite resources!

Theorems can be proved
Non-theorems cannot always be refuted
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Hard problems are solved immediately. . .

. . . the impossible may take a bit longer
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CNF Conversion

If you want the most advanced converter: Use FLOTTER

I CNF converter of the SPASS project
I Very advanced techniques, usually very good clause normal forms

If you want a readable standard syntax, use E

I eprover --cnf converts TPTP-2 or TPTP-3 FOF into CNF
I Reasonably advanced technique (converts all TPTP 3.1.1 problems)
I Typically fast even on large and complex formulae
I Resulting CNF sometimes worse than FLOTTER
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Tackling The Impossible Task

Saturation-Based Theorem Proving

I The proof state is a set of clauses
I New clauses are added to the proof state

Generating inference rules:

I Deduce new clauses from several existing clauses
I Most important inference rule: Paramodulation/Superposition/Resolution

Redundancy elimination allows deletion or replacing of clauses

I Rewriting: Apply equations to simplify terms
I Subsumption: Drop more specific clauses in favour of more general ones
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Clauses

Clauses are disjunctions of literals

Example:

X 6' add(Y, 1) ∨ odd(X) ∨ odd(Y )

Alternative views: Implicational

X ' add(Y, 1) =⇒ (odd(X) ∨ odd(Y ))
or

(X ' add(Y, 1) ∧ ¬odd(X)) =⇒ odd(Y ))
or

(X ' add(Y, 1) ∧ ¬odd(Y )) =⇒ odd(X))
or (weirdly)

(¬odd(Y ) ∧ ¬odd(X)) =⇒ X 6' add(Y, 1)
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Literals

X 6' add(Y, 1) ∨ odd(X) ∨ odd(Y )

I X 6' add(Y, 1) is a negative equational literal
I odd(X) and odd(X) are positive non-equational literals

Conventions:

I s 6' t is a more convenient way of writing ¬s ' t
I We write s '̇ t to denote an equational literal that may be either positive or

negative
I s ' t is a more conventient way of writing ' (s, t)
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Literals

X 6' add(Y, 1) ∨ odd(X) ∨ odd(Y )

I X 6' add(Y, 1) is a negative equational literal
I odd(X) and odd(X) are positive non-equational literals

Convention:

I s 6' t is a more convenient way of writing ¬s ' t
I We write s '̇ t to denote an equational literal that may be either positive or

negative
I Heresy: s ' t is a more conventient way of writing ' (s, t)
I Truth: odd(X) is a more convenient way of writing odd(X) ' >
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Terms

X 6' add(Y , 1) ∨ odd(X) ∨ odd(Y )

I X, add(Y , 1), 1, and Y are terms
I X and Y are variables
I 1 is a constant term
I add(Y , 1) is a composite term with proper subterms 1 and Y
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Rewriting

Ordered application of equations

I Replace equals with equals. . .
I . . . if this decreases term size with respect to given ordering >

s ' t u '̇ v ∨R

s ' t u[p← σ(t)] '̇ v ∨R

Conditions:

I u|p = σ(s)
I σ(s) > σ(t)
I Some restrictions on rewriting >-maximal terms in a clause apply

Note: If s > t, we call s ' t a rewrite rule

I Implies σ(s) > σ(t), no ordering check necessary
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Paramodulation/Superposition

Superposition: “Lazy conditional speculative rewriting”

I Conditional: Uses non-unit clauses
∗ One positive literal is seen as potential rewrite rule
∗ All other literals are seen as (positive and negative) conditions

I Lazy: Conditions are not solved, but appended to result
I Speculative:
∗ Replaces potentially larger terms
∗ Applies to instances of clauses (generated by unification)
∗ Original clauses remain (generating inference)

s ' t ∨ S u '̇ v ∨R

σ(u[p← t] '̇ v ∨ S ∨R)

Conditions:

I σ = mgu(u|p, s) and u|p is not a variable
I σ(s) 6< σ(t) and σ(u) 6< σ(v)
I σ(s ' t) is >-maximal in σ(s ' t ∨ S) (and no negative literal is selected)
I σ(u '̇ v) is maximal (and no negative literal is selected) or selected
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Subsumption

Idea: Only keep the most general clauses

I If one clause is subsumed by another, discard it

C σ(C) ∨R

C

Examples:

I p(X) subsumes p(a) ∨ q(f(X), a) (σ = {X ← a})
I p(X) ∨ p(Y ) does not multi-set-subsume p(a) ∨ q(f(X), a)
I q(X, Y ) ∨ q(X, a) subsumes q(a, a) ∨ q(a, b)

Subsumption is hard (NP-complete)

I n! permutations in non-equational clause with n literals
I n!2n permutations in equational clause with n literals
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The Basic Given-Clause Algorithm

Completeness requires consideration of all possible persistent clause combinations
for generating inferences

I For superposition: All 2-clause combinations
I Other inferences: Typically a single clause

Given-clause algorithm replaces complex bookkeeping with simple invariant:

I Proofstate S = P ∪ U , P initially empty
I All inferences between clauses in P have been performed

The algorithm:

while U 6= {}
g = delete best(U)
if g == �

SUCCESS, Proof found
P = P ∪ {g}
U = U∪generate(g, P )

SUCCESS, original U is satisfiable

Stephan Schulz 17



DISCOUNT Loop

Aim: Integrate simplification into given clause algorithm

The algorithm (as implemented in E):

while U 6= {}
g = delete best(U)
g = simplify(g,P )
if g == �

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c ∈ P |c redundant or simplifiable w.r.t. g}
P = (P\T ) ∪ {g}
T = T∪generate(g, P )
foreach c ∈ T

c =cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable
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What is so hard about this?
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What is so hard about this?

Data from simple TPTP example NUM030-1+rm eq rstfp.lop
(solved by E in 30 seconds on ancient Apple Powerbook):

I Initial clauses: 160
I Processed clauses: 16,322
I Generated clauses: 204,436
I Paramodulations: 204,395
I Current number of processed clauses: 1,885
I Current number of unprocessed clauses: 94,442
I Number of terms: 5,628,929

Hard problems run for days!

I Millions of clauses generated (and stored)
I Many millions of terms stored and rewritten
I Each rewrite attempt must consider many (>> 10000) rules
I Subsumption must test many (>> 10000) candidates for each subsumption

attempt
I Heuristic must find best clause out of millions
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First-Order Terms

Terms are words over the alphabet F ∪ V ∪ {′(′,′ )′,′ ,′ }, where. . .

Variables: V = {X, Y, Z,X1, . . .}

Function symbols: F = {f/2, g/1, a/0, b/0, . . .}

Definition of terms:

I X ∈ V is a term
I f/n ∈ F, t1, . . . , tn are terms  f(t1, . . . , tn) is a term
I Nothing else is a term

Terms are by far the most frequent objects in a typical proof state!
 Term representation is critical!
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Representing Function Symbols and Variables

Naive: Representing function symbols as strings: "f", "g", "add"

I May be ok for f , g, add
I Users write unordered pair, universal class, . . .

Solution: Signature table

I Map each function symbol to unique small positive integer
I Represent function symbol by this integer
I Maintain table with meta-information for function symbols indexed by assigned

code

Handling variables:

I Rename variables to {X1, X2, . . .}
I Represent Xi by −i
I Disjoint from function symbol codes!

From now on, assume this always done!
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Representing Terms

Naive: Represent terms as strings "f(g(X), f(g(X),a))"

More compact: "fgXfgXa"

I Seems to be very memory-efficient!
I But: Inconvenient for manipulation!

Terms as ordered trees

I Nodes are labeled with function symbols or variables
I Successor nodes are subterms
I Leaf nodes correspond to variables or constants
I Obvious approach, used in many systems!
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Abstract Term Trees

Example term: f(g(X), f(g(X), a))

a

f

g

X

f

g

X
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LISP-Style Term Trees

a

f

g

X

f

g

X

g

Argument lists are represented as linked lists

Implemented e.g. in PCL tools for DISCOUNT and Waldmeister
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C/ASM Style Term Trees

0

f 2

g 1

X

f 2

g 1

X

a

Argument lists are represented by arrays with length

Implemented e.g. in DISCOUNT (as an evil hack)
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C/ASM Style Term Trees

X

f 2

f 2

a 0

g 1

X g 1

In this version: Isomorphic subterms have isomorphic representation!
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Shared Terms (E)

01g

X Y Z

f 2

f 2

a

Idea: Consider terms not as trees, but as DAGs

I Reuse identical parts
I Shared variable banks (trivial)
I Shared term banks maintained bottom-up
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Shared Terms

Disadvantages:

I More complex
I Overhead for maintaining term bank
I Destructive changes must be avoided

Direct Benefits:

I Saves between 80% and 99.99% of term nodes
I Consequence: We can afford to store precomputed values
∗ Term weight
∗ Rewrite status (see below)
∗ Groundness flag
∗ . . .

I Term identity: One pointer comparison!
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Efficient Rewriting

Problem:

I Given term t, equations E = {l1 ' r1 . . . ln ' rn}
I Find normal form of t w.r.t. E

Bottlenecks:

I Find applicable equations
I Check ordering constraint (σ(l) > σ(r))

Solutions in E:

I Cached rewriting (normal form date, pointer)
I Perfect discrimination tree indexing with age/size constraints
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Shared Terms and Cached Rewriting

Shared terms can be long-term persistent!

Shared terms can afford to store more information per term node!

Hence: Store rewrite information

I Pointer to resulting term
I Age of youngest equation with respect to which term is in normal form

Terms are at most rewritten once!

Search for matching rewrite rule can exclude old equations!
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Subsumption Indexing

Problem:

I Given clause C, clause set S = {C1, . . . , Cn}
I Find σ, Ci with σ(Ci) ⊆ C
I Find all Ci with σ(C) ⊆ Ci

Bottlenecks:

I Checking one pair C, Ci for subsumption is NP-hard!
I S is large!

Solutions in E:

I Use feature vector indexing to find subsumption candidates (reduces number
of tests by 97%)
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. . . it’s still NP-Complete

Speeding up clause-clause subsumption:

I Test simple required conditions
∗ Weight
∗ Lenght
∗ Number of positive/negative literals
∗ Single literal matches

I Use stable orderings to preorder literals
∗ Not always possible
∗ But extremely effective in practice

I Cheating:
∗ Terminate subsumption after predetermined amount of time
∗ Never try very large clauses against each other
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Conlusion

Building a good implementation is a non-trivial undertaking

Major algorithmic problems

Many good approaches exist. . .

. . . but are too little known!

The IWIL workshop series helps!
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