
Simplex Range Reporting on a Pointer Machine

Bernard Chazelle

Department of Computer Science

Princeton University

Burton Rosenberg

Department of Mathematics

and Computer Science

University of Miami

Abstract

We give a lower bound on the following problem, known as simplex range
reporting: Given a collection P of n points in d-space and an arbitrary simplex
q, find all the points in P ∩ q. It is understood that P is fixed and can be
preprocessed ahead of time, while q is a query that must be answered on-line.
We consider data structures for this problem that can be modeled on a pointer
machine and whose query time is bounded by O(nδ+r), where r is the number
of points to be reported and δ is an arbitrary fixed real. We prove that any
such data structure of that form must occupy storage Ω(nd(1−δ)−ε), for any
fixed ε > 0. This lower bound is tight within a factor of nε.

1 Introduction

Given a set of n points in d-space, precompute a data structure capable of counting
or reporting all points inside an arbitrary query simplex. This problem, known as
simplex range searching, has been extensively studied in recent years [4, 5, 6, 8, 9,
11, 14, 15, 17, 19, 20]. On the practical side, the problem relates to fundamental
questions in computer graphics, (e.g., hidden surface removal), while theoretically
it touches on some of the most central issues in algorithm design and combinatorial
geometry (e.g, derandomization, geometric graph separation, k-sets). In spite of all
the attention, however, only recently have optimal or quasi-optimal solutions been
discovered. If m is the amount of storage available, it is possible to achieve a query
time of roughly n/m1/d, where “roughly” means that an extra factor of the form nε

[4] or (log n)O(1) [14] must be added to the complexity bound. What allows us to
brand these solutions quasi-optimal is an (almost) matching lower bound established
in the arithmetic model of computation [2]. This lower bound is very general and
holds for any realistic computing model, but it is limited to the case where searching
is interpreted as counting or more generally computing the cumulative weight of
weighted points inside the query.

This has left open the question of proving the optimality of the known algorithms
in the reporting case: this is the version of the problem where the points inside the
query must be found and reported one by one. To date, only the case of orthogonal

range reporting has been satisfactorily resolved [3]. To prove lower bounds in the
counting case is difficult enough, but the difficulty is compounded in the reporting
case, because of the possibility for the algorithm to amortize the search over the
output. This design paradigm, known as filtering search [1], is based on the idea that
if many points must be reported then the search can be slowed down proportionately,
which is then likely to result in a slimmer data structure.

We look here at the typical case where a query time of the form O(nδ + r) is
sought, where r is the size of the output and δ is any fixed constant. We show
that on a pointer machine any data structure with a query time of that form must
be of size Ω(nd(1−δ)−ε), for any fixed ε > 0. This lower bound is quasi-optimal.
Despite the apparent restrictions we place on the model, we must mention that
the overwhelming majority of data structures proposed in the literature for range
searching fall in that category. The magnitude of our lower bound is striking. It
says, for example, that in E20 to achieve a query time even as inefficient as O(

√
n+r)

still requires approximately n10 storage!
The result combines graph theory with some slight integral geometry. The next

section defines the model and proves a technical lemma regarding the spread of
information across the data structure. Section 3 contains the proof of the main
result. Concluding thoughts are given in Section 4.

2 The Complexity of Navigation on a Pointer Ma-
chine

We assume some familiarity with the pointer machine model [18]. As in [3] the data
structure is modeled as a directed graph G = (V,E) of outdegree at most 2. Let
P = { p1, . . . , pn } be a set of n points in Ed. To each node v of the data structure,
an integer f(v) is attached. If f(v) = i is not zero, then node v is associated with
point pi. A query q is a simplex in Ed, and the algorithm must report all points in
P ∩ q. When presented with q, the algorithm begins at a starting node and, after
following pointers across the data structure, terminates with a working set W (q)
consisting of all the visited vertices that is required to contain the answer, namely,{

i
∣∣ pi ∈ q } ⊆ { f(v)

∣∣ v ∈W (q)
}
.

The size of the data structure G is n, the number of nodes in the graph. Note that
our model accommodates static as well as self-adjusting data structures.

A data structure G is termed (a, δ)-effective with a and δ positive real numbers, if
for any query q, we have |W (q) | ≤ a(|P ∩ q |+nδ). A collection of queries Q = { qi }
is called (c, k, δ)-favorable if for all i, |P ∩ qi | > nδ and for all i1 < · · · < ik,
|P ∩ qi1 ∩ · · · ∩ qik | < c. We want to show that if δ is small, an (a, δ)-effective data
structure must be large. Using the following result, which generalizes a lemma given
in [3], we can lower-bound a data structure’s size by exhibiting a (c, k, δ)-favorable
set of queries.

Lemma 2.1 For any fixed a, δ > 0 and c ≥ 2, if G is (a, δ)-effective and Q is
(c, k, δ)-favorable, then

|V | > |Q |nδ/(3(k − 1)28ac2),

for n large enough.

Proof: We exploit the fact that the data structure can quickly answer a large
number of very different queries to show that the data structure is itself large. More
precisely, we look at the c-sets of V ,

V (c) =
{
W ⊆ V

∣∣ |W | = c
}
.

Recall that a tree is rooted if its edges are directed and the root is the only node with
no incoming edge. Given any subset W ⊆ V , we define the spanning-size of W in
G, denoted ΛG(W), as the minimum number of edges in any rooted tree that spans
W and is a subgraph of G. It is ∞ if no such tree exists. This definition applies to
any directed graph, in particular to subgraphs of G. Below we shall need ΛT , where
T is a rooted tree and a subgraph of G.

The number of c-sets in G of spanning-size smaller than r is bounded by,∣∣∣ {W ∈ V (c)
∣∣ΛG(W) < r

} ∣∣∣ ≤ ∣∣∣ { (z,W) ∈ V × V (c)
∣∣ ∀w ∈W, d(z, w) < r

} ∣∣∣
≤ |V | 2rc,

because of the limitation on the outdegree of G. Suppose now that query q is
presented to the algorithm. Fix a rooted tree T ′ ⊆ G which contains exactly the
vertices of W (q). Because the algorithm reaches all the nodes in W (q), such a tree
exists. We can select from W (q) a subset W that contains exactly one w ∈W with
f(w) = i for each pi ∈ P ∩ q.

Let T be the Steiner minimal tree of W inside of T ′. Note that ΛT (Z) ≥ ΛG(Z)
for any Z ⊆ G. Embed the tree T in the plane and number the vertices of W in a
natural order around the border of T . Then, W = w1, w2, . . . , ws, where s = |P ∩ q |,
and,

s−1∑
j=1

ΛT
(
{wj , wj+1}

)
≤ 2 |T | .

Consider the c-sets,

Wi = {wi, . . . , wc+i−1 }, i = 1, . . . , s− c+ 1.

It is clear that,

ΛT (Wi) ≤
c+i−2∑
j=i

ΛT
(
{wj , wj+1}

)
.

Summing over all i,

s−c+1∑
i=1

ΛT (Wi) ≤ (c− 1)
s−1∑
j=1

ΛT
(
{wj , wj+1}

)
≤ 2(c− 1) |T | .

Since, |T | ≤ |W (q) |, if we assume that G is (a, δ)-effective and Q is (c, k, δ)-
favorable (thus |P ∩ q | > nδ):

s−c+1∑
i=1

ΛT (Wi) < 4a(c− 1) |P ∩ q | ,

for n large enough. By Markov’s inequality,∣∣{ i ∣∣ΛT (Wi) ≥ 8a(c− 1)
}∣∣ ≤ |P ∩ q | /2,

and therefore,∣∣{ i ∣∣ΛT (Wi) < 8a(c− 1)
}∣∣ ≥ |P ∩ q | /2− c+ 1 > |P ∩ q | /3.

Because ΛT (Wi) ≥ ΛG(Wi), this is also a lower bound on the number of c-sets with
spanning-size in G less than 8a(c− 1).

This argument is valid for any q in Q. Since |P ∩ qi1 ∩ · · · ∩ qik | < c, for appro-
priate indices i1 < · · · < ik, a c-set of small spanning-size will be counted at most
k − 1 times. Thus,∣∣∣{W ∈ V (c)

∣∣ΛG(W) < 8a(c− 1)
}∣∣∣ > |Q | |P ∩ q | /(3(k − 1)) > |Q |nδ/(3(k − 1))

for large enough n.
In view of the upper bound given at the beginning of this proof, the result follows

easily. 2

3 A Lower Bound for Simplex Range Reporting

According to the discussion of the previous section, any algorithm for solving simplex
range reporting in time O(nδ+r) can be modeled as an (a, δ)-effective data structure,
for some suitable constant a. An Ω

(
nd(1−δ)−ε) lower bound on the size of the data

structure follows, according to Lemma 2.1, from the existence of a set P of n points
along with a (c, dlog ne, δ)-favorable query set Q of size Ω

(
nd(1−δ)−δ−ε). The strictly

positive real ε can be chosen as small as desired.
Let q be any nonzero vector in Euclidean d-space and µ any strictly positive real.

The slab Hq,µ is a “thick” hyperplane, derived by taking the hyperplane perpen-
dicular to the vector through q and passing through the point q and translating it
continuously by small amounts parallel to q. The exact translations are λq for all
−µ < λ < µ. Summarizing, for q ∈ Ed, q 6= 0, µ > 0,

Hq,µ =
{
x ∈ Ed

∣∣ | 〈x, q 〉 − | q |2 | ≤ µ| q |}.
The point q is the defining point of the slab Hq,µ. Although our final result is

stated for a collection of simplex queries, the query set we construct is a collection
of slabs. Once a favorable query set has been constructed, using slabs for queries,
we can replace the slabs by very long flat simplices using elementary perturbation
techniques. The value µ is fixed later on in the proof. Hence our attention is focused
on the choice of a set of defining point for slabs making up the query collection.
Reflecting this attention, from now on the set Q will be a set of points, the set of
defining points for µ width slabs. It will be understood that the collection of queries
is actually, {

Hq,µ

∣∣ q ∈ Q}.

Let Cd = [0, 1]d be the unit d-cube in Ed. We construct a favorable query set in
two steps. First we position the slabs so that their arrangement has certain geometric
properties: their intersection with Cd must be large, but their k-wise intersections
with each other must be small. Next, n points are thrown at random into Cd and
we verify that with high probability the slabs are favorable for this point set.

Further on we shall demonstrate that a sufficient condition for any k of the slabs
to intersect in a small volume is that any k of the defining points have a large convex
hull. This relates to Heilbronn’s problem [12, 13, 16]: what is the largest area, over
all point-sets P = { p1, . . . , pm } ⊂ C2, of the smallest triangle with vertices in P?
Here we require that the convex hull of k points in d dimensions should have volume
Ω(1/m). This can be achieved if k ≥ logm:

Theorem 3.1 (Chazelle[2]) For any d > 1 there exists a constant c > 0 such
that a random set of m points in Cd has, with probability greater than 1− 1/m, the
property that the convex hull of any k ≥ logm of these points has volume greater
than ck/m.

Hence a random point set is likely to be “good” for the construction of a favorable
query set.

Let Q0 be a random set of m points uniformly distributed in Cd−1. Theorem
3.1 assures that with high probability any k ≥ logm points will “enclose” a large
volume. We create a set of points Q in Cd from Q0 in Cd−1 as follows. Shrink
Cd−1 by a factor of two and paste it to the top face of Cd, that is, the face with
coordinate d constant 1. Paste so that the (1, . . . , 1) corner of Cd−1 contacts the
(1, . . . , 1) corner of Cd. This carries the points of Q0 to a set of points Q′ on the top
face of Cd. Send rays from the origin through each q′ ∈ Q′, and select a series of
points along each such ray. Fixing a real (0 < µ < 1), each q′ gives rise to Θ(1/µ)
points along the ray by the map,

q′ 7→ 2µiq′,

where i ranges over all integers which make coordinate d of 2µiq′ lie within [1/2, 3/4].
To be precise, Q is the image of Q0 × I under the map,

Cd−1 × Z −→ Cd
(x1, . . . , xd−1, i) 7→ µi (x1 + 1, . . . , xd−1 + 1, 2).

where,
I =

{
i ∈ Z

∣∣ 1/(4µ) ≤ i ≤ 3/(8µ)
}
,

(see Figure 1).

Lemma 3.1 Assume µ goes to zero with increasing m. Then,

1. Q is a set of size Θ
(
m/µ

)
.

2. For all q ∈ Q the slabs Hq,µ have an intersection with Cd of volume Θ
(
µ
)
.

3. Any k = d logm e of these slabs have an intersection of volume,

O
(
µdm(logm)d−2

)
.

Figure 1: Building the query set.

Proof: The first claim is trivial. The second follows from the fact that each coor-
dinate of any q ∈ Q is in the interval [1/4, 3/4]. So a ball of radius 1/4 − µ and
center q intersects Hq in a hyperdisk D which lies entirely inside Cd. The cylinder
of height 2µ and cross section D at its midpoint is inside Cd. Here we assume, by
increasing m if necessary, that µ� 1/4. This gives the lower bound on the volume
of Hq,µ ∩Cd. The upper bound follows by placing a sufficiently large ball around q,
say of radius

√
d, so as to contain the piece of Hq,µ that lies in Cd.

The third claim is substantiated as follows. Let Hq1,µ, . . . ,Hqk,µ be the k =
d logm e slabs, where the qi are all distinct. If qi and qj are collinear with the origin,
the intersection is empty. If they are not, let p1, . . . , pk be the points in Cd−1 which
gave rise to q1, . . . , qk. The convex hull of the pi has (d − 1)-dimensional volume
at least c1k/m for some appropriate positive constant c1. Triangulate the convex
hull using O

(
kd−1

)
simplices and choose one among the simplices of largest (d−1)-

volume. After renumbering, the vertices of this simplex are p1, . . . , pd and it has
volume at least c2/(kd−2m). We conclude that,

|det(q1, . . . , qd)| ≥ c3/(kd−2m),

where the qi have been renumbered according to the same pattern as the pi and c2
and c3 are positive constants depending only on the dimension. The lemma follows
from the next result. 2

Figure 2: Intersection parallelotope.

Lemma 3.2 Given k = d logm e, from every set q1, . . . , qk ⊂ Q a subset qi1 , . . . , qid
can be selected such that,

Vol
(
Hq1,µ ∩ · · · ∩Hqk,µ

)
≤ Vol

(
Hqi1 ,µ

∩ · · · ∩Hqid ,µ

)
= O

(
µdm(logm)d−2

)
.

Proof: We can still assume that no two qi’s are collinear with the origin. The first
inequality is trivial. In general, let q1, . . . , qd be linearly independent vectors. The
polytope Hq1,µ ∩ · · · ∩Hqd,µ is a translate of the parallelotope defined by d vectors
wj where,

〈wj , qi 〉 =
{

2µ | qi | if i = j
0 otherwise.

To be more precise,

Hq1,µ ∩ · · · ∩Hqd,µ =
{∑d

i=1αiwi
∣∣ 0 ≤ αi ≤ 1, i = 1, . . . , d

}
+ xo,

where xo is the unique point of Ed satisfying,

〈xo, qi 〉 − | qi |2 = −µ | qi |

for all i = 1, . . . , d (see Figure 2). Denote by [w] the matrix (w1, . . . , wd), by [q] the
matrix (q1, . . . , qd), and by Λ the diagonal matrix with Λii = | qi |. Note that det[w]
is the volume of the parallelotope Hq1,µ ∩ · · · ∩ Hqd,µ. From [w]T [q] = (2µ)dΛ we
have

det[w] det[q] = (2µ)d | q1 | · · · | qd | .

Recall that from the set q1, . . . , qk ⊂ Q we can select d vectors such that |det[q]| ≥
c3/(kd−2m), and

√
d/4 ≤ | qi | ≤ 3

√
d/4. This gives the bound. 2

We finish the proof of the lower bound with a probabilistic analysis of the inter-
action between the query set Q and n points P chosen randomly in the unit cube

Cd. For any real 0 < δ < (d− 1)/d and any fixed ε > 0, set,

µ = 1/(τn1−δ), m = nd(1−δ)−1−ε,

where τ depends only on d and will be selected appropriately in Lemma 3.3. Note
that µ tends to zero and m tends to infinity as n tends to infinity. Set k = d logm e
and c = d d2/ε e. We claim that with high probability the collection of slabs H =
{Hq,µ | q ∈ Q } is (c, k, δ)-favorable for the point set P , where Q is as in Lemma 3.1.

Lemma 3.3 Let the n points P = { p1, . . . , pn } be independently and uniformly
distributed in the unit cube Cd. With probability 1− o(1), for all q ∈ Q,

|Hq,µ ∩ P | > nδ.

Proof: The points pi ∈ Hq,µ, i = 1, . . . , n, are independent Bernoulli random
variables with common probability,

p = Vol (Hq,µ ∩ Cd) > Kµ = K/(τn1−δ),

for an appropriate K which depends only on d. We can make τ small enough so
that np > 2nδ. The expected number of points in q is therefore E

(
|Hq,µ ∩ P |

)
=

np > 2nδ. The Chernoff bound [7, 10] states that, for X = {x1, . . . , xn } a Bernoulli
random variable where xi = 1 with probability p and xi = 0 with probability 1− p,

Prob

(
n∑
i=1

xi ≤ (1− κ)np

)
≤
(

e−κ

(1− κ)1−κ

)np
,

for 0 < κ < 1. Therefore, the probability that |Hq,µ ∩ P | ≤ np/2 is less than
(2/e)np/2. Taking the disjunction over all q ∈ Q,

Prob (∃ q ∈ Q s.t. |Hq,µ ∩ P | ≤ np/2) ≤ |Q | Prob (|Hq,µ ∩ P | ≤ np/2)

< (m/µ) (2/e)np/2

< nd(1−δ)−δ−ε(2/e)n
δ

.

It is not difficult to see that this probability goes to 0 as n goes to infinity. Therefore,
with probability approaching 1, every Hq,µ has more than np/2 > nδ points in it. 2

Lemma 3.4 Let P be a set of n random points chosen uniformly in the unit cube
Cd. With probability 1− o(1), for all distinct q1, . . . , qk ∈ Q,

|Hq1,µ ∩ · · · ∩Hqk,µ ∩ P | < c.

Proof: The events pi ∈ Hq1,µ∩· · ·∩Hqk,µ, for i = 1, . . . , n, are independent Bernoulli
random variables with common probability,

p = Vol (Hq1,µ ∩ · · · ∩Hqk,µ) < Kµdm(logm)d−2,

for an appropriate constant K, (Lemma 3.1(3)), We again refer to the Chernoff
bound: for any positive real κ,

Prob

(
n∑
i=1

xi ≥ (1 + κ)np

)
≤
(

eκ

(1 + κ)1+κ

)np
,

thus if np < 1 then for any integer b ≥ 1,

Prob

(
n∑
i=1

xi ≥ b

)
≤
(enp
b

)b
.

The expected number of points in Hq1,µ ∩ · · · ∩Hqk,µ is less than 1 for n sufficiently
large, hence,

Prob (|Hq1,µ ∩ · · · ∩Hqk,µ ∩ P | ≥ c) ≤
(
K ′(logm)d−2

cnε

)c
,

where K ′ is a positive constant. Recall from Lemma 3.2 that the upper bound on
the volume of a k-wise intersection of query slabs is derived by considering a subset
of only d of them. Therefore,

Prob (∃q1, . . . , qk ∈ Q s.t. |Hq1,µ ∩ · · · ∩Hqk,µ ∩ P | ≥ c)

≤
(
|Q |
d

)(
K ′(logm)d−2

cnε

)c
,

which goes to 0 as n increases. 2

What has been shown is the existence of a collection H of Θ
(
nd(1−δ)−δ−ε) slabs

and a set of n points P such that H is
(
dd2/εe, d (d(1−δ)−1−ε) logn e, δ

)
-favorable

with respect to P . We can now apply Lemma 2.1 and derive,

Theorem 3.2 Simplex reporting on a pointer machine in Ed with a query time of
O
(
nδ + r

)
, where r is the number of points reported and 0 < δ ≤ 1, requires space

Ω
(
nd(1−δ)−ε), for any fixed ε > 0.

4 Conclusion

Our bound implies that if the search time is to be in O
(

(log n)b+r
)
, for b arbitrarily

large, then the space must be in Ω
(
nd−ε

)
for all fixed ε > 0. The factor of n−ε was

introduced in the proof during the construction of an example query set in order
that certain probabilities could be driven to zero. We believe that an improvement
of the method might reduce the n−ε factor to a polylogarithmic one. To get rid
of this extra factor altogether, however, appears more difficult. Finally, we would
like to approach the question of halfspace range searching, where we expect similar
techniques to give a bound of Ω

(
nbd/2c−ε

)
for polylog-time queries.

Acknowledgments

The authors would like to thank Laszlo Lovàsz for helpful discussions. They ac-
knowledge the National Science Foundation for supporting this research in part
under Grant CCR–9002352.

References

[1] B. Chazelle. Filtering search: A new approach to query-answering. SIAM
Journal on Computing, 15(3):703–724, 1986.

[2] B. Chazelle. Lower bounds on the complexity of polytope range searching.
Journal of the American Mathematical Society, 2(4):637–666, 1989.

[3] B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting
case. Journal of the ACM, 37(2):200–212, April 1990.

[4] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds of simplex
range searching and new zone theorems. In The Proceedings of the Sixth Annual
Symposium on Computational Geometry, pages 23–33, 1990.

[5] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8:407–429, 1992.

[6] B. Chazelle and E. Welzl. Quasi-optimal range seaching in spaces of finite Vap-
nik Chervonenkis dimension. Discrete and Computational Geometry, 4(5):467–
489, 1988.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. The Annals of Mathematical Statistics, 23:137–142,
1952.

[8] H. Edelsbrunner, D. G. Kirkpatrick, and H. A. Maurer. Polygonal intersection
searching. Information Procesing Letters, 14(2):74–79, 1982.

[9] H. Edelsbrunner and E. Welzl. Halfplanar range seach in linear space and
O(n0.695) query time. Information Processing Letters, 23:289–293, 1986.

[10] P. Erdös and J. Spencer. Probabilistic Methods in Combinatorics. Academic
Press, New York, 1974.

[11] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete & Com-
putational Geometry, 2(3):237–256, 1987.

[12] J. Komlós, E. Szemerédi, and J. Pintz. On Heilbronn’s triangle problem. Journal
of the London Mathematical Society, 24(2):385–396, 1981.

[13] J. Komlós, E. Szemerédi, and J. Pintz. A lower bound for Heilbronn’s problem.
Journal of the London Mathematical Society, 25(2):13–24, 1982.

[14] J. Matoušek. Efficient partition trees. In Proceedings of the Seventh Annual
Symposium on Computational Geometry, pages 1–9, 1991.

[15] J. Matoušek. Range searching with efficient hierarchical cuttings. In Proceedings
of the Eighth Annual Symposium on Computational Geometry, pages 276–285,
1992.

[16] W. O. J. Moser. Problems on extremal properties of a finite set of points.
Discrete Geometry and Convexity, 440:52–64, 1985.

[17] M. Paterson and F. F. Yao. Point retrieval for polygons. Journal of Algorithms,
7:441–447, 1986.

[18] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. Journal of Computing System Science, 18:110–127, 1979.

[19] E. Welzl. Partition trees for triangle counting and other range searching prob-
lems. In Proceedings Fourth Annual Symposium on Computational Geometry,
pages 23–33, 1988.

[20] D. E. Willard. Polygon retrieval. SIAM Journal on Computing, 11:149–165,
1982.

