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Highlights

Historic:

In 1799, Gauss was startled to discover that his arithmetic-geometric mean connected $, the half-
circumference of a curve known as the lemniscate, with π, the half-circumference of a unit circle:

That the AGM is equal to π/$ between 1 and
√

2 we have confirmed up to the 11-th
decimal digit; if this is proven, then a truly new field of analysis stands before us.

Gauss also found efficient ways of computing many elliptic integrals, including those for $, thus
giving an extremely fast algorithm for the computation of π.

In 1976 the method was rediscovered independently by Brent and Salamin and stands currently as
among the fasted known methods for calculating π.

Mathematical:

The half-circumference $ of the lemniscate curve is given by an elliptic integral of the first kind.
This integral can be related to π using another elliptic integral, one said to be of the second kind.
Elliptic integrals can be numerically evaluated with the help of an iterative process known as the
arithmetic-geometric mean. Combining these integrals it is possible to express π in a manner
suitable for efficient numerical evaluation.

Equations

x1 → (x1 + x2)/2
x2 →

√
x1x2
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x3 → x3 − x4(x1 − x2)2/4
x4 → 2 x4

x5 → (x1 + x2)2/(2 x3)

Variables
x1 : the arithmetic mean
x2 : the geometric mean
x3 : the arc length of a lemniscate
x4 : 2k

x5 : the k-th convergent to π

Dynamics

Discussion

Gauss’s fast method for the computation for the circumference of a circle begins with investigations
into the circumference of another plane curve, the lemniscate. In polar coordinate, the leminscate
is given by,

r2 = cos 2θ.

This curve was intriguing to Gauss and others because it had mathematical properties related to
the circle. The half circumference of the leminscate is $ = 2 I(

√
2, 1), where I(a, b) is the elliptic

integral of the first kind,

I(a, b) =
∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

In fact, the symbol $ for the half-circumference of a “unit radius” leminscate is a variant of π, the
symbol for the half-circumference of a “unit radius” circle.

Although elliptic integrals are exceeding common and important in practice, they are impossi-
ble to evaluate analytically. Gauss showed that these integrals can be numerically evaluated by
successively replacing a and b by their arithmetic and geometric means,

ai+1 = (ai + bi)/2

bi+1 =
√

aibi

where a0 = a and b0 = b. The sequence ai and bi converge extremely quickly to a common value,
called the arithmetic-geometric mean of a and b, denoted AGM(a, b). Specifically, in 1799 Gauss
discovered that if ai and bi follow from a and b as a result of one or several steps of the AGM
procedure, the integral is unchanged, I(a, b) = I(ai, bi). Hence, in the limit, the common value
AGM(a, b) can be factored out and the integrand collapses to 1/

√
cos2 θ + sin2 θ = 1,

I(a, b) =
π

2 AGM(a, b)
,
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and in particular,
π/$ = AGM(

√
2, 1).

Gauss found this result astounding. A qualitative relationship between the theory of leminscates
and circles had been noted, and now it was found that the ratio of the fundamental constants in
the two theories are related by a value proceeding from the process of arithmetic-geometric mean!

An additional relation is required in order to use the AGM to calculate π, rather than the ratio
π/$. Among the various elliptic integrals under study at that time, there were those of the second
kind,

L(a, b) =
∫ π/2

0

cos2 φdφ√
a2 cos2 φ + b2 sin2 φ

.

Gauss also gave a method to numerically evalute L(a, b) using the AGM,

c2
0L(a, b) = (c2

0 − S)I(a, b),

where,

S =
∞∑

k=0

2k−1c2
k,

c2
i = a2

i − b2
i , and the ai and bi are the iterates in the AGM process of a and b.

In 1748, Euler discovered that,
L(
√

2, 1)I(
√

2, 1) = π/4

Substituting this into the relations above, Gauss derived,

π =
AGM(

√
2, 1)2

1− S
.

The use of this formula is that the AGM converges extremely quickly, and the values ci, required
in the evaluation of the sum S, converge towards zero extremely quickly. With just several terms
we already have a very good approximation of π.

A map suitable for Phaser is derived from this formula. Let x1 and 2 be ai and bi, x3 be 1−S, the
sum S truncated to the first k terms, and x4 be 2k. At each iteration,

1. x1 is updated to be the arithmetic mean of x1 and x2;

2. x2 is updated to be the geometric mean of x1 and x2;

3. x3 is updated to include an additional term;

4. x4 is updated to 2x4 = 2k+1.

The update of x3 requires values for c2
k and 2k. Note that c2

i can be written as (ai−1 − bi−1)2/4,
which reduces the amount of computation needed to derive this value. The value of 2k is available
in x4.
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Let x5 be the approximation to π given by the current approximation to AGM(1,
√

2) and S. At
each iteration we compute this from x1, x2 and x3. It is customary to take as the approximate
value of the AGM at step i to be the arithmetic mean of ai and bi.
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