
Asymptotic Order Notation

Burton Rosenberg

September 10, 2007

Introduction

We carefully develop the notations which measure the asymptotic growth of functions. The intuition
is to group functions into function classes, based on its “growth shape”. The most used such
grouping is O(f) (“big-oh of f”), where a function f serves as a model for an entire collection of
functions, the set O(f), including all functions growing not faster than the function f .

Definition 1 (Big-Oh) Let f : X → Y be a function.

O(f) = {g : X → Y | ∃xo, c > 0 s.t. ∀x ≥ xo, cf(x) ≥ g(x) ≥ 0}

By abuse of notation, g ∈ O(f) is written g = O(f), rather than the more correct g ∈ O(f). The
phrase “O(f) = g” has no meaning. In general, the sets X and Y are the sets of real numbers,
integers or naturals, according to the situation.

Computer science is interested in functions which give only positive values, or less drastically,
functions which eventually assume only positive values. There is some long-term simplicity in
adopting this restriction, although short-term it requires additional definitions and care.

Definition 2 (Eventually Non-negative, Positive) A function f : X → Y is eventually non-
negative if there exists an xo such that for all x ≥ xo, f(x) ≥ 0. The function is eventually positive
if there exists an xo such that for all x ≥ xo, f(x) > 0.

Theorem 1 If f is not eventually non-negative, O(f) is empty. If f is eventually non-negative,
then 0 = O(f), and O(f) is therefore non-empty. Every element of O(f) is eventually non-negative.

The function 0 : X → Y is the zero function, defined as 0(x) = 0 for all x. In general any constant
C can be viewed as a function of constant value C.

There is a related but stronger notion for the classification of functions, “Little-Oh of f”. Whereas a
function in O(f) is bounded above by the function f , a function in o(f) is increasingly insignificant
to the function f .

1



Definition 3 (Little-Oh) Let f : X → Y be a function.

o(f) = { g : X → Y | ∀c > 0,∃xo > 0 s.t. ∀x ≥ xo, cf(x) > g(x) ≥ 0 }

Theorem 2 If f is not eventually positive, o(f) is empty. If f is eventually positive, then 0 = o(f),
and o(f) is therefore non-empty. Every element of o(f) is eventually non-negative.

Note that while O(0) is not empty (it contains all functions that are “eventually zero”), o(0) is
empty. So the converse of the following theorem is not true.

Theorem 3 (Little-Oh is Stronger than Big-Oh) If g = o(f) then g = O(f).

Proving a function in O(f) requires demonstrating xo and c satisfying the definition. For some
demonstrations, the function is so strongly a member of O(f) that the subtleties of Big-Oh are
a waste of time. The class of functions o(f) (“little-oh of f”) has stronger demands, hence sim-
pler demonstrations. A function in o(f) is also in O(f), so one use of Little-Oh is to provide
demonstrations for Big-Oh.

Theorem 4 (Analytic Definition of Little-Oh) Let f : X → Y be eventually positive. Let
g : X → Y be eventually non-negative. Then g = o(f) if and only if:

lim
x→∞

g(x)/f(x) → 0

Example 1 log x = O(x). Use L’Hopital’s rule to show log x/x → 0. This gives log x = o(x), and
therefore log x = O(x). In the same way, it can be shown that n log n = O(n1+ε) for any real ε > 0.

Example 2 For j′ > k > 0, xk = o(xj), hence xk = O(xj).

Order Properties of the Notation

The order notation arranges functions from smaller to larger, reminiscent of the ordering of numbers
from smaller to larger. In this analogy, Big-Oh is non-strict inequality, g = O(f) can be interpreted
as g ≤ f . Likewise, Little-Oh is strict inequality, g = o(f) is similar to g < f . Given three
functions, f, g and h, we expect that ordering is transitive: if h ≤ g and g ≤ f then h ≤ f . The is
indeed true for order notation.

Theorem 5 (Transitivity) If h = O(g) and g = O(f) then h = O(f). If h = o(g) and g = o(f)
then h = o(f).

Big-Oh and Little-Oh express non-strict and strict “less-than”. Other notations express non-strict
and strict “greater-than”.

2



Definition 4 (Big-Omega) Let f : X → Y be a function.

Ω(f) = { g : X → Y | ∃xo, c > 0 s.t. ∀x ≥ xo, g(x) ≥ cf(x) ≥ 0 }

Theorem 6 If f is not eventually non-negative, Ω(f) is empty. Every function in Ω(f) is even-
tually non-negative. Ω(0) is the collection of all eventually non-negative functions.

Definition 5 (Little-Omega) Let f : X → Y be a function.

ω(f) = { g : X → Y | ∀c > 0,∃xo > 0 s.t. ∀x ≥ xo, g(x) > cf(x) ≥ 0 }

Theorem 7 If f is not eventually non-negative, ω(f) is empty. Every function in ω(f) is eventu-
ally positive. ω(0) is the collection of all eventually positive functions.

We claim that these definitions are the appropriate anti-symmetric variants of Big and Little-Oh.

Theorem 8 (anti-symmetry) g = O(f) exactly when f = Ω(g). g = o(f) exactly when f =
ω(g).

Given the anti-symmetry, theorems concerning Big and Little-Oh can be quickly reestablished for
Big and Little-Omega.

Corollary 9 (Strength) If g = ω(f) then g = Ω(f).

Corollary 10 (Transitivity) If h = Ω(g) and g = Ω(f) then h = Ω(f). If h = ω(g) and g = ω(f)
then h = ω(f).

The following theorem illustrates the strictness versus non-strictness of the various notations.

Theorem 11 (Reflexivity) Let f be eventually non-negative. Then f = O(f) and f = Ω(f).
Hence the intersection is non-empty. In contrast, the intersection of o(f) and ω(f) is always
empty. In particular, neither o(f) nor ω(f) contains f .

The intersection of O(f) and Ω(f) produce the class Θ(f), the class of functions sharing the
asymptotic growth of f . Just as x ≤ y and y ≤ x implies x = y, g = O(f) and f = O(g) implies
g = Θ(f) ( since f = O(g) can be transformed to g = Ω(f), so g is in the intersection).

Definition 6 (Theta) Let f : X → Y be a function,

Θ(f) = { g : X → Y | ∃xo, c1, c2 > 0 s.t. ∀x ≥ xo, c1f(x) ≥ g(x) ≥ c2f(x) ≥ 0 }

3



Theorem 12 g = Θ(f) if and only if g = O(f) and f = O(g). The set Θ(f) is the intersection of
O(f) and Ω(f).

The sets defined by Theta form equivalence classes. Equivalence classes are defined by a relation
which is reflexive, symmetric and transitive.

Corollary 13 (Equivalence Properties) The relation Θ enjoys the following properties:

1. Reflective: If f is eventually non-negative, f = Θ(f);

2. Symmetry: If g = Θ(f) then f = Θ(g);

3. Transitive: If h = Θ(g) and g = Θ(f) then h = Θ(f).

We close this section with a warning concerning the ordering of functions. Functions have greater
complexity than numbers. The ordering of numbers by size leaves little room for variety. Given
two numbers, one is the smaller, or if not, the numbers are the same. Consider these functions:

fe(x) =
{

0 if x is even
1 else

fo(x) =
{

0 if x is odd
1 else

Neither of these functions is Big-Oh the other. By order of growth, these two functions are incom-
mensurable. (But see an exercise in the class text for variant definitions which avoid this.)

Example 3 Show ax+b = O(x) and x = O(ax+b) for a > 0. Conclude that afx+bf = Θ(agx+bg)
for af , ag > 0. Often the “simplest” function of a Θ class lends its name to the class. These
functions would be described as Θ(x).

The Order of an Approximation

The order notation can be used to notate a function whose shape is not known exactly, but to an
approximation suitable for the purpose. The Harmonic series is the sum of the reciprocals of first
n integers. Since log x is the integral of 1/x, it is not surprising that the Harmonic series should
approximate the log.

Hn =
n∑

i=1

1/i = ln n + O(1)

This equation tells us that the approximation is perfect with the addition of an unknown O(1)
error function. That is,

Hn = ln n + e(n) for some e(n) = O(1)

In general, the presence of the order notation inside an expression on the right hand side of an
equality indicates that some specific function makes the equality true, however the most we know
or care to know about that function is that it is a member of a certain order class.

4



Efficiency of Algorithms

The efficiency of an algorithm is given by the order of growth in run time with respect to input
size. For instance, numerous simple sorting routines essentially compare all elements pairwise in
the course of sorting. For n elements, this makes O(n2) comparisons, and this places a bound on
runtime.

Suppose two algorithms are composed. The output of algorithm A with run time fA is the input
to algorithm B with run time fB. What is the efficiency of the combined algorithm? Assuming the
first algorithm leaves the size unchanged, it is fA(x)+fB(x). This theorem allows for simplification.

Theorem 14 Let g1, g2 = O(f) and a1, a2 be non-negative constants. Then a1g1 + a2g2 = O(f).

Suppose we would like to calculate the mode of x numbers, that is, the value which occurs most
often. This can be accomplished by sorting the numbers and then sweeping through the sorted
numbers keeping track of the longest run of consecutive, equal values. If the sorting is done in time
fA(x) = O(x2), and the sweep is done in time fB(x) = O(x), the entire algorithm runs in time
fA(x) + fB(x) = O(x2).

In this algorithm, sorting is the bottle neck. Improve the sort to O(x log x) (e.g. using merge-sort)
and immediately the entire algorithm improves to O(x log x). The moral of the story: when an
algorithm can be broken down into a sequence of sub-algorithms, the sub-algorithm with largest
run time rules the runtime of the combined algorithm.

It should be intuitive that,

adx
d + ad−1x

d−1 + . . . + a0 = O(xd)

for ad > 0. It is actually a bit of a mess to prove, due to the fact that for i < d some or all of the
ai might be negative.

Theorem 15 If f ′ = O(f) and g′ = O(g) then f ′g′ = O(fg).

Given this theorem, a fairly neat way about a proof is the factorization:

f(x) = adx
d

(
1 +

d−1∑
i=0

(ai/ad)xi−d

)

followed by showing 1 +
∑

(ai/ad)xi−d = O(1). A little more work gives the matching Ω bound.

Corollary 16 Let f(x) =
∑d

i=0 aix
i with ad > 0. Then f = Θ(xd).

Example 4 A quick summary of our results so far:

0 < 1 < log x < x < x log x < x1+ε < x2 < x3 < . . .

5



An algorithm running with any of these run times is consider feasible. It runs in polynomial time,
that is, O(xk) for some k. Algorithms taking strictly more time than polynomial are consider
infeasible.

Theorem 17 xk = o(ax) for any k and any a > 1.

Example 5 Our hierarchy continues:

x2 < x3 < . . . < 2x < ex < . . . < x! < xx = 2(log x)x < 2x1+ε
< 2x2

< . . .

An algorithm taking more than polynomial time, such as an exponential time algorithm running
in O(2x) is considered infeasible. The reason for this is that small changes in input size increase
computation time greatly. In practice, any useful algorithm will be applied to increasingly complex
problems. Due to the growth rate, computation power will not keep up with the demands of
problem size. For all practical purposes, then, the problem in not solvable by this algorithm.

Exponential time algorithms sometimes invoke the following very simple strategy: “try all possible
combinations of outputs and pick the one that’s correct.” Here is an exponential time algorithm
for sorting a pack of cards. There are 52 cards. They can be rearranged into 52! orders. Try all
orderings one by one, until the correct one appears. To give the reader an idea of the inefficiency
of this method, it wouldn’t be much less efficient to sort cards by repeatedly shuffling them, each
time looking to see if the cards just happened to fall in order.

This should give an intuition to the practical infeasibility of exponential time algorithms.

Exercises

1. Give proofs for all theorems and corollaries given in these notes.

2. Give proofs for the examples given in these notes.

3. Prove or disprove: if g1, g2 = Ω(f) and a1, a2 are positive constants, then a1g1 +a2g2 = Ω(f).

4. Prove or disprove: if f ′ = Ω(f) and g′ = Ω(g) then f ′g′ = Ω(fg).

5. Prove or disprove: if f ′ = O(f) and g′ = O(g) then f ′ and g′ are both O(f + g).

6. Give the analogous analytic definition for Ω which agrees with the transpose symmetry of o
and Ω.. Warning: the limit requires that the denominator be eventually positive.

6


