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5. Propagation and Correlation

5.1 Introduction

In this chapter we treat difference propagation and input-output correlation in Boolean
mappings and iterated Boolean transformations. Difference propagation is specifically exploited
in differential cryptanalysis (DC), invented by Eli Biham and Adi Shamir [BiSh91]. Input-output
correlation is exploited in linear cryptanalysis (LC), invented by Mitsuru Matsui [Ma93]. Both DC
and LC were successfully applied on the block cipher DES [Fi77]. DC was the first chosen-
plaintext attack, LC the first known-plaintext attack more efficient than exhaustive key search
for DES.

We start with a brief description of DES and the original DC and LC attacks using the
terminology of their inventors. For a more detailed treatment of the attacks, we refer to the
original publications [BiSh91,Ma94]. The only aim of our description is to indicate the aspects of
the attacks that determine their expected work factor. For DC the critical aspect is the maximum
probability for difference propagations, for LC it is the maximum deviation from 1/2 of the
probability that linear expressions hold.

We introduce a number of algebraic tools that more adequately describe the essential
mechanisms of LC and DC. This includes a number of powerful new concepts, such as the
correlation matrix of a Boolean mapping. Using these new concepts a number of new relations
and equalities are derived. These tools are further refined to describe propagation and
correlation in iterated Boolean transformations.

Finally, we formulate and motivate our new structural design strategy for the round
transformation of block ciphers and, more generally, the updating transformation of
cryptographic finite state machines.

5.2 The Data Encryption Standard

The cipher that was the most important object of the attacks to be discussed is the Data
Encryption Standard (DES) [Fi77]. Therefore, we start with a brief description of its structure.
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Figure 1 Computational graph of the DES round transformation.
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DES is a block cipher with a block length of 64 bits and a key length of 56 bits. Its main body
consists of 16 iterations of the keyed round transformation. The computational graph of the
round transformation is depicted in Figure 1. It can be seen that the intermediate encryption
value is split into a 32-bit left part Li  and a 32-bit right part Ri . The latter is the argument of the

keyed F -function. The output of the F -function is added bitwise to Li . Subsequently, left and
right part are interchanged.
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Figure 2 Computational graph of the DES F -function.

The computational graph of the F -function is depicted in Figure 2. It can be seen that it
consists of the succession of four steps. In the expansion E the 32 input bits are expanded to
48 bits. Subsequently, a 48-bit round key is added bitwise to this 48-bit vector. The resulting 48-
bit vector is mapped onto a 32-bit vector by 8 nonlinear S-boxes that each convert 6 input bits
into 4 output bits. Finally, these 32 bits are transposed by the bit permutation P. Observe that
the only nonlinear step in the F -function (and also in the round transformation) consists of the
S-boxes. The 48-bit round keys are extracted from the 56-bit cipher key by means of a linear
key schedule.

5.3 Differential and linear cryptanalysis

In this section we summarise differential cryptanalysis as described in [BiSh91] and linear
cryptanalysis as presented in [Ma94].

5.3.1 Differential cryptanalysis

Differential cryptanalysis is a chosen-plaintext (difference) attack in which a large amount of
plaintext-ciphertext pairs are used to determine the value of key bits. Statistical key information
is deduced from ciphertext blocks obtained by encrypting pairs of plaintext blocks with a specific
bitwise difference ′A  under the target key. The work factor of the attack depends critically on

the largest probability ( )P ′ ′B A|  with ′B a difference at some fixed intermediate stage of the

cryptographic function, e.g., at the input of the last round. In a first approximation, the

probabilities ( )P ′ ′B A|  for DES are assumed to be independent of the specific value of the key.
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Key information is extracted from the output pairs in the following way. For each pair it is
assumed that the intermediate difference is equal to ′B . The absolute values of the outputs
and the (assumed) intermediate difference ′B  impose restrictions upon a number υ  of key bits
of the last round key. A pair is said to suggest the subkey values that are compatible with these
restrictions. While for some pairs many keys are suggested, no keys are found for other pairs,
implying that the output values are incompatible with ′B  For each suggested subkey value a
corresponding entry in a frequency table is incremented.

The attack is successful if the right value of the subkey is suggested significantly more often
than any other value. Pairs with an intermediate difference not equal to ′B  are called wrong
pairs. Subkey values suggested by these pairs are in general wrong. Right pairs, with an
intermediate difference equal to ′B , do not only suggest the right subkey value but often also a
number of wrong subkey values. For DES the wrong suggestions may be considered uniformly

distributed among the possible key values if the value ( )P ′ ′B A|  is significantly larger than

( )P ′ ′C A|  for any ′ ≠ ′C B .

Under these conditions it makes sense to calculate the ratio between the number of times the
right value is suggested and the average number of suggestions per entry, the so-called signal-
to-noise or S/N ratio. If the size of the table is 2υ  and the average number of suggested

subkeys per pair is γ , this ratio is equal to ( )P ′ ′B A| 2υ γ . The S/N ratio strongly affects the

number of right pairs needed to uniquely identify the right subkey value. Experimental results
[BiSh91] showed that for a ratio of 1-2 about 20-40 right pairs are enough. For larger ratios only
a few right pairs are needed and for ratios that are much smaller than 1 the required amount of
right pairs can make a practical attack infeasible.

Large probabilities ( )P ′ ′B A|  are localized by the construction of so-called characteristics. An

m-round characteristic constitutes an m+1-tuple of difference patterns: ( )′ ′ ′X X Xm0 1, , ,� . The

probability of this characteristic is the probability that an initial difference pattern ′X0  propagates

to difference patterns ′ ′ ′X X Xm1 2, , ,�  respectively after 1, 2, …m rounds. In the assumption that

the propagation probability from ′−Xi 1  to  ′Xi  is independent of the propagation from ′X0  to

′−Xi 1 , this probability is given by

( )P
i

′ ′−∏ X Xi i| 1 , (5.1)

with ( )P ′ ′−X Xi i| 1  the probability that the difference pattern ′−Xi 1  at the input of the round

transformation gives rise to ′Xi  at its output. Hence, the multiple-round characteristic is

decomposed into a number of single-round characteristics ( )′−X Xi i1 ,  with probability

( )P ′ ′−X Xi i| 1 .

In the construction of high-probability characteristics for DES, advantage is taken from the
linearity in the round transformation. Single-round characteristics of the form

( )′ ′ ′ ′− −L R L Ri i i i1 1| , | with ′ = ′−R Li i 1 and ′ = ′ =− −L Ri i1 1 0  have probability 1 and are called trivial. The

most probable nontrivial single-round characteristics have an input difference pattern that only
affects a small number of the eight S-boxes.
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Trivial characteristics have been exploited to construct high-probability iterative characteristics,
i.e., characteristics with a periodic sequence of differences. The iterative characteristic with
highest probability has period 2. Of the two involved single-round characteristics, one is trivial.
In the other one there is a nonzero difference pattern at the input of three neighbouring S-
boxes, that propagates to a zero difference pattern at the output of the S-boxes with probability
1/234. Hence, the resulting iterative characteristics have a probability of 1/234 per 2 rounds.

5.3.2 Linear cryptanalysis

Linear cryptanalysis is a known-plaintext attack in which a large amount of plaintext-ciphertext
pairs are used to determine the value of key bits. For the 8-round variant of DES, linear
cryptanalysis can also be applied in a ciphertext-only context.

A condition for applying linear cryptanalysis to a block cipher is to find ``effective'' linear

expressions. Let [ ]A i i i a1 2, , ,�  be the bitwise sum of the bits of A with indices in a selection set

{ }i i i a1 2, , ,� , i.e.,

[ ] [ ] [ ] [ ]A i i i A i A i A ia a1 2 1 2, , ,� �= + + +

Let P,C and K denote respectively the plaintext, the ciphertext and the key. A linear expression
is an expression of the following type:

[ ] [ ] [ ]P i i i C j j j K k k ka b c1 2 1 2 1 2, , , , , , , , ,� � �= + , (5.2)

with i i i i i ja b1 2 1 2, , , , , , ,� �  and k k kc1 2, , ,�  fixed bit locations. The effectiveness of such a linear

expression in linear cryptanalysis is given by p−1 2/  with p  the probability that it holds. By

checking the value of the left-hand side of (5.2) for a large number of plaintext-ciphertext pairs,
the right-hand side can be guessed by taking the value that occurs most often. This gives a
single bit of information about the key. In [Ma94] it is shown that the probability of making a

wrong guess is very small if the number of plaintext-ciphertext pairs is larger than p−
−

1 2
2

/ .

In [Ma94] another algorithm is given that determines more than a single bit of key information
using a similar linear expression. Instead of (5.2), an expression is used that contains no
plaintext or ciphertext bits, but instead bits of the intermediate encryption values I1  and I15

respectively after a single and all but a single round:

[ ] [ ] [ ]I i i i I j j j K k k ka b c1 1 2 15 1 2 1 2, , , , , , , , ,� � �= + , (5.3)
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By assuming values for a subset χk of the subkey bits of the first and last round, the bits of I1

and I15 that occur in (5.3) can be calculated. These bits are correct if the values assumed for

the key bits with indices in χk  are correct. Given a large number l of plaintext-ciphertext pairs,

the correct values of all bits in χk  and the value of the right-hand side of (5.3) can be

determined in the following way. For all values of the key bits with indices in χk , the number of
plaintext-ciphertext pairs are counted for which (5.3) holds. For the correct assumption the

expected value of this sum is pl or ( )1− p l . Thanks to the nonlinear behavior of the round

transformation this sum is expected to have significantly less bias for all wrongly assumed
subkey values. Given a linear expression (5.3) that holds with probability p , the probability that
this algorithm leads to a wrong guess is very small if the number of plaintext-ciphertext pairs is

significantly (say more than a factor 8) larger than p−
−

1 2
2

/ . In a recent improvement of this

attack this factor 8 is reduced to 1 [Ma94]. Still, in both variants of the attack the value of

p−1 2/  is critical for the work factor of the attack.

Effective linear expressions (5.2) and (5.3) are constructed by ``chaining'' single-round linear
expressions. An m–1-round linear expression can be turned into an m-round linear expression
by appending a single-round linear expression such that all the intermediate bits cancel:

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

P i i i I j j j K k k k

I j j j I m m m K k k k

P i i i I m m m K k k k

a m b c

m b m a d

a m a d

1 2 1 1 2 1 2

1 1 2 1 2 2 5

1 2 1 2 1 3

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

� � �

� � �

� � �

+ =
+

+ =
=

+ =

−

− .

In [Ma94] it is shown that the probability that the resulting linear expression holds can be

approximated by ( )( )1 2 2 1 2 1 21 2/ / /+ − −p p , given that the component linear expressions

hold with probability p1  and  p2  respectively.

The DES single-round linear expressions and their probabilities can be studied by observing the
dependencies in the computational graph of the round transformation. The selected round
output bits completely specify a selection pattern at the output of the S-boxes. If only round
output bits are selected from the left half, this involves no S-box output bits at all, resulting in
linear expressions that hold with probability 1. These are of the following type:

[ ] [ ]I j j j I j j jl a l a− + + + =1 1 2 1 232 32 32, , , , , ,� � .

This is called a trivial expression. Apparently, the most useful nontrivial single-round linear
expressions only select bits coming from a single S-box. For a given S-box, all possible linear
expressions and their probabilities can be exhaustively calculated. Together with the key
application before the S-boxes, each of these linear expressions can be converted into a single-
round linear expression. The most effective multiple-round linear expressions for DES are
constructed by combining single-round trivial expressions with linear expressions involving
output bits of only a single S-box. The resulting most effective 14-round linear expression has a
probability of 1 2 119 221/ .± ⋅ − .
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5.4 Analytical and descriptive tools

In this section we present a formalism and some useful tools for the description and analysis of
difference propagation and the chaining of linear expressions. We establish a relation between
Boolean mappings and linear mappings over real vector spaces, allowing a much simpler
treatment of linear expressions. More importantly, the proposed formalisms force us to look at
the phenomena from a different angle, giving new insights. In the original descriptions of LC
and DC, the propagation and chaining are described as probabilistic phenomena, with an
emphasis on probabilities of events. In our formalism we describe the phenomena in terms of
ratios and correlations, reflecting a more deterministic view.

5.4.1 The Walsh-Hadamard transform

Linear cryptanalysis can be seen as the exploitation of correlations between linear combinations
of bits of different intermediate encryption values (or states). The correlation between two

Boolean functions with domain { }0 1,
n
 an be expressed by a correlation coefficient that ranges

between -1 and 1:

Definition 5.1 : The correlation coefficient C( , )f g  associated with a pair of Boolean functions

( )f a and ( )g a  is given by

( )C( , ) Prob ( ) ( )f g f a g a= ⋅ = −2 1 .

From this definition it follows that C( , ) C( , )f g g f= . If the correlation coefficient is different
from zero, the functions are said to be correlated.

A selection vector w  is a binary vector that selects all components i of a vector for which
wi = 1. Analogous to the inner product of vectors in linear algebra, the linear combination of the

components of a vector a  selected by w  can be expressed as w at  with the t suffix denoting
transposition of the vector w . A linear Boolean function w at  is completely specified by its
corresponding selection vector w .

Let ( )�f a  be a real-valued function that is -1 for ( )f a = 1and +1 for ( )f a = 0 . This can be

expressed by ( ) ( ) ( )�f a f a= −1 . In this notation the real-valued function corresponding to a linear

Boolean function w at  becomes ( )−1
w at

. The bitwise sum of two Boolean functions

corresponds to the bitwise product of their real-valued counterparts, i.e.,

( ) ( ) ( )h a f a g a h a f a g a= + ⇔ =�( ) �( ) �( )  .

We define an inner product for real-valued functions, not to be confused with the inner product
of vectors, by

( ) ( )� , � � �f g f a g a
a

= ∑ , (5.4)

and the corresponding norm by

� � , �f f f= .
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For a Boolean function ( )f a , the norm of ( )�f a is equal to the square root of its domain size,

i.e., 2 2n/ . From Definition 5.1 it follows that

( )C ,f g
f g

f g
=

⋅

� , �

� �
 .

In the space of all Boolean functions, the real-valued functions corresponding to the linear
Boolean functions form an orthogonal basis with respect to the defined inner product:

( ) ( ) ( )− − = +1 1 2
u a v a n u v

t t

, δ .

with ( )δ w  the Kronecker delta function that is equal to 1 if w   is the zero vector and 0

otherwise. The representation of a Boolean function with respect to this basis is called its

Walsh-Hadamard transform [Go67,Pr93]. If the correlation coefficients ( )C tf a w a( ),  are

denoted by ( )�F w , we have

( ) ( )( )� �f a F w
w

w a= −∑ 1
t

, (5.5)

and dually,

( ) ( )( )� �F w f a
a

w a= −∑ 1
t

, (5.6)

summarized by

( ) ( )( )�F w f a= : .

Hence, a Boolean function is completely specified by the set of correlation coefficients with all
linear functions.

Taking the square of the norm of both sides of (5.5) and dividing by 2n  yields the theorem of
Parseval [Pr93]:

( ) ( ) ( ) ( ) ( )1 1 1 2= − − =∑∑ ∑� � , �F v F w F w
wv

v a w a

w

t t

, (5.7)

expressing a relation between the number of linear functions that are correlated with a given
Boolean function and the amplitude of their correlations.

The Walsh-Hadamard transform of the sum of two Boolean functions ( ) ( )f a g a+  can be

derived using (5.5):

( ) ( ) ( )( ) ( )( )

( ) ( )( )( )

( ) ( ) ( )

� � � �

� �

� �

f a g a F u G v

F u G v

F v w G v

u a

u

v a

v

u v a

vu

v

w a

w

= − −

= −

= +






−

∑ ∑

∑∑

∑∑

+

1 1

1

1

t t

t

t

.
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The values of ( ) ( )�H w f g= +: are therefore given by

( ) ( )� � � ( )H w F v w G v
v

= +∑ . (5.8)

Hence, addition modulo 2 in the Boolean domain corresponds to convolution in the transform
domain. If the convolution operation is denoted by ⊗ this can be expressed by

( ) ( ) ( ): : :f g f g+ = ⊗ . (5.9)

For multiplication (bitwise AND) of two Boolean functions it can easily be seen that

( ) ( ) ( ) ( ) ( ) ( ) ( )( )h a f a g a h a f a g a f a g a= ⇔ = + + −�( ) � � � �
1

2
1  .

Hence, we have

( ) ( ) ( ) ( ) ( )( )W fg w f h f g= + + − +1

2
δ : : : .

(5.10)

Given the convolution property it is easy to demonstrate some composition properties that are
useful in the study of linear cryptanalysis.

• Complementation of a Boolean function ( ) ( )g a f a= +1 corresponds to multiplication

by −1 in the transform domain: � ( ) � ( )G w F w= − .

• Adding a linear function ( ) ( )g a f a u a= + t  corresponds to a dyadic shift operation in

the transform domain: � ( ) � ( )G w F w u= + .

The subspace of { }0 1,
n
 generated by the vectors w  for which ( )�F w ≠ 0  is called its support

space 9 f . The support space of the sum of two Boolean functions is a subspace of the (vector)

sum of their corresponding support spaces: 9 9 9f g f g+ ⊆ + . This follows directly from the

convolution property. Two Boolean functions are called disjunct if their support spaces are
disjunct, i.e., if the intersection of their support spaces only contains the origin. A vector
v f g∈ +�9  with f and g  disjunct has a unique decomposition into a component u f∈ 9  and a

component w g∈ 9  . In this case the transform values of h f g= +  are given by

( ) ( ) ( )� � �H v F u G w=  with v u w= +  and u f∈ 9  , w g∈�9 . (5.11)

A pair of Boolean functions that depend on non-overlapping sets of input bits is a special case
of disjunct functions.

5.4.2 Correlation matrices

Almost all components in encryption schemes, including S-boxes, state updating
transformations and block ciphers are simply mappings from a space of n -dimensional binary
vectors to a space of m-dimensional binary vectors. Often m n= . These mappings can be
represented by their correlation matrix.
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A mapping { } { }h
n m

: , ,0 1 0 1→  can be decomposed into m component Boolean functions:

( )h h hm0 1 1, ,..., − . Each of these component functions hi  has a Walsh-Hadamard transform �Hi  .

The vector function with components �Hi  is denoted by �H  and can be considered the Walsh-

Hadamard transform of the mapping h . As in the case of Boolean functions, �H  completely
determines the transformation h . The Walsh-Hadamard transform of any linear combination of
components of h  is specified by a simple extension of (5.9):

( ): u h
ui

Hi
t =

=
⊗

1
� . (5.12)

All correlation coefficients between linear combinations of input bits and those of output bits of
the mapping h  can be arranged in a 2 2m n×  correlation matrix Ch . The element Cuw

h  in row u

and column w  is equal to ( )( )C t tu h a w a, . The rows of this matrix can be interpreted as

( ) ( ) ( )− = −∑1 1u h a
uw
h w a

w

C
t t

. (5.13)

In words, the real-valued function corresponding to a linear combination of output bits can be
written as a linear combination of the real-valued functions corresponding to the linear
combinations of input bits.

A Boolean function ( )f a  can be seen as a special case of a mapping and has a correlation

matrix with two rows: row 0 and row 1. Row 1 contains the Walsh-Hadamard transform values
of ( )f a and row 0 the Walsh-Hadamard transform values of the Boolean function that is equal

to 0.

A matrix Ch  defines a linear mapping with domain R2n

 and range R2m

. Let /  be a mapping
from the space of binary vectors to the space of real vectors, depicting a binary vector of
dimension n  onto a real vector of dimension 2n . /  is defined by

{ } { } ( ) ( )/ /: , , :0 1 0 1 1
n m u aa a→ = = −� α

t

 .

Since ( ) ( ) ( )/ / /a b a b+ = ⋅ , / is a group-homomorphism from { }0 1, ,
n +  to R 2 n

,⋅  with  “ ⋅ ”

denoting the componentwise product. From (5.13) it can easily be seen that

( ) ( )( )C a h ah
/ /= .

Consider the composition of two Boolean mappings h h h= 2 1$  or ( ) ( )( )h a h h a= 2 1 , with h1

mapping n -dimensional vectors to p -dimensional vectors and with h2  mapping p -dimensional

vectors to m-dimensional vectors. The correlation matrix of h  is determined by the correlation
matrices of the component mappings. We have
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( ) ( ) ( ) ( )

( )

( )

− = −

= −

=






−

∑

∑∑

∑∑

1 1

1

1

2 1

2 1

2 1

u h a C

C C

C C

uv

h

uv

h

vw

h

uv

h

vw

h

v h a

v

w

w a

v

v

w a

w

t
t

t

t

.

Hence, we have

C C Ch h h h2 1 2 1$ = ×  ,

with ×  denoting the matrix product, Ch1  a 2 2p n×  matrix and Ch2 a 2 2m p×  matrix. The input-
output correlations of h h h= 2 1$  are given by

( )( ) ( )( ) ( )( )C C Ct t t t t tu h a w a u h a v a v h a w a
v

, , ,= ∑ 1 2 . (5.14)

If h  is an invertible transformation in { }0 1,
n
 , we have

( )( ) ( )( ) ( )( )C C Ct t t t t tu h a w a u b w h b w h b u b− = =1 , , ,  .

Using this and ( ) ( )C C C I C Ch h h h h h× = = = ×
− − −1 1 1

$  we obtain

 ( ) ( ) ( )C C Ch h h−
= =

−1 1 t
 ,

hence, Ch  is an orthogonal matrix. Conversely, a Boolean mapping with an orthogonal
correlation matrix is invertible.

5.4.2.1 Special mappings

In the following, the suffix h  will be omitted. Consider the transformation that consists of the
bitwise addition of a constant vector k : ( )h a a k= + . Since ( )u h a u a u kt t t= + , the correlation

matrix is a diagonal matrix with

( )Cuu

u k= −1
t

 .

Therefore the effect of bitwise addition of a constant vector before (or after) a mapping h  on its
correlation matrix is a multiplication of some columns (or rows) by –1.

Consider a linear mapping ( )h a M a=   with M  an 2 2m n×  binary matrix. Since

( ) ( )u h a u Ma M u at t t t
= = , the elements of the corresponding correlation matrix are given by

( )C M u wuw = +δ t .

If M  is an invertible square matrix, the correlation matrix is a permutation matrix. The single
nonzero element in row u is in column M ut . The effect of applying an invertible linear
transformation before (or after) a transformation h  on the correlation matrix is only a
permutation of its columns (or rows).
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Consider a mapping from { }0 1,
n
 to { }0 1,

m
 that consists of the parallel application of l

component mappings (S-boxes) from { }0 1,
ni to { }0 1,

mi with n nii∑ =  and m mii∑ = . We will

call such a mapping a juxtaposed mapping. We have

( ) ( ) ( )( )a a a al= −0 1 1, , ,�  and ( ) ( ) ( )( )b b b bl= −0 1 1, , ,�  ,

with the { }a i vectors of dimension ni and the { }b i vectors of dimension mi . The mapping ( )b h a=
is defined by

( ) ( ) ( )( )b h a i<li i i= ≤  for  0 .

With every S-box ( )hi   corresponds a 2 2n mi i× correlation matrix denoted by ( )C i . Since the ( )hi   

are disjunct, (5.11) can be applied and the elements of the correlation matrix of h  are given by

( ) ( )

( )C Cuw u w
i

i
i i

= ∏ with ( ) ( ) ( )( )u u u ul= −0 1 1, , ,�  and ( ) ( ) ( )( )w w w wl= −0 1 1, , ,� .

In words this can be expressed as: the correlation associated with input selection w  and output
selection u  is the product of its corresponding S-box input-output correlations 

( ) ( )

( )Cu w
i

i i
.

5.4.3 Derived properties

The concept of the correlation matrix is a valuable tool to demonstrate properties of Boolean
transformations, functions and their spectrum. We will illustrate this with some examples.

Lemma 5.1: The elements of the correlation matrix of a Boolean transformation satisfy

( ) ( )C C Cu v x u w x vw
w

+ += ∑  for all { }u v x
n

, , ,∈ 0 1 . (5.15)

Proof :  Using the convolution property, we have

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ): : : :u v h a u h a v h a u h a u h a+ = + = ⊗t t t t t . (5.16)

Since the components of ( )( ): y h at  are given by Cyw , the projection of (5.16) onto the

component with index x gives rise to (5.15).

QED

A Boolean function is balanced if it is 1 (0) for exactly half of the elements in the domain.
Clearly, being balanced is equivalent to being uncorrelated to the Boolean function equal to 0
(or 1).

Using the properties of correlation matrices we can now give an elegant proof of the following
well-known theorem.

Theorem 5.1 : A Boolean transformation is invertible if and only if every linear combination of
output bits is a balanced Boolean function of its input bits.
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Proof:

⇒:

If h  is an invertible transformation, its correlation matrix C is orthogonal. Since C00 1=
and all rows and columns have norm 1, it follows that there are no other elements in row

0 or column 0 different from 0. Hence, ( )( )C tu h a u, ( )0 = δ  or ( )u h at is balanced for all

u ≠ 0.

⇐:

The condition that all linear combinations of output bits are balanced Boolean functions
of input bits corresponds to Cu0 0=  for u ≠ 0. If this is the case, it can be shown that

the correlation matrix is orthogonal. The expression C C It × =  is equivalent to the
following set of conditions

( ) { }C C u vuw vw
w

n= +∑ δ  for all 0,1 . (5.17)

Now, the substitution x = 0  in (5.15) gives rise to

( )C C Cuw vw u v
w

= +∑ 0  .

Since we have Cu0 0= for all u ≠ 0 and C00 1= , (5.17) holds for all possible pairs u,v. It

follows that C is an orthogonal matrix, hence h−1  exists and is defined by C−1 .

QED

Lemma 5.2:  The elements of the correlation matrix of a mapping with domain { }0 1,
n
and the

Walsh-Hadamard transform values of a Boolean function with domain { }0 1,
n
are integer

multiples of 21−n .

Proof :  The sum in the right-hand side of (5.6) is always even since its value is of the form
( ) ( ) ( )k k kn n⋅ + − ⋅ − = −1 2 1 2 2 . It follows that the Walsh-Hadamard coordinates must be integer

multiples of 21−n .

QED

A mapping from { }0 1,
n
 to { }0 1,

m
can be converted into a mapping from { }0 1

1
,

n−
to { }0 1,

m
by

fixing a single component of the input. More generally, a component of the input can be set
equal to a linear combination of other input components, possibly complemented. Such a
restriction is of the type

v at = ε  with { }ε ∈ 0 1, .
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Assume that vs = 1. The restriction can be seen as the result of a mapping ( )′ =a h ar from

{ }0 1
1

,
n−

to { }0 1,
n
 specified by ′ =a ai i  for i s≠  and ′ = + +a v a as s

t ε . The nonzero elements of

the correlation matrix of hr  are

( ) ( )C C w w
ww

r rh
v w w
h

s= = − =+1 1 0     and      for all  with ε .

It can be seen that columns indexed by w with ws = 0  have exactly two nonzero entries with

magnitude 1 and those with ws = 1 are all-zero. Omitting the latter gives a 2 2 1n n× − correlation

matrix Chr  with only columns indexed by the vectors with ws = 0 .

The transformation restricted to the specified subset of inputs can be seen as the consecutive
application of hr  and the transformation itself. Hence, its correlation matrix ′C is given by

C Chr× .  The elements of this matrix are

( ) ( )′ = + − +C C Cuw uw u w v1 ε
, (5.18)

if ws = 0  and equal to 0 if ws = 1. The elements in ′C are the Walsh-Hadamard transform
values of Boolean functions of n–1-dimensional vectors, hence, from Lemma 5.2 they must be
integer multiples of 22−n . This can be easily generalized to multiple linear restrictions on the
input.

Applying (5.7) to the rows of the restricted correlation matrices gives additional laws for the
Walsh-Hadamard transform values of Boolean functions. For the single restrictions of the type
v at = ε  we have

( ) ( )( ) ( ) ( )( )� � � �F w F w v F w F w v
w w

+ + = − + =∑ ∑2 2
2 .

Lemma 5.3: The elements of a correlation matrix corresponding to an invertible transformation
of n -bit vectors are integer multiples of 22−n .

Proof :  Consider an element of the correlation matrix Cuw . If the input of the corresponding

transformation is restricted by w at = 0 , the correlation of the output function ( )u h at  to 0

becomes C Cuw u+ 0 . According to Lemma 5.2, this value is an integer multiple of 22−n . From

Theorem 5.1 it follows that Cu0 0=  and hence that Cuw must be an integer multiple of 22−n .

QED

With a similar argument it can be shown that either all elements of the Walsh-Hadamard
transform of a Boolean function are an integer multiple of 22−n  or none of them is.

5.4.4 Difference propagation

Consider a couple of n -dimensional vectors a  and a*  with bitwise difference a a a+ = ′* . Let
( ) ( )b h a b h a= =, * *  and b b b+ = ′* , hence, the difference ′a  propagates to the difference ′b

through h . This is denoted by ( )′  → ′a bh
 or, if h  is clear from the context, simply ( )′ → ′a b .

In general, ′b is not determined by ′a but depends on the value of a (or a* ).
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Definition 5.2: The prop ratio Rp of a difference propagation ( )′  → ′a bh
 is given by

( ) ( ) ( )( )Rp ′  → ′ = ′ + + ′ +− ∑a b b h a a h ah n

a

2 δ .

If a pair is chosen uniformly from the set of all pairs ( )a a, * with a a a+ = ′* , the probability that

( ) ( )h a a h a b+ ′ + = ′ is given by ( )Rp ′  → ′a bh
. In this specific experimental set-up the prop

ratio corresponds to a probability. This is however not the case in general and we believe that
the widespread use of the term “probability” to denote what we call ”prop ratio” has given rise to
considerable confusion.

The prop ratio ranges between 0 and 1. Since ( ) ( ) ( ) ( )h a a h a h a h a a+ ′ + = + + ′ , it must be an

integer multiple of 21−n . The difference propagation ( )′  → ′a bh
 restricts the values of a  to a

fraction of all possible inputs. This fraction is given by ( )Rp ′  → ′a bh
. It can easily be seen

that

( )R = 1p ′  → ′
′

∑ a bh

b

.

If ( )Rp ′  → ′ =a bh 0 , the difference propagation ( )′  → ′a bh
 is called invalid. The input

difference ′a and the output difference ′b are said to be incompatible through  h .

Definition 5.3:  The restriction weight of a valid difference propagation ( )′  → ′a bh
 is the

negative of the binary logarithm of the prop ratio, i.e.,

( ) ( )w Rr p′  → ′ = − ′  → ′a b a bh hlog2 .

The restriction weight can be seen as the amount of information (in bits) that is given by

( )′  → ′a bh
 on a , or the loss in entropy [Sh48] of a  due to the restriction ( )′  → ′a bh

. The

restriction weight ranges between 0 and n−1.

If h  is linear, ( ) ( ) ( )′ = + = + = + = ′b b b h a h a h a a h a* * * ( ) , i.e., ′a  completely determines ′b .

From ( )wr ′  → ′ =a bh 0 it can be seen that this difference propagation does not restrict or

gives away information on a .

5.4.4.1 Special mappings

An affine mapping h  from { }0 1,
n
 to { }0 1,

m
 is specified by

b Ma k= +  ,

with M a 2 2m n×  matrix and k  an m-dimensional vector. The difference propagation for this
mapping is determined by

′ = ′b Ma  .
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For a juxtaposed mapping h , it can easily be seen that

( ) ( ) ( )( )R Rp p′  → ′ = ′  → ′∏a b a bh

i

h

i
i

 ,

and

( ) ( ) ( )( )w wr r′  → ′ = ′  → ′∑a b a bh

i

h

i
i

 ,

with ( ) ( ) ( )( )′ = ′ ′ ′ −a a a al0 1 1, , ,�  and ( ) ( ) ( )( )′ = ′ ′ ′ −b b b bl0 1 1, , ,� .

A mapping h  from { }0 1,
n
 to { }0 1,

m
 can be converted into a mapping hs from { }0 1,

n
 to { }0 1

1
,

m−

by discarding a single output bit as . The prop ratios of hscan easily be expressed in terms of
the prop ratios of h:

( ) ( )( ) ( )( )R R Rp p p′  → ′ = ′  → + ′  →a b a ah

i

h

i

hs ω ω0 1 ,

with ′ = =bi i iω ω0 1 for i s≠  and ωs
0 0=  and ωs

l = 0.

This can be generalised to the situation in which only a number of linear combinations of the
output are considered. Let θ  be a linear mapping corresponding to an m l×  binary matrix M .
The prop ratios of θ $hare given by

( ) ( )R Rp p′  → ′ = ′  →
′=
∑a b ah

b M

hθ

ω ω
ω$

|

.

5.4.4.2 Prop ratios in terms of correlation coefficients

The prop ratios of the difference propagations of Boolean functions and mappings can be
expressed respectively in terms of their Walsh-Hadamard transform values and their correlation
matrix elements. With a derivation similar to (5.8) it can be shown that the components of the

inverse transform of the componentwise product of two spectra ( )� � �c FGfg = −
:

1 are given by

( ) ( ) ( ) ( ) ( ) ( )
� � �c b f a g a bfg

n

a

n f a g a b

a

= + = −− − + +∑ ∑2 2 1 , (5.19)

( )�c bfg is not a Boolean function. It is generally referred to as the cross correlation function of

f and g . Hence, the cross correlation function of two Boolean functions is the inverse Walsh-
Hadamard transform of the componentwise product of their spectra. If g f= it is called the

autocorrelation function of f  and denoted by �rf . The components of the spectrum of the

autocorrelation function consist of the squares of the spectrum of f , i.e.,

( )� �F rf
2 = W .

This is generally referred to as the Wiener-Khintchine theorem [Pr93].

The difference propagation in a Boolean function f  can be expressed easily in terms of the

autocorrelation function. The prop ratio of the difference propagation ( )′  →a f 0  is given by
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( ) ( ) ( )( )

( ) ( )( )

( )( )
( ) ( )

Rp

t

′  → = + + ′

= + + ′

= + ′

= + −






−

−

′

∑

∑

∑

a f a f a a

f a f a a

r a

F w

f n

a

n

a

f

w a

w

0 2

2
1

2
1

1

2
1

1

2
1 1 2

δ

� �

�

�

.

The component of the autocorrelation function ( )�r af ′  corresponds to the amount that

( )Rp ′  →a f 0 deviates from 1/2.

For mappings from { }0 1,
n
to  { }0 1,

m
, let the autocorrelation function of ( )u h at  be denoted by

( )�r au ′ , i.e.,

( ) ( ) ( ) ( )
�r au

n u h a u h a a

a

′ = −− + + ′∑2 1
t t

.

Now we can easily prove the following remarkable theorem that expresses the duality between
the difference propagation and the correlation properties of a Boolean mapping.

Theorem 5.2:  The table of prop ratios and the table containing the squared elements of the
correlation matrix of a Boolean mapping are linked by a (scaled) Walsh-Hadamard
transform. We have

( ) ( )Rp

t t

′  → ′ = −− ′+ ′∑a b Ch m w a u b
uw

u w

2 1 2

,

,

and dually

( ) ( )C a buw
n w a u b h

a b

2 2 1= − ′  → ′− ′+ ′

′ ′
∑ t t

Rp
,

.
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Proof:  we have

( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

Rp

t t t

t t t

t

t t

′  → ′ = + + ′ + ′

= − +

= −

= − −

= − ′

= − −

−

− + + ′ + ′

− − + + ′ + ′

− ′ − + + ′

− ′

− ′ ′

∑

∏∑

∑ ∑

∑ ∑

∑

a b h a h a a b

r a

C

h n

a

n

ia

h a h a a b

n m

a

u h a u h a a u b

u

m u b n

u

u h a u h a a

a

m u b
u

u

m u b w a
uw

i i i

2

2
1

2
1 1

2 2 1

2 1 2 1

2 1

2 1 1 2

δ

�

( )
wu

m w a u b
uw

u w

C

∑∑

∑= −− ′+ ′2 1 2
t t

,

QED

5.5 Application to iterated transformations

The described tools and formalisms can be applied to the propagation of differences and the
calculation of correlations in iterated transformations. This includes iterated block ciphers such
as DES and the repeated application of state updating transformations in synchronous stream
ciphers and the round transformations in cryptographic hash functions.

The studied iterated transformations are of the form

β ρ ρ ρ= m$�$ $2 1.

In a block cipher the ρ i  are selected from a set of round transformations [ ] { }{ }ρ b b b| ,∈ 0 1
n

 by

round keys ( )κ i , i.e., ( )[ ]ρ ρ κi
i= . These round keys are derived from the cipher key κ  by the

key schedule. In the iterated application of the state updating transformation of a synchronous
stream cipher or a hash function, the ρ i  are selected by (part of) the buffer contents. The
correspondence between our formalism and the terminology of the original descriptions of LC
and DC is treated in Section 5.5.3.

5.5.1 Correlation

5.5.1.1 Fixed key

In the Walsh-Hadamard transform domain, a fixed succession of round transformations
corresponds to a 2 2n n×  correlation matrix that is the product of the correlation matrices
corresponding to the round transformations. We have

C C C Cmβ ρ ρ ρ= × × ×� 2 1 . (5.20)
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Linear cryptanalysis exploits the occurrence of large elements in this product matrix. An m-
round linear trail Ξ , denoted by

( )Ξ = ←  ←  ← −ξ ξ ξ ξ ξρ ρ ρ
0 1 2 1

1 2
� m m

m . (5.21)

consists of the chaining of m round transformation correlations of the type ( )( )C t tξ ρ ξi i ia a, −1 .

To this linear trail corresponds a correlation contribution coefficient Cp ranging between –1 and
+1. We have

( )Cp Ξ =
−

∏C
i i

i

i
ξ ξ

ρ
1

.

From this definition and (5.20) we have

( )( ) ( )C Ct t
pu a w a

w um

β
ξ ξ

,
,

=
= =
∑ Ξ

0

.

Hence, the correlation between ( )u atβ  and w at  is the sum of the correlation contribution

coefficients of all m-round linear trails Ξ  with initial selection vector w  and terminal selection
vector u .

5.5.1.2 Variable key

In actual cryptanalysis the succession of round transformations is not known in advance but is
governed by an unknown key or some input-dependent value. In general, the elements of the

correlation matrix of ρ i  depend on the specific value of the round key ( )κ i .

For some block ciphers the strong round-key dependence of the correlation and propagation
properties of the round transformation has been cited as a design criterion. The analysis of
correlation or difference propagation would have to be repeated for every specific value of the
cipher key, making linear and differential analysis infeasible. A typical problem with this
approach is that the quality of the round transformation with respect to LC or DC strongly
depends on the specific value of the round key. While the resistance against LC and DC may
be very good on the average, specific classes of cipher keys can exhibit linear trails with
excessive correlation contributions (or differential trails with excessive prop ratios).

These complications can be avoided by designing the round transformation in such a way that
the amplitudes of the elements of its correlation matrix are independent of the specific value of
the round key. As was shown in Section 5.4.2, this is the case if the round transformation
consists of a fixed transformation ρ  followed (or preceded) by the bitwise addition of the round

key ( )κ i  to (part of) the state.

The correlation matrix Cρ  is determined by the fixed transformation ρ . The correlation

contribution coefficient of the linear trail Ξ  becomes

( ) ( )
( )

( ) ( ) ( )C Cp pΞ ΞΞ= − = − ∑
−

+∏ 1 1
1

ξ κ
ξ ξ
ρ ε ξ κt

i
i

i i

t
i

i
iC

i

.

with εΞ = 1 if C
i ii ξ ξ
ρ

−∏
1
is negative and εΞ = 0 otherwise. ( )Cp Ξ  is independent of the round

keys, and hence, only the sign of the correlation contribution coefficient is key-dependent.
Analogous to the restriction weight for differential trails, we can define:
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Definition 5.4: The correlation weight wc of a linear trail Ξ  is given by

( ) ( )w Cc pΞ Ξ= − log2  .

The correlation weight of a linear trail is the sum of the correlation weights of its linear steps

given by −
−

log2 1
C

i iξ ξ
ρ .

The correlation coefficient between ( )u atβ  and w at  can be expressed in terms of the
correlation contribution coefficients of linear trails:

( )( ) ( ) ( ) ( )C u a w a
t
i

i
i

mw u

t t
p= Cβ ε

ξ ξ

ξ κ
,

,

− ∑+

= =
∑ 1

0

Ξ Ξ .

The amplitude of this correlation coefficient is no longer independent of the round keys since
the terms are added or subtracted depending on the value of the round keys.

5.5.1.3 Correlation analysis

The analysis of a round transformation with respect to its correlation properties consists of the
investigation of two aspects.

The first aspect concerns the basic entities in LC, i.e., linear trails. The round transformation
can be investigated by identifying the critical multiple-round linear trails, i.e., with the highest
correlation contribution coefficient. For block ciphers the maximum correlation contribution
coefficient for linear trails that span all but a few rounds has to be investigated. An efficient
round transformation combines a low work factor with critical correlation contribution
coefficients that decrease rapidly when the number of rounds increases. We give a strategy for
the design of this type of round transformations at the end of this chapter, called the wide trail
strategy.

The second aspect concerns the way in which linear trails combine to multiple-round
correlations. Constructive interference of many linear trails with small correlation contribution
coefficients may result in large correlations. Analysis includes investigating whether the round
transformation can give rise to such clustering. For a well-designed round transformation
multiple-round correlation coefficients larger than 2 2−n/  are dominated by a single linear trail.

5.5.2 Difference propagation

5.5.2.1 Fixed key

An m-round differential trail Ω , denoted by

( )Ω =  →  →  →−ω ω ω ω ωρ ρ ρ
0 1 2 1

1 2
� m m

m

consists of the chaining of difference propagations of the type ( )ω ωρ
i i

i

−  →1 . These are called

the (differential) steps of the trail. The prop ratio of Ω , denoted by ( )Rp Ω is the relative portion

of values of a0  that exhibit the specified differential trail.
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A differential step ( )ω ωρ
i i

i

−  →1  imposes restrictions on the intermediate state ai −1 . If the

succession of round transformations is assumed to be fixed, ai −1  is completely determined by
a0 . Consequently, the restrictions on ai −1  can (in principle) be converted into restrictions on a0 .

Since the round transformations are invertible, the relative size of the subset of allowed a0

values is still given by ( )Rp ω ωρ
i i

i

−  →1 . The relative size of the set of values a0  that satisfy

the restrictions imposed by all the differential steps of a differential trail Ω  is per definition the
prop ratio of Ω .

Definition 5.5:  The restriction weight of a differential trail Ω  is the sum of the restriction
weights of its differential steps, i.e.,

( ) ( )w = wr rΩ
i

i i
i∏ −  →ω ωρ

1 .

Now consider a two-round differential trail. The first step imposes restrictions on a0  and the

second on a1. Typically, these restrictions involve only a subset of the components of each of

the vectors. If for every selection vector v0  of the involved components of a0  and every

selection v1  of the involved components of a1 the correlation Cv v1 0

1 0ρ = , the restrictions are said

to be uncorrelated. If this is the case, imposing values upon the involved components of a0

does not restrict the involved components of a1 and vice versa. Hence, the two restrictions are
independent and the prop ratio of the two-round differential trail is equal to the product of the
prop ratios of its two differential steps. This can readily be generalized to more than two rounds.

It is generally infeasible to calculate the exact value of ( )Rp Ω , while it is easy for the restriction

weight. Under the assumption that the restrictions originating from the different steps are not (or
only very weakly) correlated, the prop ratio can be approximated by

( ) ( )Rp
wrΩ Ω≈ −2 . (5.22)

In practice, e.g., for DES, the approximation is very good if the restriction weight is significantly
below n . If ( )wr Ω  is of the order n  or larger, (5.22) can no longer be a valid approximation.
This is due to the inevitable (albeit small) correlations between the restrictions. The prop ratio
multiplied by 2n  is the number of inputs a0  that exhibit the specified differential trail, and it must

therefore be an (even) integer. Of the differential trails  Ω  with a restriction weight ( )wr Ω
above n , only a fraction ( )2 w rn- Ω  can be expected to actually occur for some a0 .

5.5.2.2 Variable key

If the round transformation consists of a fixed transformation followed by the bitwise addition of
the round key, the distribution of differential steps and their restriction weight is independent of
the round key. Since the restriction weight of a differential trail consists of the sum of the
restriction weights of its differential steps, it is independent of the cipher key.
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The reduction of the restrictions imposed upon ai −1  by ( )ω ωρ
i i

i

−  →1  to restrictions on a0

involves the round keys, and hence, the prop ratio of a differential trail is in principle not
independent of the cipher key. Or alternatively, the signs of the correlations between the
different restrictions depend on the round keys. Since for the proposed round transformations
the approximation given by (5.22) is key independent, differential trails with restriction weight
significantly below n  have prop ratios that can be considered independent of the round keys.
Differential trails Ω  with restriction weights ( )wr Ω  above n  will only actually occur for an

expected portion ( )2 w rn- Ω  of the cipher keys.

DC exploits difference propagations ( )ω ωβ
0  → m  with large prop ratios. Since for a given

input value a0  exactly one differential trail is followed, the prop ratio of ( )′ ′a b,  is given by the

sum of the prop ratios of all m-round differential trails with initial difference ′a  and terminal
difference ′b , i.e.,

( ) ( )R Rp p′  → ′ =
= ′ = ′
∑a bi

a b

β

ω ω
Ω

0 1,

.

5.5.2.3 Propagation analysis

The analysis of a round transformation with respect to its difference propagation properties
consists of the investigation of three aspects.

The first aspect concerns the basic entities in DC, i.e., differential trails. The round
transformation can be investigated by identifying the critical multiple-round differential trails, i.e.,
with the lowest restriction weights. For block ciphers it is relevant to check the minimum
restriction weight for differential trails that span all but a few rounds of the block cipher. An
efficient round transformation combines a low work factor with critical restriction weights that
grow rapidly as the number of rounds increases. This type of round transformations can also be
designed by the wide trail strategy, described at the end of this chapter.

The second aspect concerns the approximation of the prop ratio of the differential trails by the
product of the prop ratio of its steps. Specifically for the critical differential trails it must be
checked whether the restrictions imposed by the differential steps can indeed be considered
uncorrelated.

The third aspect concerns the way in which differential trails combine to difference propagations
over multiple rounds. Many differential trails with high restriction weight and equal initial and
terminal difference may result in difference propagation with a large prop ratio. As in the case of
LC, analysis includes the investigation whether the round transformation can give rise to such
clustering. For a well-designed round transformation multiple-round difference propagation with
prop ratios larger than 21−n  are dominated by a single differential trail.

5.5.3 DES cryptanalysis revisited

In this section we match the elements of linear and differential cryptanalysis as described in
Section 5.3 with those of our framework.
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5.5.3.1 Linear cryptanalysis

The multiple-round linear expressions described in [Ma94] correspond to what we call linear

trails. The probability p  that such an expression holds corresponds to ( )( )1

2 p1+ C Ξ , with

( )Cp Ξ  the correlation contribution coefficient of the corresponding linear trail. This implies that

the considered correlation coefficient is assumed to be dominated by a single linear trail. This
assumption is valid because of the large amplitude of the described correlation coefficients on
the one hand and the structure of the DES round transformation on the other hand.

The correlation of the linear trail is independent of the key and consists of the product of the
correlations of its steps. In general, the elements of the correlation matrix of the DES round
transformation are not independent of the round keys. In the described linear trails the actual
independence is caused by the fact that the steps of the described linear trail only involve bits
of a single S-box.

The input-output correlations of F -function of DES can be calculated by applying the rules
given in Section 5.4.2.1. The 32-bit selection vector b at the output of the bit permutation P is
converted into a 32-bit selection vector c at the output of the S-boxes by a simple linear
transformation. The 32-bit selection vector a at the input of the (linear) expansion E gives rise to
a set α  of 2"  48-bit selection vectors after the expansion, with "  the number of neighboring S-
box pairs that are addressed by a.

In the assumption that the round key is all-zero, the correlation between c and a can now be
calculated by simply adding the correlations corresponding to c and all vectors in α . Since the
S-boxes form a juxtaposed mapping, these correlations can be easily calculated from the
correlation matrices of the individual S-boxes. For " > 0  the calculations can be greatly
simplified by recursively reusing intermediate results in computing these correlations. The total
number of calculations can be reduced to less than 16"  multiplications and additions of S-box
correlations.

The effect of a nonzero round key is the multiplication of some of these correlations by –1.
Hence, if " > 0 , the correlation depends on the value of 2"  different linear combinations of
round key bits. If " = 0 , α  only contains a single vector and the correlation is independent of
the key.

5.5.3.2 Differential cryptanalysis

The characteristics with their characteristic probability described in [BiSh91] correspond to what
we call differential trails and their (approximated) prop ratio. The prop ratio of a differential trail
is taken to be the prop ratio of the difference propagation from its initial difference to its terminal
difference. For the DC of DES this is a valid approximation because of the large prop ratios of
the considered differential trails and the structure of the DES round transformation.

For the DES round transformation the distribution of the differential steps and their restriction
weights are not independent of the round keys. This dependence was already recognized in
[BiSh91] where in the analysis the restriction weights of the differential steps are approximated
by an average value. Lars Knudsen has shown that the two-round iterative differential with
approximate prop ratio 1/234 in fact has a prop ratio of either 1/146 or 1/585 depending on the
value of a linear combination of round key bits [Kn93].
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Later, Martin Hellman and Susan Langford published an attack on an 8-round variant of DES
that combines the mechanisms of differential and linear cryptanalysis [HeLa94]. In their attack
they apply plaintext pairs with a specific difference that propagates with prop ratio 1 to a certain
difference in the intermediate state after 3 rounds confined to a subset of its bits. Then a 3-
round linear trail is constructed between the output of round 7 and the input of round 4. The
correlation between certain linear combinations of intermediate bits in the pair is exploited to
gain information about key bits. It can easily be shown that this correlation is the square of the
correlation contribution coefficient of the 3-round linear trail. The number of required plaintext-
ciphertext pairs can be approximated by raising this correlation contribution coefficient to the
power –4 while in simple linear cryptanalysis the required number of pairs is approximately the
critical correlation contribution coefficient to the power –2. This limits the usability of this attack
to ciphers with poor resistance against differential and linear cryptanalysis.

5.6 The wide trail strategy

In this section we present our strategy for the design of round transformations without low-
weight multiple-round linear and differential trails.

For both types of trails, the weight is given by the sum of the weights of its steps. Let the round
transformation consist of three steps: an invertible nonlinear transformation γ , an invertible

linear transformation θ  and the round key addition.

Suppose γ  is a juxtaposed transformation. As explained in Section 5.4.2.1, a correlation

coefficient Cuw
γ  is the product of the corresponding input-output correlation coefficients of the S-

boxes. With the correlation weight of the input-output correlation of an S-box equal to minus the
binary logarithm of its correlation, the correlation weight of a linear step is given by the sum of
the correlation weights of the corresponding input-output correlations of the S-boxes. Similarly,
the restriction weight of a differential step is the sum of the restriction weights of the
corresponding difference propagations of the S-boxes.

An S-box of a specific round is said to be active with respect to a linear trail if its output
selection vector is nonzero for that linear trail. It is said to be active with respect to a differential
trail if its input difference vector is nonzero for that differential trail. Now, both for linear and
differential trails it can be seen that the weight of a trail is the sum of the active S-boxes.

This suggests two possible mechanisms of eliminating low-weight trails:

• Choose S-boxes with difference propagations that have high restriction weight and
with input-output correlations that have high correlation weight.

• Design the round transformation in such a way that only trails with many S-boxes
occur.

The wide trail strategy emphasises the second mechanism. The round transformation must be
designed in such a way that linear (or differential) steps with only few active S-boxes are
followed by linear (or differential) steps with many active S-boxes. This is closely linked to the
concept of diffusion, introduced by Shannon [Sh49] to denote the quantitative spreading of
information. The only requirement for the S-boxes themselves is that their input-output
correlations have a certain minimum correlation weight and that their difference propagations
have a certain minimum restriction weight.

The wide trail strategy does not restrict the nonlinear step to juxtaposed transformations. It can
equally well be applied to the shift-invariant transformations that are treated in the following
chapter.
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5.6.1 Traditional approach

The wide trail strategy contrasts highly with the approach taken by the majority of cryptographic
researchers working in cipher design. This traditional approach is dominated by the structure of
DES and fully concentrates on the S-boxes. This is illustrated by the small width of the linear
and differential trails in DES. Its most effective differential trail contains only 3 S-boxes per 2
rounds, its most effective linear trail only 3 S-boxes per 4 rounds.

Typically, the S-boxes are (tacitly) assumed to be located in the F -function of a Feistel structure
or in some academic round transformation model such as so-called substitution-permutation (or
transposition) networks [AdTa90,Oc93]. These networks consist of the alternation of parallel S-
boxes and bit permutations and were proposed in [Fe75,KaDa79]. The S-boxes are considered
to be the active elements in the cipher and must be designed to eliminate low-weight trails. In
practice this requirement is translated to “criteria” for S-boxes, such as maximum input-output
correlation, maximum prop ratio and diffusion criteria. These criteria impose conflicting
restrictions, and finding S-boxes that have an acceptable score with respect to all them
becomes less difficult when their size grows.

This has led many researchers to the conclusion that resistance against DC and LC is best
realised by adopting large S-boxes. This one-sided point of view plainly ignores the potential of
high diffusion provided by a well-designed round transformation.

5.7 Conclusions

We have given a number of tools to describe and investigate the propagation of differences and
the correlations in Boolean mappings and iterated transformations. An explicit design strategy
has been formulated and motivated.
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