
CSC 609: Cryptography 1

Midterm Solutions

March 19, 2014, 11:15–12:05 PM

There are five problems each worth five points for a total of 25 points. Show
all your work, partial credit will be awarded. Space is provided on the test
for your work; if you use a blue book for additional workspace, sign it and
return it with the test. No notes, no collaboration.

Name:

Problem Credit

1

2

3

4

5

Total

CSC 609: Cryptography 2

1. Unix passwords: To log into your unix account you must have a pass-
word. In order to keep the password safe, Unix does not store the
password, or the password encrypted, rather it uses the password as a
key to a modified DES algorithm to encrypt the value 0, and it stores
the result. The modification is dependent on a “salt”, a two character
value that is stored with the username. That is, what Unix stores is
the triple,

(username, salt , DES
salt ,password(0))

To login, the system looks up the username, gets the salt, recomputes
the encryption of 0 and checks the result against what is stored.

Discuss why Unix does it this way, rather than storing the password
encrypted. Give three reasons that would support the Unix method
over storing the encrypted password.

What purpose is the salt? Give two reasons.

Solution

(a) Encryption of passwords requires a master key, which is a problem.
Hashing has no key.

(b) A master key (encryption) must be stored on the machine, intro-
duces a disclosure vulnerability. Hashing requires no information
be kept secret.

(c) The master key might be lost, leading to inability of anyone to log
in. Hashing does not have secret information to loose.

(d) If the master key is compromised, all passwords are known. Using
hashing, each password can only be compromised separately,

(e) Disclosure of the encrypted password database allows from a brute
force attack against the master, eventually disclosing all pass-
words. The disclosure of the password database under hashing
only gives an attack on each password individually.

(f) Using encryption the password must be present at the same place
as the master key, to do the encryption. Usually this means that
password must be handled by more software. With hashing the
software collecting the password can immediately hash it and dis-
card the password, so it is handled by less software.

CSC 609: Cryptography 3

(g) (Continuing above) Insider attacks are more di�cult. The pass-
word is never seen by the operating system, only specialized soft-
ware that collect and hash the password.

(h) Hashing gives added security in a remote login situation, because
only the hash needs to be passed between systems for authenti-
cation. Using encryption, the actual key must be passed between
systems. (Although this makes the hash a password substitute,
the user might be using the same password for something entirely
di↵erent, and hashing contains this sort of error.)

(i) Salt: prevents disclosure of which accounts on a machine use the
same password, and therefore which users are possibly the same.

(j) Salt: prevents disclosure or which users across di↵erent machines
use the same password, giving information about who is who, or
suggesting attacks outside of the entire system against particular
users using weaker systems whose success can compromise the
computer system.

(k) Salt: adds entropy to the user’s password.

(l) Salt: makes dictionary attacks (or rainbow tables) less attractive
by requiring a di↵erent table for each salt.

Rubric: I needed to see a reference to the problems of handling a mas-
ter key; I needed to see an awareness of cracking the entire password
database versus cracking a single password; I wanted to see a reference
to the limited handling of the password to just the password collection
software; I needed to see that salt prevents information disclosure by
making the same password look di↵erent.

2. OFB/ECB: The OFB mode of encryption creates a stream of pseudo-
random blocks by iteratively using an encryption by a secret key, and
encrypts by XOR’ing with the resulting blocks:

R1 = EK(IV)

Ri = EK(Ri�1), i = 1, 2, . . .

Ci = Pi �Ri, i = 1, 2, . . .

CSC 609: Cryptography 4

This makes OFB susceptible to manipulation through the XOR. In
order to avoid that, we can cascade an ECB mode encryption with a
second key:

Ci = EK0(Pi �Ri), i = 1, 2, . . .

(a) Show that this now is non-malleable, i.e., it is not possible to
change Ci and get a known change of Pi.

(b) Give the decryption equation.

(c) Show (use pseudo-code if needed for clarity) that the use of a
second key does not give two keys’ worth of strength. Hint: Meet
in the middle attack; space-time trade-o↵.

Solution

Decryption algorithm:

Ci = EK0(Pi �Ri) encryption equation

DK0(Ci) = DK0(EK0(Pi �Ri)) apply DK0 to both sides

DK0(Ci) = Pi �Ri encryption and decryption cancel

Pi = DK0(Ci)�Ri move Ri to other side of equals

If D is non-malleable, then by the decryption algorithm, the Pi can-
not be reliably changed by changes in Ci. It depends on the non-
malleability of D.

To use a meet-in-the-middle attack for the known pair (Pi, Ci),

(a) Given block size b, allocate a table T of size 2b. For each K:

i. Set T (EK
i�1(EK(IV))) = K.

(b) For each K 0:

i. Calculate x = DK0(Ci) � Pi and look up in the table T the
key that gives this value x: K⇤ = T (x).

ii. Check that x is a valid entry in the table. It could be T (x) is
in fact empty; check by recalculating x = EK⇤ i�1(EK⇤(IV)).
If valid, return (K⇤, K 0) as a candidate key.

CSC 609: Cryptography 5

If the keys K and K 0 are k bits, and the encryption block size is b bits,
then step one gives a table of size 2b and runs in time 2k.

The second step runs through the loop 2k times and each time is O(1).
The results will include the correct key (K,K 0) as well as a small num-
ber r of spurious keys. Check against an additional plaintext-ciphertext
pair to eliminate spurious keys.

The total time is 2k + 2k = 2k+1 with 2b space.

Rubric: A clearly stated decryption equation was a must; it must be
noted that non-malleability follows from the non-malleability of the
ECB encryption; meet-in-the-middle should refer to a table of values
based on one of the two keys K or K 0, and a loop over the other key
looking for a match (preferably given by an equation).

3. Transposition ciphers: A transposition cipher uses a rearranging of
letters in a message to encrypt the message. An example would be a
columnar cipher: choose an integer k and a permutation of the numbers
1, . . . , k; write the message from left to right with k letters on a line;
then read o↵ the ciphertext by working down columns, beginning with
the column marked 1, then 2, etc.

Example: this is a cipher with key 3,1,4,2 would write:

3 1 4 2
t h i s
i s a c
i p h e
r

and give ciphertext: HSPSCETIIRIAH.

How can you break a columnar cipher?

You must tell of statistics and their application and provide a notion of
the amount of text and time needed to recover the key. You must tell of
particular constraints on the message and how those can be exploited.

Solution:

The brute force would be to try di↵erence k0s and for each k the k!
arrangements of the columns. However, what I was hoping people
would mention is the frequency of letter pairs. Certain letter pairs such

CSC 609: Cryptography 6

as th occur frequently, and rearranging the columns to make these pairs
would help the search. Counting the gaps between t and h in the cipher
text and trying to find I bias in the gap length might help identify k
quicker than brute force.

Rubric: Reference to letter frequencies and letter-pair frequencies de-
sired; use of brute force search of trying various k is expected; reference
to the key complexity, k and then the combinatorics of scrambling k
columns, is desired.

4. Challenge-response: A challenge-response protocol proves knowledge
of a password without actually showing the password by answering a
question that only the password holder could answer. For instance,
the challenge is a random number C and the response should be the
encryption of the chanllege by the secret key K, EK(C). If the respon-
dent answers with this value, it is inferred that the respondent knows
K.

Note well: The challenge must be fresh, that is, never used before. Else
an eavesdropper could have witnessed the challenge and the response
and simply replays what it has seen. This is called a replay attack.

The Microsoft CHAP protocol used a challenge-response protocol but
it was flawed and allowed the easy cracking of user passwords.

The Microsoft user password P is 128 bits. Three sub-keys are formed
by concatenating 40 bits of zeros to the user password and then dividing
the result into three 56 bit sub-keys. The response was formed by
DES encrypting the challenge with each of the three resulting sub-keys,
K1, K2 and K3:

K1|K2|K3 = P |00 . . . 0
R = DESK1(C)|DESK2(C)|DESK3(C)

This was claimed to have 128 bit strength, but it does not. Show how
to recover the user password P from a single challenge-response pair
(C,R) in much less than 2128 work, and give the exact amount of work
required.

Solution:

CSC 609: Cryptography 7

Given a challenge-response pair (C,R), break up R into thirds, R =
R1|R2|R3 where each Ri is 64 bits, and solve by bruit-force the following
three equations:

Ri = DESKi(C)

Note however that the search for K3 can be constrained by the format
K3 = K 0

3|00 . . . 0 where K 0
3 is only 8 bits.

The total time to bruit-force is the sum of individual search spaces or:

256 + 256 + 28 = 256(1 + 1 + 1/248) ⇠ 257

approximately. So the entire 128 bit key P can be recovered in time
257.

Rubric: Must notice that each of the three sub-keys can be forced
independently; should do the math for work factor.

5. Perfect secrecy: Recall the definition of Shannon perfect secrecy.

Note: Problem revised!

Consider this cipher based on geometry. Let r1, r2, . . . be a random se-
quence of mod 27 integers, and let the plaintext be a sequence p1, p2, . . .
of mod 27 numbers. (They can in fact be the letters a through z
mapped to the numbers 0 through 25 and the space mapped to 26.)

The encryption is: Plot the points (1, pi) and (2, ri) in the x-y plane.
Draw a straight line through those two points and find the line’s inter-
section with the y-axis, (0, ĉ). Let ci = ĉ mod 27.

(a) Write the equations for encryption and decryption. The equations
should be in the form of a single function.

(b) Show that the cipher has perfect secrecy, giving in your answer
the assumptions on the sequence ri.

(c) Suppose I want to “prove” to an adversary that the message
encrypted was not p1, p2, . . . but some other message p01, p

0
2,

What (phony) squence of “random” numbers should I claim as
the ri to support my subterfuge.

CSC 609: Cryptography 8

Solutions:

Encryption:

ci = pi + (pi � ri) mod 27

= 2pi � ri mod 27

Decryption:

2pi = ci + ri mod 27

pi = 14 (ci + ri) mod 27

Note: the original problem was mod 26. This does not give a unique
decryption since both pi and pi + 13 would give the same ci.

Assuming the ri are chosen independently and uniformly then the sys-
tem has perfect secrecy. Formally,

P(p | c) = P(c | p)P(p)/P(c) Bayes

= P(r)P(p)/P(c) unique r such that Er(p) = c

= P(r)P(p)/
X

p0
P(c|p0)P(p0) law of total probability

= P(r)P(p)/
X

p0
P(r0)P(p0) unique r0 such that Er0(p0) = c

= P(p)/
X

p0
P(p0) P(r0) = P(r) for all r0

= P(p) denominator sums to 1.

You can also cite the standard result that for plaintext, cipher text, and
key space all of equal size, perfect secrecy follows from equal probability
on the key space and for every c and p there is a unique key r such
that c = Er(p).

Given a crypto text ci, the sequence ri = 2pi0 � ci mod 27 will decrypt
the crypto text to pi

0.

Rubric: The decryption equation had to be sensible; the idea of always
being able to calculate r to fit p0 had to be clear; the independence and
uniform probably on the r had to be referenced.

