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Recap

• Until now, we talked about confidentiality : how to keep data secret

• Two long-known problems with the secret key cryptography:

? Key distribution: Diffie-Hellman and derivatives

? Authentication: topic of today’s talk
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How to prove that you are who you are?

• Prove that you own something

? Classically: passport, driver license, key

• Prove that you know something

? Classically: password

• Prove that you are something

? Semi-classically: biometrics, picture
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Cryptographic approach

• Proving that you are something almost impossible

? Biometrics is often deceiving

? How to do it by email?

• Proving that you own something: OK, but own what?

? Own a book with passwords? This is then proving that you know
something (passwords!)

? How to do it by email?

• Proving knowledge: this is cryptographic approach
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Major Concept: Proofs of knowledge

• Intuition: you “are” P if you know her secret key

• You prove the knowledge of this secret to the verifier

• All possible verifiers V know the public key, and can verify the proof,
based on that
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Proofs of Knowledge: Security Criteria

• Criterion 1 (correctness):

Pr[V accepts P ’s proof] =

1− ε , P knows secret

ε , P does not know secret .

ε is “small”

• Criterion 2 (privacy):

? After (possibly many) interactions with a prover, V should not be
able to pose as P to the third parties
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Identification vs Authentication

Identification: You identify yourself as Peggy P , by proving you know her
secret. Verifier V must not be able to replay your role with some other
verifier (non-transferability)

Authentication: You bind some data to yourself, so that the verifier can
later prove to others that this document was authenticated by you (you
cannot repudiate signing: non-repudiation).

Non-repudiation 6= Non-transferability!

• MACs: non-transferability, no non-repudiation
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Signatures: shortly

• You must authenticate some data m as coming from you

? Everybody can verify that the data is from you

• Important example: data = legal documents

? Signature must be binding

? You may get sued based on your signature. Several countries have
digital signature laws
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Signatures: shortly

• Signing: a mathematical function of the data m and Alice’s secret key
secret skA,

s = sign(skA, m)

• Verification: function that accepts if s was signed by Alice:

s = sign(skA, m) if and only if ver(pkA, m, s) = 1

• Initial idea (1975–1980): For a public key cryptosystem, use its secret
key for signing and the public key for verification
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“Vanilla” RSA Signature Scheme

• Public key: (e, n), n = pq, where p, q are large primes and e is a
public exponent

• Secret key: (p, q, d), where d is the secret exponent

• Signing m: s = md mod n

• Verification: Check whether m =? se mod n

• Not secure: md
1 ·m

d
2 = (m1m2)

d
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Identification protocols: idea (1/2)

• A proves her identity to B

• A must know the secret, it is not sufficient if she replays an old session

? Cannot be achieved if B’s actions are deterministic

• B must not be able to replay the protocol to C by taking A’s role

? Cannot be achieved if A’s actions are deterministic

• Thus, an identification protocol must include some randomness from
both A and B
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Identification protocols: idea (2/2)

• To have mutual randomness, A (resp. B) must send a message that
depends on B’s (resp. A’s) random coins

• General idea, challenge-response:

? A sends a random-looking element to B,

? B challenges A with a random message,

? A responds with a message that shows that she knows the secret

• Thus, both randomness and interactivity are needed
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Randomness and interactivity

Very important: randomness and interactivity are needed to achieve
many cryptographic goals!

Signing Encryption Identification
Randomness No∗ Yes Yes
Interactivity No No Yes

∗ Many signature schemes still use randomness (only in a very few set-
tings it is known how to make deterministic and yet secure signature
schemes)
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Identification Protocols: Usage Scenarios

• Smart doors: use smart-card to get in

• ATM: identify yourself as a legal customer

• Different websites, e-banking

Common problem: must avoid re-execution of the protocol by somebody
else
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3-round Proofs of Knowledge: History

• The first known three-move (challenge-response) proof of knowledge
is by Fiat and Shamir (based on the difficulty of factoring)

• . . . extended later by Fiat, Feige and Shamir (1988) and finally by Feige
and Shamir (1990) that defined the notion of “witness hiding”.

• Other desirable objectives of identification protocols are: special
honest-verifier zero-knowledge, collision intractability, proofs of knowl-
edge, special soundness. A witness hiding proof of knowledge can be
used as a secure identification scheme.
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Notation

• If A is an algorithm, then the notation

a← A(b)

refers to the computation of the output “a”, on input bit string “b”.

• For a set V , v ← V denotes uniform and random selection of an
element v from V .

• Red variables are known only to A. Blue variables are known only to
B, green variables are known to both from the start of the protocol
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Faulty First Idea for Protocol

• Use RSA-based authentication, where w (witness) is the secret key of
A and e is the corresponding public key, and c is a random challenge:

c

z ← cw mod n

c
?
= ze mod n

A B

z

c← {0,1}∗

This prevents A from replaying the protocol.

Still bad. Why?
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Faulty First Idea for Protocol

• Use RSA-based authentication, where w (witness) is the secret key of
A and e is the corresponding public key, and c is a random challenge:

c

z ← cw mod n

c
?
= ze mod n

A B

z

c← {0,1}∗

Weakness: the signed texts are chosen solely by B, and this may allow
the verifier (B) to mount chosen-text attacks.
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Σ-Protocols. General Setting

• Σ-protocol is a three-move protocol between two parties, “prover” A

and “verifier” B, where the prover acts first.

• The prover and verifier are modelled as probabilistic polynomial time
interactive Turing machines (“efficient algorithms”).

• Furthermore, a honest verifier is expected to send only uniformly and
randomly chosen bits.

• Such protocol is denoted by (A, B).
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Σ-Protocols. Example

• Secret key is w, public key is v = gw

• There is a relation R between w and v:

R(v, w) = 1 ⇐⇒ v = gw

• We need a Σ-protocol for proving that A knows w, s.t. R(v, w) = 1,
that is, such that gw = v
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Σ-Protocols. Inputs (1/2)

• Both principals know v (the public key of A)

• Only A knows w (the secret key /witness of A)

• RA [resp RB] is the random secret input of A [resp B].

? Recall that randomness was necessary
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Σ-Protocols. Inputs (2/2)

• The pair (v, w) ∈ R, where R ⊂ {0,1}∗×{0,1}∗ is a publicly known,
typically (but not necessary) efficiently verifiable relation. Let

RW (v) := {w : (v, w) ∈ R} and

RX := {v : RW (v) 6= ∅} .

• Intuitively: RW (v) is the set of secret keys corresponding to public key
v, and RX is the set of secret keys that have a corresponding public
key.

• Simplified presentation: all secret keys have a public key, i.e., RX is
the set of public keys. (For some well-known schemes like the Guillou-
Quisquater, this is not the case!)
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Σ-Protocols. Description

a

z

c

A B

φ(v, a, c, z)
?
= accept

c← c(RB)

a← a(v, w, RA)

z ← z(v, w, RA, c)

a: initial message. tA = |a| is the authentication length — PPT algorithm
c: challenge, c← {0,1}tRB .
z: reply (may reuse a) — PPT algorithm.

Finally, B invokes a polynomial time computable predicate φ to check
whether the conversation (x, a, c, z) is accepting.
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Recall: Discrete Logarithm Problem, Syntax

• Let Gq be a group of prime order q. Let g ∈ Gq, g 6= 1, then g has
order q. For each h ∈ Gq there is a unique w ∈ Zq such that gw = h.
w is called the discrete logarithm of h w.r.t. g.

• Let G be a family of groups of prime order such that (a) the group
operations can be performed efficiently, (b) group elements can be
efficiently sampled with uniform distribution and (c) group membership
as well as equality of group members can be efficiently tested.
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Recall: Discrete Logarithm Problem, Semantics

• Let Gen be a PPT generator algorithm that on input 1k outputs

? A description of a group Gq ∈ G (including the prime group order
q), and

? Two random elements g 6= 1, h from Gq (alternatively, Gen can
choose random elements g 6= 1, w ∈ Zq and then set h = gw).

Elements from Gq are represented with k bits.

• Gen is invulnerable if it is infeasible, given just a string v generated
according to Gen, to compute a witness w.

T-79.159 Cryptography and Data Security, 10.03.2004 Lecture 7: Authentication, Helger Lipmaa

25



Discrete Logarithm Problem, Example

• If Gq is a subgroup of order q in Z∗p, then the description of Gq consists
of two primes p and q. Usually, |p| > 600 and |q| > 160.

• Group family consists of all groups Z∗p, with Gq being a subgroup of
“relevant” size. The bit-length |q| of q is the security parameter k

• “Feasible” algorithms work in time that is polynomial in k

• An invulnerable generator outputs a generator g of a large subgroup
Gq of order q in some group Z∗p, s.t. |q| = k
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Schnorr Identification Scheme (1/2)

• Let G be a family of groups.

• Let (Gq, g, w)← Gen(1k) and let h := gw.

• Let v = (Gq, g, h) be the common input, w be the private input to A.

? The corresponding (unique) witness is w ∈ Zq such that gw = h.
The relation R consists of all such pairs, R = (gw, w).
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Schnorr Identification Scheme (2/2)

Let G be a family of groups. Let (Gq, g, w) ← Gen(1k) and let h := gw.
Let v = (Gq, g, h) be the common input, w is the private input to A.

A B

c c← {0,1}80

gz ?
= ahcz ← cw + r

r ← Gq; a := gr a

z

Check : gz = gcw+r = gr(gw)c = ahc.
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Schnorr: Efficiency

• Schnorr’s scheme was originally designed for smart-card applications,
both communication and on-line computation are minimised.

• Communication complexity: ≈ |p|+ t + |q|.

• On-line: one |q|×80 bit multiplication (and one t-bit addition). Random
number generation and exponentiation can be done off-line, during the
processor’s idle time.

• If the scheme is used only for identification, where the prover has to
reply to the challenge in a few seconds, the security parameter can be
lowered, say, to 48 bits.
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Security Properties: Special Soundness (1/2)

• Let v ∈ {0,1}∗ be a string. A pair of accepting conversations
(v, a, c, z) and (v, a, c′, z′) with c 6= c′ is called a collision.

? Collision occurs if the same person starts identification two times
with the same first message, is answered by a different second
message, and is accepted both times

• Σ-protocol (A, B) has the special soundness property if the following
holds:

? Given a collision for a public key v, there exists an efficient algo-
rithm that on input of a collision for v outputs a witness w such that
(v, w) ∈ R.

(Given security definitions are “simplified”)
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Special Soundness (2/2)

• Intuitively, special soundness guarantees that A does not have an in-
centive to start the same protocol twice with the same message.

• She must include some randomness to not reveal her secret.

T-79.159 Cryptography and Data Security, 10.03.2004 Lecture 7: Authentication, Helger Lipmaa

31



Another major concept: Zero-Knowledge (shortly)

• A and B execute some protocol on common input v.

• B wants to verify that A holds a witness w (a proof of a theorem, a
secret key, . . . ).

• Zero-knowledge means roughly that no matter how B behaves as a
verifier, he will not learn any information that it could not have com-
puted itself, even before the start of the protocol

• ZK is usually proven by simulating A. (More in a later lecture)
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Zero-Knowledge: Limitations

• ZK protocols require more than three moves unless the underlying lan-
guage is trivial (in BPP). Thus, in principle, none of the three-move
protocols handled here can be ZK.

• Four-move ZK protocols exist.

• The very efficient procedure for turning identification schemes into sig-
nature schemes, presented later, cannot be used if the identification
scheme is ZK (the simulation used for proving the ZK-ness can be
used to forge the signature). Thus, a real ZK protocol cannot be used
to construct a signature scheme.
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Honest Verifier ZK

• A party is honest/nonmalicious/curious-but-honest when he follows the
protocol (though tries to deduce new information from it)

• (A, B) is honest verifier zero-knowledge if it is ZK given that B is
honest.

• HVZK protocols are useful, since the general ZK protocols are far less
efficient. Also, HVZK is sufficient in a wide range of applications.

• There exist transformation methods for turning certain classes of
HVZK protocols into ZK ones.

T-79.159 Cryptography and Data Security, 10.03.2004 Lecture 7: Authentication, Helger Lipmaa

34



Witness Hiding

• Let (A, B) be any Σ-protocol for some relation R

• Witness hiding: no matter how maliciously the enemy interrogates an
honest prover, it gets at most a negligible advantage when trying to
compute any w′0 in RW (v0), compared to the situation before the start
of the protocol

• ZK guarantees that no information whatsoever is revealed in case of
any fixed common input v0

• Difference: Witness hiding only guarantees that no useful information
is given away in the average

T-79.159 Cryptography and Data Security, 10.03.2004 Lecture 7: Authentication, Helger Lipmaa

35



Schnorr scheme: Special Soundness

• Given two accepting conversations (v, a, c, z) and (v, a, c′, z′)

? gz = ahc and gz′ = ahc′

with c 6= c′, w is computed as

w ←
z − z′

c− c′
,

since
z − z′

c− c′
=

(cw + r)− (c′w + r)

c− c′
=

(c− c′)w

c− c′
.

• Thus, the Schnorr scheme satisfies special soundness.
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Schnorr scheme: “Special” HVZK

• B must be able to generate an accepting conversation without com-
municating with Alice

? With the same distribution as “real” conversations

• Select c, z ← Zq, compute a ← gz · h−c. Then (v, a, c, z) is an ac-
cepting conversation with the correct distribution.

• It was not known if Schnorr’s scheme is witness hiding. Very recently,
Schnorr’s scheme’s security against impersonation has been finally
proven.

M. Bellare and A. Palacio, “GQ and Schnorr Identification Schemes: Proofs of Secu-

rity against Impersonation under Active and Concurrent Attacks Authors”, CRYPTO

2002 (august 2002)
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Concept: random oracle

• Random oracle H = random function

? For every x, H(x) is randomly drawn from the output domain

• Implementation:

? H is a subroutine with initially empty database (a, c). H(a) returns
c if (a, c) is in the database for some c. Otherwise H generates
uniformly a new c, adds (a, c) to the database and returns newly
generated c.

• In practice, a secure hash function (SHA1) is used
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Conversion: Σ-protocol to Signature Scheme

Step I: Assume H is a random oracle. Σ-protocols can be converted into
signature schemes by using the next general method:

a

z

c

A B

φ(v, a, c, z) accepts?

c← H(a)

a← a(v, w, RA)

z ← z(v, w, RA, c)

Signature: (a, H(a), z).

c is a random string that depends provably on the value a (exactly what
was needed from the c!).
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Conversion to Signature Scheme

Step II: A can compute c = H(a) herself and thus, interaction with B

becomes unnecessary!

(a, z)

φ(v, a, H(a), z) accepts?

z ← z(v, w, RA, H(a))

a← a(v, w, RA)
A B
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Conversion to Signature Scheme

Step III: Introduce a message m to be signed:

a← a(v, w, RA)
A B

(m, a, c, z)
z ← z(v, w, RA, c)

c← H(m, a)

φ(v, a, c, z) accepts?
c

?
= H(m, a)
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Schnorr Signature Scheme

Let G be a family of groups. Let

(Gq, w, h)← Gen(1k)

and let h := gw. Let v = (Gq, g, h) be the common input, w is the private
input to A.

(m.a, c, z)

A B

z ← cw + r

c← H(m, a)

r ← Zq; a := gr

c
?
= H(m, a)

gz ?
= ahc

Check: gz = gcw+r = gr(gw)c = gwhc = ahc.
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SSS: Efficiency

• A has to perform on-line one H evaluation, one 160-bit multiplication
and one addition.

• Communication can be reduced: A sends (m, c, z) and B verifies that
s = H(m, gzh−c).
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Caveats (1/2)

• H can be chosen to be a standard hash function

• In such case the conversion scheme looses provable security

• For some concrete identification schemes, the conversion works if H

is the random oracle, but not for any instantiation of H by a real hash
function. (Goldwasser, Tauman, 2003)
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Caveats (2/2)

• If both identification scheme and signature are used in the same
smart-card, some care has to be taken. Namely, during the identifi-
cation scheme B can output as the challenge c = H(m, a) for m

chosen by her. After receiving z from A, B will own a legitimate signa-
ture (a, c, z) of m.

• Solution (Schnorr scheme): A sends the 80 least significant bits of a

during the step 1. There is no known attack in this case.
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More Applications

Aside from identification and signing, Σ-protocols are also extensively
used in the following areas:

• Blind signature/digital cash protocols. For example, the Pointcheval-
Stern provably secure blind signatures are based on the Okamoto-
Schnorr identification scheme.

• Electronic voting. For example, the Cramer-Gennaro-Schoenmakers
secure and optimally efficient election scheme is based on the Schnorr
identification scheme.
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DSA: Digital Signature Algorithm (Standard)

• DSA — a variation of Schnorr’s scheme

• g — a generator of Gq, of order q; Gq is a subgroup of Z∗p

• Schnorr: Signature (c, z) = (H(m, gr mod q), H(m, gr

mod q)w + r), verify that c = H(m, gzh−c mod q)

• DSA: Define a ← (gr mod p) mod q, z = (H(m) + wa)r−1

mod q. Signature is (a, z)

• Verification: Accept if (gH(m)z−1
haz−1

mod p) mod q = a
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Deterministic Signature Algorithms (1/2)

• If a signature scheme is constructed from identification scheme, it must
have inherent randomness

• But there is no reason for a signature scheme to be randomised!

• Recent idea: using efficiently computable bilinear maps ê (Boneh,
Lynn, Shacham, 2001)

• Existence of such is known only in only a few cryptographically inter-
esting groups (super-singular elliptic curves, e.g. — Weil and Tate
pairings)
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Deterministic Signature Algorithms (2/2)

• Assume ê(ga, hb) = ê(g, h)ab for any g, h, a, b, and that it is hard to
find gab, given g, ga, gb (computational Diffie-Hellman assumption)

• For secret k. w, public k. v = gw and message m, the signature is mw

• Verification: Check that ê(g, mw) = ê(v, m).
Really, ê(g, mw) = ê(g, m)w = ê(gw, m)

• Benefit: signature is only one group element ≈ 80 bits. Signing (one
exponentiation) is fast

• Drawback: computing ê is ≈ 10x slower than computing the exponen-
tiation
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Gap Diffie-Hellman Assumption (1/3)

• DH problem: given (g, ga, gb), compute gab

• DDH problem: given (g, ga, gb, h), decide whether h = gab

• Gap DH assumption in group G: DH is hard but DDH is easy in group
G
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Gap Diffie-Hellman Assumption (2/3)

• BLS signature scheme: given g, h = gx, m, compute signature as
s = mx.

• m = gy for some y, thus given (g, x, gy) compute gxy

? Forging signature: given (g, gx, gy), compute gxy — DH must be
hard

• Verification: given (g, gx, gy, s), verify s = gxy???

? Decisional DH must be easy!

• Thus, Gap DH assumption!
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Gap Diffie-Hellman Assumption (2/3)

• BLS signature scheme — DH hard, DDH easy

• ElGamal, DH key exchange — DDH hard

• No controversy, just use different groups!
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Other Signature Algorithms

• ECDSA: As DSA but works on elliptic curve groups

• RSA signature scheme: by itself insecure. Can be made secure by
using the PSS conversion scheme

• ESIGN, . . . — many other alternatives
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