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Preface

These notes were written for a combined undergraduate/graduate cryptography course. (Csc609/507
Spring 2003.) This material can mostly be found in the text assigned to the graduate students,
Codes and Cryptography by Dominic Welsh, but not in the text assigned to the undergraduates,
Introduction to Cryptography with Coding Theory by Trappe and Washington. These notes are
meant to fill the gap for the undergraduate students. We shall cover Welsh’s material but not in
the depth found in the book.

Furthermore, we give the relationship of noisy channels to cryptography. One aspect of this is
found at the end of Welsh’s text in the wire-tap channel. The other aspect, oblivious transfer, has
probably not yet be presented in the context of an introductory cryptography course.

Motivation

We have considered the question of secure communication where the channel of communication
is noiseless. Alice and Bob communicate through a public channel with Eve eavesdropping on
the conversation. All parties hear the same information but due to secret information shared by
Alice and Bob, Eve cannot understand their conversation. The security of this model was given by
Shannon’s theory of perfect secrecy, H(M |C) = H(M), the entropy of the message space does not
decrease due to the revelation of ciphertext.

A one-time pad is a perfect cipher. Few other ciphers are perfect. Most can be broken by exhaustive
search of the key space. Other approaches, depending upon computational complexity gaps (which
are currently conjectured but unproven) are even more imperfect, — Trappe and Washington point
out that H(M |C) = 0 for RSA! Semanatic security deals with secure communication without
complexity assumptions, relating security to communication theory. That is why we are studying
this.
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Binary Symmetric Channel

Our model of a communication channel is a box which accepts input symbols and for each input
symbol admitted, emits an output symbol with a certain probability. The binary symmetric channel
accepts a 0 or 1 input and outputs 0 or 1, usually the same symbol as the input, however there is
a probability p of error whereby a 0 is changed to a 1 or a 1 changed to a 0.

The channel is memoryless. A symbol is inverted with probability p independent of the history of
symbols or errors. For instance, the probability of two consecutive symbols being transmitted with
error is p2. We can summarize the probabilities as a matrix of conditional probabilities:

[aij ] = Prob(σj output |σ′i input)

for all output symbols in the output symbol set σj ∈ ΣO and all input symbols in the input symbol
set σ′i ∈ ΣI . [

1− p p
p 1− p

]

There is also a cute little drawing of the channel with nodes and arrows, but I’m not currently in
the mood to render it into LaTeX’s picture mode.

Binary Erasure Channel

We introduce a channel which drops bits with probability ε but otherwise transmits them correctly.
The input alphabet is ΣI = { 0, 1 }, the output alphabet is ΣO = { 0, 1, ∗ } and the channel matrix
is: [

1− ε 0 ε
0 1− ε ε

]
Again, I should draw this for you in LaTeX picture mode, but it would take some time.

Encoding of source symbols

In order to reduce error, or at least detect it, the message is first encoded into a block of input
symbols. For simplicity, let us assume that our messages are l length strings of 0 and 1, and that
we encode into n length strings of 0 and 1 according to some encoding rule,

e : { 0, 1 }l → { 0, 1 }n, l ≤ n.

The range of the function e are the codewords of the encoding and we denote it by Mn. The code
rate is the amount of bit expansion the code entails, calculated by log2 |Mn|/n.

In class we considered several coding rules including the identity rule, parity, exclusive-or encoding

2



and the repetition encoding,
e : { 0, 1 } → { 0, 1 }n

0 7→
n︷ ︸︸ ︷

0 . . . 0

1 7→
n︷ ︸︸ ︷

1 . . . 1

If we consider a decoding rule which accepts only
n︷ ︸︸ ︷

0 . . . 0 and
n︷ ︸︸ ︷

1 . . . 1, discarding anything else. The
error probability for a binary symmetric channel will be 1/pn, the probability of flipping all n bits.
Hence given an arbitrarily small error probability ε > 0, letting n ≥ log2 ε/ log2 p we can achieve
that error probability with a code rate of 1/n.

The Shannon Noisy Coding Theorem formalizes this observation, giving the theoretical best code
rate for a given channel capacity, where channel capacity is related to the channel noise.

Decoding of channel codes

A codeword m ∈Mn will be received at the other end of the binary symmetric channel as possibly
any n bit 0, 1 string. The decoding rule must choose a codeword for each such string, including
the possibility of a null codeword, meaning that the received code block is to be discarded.

The Ideal Observer would ask what is the most likely codeword m ∈ Mn sent given the observed
channel output σ,

max
m∈Mn

Prob(m |σ)

and decode σ as the maximizing m. This rule requires knowledge of both the channel structure
and the probability distribution on Mn. For instance, suppose σ is very close to a codeword m,
however the probability of m ever being sent is zero. Then σ should not be decoded to m, but to
some other codeword m′, even if m′ is more dissimilar to σ.

The Maximum Likelihood rule instead maximizes the probability of observing σ assuming that the
codeword was sent,

max
m∈Mn

Prob(σ |m)

and decode σ as the maximizing m. This calculation does not require knowledge of the distribution
of Mn, only of the channel structure.

Recall Bayes Theorem,

Prob(m |σ) =
Prob(σ |m)Prob(m)

Prob(σ)
.

For the case of equally likely codewords, the m maximizing Prob(σ |m) also maximizes Prob(m |σ),
for a fixed σ. Hence in the case of equally likely codewords, the Ideal Observer is the same as the
Maximum Likelihood.
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Hamming distance

Given two equal length strings over the same alphabet, define the Hamming distance to be the
number of locations where the strings disagree. For instance, the Hamming distance from 00110
to 10100 is 2. Note that the Hamming distance, d(σ, τ), satisfies the usual axioms for a distance
function,

1. d(σ, τ) ≥ 0 with equality if and only if σ = τ .

2. Symmetry: d(σ, τ) = d(τ, σ).

3. Triangle inequality: for all γ, d(σ, τ) ≤ d(σ, γ) + d(γ, τ).

For the binary symmetric channel with p ≤ 1/2, the maximum likelihood rule consists of finding the
codeword closest in Hamming distance to the observed channel output. (If p > 1/2, complement
all output bits and now the channel error is (1− p) ≤ 1/2.)

Channel capacity

We now measure the capacity of a channel. Recall our definition of information. Given distributions
S and T , the information of S given by T is defined as,

I(S|T ) = H(S)−H(S|T )
= H(S) +H(T )−H(S, T )
= H(T )−H(T |S)
= I(T |S)

Let S be the distribution of the input to the channel and T the distribution of the output of the
channel. We define channel capacity by maximizing I(S|T ) over all input sources S.

For the binary symmetric channel, the source is a 0, 1 bit source of bias α. By symmetry, I(S|T )
will be symmetric around α = 1/2. We will guess that it is a convex function reaching its maximum
at α = 1/2. This will save us a lot of fumbling around. Of course, this guess is correct.

For the binary symmetric channel, the conditional entropy is,

H(S|T ) = −(p(0, 0) log p(0|0) + p(0, 1) log p(0|1) + p(1, 0) log p(1|0) + p(1, 1) log p(1|1))
= −((1− p)/2 log(1− p) + p/2 log p+ p/2 log p+ (1− p)/2 log(1− p))
= −(1− p) log(1− p)− p log p.

So CBSC(p), the channel capacity for a binary symmetric channel with error rate p, is,

CBSC(p) = H(S)−H(S|T ) = 1 + p log p+ (1− p) log(1− p)
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For the binary erasure channel we make the same, correct, assumption that an unbiased bit source
will maximize the channel capacity and calculate,

H(S|T ) = −(p(0, 0) log p(0|0) + p(0, ∗) log p(0|∗) + p(1, ∗) log p(1|∗) + p(1, 1) log p(1|1))
= −((1− ε)/2 log 1 + ε/2 log 1/2 + ε/2 log 1/2 + (1− ε)/2 log 1)
= ε

So CBEC(ε), the channel capacity of a binary erasure channel with erasure rate ε, is,

CBEC(ε) = H(S)−H(S|T ) = 1− ε.

Shannon noisy coding theorem

We state the version given in Welsh’s book, without proof. Define the maximum error probability
of a code to be,

ê = max
m∈Mn

Prob(error |m input)

Theorem 1 (Shannon noisy coding theorem) Consider a binary symmetric channel of capac-
ity C and a desired code rate of R where 0 < R < C. There exists a sequence of codes of code rate
R and codeword length n, {Mn}n=1,2,..., such that arbitrarily small ê > 0 is achieved by using codes
of sufficiently large codeword length, n > no, where no is a function of ê.

The meaning of code rate is that |Mn| ≤ 2Rn. This is also the best possible result. If the code rate
exceeds the channel capacity, C < R, then the error of transmission cannot be decreased.

Wyner wiretap channel

Chaos is the natural ally of cryptographers.

Shannon’s perfect secrecy result modeled secure communication over noiseless channels. Wyner
considered this variant model: let legitimate players Alice and Bob talk over a noiseless channel,
and the eavesdropper Eve imperfectly tap the channel. Model Eve’s tap as a binary symmetric
channel of error probability 0 < p < 1/2. We shall give a method by which Alice and Bob can
communicate while Eve’s interception yeilds negligible information about their conversation.

Alice choses n − 1 random bits b1, . . . , bn−1. To encode bit b, Alice selects the n-th bit bn so that
b1 ⊕ b2 ⊕ . . .⊕ bn = b. Alice sends the bits to Bob who performs the sum and recovers b.

The probability that Eve can perform the same calculation and get the correct result is the prob-
ability that the error channel makes an even number of errors. Let the result of Eve’s calculation
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be b′,

Prob(b = b′) =
∑

i=0,2,...,n−(n mod 2)

(
n

i

)
qn−ipi

= (1/2)((q + p)n + (q − p)n)
= (1/2)(1 + (1− 2p)n)

Taking n to infinity, Eve’s probability of guessing the bit communicated from Alice to Bob goes to
1/2. Eve might as well flip a coin.

For example, for p = 1/8, letting n = 10 then Eve’s probability of correctly intercepting the bit is
52%. Just a two percent advantage over blind guessing. For n = 50 the probability is 50.00003%.

For additional discussion, see Welsh’s text. This result was extended by Csiszar and Korner to
include independent binary symmetric channels where the error from Alice to Bob is less than the
error from Alice to Eve.

Suppose now that both channels are binary symmetric with non-zero error, perhaps with an error
rate ε for Alice to Bob larger than the error rate δ from Alice to Eve. Secure communication is
still possible if we assume an error free “back channel”. For instance a bulletin board of some sort,
public to all and therefore easy to construct reliably.

From the two binary symmetric channels and the error free back channel we construct the equivalent
to two binary symmetric channels, one from Bob to Alice with error rate ε, and one from Bob to
Eve with error rate ε + δ − 2εδ. Since ε < 1/2, we have that the error rate from Bob to Eve is
greater than that from Bob to Alice, so the result of Csiszar and Korner applies.

The construction is as follows. Alice sends Bob a random bit x through the binary symmetric
channel. Bob receives y and Eve receives z. Bob sends Alice and Eve y ⊕ b via the public, error
free channel. Alice interprets this as ba = x⊕ y ⊕ b. The probability that ba 6= b is the probablity
that x 6= y which is ε.

Eve must deduce b from y ⊕ b and z. Suppose she calculates be = z ⊕ y ⊕ b. The probability of
be 6= b is the probability that z 6= y, which is (1− ε)δ + ε(1− δ) = ε+ δ − 2εδ.

Oblivious transfer

There are other problems in cryptography besides the communication by secret means. Many of
these problems have been motivated by the use of computers to communicate or interact. Suppose
Alice and Bob want to flip a coin, but they are not face to face, rather they interact by computer
communications. How can this be done with each party assured that the flip was fair?

One method proposed is for Alice to chose a bit ba and send it Bob in a sealed envelope. Bob sends
Alice a bit bb in the same manner. Once both envelopes are received both Alice and Bob open the
envelopes and take the exclusive or of the two bits ba ⊕ bb. They interpret the result as heads or
tails.

6



For this to be fair, neither Bob nor Alice should be able to force the outcome of the coin flip.
Therefore:

1. Bob cannot know any thing about the bit in Alice’s envelope until Alice opens it for him.

2. Alice cannot change her choice of bit once the envelope is sealed.

3. The same conditions hold for Bob’s envelope which Alice is holding.

This is called bit commitment.

Later in the course we will learn how bit commitment is done using standard complexity theoretic
cryptography. Here we describe doing it using a binary erasure channel, without complexity the-
oretic assumptions. We build bit commitment from oblivious transfer, a rather peculiar, but very
strong, cryptographic primitive.

Definition 1 (Oblivious transfer) Alice sends Bob a bit which Bob receives with a certain prob-
ability p. Bob knows if he has received to bit or not. If he does not receive the bit he learns nothing
about the bit. Alice does not know if Bob received the bit or not.

Obviously our binary erasure channel implements oblivious transfer. Here is how we use oblivious
transfer to do bit commitment. For Alice to commit to a bit b she chooses n − 1 random bits
r1, . . . , rn−1 and the bit rn such that

b = r1 ⊕ r2 ⊕ . . .⊕ rn

She sends these n bits to Bob using oblivious transfer. Bob (probably) does not receive all the
bits so he has no idea of b, where the probability that Bob receives all the bits can be made
arbitrarily small by increasing n. However, Alice does not know which bits Bob is lacking. To
open the envelope and reveal the bit, Alice sends Bob the bits again, this time using an error free
channel. Alice can change b by changing any one of the ri, however if it is one of the ri that Bob
did receive then Bob can detect the cheating. Since a fraction of about p of the bits were lost,
Alice’s probability of successfully cheating is p. Running the commitment protocol multiple times
in parallel, we can make the probability of Alice successfully cheating arbitrarily small.

To review:

1. We use the binary erasure channel to implement oblivious transfer.

2. We use oblivious transfer to implement bit commitment.

3. We use bit commitment to flip a coin.

7


