
Math 609/597: Cryptography 1

The Solovay-Strassen Primality Test
12 October, 1993
Burt Rosenberg

Revised: 6 October, 2000

1 Introduction

We describe the Solovay-Strassen primality test. There is quite a bit of number-theoretic background
necessary to the full understanding of the algorithm, however, in practice it is very simple. It is also
curious because it works incredibly quickly to give you a probably correct answer, however no one has
found a less than exponential-time algorithm to tell you for certain whether a number is prime.

The algorithm works by selecting random integers and computing large powers of them in the ring
Z/nZ, where n is the number you want to test. Also, the so called Jacobi symbol is calculated for these
integers. If ever these calculations disagree, then n is composite. For if n were prime, the Jacobi symbol
would in fact be the Legendre symbol, and for the Legendre symbol equality of the two methods of
calculation is a theorem.

It is not necessary for the two calculations to disagree when n is composite, but it is likely. Half of
the integers between 1 and n − 1 which are relatively prime to n will make the calculations disagree.
(If we happen to choose an integer which is not relatively prime to n, we are even better off: we not
only know n is composite, we have a non-trival factor!) Hence, the probablity that after k choices of a
random integer you would wrongly proclaim a composite to be prime is less than 1/2k. In practice, the
results are even better.

We begin by explaining the Legendre Symbol, then extend the definition to the Jacobi Symbol. From
there we apply the Jacobi Symbol to primality testing. Finally, a Pascal program is presented.

2 Quadratic Residues

Suppose p is an odd prime. In (Z/pZ)×, the group of invertible elements mod p, that is to say, Z/pZ
without 0, half of the integers are squares and the rest are not. This is quickly seen by considering the
map x 7→ x2. Each element a in the range of this map receives exactly two elements, namely, if b2 = a
then (−b)2 = a, that is, if we can assume that b 6= −b, which is equivalent to assuming p 6= 2. The
elements which are squares are called quadratic residues, the rest are quadratic non-residues.

Definition 1 (Legendre Symbol) For p a prime, and b a positive integer, The Legendre Symbol is
defined by,

[

b
p

]

=

0 if b and p are not relatively prime,
1 if b is a quadratic residue mod p,
−1 if b is a quadratic non-residue mod p

If p is two, then the value of the Legendre Symbol is one for any odd b and 0 else. For p an odd prime,
we can use this theorem:

Theorem 1 For any odd prime p and any positive integer b,
[

b
p

]

= b(p−1)/2 (mod p).

Math 609/597: Cryptography 2

Proof: If (b, p) 6= 1 then b = 0 (mod p) and the equality follows. We henceforth consider integers b
relatively prime to p.

It is quickly seen that the set,

A =
{

a ∈ (Z/pZ)×
∣

∣ a(p−1)/2 = 1 (mod p)
}

,

form a subgroup of (Z/pZ)×. Any quadratic residue b = a2 is in A, since,

b(p−1)/2 = a2(p−1)/2 = 1 (mod p),

by Little Fermat. We remarked above that half the elements of (Z/pZ)× are quadratic residues, hence
A is of size either (p − 1) and (p − 1)/2 (the order of a subgroup must divide the order of the group).
The subgroup A does not include any generator of the group, hence its size is not (p− 1). Therefore A
contains exactly the quadratic residues.

On the other hand, by Little Fermat, the square of b(p−1)/2 is 1, hence for those integers relatively
prime to p but outside of A, the power must evaluate to the only other root of one, that is, −1. 2

There are several rules for computing with Legendre symbols, for instance: that the Legendre symbol
depends only on the residue of b mod p, that the Legendre symbol of 1 over p is always 1, and that,

[

b1b2

p

]

=
[

b1

p

] [

b2

p

]

.

These are easy to verify. Two rules which are more difficult to show are:

Theorem 2 For p an odd prime,
[

2
p

]

= (−1)(p
2−1)/8 =

{

1 if p = ±1 (mod 8)
−1 if p = ±3 (mod 8)

Theorem 3 (Law of Quadratic Reciprocity) For p and q odd primes,
[

p
q

] [

q
p

]

= (−1)(p−1)(q−1)/4 =
{

−1 if p = q = 3 (mod 4)
1 else.

For proofs see Neal Koblitz’s A Course in Number Theory and Cryptography, or for an enchantingly
elementary proof, André Weil’s Number Theory for Beginners.

3 Jacobi Symbols

The Jacobi Symbol extends the definition of the Legendre Symbol to “denominators” other than primes.
In doing so, it loses the number-theoretic interpretation, it no longer indicates which integers are
quadratic residues, and it is no longer possible to calculate it by taking the numerator to a certain
power mod the denominator.

Math 609/597: Cryptography 3

Definition 2 (Jacobi Symbol) For any positive inger n, we define the Jacobi symbol according to the
prime decomposition of n by,

if n =
r

∏

i=1

pi
αi , then

(m
n

)

=
r

∏

i=1

[

m
pi

]αi

.

Note immediately that the Jacobi symbol has values either 1, −1 or 0, and it is zero only if one of
its factors is zero, that is, m and n are not relatively prime. Since the Euclidean algorithm efficiently
determines if two integers are relatively prime, from the point of view of calculating the Jacobi symbol,
attention focuses on the case of m and n relatively prime.

Theorem 4 For integers n and m, and factorizations of n = n1n2 and m = m1m2, the Jacobi symbols
obeys:

(m1m2

n

)

=
(m1

n

)(m2

n

)

,

and
(

m
n1n2

)

=
(

m
n1

) (

m
n2

)

,

Proof: For the first equivalence, write out the Jacobi symbol as a product of Legendre symbols, apply
the rule,

[n1n2

m

]

=
[n1

m

] [n2

m

]

,

for Legendre symbols, then rearrange and collect terms. For the second equivalence, write out the Jacobi
symbol according to its definition, then collect terms. 2

Theorem 5 For n and m relatively prime and odd,
(n

m

)(m
n

)

= (−1)(m−1)(n−1)/4.

Proof: Let i be the number of prime factors in n and j the number of prime factors in m, counting
multiplicity. We use induction on i and j. When i = j = 1, the basis case, the theorem is exactly the
law of quadratic reciprocity. Assume now that the theorem is true for any i < I and j < J , with I and
J greater than one. We show it is true for any i < I + 1 and j < J + 1.

Let n be an integer with I + 1 factors. Write it as the product of two integers n = n1n2 each having
less than I factors, and apply the induction hypothesis to the factored Jacobi symbols:

(

n1n2

m

)(

m
n1n2

)

=
(

n1

m

)(

n2

m

)(

m
n1

)(

m
n2

)

= (−1)(n1−1)(m−1)/4(−1)(n2−1)(m−1)/4

= (−1)(n1+n2−2)(m−1)/4.

Hence our product is −1 if both m and n1 + n− 1 are 3 mod 4, and 1 else. Note that, since n1 and n2

are both odd, (n1 − 1)(n2 − 1) is divisible by 4. Multipling this out, we get n = n1 + n2 − 1 mod 4. So
the product is −1 if n and m are 3 mod 4, and 1 else. That is,

(−1)(n1+n2−2)(m−1)/4 = (−1)(n−1)(m−1)/4,

Math 609/597: Cryptography 4

which proves the theorem for i = I and and any j < J .
Swapping the role of n and m gives that the theorem is true for i = I and j = J . Continuing by

induction, the theorem is true for all i and j. 2

In calculating the Jacobi symbol we use the previous theorem and reduction of the numerator modulo
the denominator to reduce step by step the calculation, except if the numerator or denominator is even.
If both are even, then the result is zero. We can throw out all factors of two of the denominator, since
any odd is a quadratic residue mod 2. If the numerator is even, its factors of two are treated using the
following theorem.

Theorem 6 For any odd integer n,
(

2
n

)

= (−1)(n
2−1)/8.

Proof: Similar to the previous theorem, we use an induction on the number of elements in the prime
decomposition of n. The basis case is n is a prime, when the Jacobi symbol equals the Legendre symbol
and the theorem is true by definition.

Suppose the theorem is true for all n which are the product of less than I primes. Write n, a product
of I primes, as n = n1n2 and calculate, using the induction hypothesis:

(

2
n1n2

)

=
(

2
n1

)(

2
n2

)

= (−1)(n1
2+n2

2−2)/8

Note that an odd integer is either 1 or 3 mod 4, so any square of an odd integer is 1 mod 4. Therefore
(n1

2 − 1)(n2
2 − 1) is zero mod 16. Multipling this out we find,

n2 = n1
2 + n2

2 − 1 (mod 16).

Recall that m2− 1 is divisible by 8 for any odd m, so n2− 1 and n1
2 +n2

2− 2 are equal and both either
0 or 8 mod 16. In any case,

(−1)(n1
2+n2

2−2)/8 = (−1)(n
2−1)/8,

proving the theorem for any integer a product of I primes.
Proceeding the induction, we have the theorem for all odd n. 2

4 Application to Primality Testing

The Jacobi symbol is used to test for primality of a given integer n by testing for agreement between
two calculations,

(

b
n

)

= (?) b(n−1)/2 (mod n),

which, if n is a prime, is an identity for the Legendre symbol. If n is not a prime, however, either b will
not be relatively prime to n, or the two calculations might not agree. How often they do not agree is
discussed next.

Math 609/597: Cryptography 5

Theorem 7 For any prime p, there is a generator for (Z/p2Z)×.

Proof: For any prime p, there is a generator g for (Z/pZ)×. Let h equal g or g(1 + p), depending on
whether or not

gp−1 = ? 1 (mod p2).

If gp−1 = 1 (mod p2), then

(g(1 + p))p−1 = 1 + (p− 1)p + p2w = 1 + p(p− 1) (mod p2),

where w is some integer. Hence h can be chosen so that its p − 1 power mod p2 is not one. Since in
either case h = g (mod p), h is a generator of (Z/pZ)×,

We show that h is a generator of (Z/p2Z)×. Let hj = 1 (mod p2). This this congruence remains
true modulo p, therefore (p − 1) | j. This being so, we can write j as j = (p − 1)j′. But j must also
divide the order of the group, j | p(p− 1), hence j′ | p. Since hp−1 is not one, j′ cannot be one, so it must
be p. Therefore the order of h is the size of the group. 2

Theorem 8 For any odd composite n, there is a b relatively prime to n such that,
(

b
n

)

6= b(n−1)/2 (mod n).

Proof: If p2 |n, for a prime p, let g generate (Z/p2Z)×. Select a b such that b = g (mod p2) and
b = 1 (mod q) for any other distinct prime q dividing n. The existence of b is assured by the Chinese
Remainder Theorem. If the equation were true, then

bn−1 = 1 (mod n),

which being a congruence remaining true in Z/p2Z, would imply that p(p− 1) | (n− 1). However, then
p would divide both n and n− 1.

So we can suppose n is square free. Let g be a quadratic non-residue in some Z/pZ where p |n.
Select a b, again by the Chinese Remainder theorem, such that b = g (mod p) and b = 1 (mod q) for
any other prime q dividing n. Then it is impossible for b(n−1)/2 = −1 (mod n), else this would be true
Z/qZ for those primes where b is one. However, the rules of calculation for the Jacobi symbol give:

(

b
n

)

=
(

b
p

)

∏

q |n

(

b
q

)

 = −1.

We used that n is odd in two places, that there are quadratic non-residues and that −1 6= 1 (mod q).
2

Theorem 9 If n is an odd composite, then for at least half of the integers b relatively prime to n in the
interval [1, n− 1],

(

b
n

)

6= b(n−1)/2 (mod n).

Math 609/597: Cryptography 6

Proof: Let A be the set of a for which (a, n) = 1 and the equality holds. Since there is a b relatively
prime to n for which the equality does not hold, take any a ∈ A and consider ab. It is again relatively
prime to n and,

(a
n

)

(

b
n

)

6= a(n−1)/2b(n−1)/2 (mod n)

because we are inside the group (Z/nZ)×. Hence we have that all of bA does not satisfy the equality,
and hence A cannot account for more than half the elements in [1, n− 1]. 2

5 Program

program SolovayStrassen (input,output) ;

function gcd(a, b : integer) : integer ;
var t : integer ;
begin

if a < 0 then a := - a ;
if b < 0 then b := - b ;
if a < b then begin

t := a ;
a := b ;
b := t ;

end ;
while b<>0 do begin
t := a mod b ;
a := b ;
b := t ;

end ;
gcd := a

end ;

function twoFactor(var a : integer) : integer ;
var i : integer ;
begin

i := 0 ;
while ((a mod 2) = 0) do begin
i := i + 1 ;
a := a div 2 ;

end ;
twoFactor := i ;

end ;

Math 609/597: Cryptography 7

function jacobi(m, n : integer) : integer ;
{ assume (m,n)=1, n is odd, 0 < m < n . }
var i, j, d : integer ;
begin

i := 1 ;
while (m>1) do begin
{ it could be zero or 1 to exit}

j := twoFactor(m) ;
if (j mod 2) = 1 then begin

d := n mod 8 ;
if (d = 3) or (d = 5) then

i := - i ;
end ;

if ((m mod 4) = 3) AND ((n mod 4) = 3) then
i := - i ;

d := n mod m ;
n := m ;
m := d ;

end ;
jacobi := i ;

end ;

function multiply(a, b, c : integer) : integer ;
{ return a * b mod c, without overflow by repeated

doubling }
{ assume 0 <= a, b < c }

var i : integer ;
begin

if (a=0) then i := 0
else begin

if (a mod 2) = 1 then begin
i := multiply((a-1) div 2, b, c) ;
if ((c - i) > i) then i := i + i
else i := (i - c) + i ;
if ((c - i) > b) then i := i + b
else i := (i - c) + b ;

end else begin

Math 609/597: Cryptography 8

i := multiply(a div 2, b , c) ;
if ((c - i) > i) then i := i + i
else i := (i - c) + i ;

end
end ;
multiply := i ;

end ;

function fastExp(b, j, n : integer) : integer ;
{ take b to the j mod n }
var i : integer32 ;
begin

if (j=0) then i := 1
else if (j mod 2) = 1 then begin

i := fastExp(b, (j-1) div 2, n) ;
i := multiply(multiply(b, i, n), i, n) ;

end else begin
i := fastExp(b, j div 2 , n) ;
i := multiply(i, i, n) ;

end ;
fastExp := i

end ;

function primality(p, i : integer) : integer ;
{ given an integer p, test for primality,

using i iterations of some numbers, here they
are the number 2, 3, ..., i+1.

Returns 0 if no contradiction between the jacobi
and legendre symbols was found.
Else returns the evidence that p is composite,
either a factor or
an integer such that the sumbols differ. }

var j : integer ;
dl, dj : integer ;
b : boolean ;

begin
if (p<2) then j := 1 { not prime }
else if (p=2) then j := 0 { prime }
else if (p mod 2)=0 then j := 2 { not prime }
else begin
{Precondition: p is odd, 3 or larger}

Math 609/597: Cryptography 9

{Check if i is unnecessarily large, and correct}
if (i+1)>=p then i := p-2 ;
j := 1 ;
b := false ;
repeat

j := j + 1 ;
if (j > (i+1)) then b := true
else begin

{ test for non-trivial gcd }
if gcd(j,p)>1 then b := true
else { apply tests } begin
dl := fastExp(j, (p-1) div 2, p) ;
if (dl<>1) then dl := dl - p ;
dj := jacobi(j, p) ;
if (dj<>dl) then b := true ;

end ;
end ;

until b ;
if (j > (i+1)) then {test ran to completion} j := 0 ;

end ;
primality := j ;

end ;

var
i,j,k : integer ;
c : char ;

begin
write(’Quit [y/n]? ’) ; readln(c) ;
while (c<>’y’) do begin

writeln(’Primality test of p, i iterations,’) ;
write(’p? ’) ; readln(j) ;
write(’i? ’) ; readln(i) ;
k := primality(j, i) ;
if (k = 0) then writeln(j:0,’ might be a prime.’)
else writeln(j:0,’ is not a prime, fails test using ’,k:0) ;

write(’Quit [y/n]? ’) ; readln(c) ;
end ;

end.

