
Architectural considerations for cryptanalytic hardware

Ian Goldberg and David Wagner

fiang,dawg@cs.berkeley.edu

Abstract

We examine issues in high-performance cryptanalysis, focusing on the use of programmable logic.

Several standard techniques from computer architecture are adapted and applied to this application.

We present performance measurements for RC4, A5, DES, and CDMF; these measurements were taken

from actual implementations. We conclude by estimating the resources needed to break these encryption

algorithms.

1 Introduction

Large-scale open electronic communications networks are spreading: for example, mobile computing is on
the rise, the Internet is experiencing exponential growth, and electronic commerice is a hot topic. With these
advances comes a need for robust security mechanisms, and they in turn depend critically on cryptographic
protection. At the same time, computer power has been growing at dizzying rates, matching or exceeding
Moore's Law. Therefore, in this rapidly changing environment, it is important to assess the strength of de-
ployed encryption algorithms against the tremendous computational power available to potential adversaries.

The best attacks on today's symmetric-key encryption algorithms simply apply massive computing resources
to break their security by pure brute force. If a cryptographic algorithm is secure, it will be far too expensive
for an attacker to gather the processing power necessary for such a brute-force cryptanalytic attack to succeed.
Assessing the security of a cryptographic algorithm against this threat, then, involves surveying the state of
the art in cryptanalytic computational power and estimating the investment required to mount this type of
attack.

This paper explores the use of programmable logic hardware devices in cryptanalytic applications. Program-
mable logic attempts to provide much of the premier performance available from custom hardware, while
partially retaining the recon�gurability and ease of development bene�ts found in software.

Our research draws heavily on the computer architecture �eld. Surprisingly, many techniques, tools, and
models for the design of general-purpose processors also proved useful in the specialized domain of crypt-
analytic hardware. We investigate the bene�ts of various forms of parallelism, including pipelining and
superscalar architectures. We also examine and identify critical structural hazards and data hazards, as well
as the crucial performance bottlenecks. This paper focuses especially on an analogue of the central \CPU
time" formula from [20]. By framing the problem from the perspective of system architects, we were able to
take advantage of the extensive knowledge base available in the architecture literature.

This paper is organized as follows. Section 2 elaborates on the need for estimates of the performance of
cryptanalytic hardware, and Section 3 lists previous work which touches on this project and inuenced our
approach. Next, Section 4 introduces our experimental methodology and goals. Section 5 describes our
design, implementation, and data in depth, providing a detailed technical analysis. Finally, Section 6 briey
identi�es some areas for future research, and Section 7 concludes the paper.

1

2 Motivation

There is currently a strong need for a solid assessment of the resources required to break the common
cryptographic algorithms. This information is a crucial data point for system designers|they need this
information to determine which encryption algorithm is appropriate for their system. The need is only
intensifying: weak encryption is becoming the norm, earlier assessments are either incomplete or out-of-date,
and steady increases in computing power are threatening the viability of these weak encryption systems.

Security is little more than economics. A cryptographic system is secure when it costs more to break it than
the data it is protecting is worth. Accordingly, determining the strength of an encryption algorithm comes
down to measuring the cost of the cryptanalytic resources needed to break the system. That explains the
basic need for an evaluation of the cryptanalytic performance possible today.

In fact, several recent factors make the need more urgent. Weak encryption is being widely deployed. SSL
with 40-bit RC4 is becoming a de facto standard for secure Web channels, largely because of Netscape's
support. GSM, a European mobile telephony system, depends for its link-layer security on A5, an apparently
weakened algorithm. Export restrictions are largely to blame for the recent preponderance of weak encryption
algorithms; they are an unfortunate fact of life at the moment. This intensi�es the need for accurate estimates
of the true protection these cryptographic algorithms o�er. For extremely strong algorithms, it is su�cient
to provide order-of-magnitude estimates to show that breaking these algorithms requires absurd collections of
resources; but when it is feasible (or barely feasible) to break an encryption algorithm, it becomes extremely
important to pinpoint the cost of cryptanalysis accurately.

Section 3 lists several earlier algorithm assessments. DES has received by far the most attention, but we are
also greatly interested in the (today all-too-common) case of exportable encryption algorithms. Most of the
experience with weak encryption systems has been with software cryptanalysis; yet programmable logic may
be the most cost-e�ective method of assembling computational power for this problem. A recent paper [4]
did briey address the cost-e�ectiveness of programmable logic, but their estimate appears to be based on
awed assumptions. The one work which investigated the problem most closely [22] was a good start, but it
didn't go far enough: their estimates were based on theoretical calculations, instead of real implementations
and measurements.

Therefore, there is new ground to cover, and previous work to validate. We will explore the applicability and
performance of programmable logic to cryptanalysis of A5, DES, CDMF, and RC4. This paper attempts to
provide a solid, rigorous assessment of the economics of cryptanalysis, relying on actual implementations and
experimental measurements.

3 Related work

Previous exploration into exhaustive keysearch has tended to concentrate on either software implementations
or custom hardware designs; not much has been reported on FPGA (programmable logic) architectures. We
will survey the results available in the open literature.

The �rst public brute-force cryptanalysis of 40-bit exportable RC4 appeared from the Internet cypherpunks
community. (The NSA (National Security Agency) had almost certainly mounted an exhaustive 40-bit search
of RC4 long before that, but they're playing their cards close to their chest.) The cypherpunks are a loose-
knit community dedicated to exploring the social rami�cations of cryptography. To demonstrate the need for
more secure encryption, Hal Finney challenged his fellow cypherpunks to break 40-bit RC4 [16]. Soon Adam
Back, David Byers, and Eric Young announced [3] that they had successfully searched the 40-bit keyspace
with a software implementation running on the idle cycles of several workstations. At the same time, Damien
Doligez had also independently �nished a succesful sweep of the RC4 40-bit keys [12], with the same software
implementation. Not long later, Piete Brooks, Adam Back, Andrew Roos, and Andy Brown organized a
distributed e�ort [5] which used donated idle cycles from many machines across the Internet to �nish a
second challenge in 31 hours, again using a similar software implementation. The cypherpunks e�orts gave
us a fairly accurate estimate of the complexity of exhaustively searching the RC4 40-bit keyspace in software.

2

There have been no reports of any experience with exhaustive keysearch of A5 in the open literature. The
details of the A5 algorithm were only recently revealed to the public [1], so it is perhaps not surprising
that it has received less attention. Several cryptographers' initial reaction was that there must be a trivial
brute-force attack on A5 requiring 240 operations [26, 1]. No such attack ever materialized, and it became
clear that the matter was not so trivial as initially imagined [26, 2]. The current consensus appears to be that
A5's strength is possibly somewhat more than a 40-bit cipher but less than its 64-bit key might indicate.

There have not been any reports on CDMF exhaustive keysearch in the literature, either. On the other hand,
CDMF is very similar to DES|it is essentially DES with a reduced 40-bit keylength|so all the research into
understanding DES keysearch will apply immediately to CDMF. As we shall see, there has been extensive
work examining DES brute-force cryptanalysis.

There have been many studies into the economics of a DES keysearch implementation in custom hardware.
(No one has seriously proposed breaking DES via software, as general-purpose computers are orders of
magnitude slower at this task than specialized hardware.) The earliest estimate came not long after DES was
rati�ed as a national standard. Whit Di�e and Martin Hellman designed a system containing a large number
of custom-designed chips [11]. They estimated that their $20 million architecture could recover a DES key
each day. After their paper appeared, great controversy ensued. Some argued that the mean time between
failures would be inherently so small that the machine could never work; Di�e and Hellman refuted these
objections, although they also increased their cost estimate somewhat [27, p. 283]. After the controversy died
down, the �nal estimate was that DES would be insecure by the year 1990 [19]. A later paper suggested that
a $1 million custom-designed hardware architecture could break DES in 9 days with technology forecasted
to be available by 1995 [18]. Another more recent estimate took advantage of an extremely fast DES chip
(designed for normal cryptographic use, not cryptanalysis), concluding that a $1 million assembly could
search the DES key space in 8 days [31, 13, 14]. Yet another study examined the feasibility of using existing
general-purpose content-addressable processors, and concluded that a DES keysearch would take 30 days on
them with a $1 million investment [30]. Even more writing on the subject of hardware DES keysearch can
be found in [25], and some issues in DES chip design can be found in [21, 15, 6].

All these estimates were superseded by a compelling 1993 paper [31] from Michael Wiener. He went to the
e�ort of assembling a very comprehensive design (extending for a hefty 42 pages!) of a custom-hardware DES
keysearch machine, including low-level chip schematics as well as detailed plans for controllers and shelving.
After a $0.5 million investment to design the machine and $1 million to build it, a DES key could be recovered
each 3.5 hours, he argued. (Note the large development cost. This is a unique attribute of custom hardware
designs.) His work has remained the de�nitive estimate of DES keysearch cost since then. On the other hand,
we have seen 3 years of steady progress in chip performance and cost since then, and Moore's law remains
as true as ever, so Wiener's �gures should be adjusted downward accordingly.

This year an ad-hoc group of experts was convened to recommend appropriate cryptographic key lengths for
corporate security; their report [4] was very inuential. In this larger context, they very briey surveyed the
application of software, recon�gurable logic, and custom hardware to the brute-force cryptanalysis of 40-bit
RC4 and (56-bit) DES. We are a bit skeptical about the precise performance predicted for an RC4-cracking
chip: they claimed that a single $400 FPGA ought to be able to recover a 40-bit RC4 key in �ve hours.
(Amortizing this over many keysearchs, they determined that each keysearch would cost $0.08, causing some
to refer to 40-bit RC4 as \8-cent encryption".) This estimate seems extremely optimistic, as it would require
30 million key trials per second; RC4 key setup requires at least 1024 serialized operations (256 iterations of a
loop, with 4 memory accesses and calculations per iteration), so this would represent a throughput of 30 billion
operations per second. Even with a dozen parallel independent keysearch engines operating on the chip (which
would require serious hardware resources), this would imply clock rates measured in Gigahertz|a rather
unlikely scenario! Accordingly, our skepticism helped motivate us to attempt an independent investigation of
these issues.

At the other extreme, we are also concerned about gross overestimates of the security of RC4. After several
cypherpunks folks demonstrated how easy it is to cryptanalyze RC4 with the idle cycles of general-purpose
computers, Netscape had to respond. Their note made several good points|for instance, that export controls
were to blame, leaving them no choice but to use weak encryption|but their estimate of the cost of breaking

3

40-bit RC4 was greatly awed. The �rst successful keysearch used idle cycles on 120 workstations for 8 days.
Netscape claimed that this was $10,000 worth of computing power, concluding that messages worth less than
$10,000 can be safely protected with 40-bit RC4 encryption [9]. Exposing the invalidity of this estimate was
another motivating force for us.

One unpublished work [22] has studied in depth the relevance of recon�gurable logic to cryptologic applica-
tions. They assessed the complexity of a keysearch of DES and RC4 (as well as many other non-cryptanalytic
problems). The main weakness of this aspect of their survey is that several of the estimates relied on theoret-
ical predictions instead of real implementations and experimental measurements. In this paper, we attempt
to give more rigorous estimates, paying attention to the architectural and economic issues facing these crypt-
analytic applications.

4 Technical Approach

4.1 Workloads and architectures

As we have explained earlier, there is much interest in the security of cryptographic algorithms. The al-
gorithms with short keys (such as A5, RC4, CDMF, and DES) are the most interesting to examine, as their
security depends intimately on the state-of-the-art in high-performance computing. Therefore, we concentrate
on algorithms to break A5, RC4, CDMF, and DES.

Software implementations running on general-purpose microcomputers have received perhaps the most at-
tention [3, 12, 5, 10, 4]. To achieve maximum performance, though, we must also consider the tradeo�s
associated with customizable hardware. We will focus mainly on hardware implementations of cryptanalytic
algorithms; we then compare the tradeo�s between the hardware and software approaches.

The most specialized approach involves using ASICs: custom-designed hardware, specially tailored to one
particular cryptanalytic application. They require a signi�cant initial investment for design and testing; they
also must be produced in mass quantity for them to be economical. Therefore, while probably the most
e�cient approach for a dedicated cryptanalytic application, ASICs require such a large investment that they
are probably only of interest to small governments or large corporations|they are certainly not within reach
for a class project!

Fortunately, there is a middle ground between ASICs and software. CPLDs (Complex Programmable Logic
Devices) provide recon�gurable logic; they are commercially available at low prices. They provide the per-
formance bene�ts of customizable hardware in small volume at a more reasonable price. We obtained access
to a set of Altera FLEX8000 series programmable logic devices|more speci�cally, 81188GC232 chips. (We
greatly appreciate the kind support of Bruce Koball and Eric Hughes!) These are mounted on a RIPP10
board, which can accomodate up to eight FLEX8000 chips and four 128 KB SRAM memory chips.

Therefore, the primary platform of interest was the RIPP10 board with FLEX8000 chips; for comparison
purposes, we also investigated several other programmable logic devices, as well as software-driven imple-
mentations. The workload consisted of brute-force cryptanalytic applications for RC4, A5, DES, and CDMF.

4.2 The �gure of merit

It is important to keep in mind what quantities we are trying to measure. Regardless of whether the methodo-
logy involves real implementations or synthetic simulations, the ultimate �gure of merit is the performance-cost
ratio.

Why is the performance-cost ratio the relevant quantity? In general, our cryptanalytic applications are
characterized by extreme suitability to parallelization: the process of exhaustive search over many keys can
be broken into many independent small computations without penalty. One fast machine will �nish the
computation in exactly the same time as two machines which are twice as slow. Therefore, the relevant

4

criterion is the \bang-to-buck" ratio, or more precisely, the numbers of trial keys searched per second per
dollar.

4.3 Methodology

We used several methods to understand the architectural tradeo�s and their e�ect on cryptanalytic applica-
tions. We �rst implemented a few sample cryptanalytic algorithms and directly measured their performance
on real workloads and actual architectures. Direct measurement is obviously the most desirable experimental
technique; unfortunately, we do not have access to every system in existence. Therefore, to forecast the beha-
vior on other platforms, we also used several simulation tools. In both cases, we examine actual applications
and real systems.

4.3.1 Direct measurement

Doing direct measurements on real systems running real applications is conceptually straightforward (but
still labor-intensive in practice!). First, we directly implemented the relevant cryptanalytic algorithms for
the Altera FLEX8000 platform. Once this is done, it is easy to do several small time trials to measure
performance. Finally, we used technical data sheets [8] and price lists [7, 24] from Altera to assess the cost
of the system.

We also implemented the applications in software. Measuring performance is easy; �xing a price on the
computation is a bit less straightforward, and we will address that in a later section.

4.3.2 Simulations

It would be valuable to obtain measurements for a variety of CPLD architectures. As we only have access
to the Altera RIPP10 board and FLEX8000 81188GC232 chips, the experimental procedure becomes a bit
more involved. Fortunately, our development environment o�ers compilation, simulation, and timing analysis
tools for several programmable logic devices. We therefore compiled the applications for several other chips
and calculated predicted performance estimates with the simulation tools.

An important step for any simulation technique is to validate the simulation process. Accordingly, we applied
the same simulation and timing analysis procedure to our applications for the FLEX8000 81188GC232;
comparing the performance estimates from the simulation with the direct measurements lets us validate our
experimental methodology.

5 Design and Analysis

5.1 Overview

We begin by setting up a model for analysis and describing several design issues that are common to all
cryptanalytic hardware.

For this project, we are assuming the \known plaintext" model of cryptanalysis. In this model, an adversary
has an encrypted message (the ciphertext), and also a small amount of the original message (the known

plaintext). He also knows what part of the ciphertext corresponds to the known plaintext. The goal of the
adversary is to determine the key necessary to decrypt the ciphertext into the known plaintext. He can then
use this key to decrypt the rest of the encrypted message.

Other models of cryptanalysis, such as \ciphertext only" or \probabilistic plaintext" [29] are more complicated
to use, but do not require an adversary to have speci�c knowledge of part of the original message. However,

5

as most messages have some well-known parts (a From header in a mail message, for example), the known
plaintext model turns out to be applicable to almost all situations.

For a cryptographic algorithm to be considered secure, there must be no way to determine the decryption key
which is faster than just trying every possible key, and seeing which one works (note that this is a necessary,
but not su�cient, condition). This method is called brute force.

Breaking a cryptographic algorithm by brute force involves the following steps:

For each key in the keyspace

� Perform key setup

� Decrypt the ciphertext and compare it to the known plaintext

As will be seen below, di�erent algorithms spend di�erent amounts of time in the two steps. (For instance,
stream ciphers|which generate output one bit at a time|allow us to prune incorrect key guesses very
rapidly|while block ciphers|which operate on a block at a time|require us to generate the entire output
block before any comparison is possible. DES and CDMF are block ciphers; A5 and RC4 are stream ciphers.)

We measure the expected number of cycles for each of the two steps for each key, and add them to determine
a Cycles per Key, or CPK value for the algorithm.

Similar to the formula for CPU time found in [20]:
CPU time = Instruction Count x CPI x Clock cycle time

we have a formula for brute-force searching a keyspace:
Search time = Keys to check x CPK x Clock cycle time

As with the [20] equation, we ignore CPU time. This is valid because we take care to avoid I/O as much as
possible. Cryptanalytic applications are typically compute-bound, so this is an important optimization.

In the above formula, \Keys to check" indicates the number of keys to search; this can simply be the total
number of keys that can be used with the algorithm, or, in the event that many chips are being used to
simultaneously search the keyspace, it can be some fraction thereof.

\CPK", as described above, is de�ned to be \KeySetup + Comparison". \KeySetup" is the number of cycles
required to load a key into the algorithm's internal data structures, so that the key search engine is ready
to produce output. \Comparison" is the expected number of cycles required for the algorithm to produce
enough output so that it can be determined whether the key is the correct one. Note that di�erent algorithms
divide their time di�erently between these two parts, as will be seen in more detail below.

\Clock cycle time" is exactly what one would expect; algorithms that attempt to do more complicated work
in one cycle will tend to have a higher clock cycle time. This is also the factor that will vary most when using
di�erent models of hardware, as faster (more expensive?) chips have smaller gate delays. One important
design feature common to all brute-forcing algorithms also a�ects this factor: how does one cycle through all
of the keys in the keyspace? The obvious solution (to simply start at 0, and increment until the correct key
is found) turns out to be a bad one, as incrementing a number of even 8 bits causes unacceptably large gate
delays in propagating the carry. Tricks such as carry-save arithmetic [20] are usually not useful here, because
keys are usually not used by the encryption algorithms as numbers, but rather, as bit strings.

A better solution [31], which uses the fact that the keys need not be checked in sequential order, is to use
a linear feedback shift register [27], or LFSR. An LFSR is a register that can either be loaded (to set the
register's value), or have its existing value shifted (in order to output 1 bit, and to change the register's
value). Of the two styles of LFSR, the usual style is called a Fibonacci LFSR. To shift a Fibonacci LFSR,
simply copy each bit to its neighbor on the right. The original rightmost bit is considered the output. The
bit that is shifted in at the left is the parity of some speci�c subset of the bits (the taps) of the register (see
Figure 1).

The most important properties of an LFSR are that it has a low (constant) gate delay, and more importantly,

6

Figure 1: Fibonacci LFSR

Output

if the taps are chosen properly, repeated shifting (starting with any non-zero value) will cycle through every
possible non-zero value of the register.

The other style of LFSR is called a Galois LFSR, which has the same properties as the Fibonacci LFSR, but
is shifted di�erently. To shift a Galois LFSR, copy each bit to its neighbor on the right, except for the taps,
for which the rightmost bit of the register is XOR'd in before the copy is done. The bit that is shifted in at
the left is the original rightmost bit, which is also considered the output (see Figure 2).

Figure 2: Galois LFSR

Output

The advantage of a Galois LFSR over a Fibonacci LFSR when being implemented in hardware is that a
Galois LFSR usually has an even lower gate delay than a Fibonacci LFSR, resulting in a potentially lower
clock cycle time. For this reason, Galois LFSRs are usually used to cycle through the list of possible keys.

In order to take advantage of parallelism, one must be able to distribute the keyspace equitably among the
multiple hardware devices. Standard mathematical techniques allow us to easily calculate the value of the shift
register after any given number of shifts. From this, we can determine evenly separated starting positions for
each device in the search engine.

We will now describe the design issues and analysis that were performed when we implemented various
encryption algorithms in programmable logic.

5.2 A5

A5 [1] is the encryption algorithm used in GSM, the European standard for digital cellular telephones. It
consists of three Fibonacci LFSRs of sizes 19, 22, and 23 respectively, which are initially loaded with the
contents of the 64-bit key. The middle bits of all three LFSRs are examined at each clock cycle to determine
which registers shift and which do not (at least two of the three registers shift in each clock cycle). The
parity of the high bits of the LFSRs is output after each shift, and this output bitstream is XOR'd with the
ciphertext to recover the original message.

This algorithm is quite well-suited for implementation in hardware due to the simplicity of LFSRs; given
that it was designed for use in cellular phones, in which limited resources are available, this should not be
surprising. The simplicity of the algorithm leaves almost no room for creativity to the implementer.

The resource requirements for A5 are quite minimal; they consist mainly of the 64 ipops that make up the
three LFSRs. In this algorithm, the key setup time is trivial (a single cycle to load the LFSRs with their
initial state); the majority of the algorithm consists of comparing the output of the generator (which comes
out at a rate of 1 bit per cycle) to the expected output. Since incorrect keys produce essentially random data,
the expected number of bits we need to check before rejecting a key is 2. Thus, the total number of cycles
per key for A5 is CPK = KeySetup + Comparison = 1 + 2 = 3.

7

5.3 RC4

RC4 [27] is the encryption algorithm used in, among other things, the Secure Sockets Layer (SSL) protocol
[17] used by Netscape and other World Wide Web browsers to transmit encrypted information (such as
banking transactions) over the Internet. RC4 is quite a simple algorithm; start with a 256-byte read-only
array K that stores the key (repeat the key as often as necessary to �ll K), a 256-byte random-access array S,
and two 8-bit registers i and j.

To do key setup, start with j=0, and do:

for i = 0 to 255:
S[i] = i

for i = 0 to 255:
j = (j + S[i] + K[i]) mod 256
swap S[i] and S[j]

Once the key setup is complete, set i=j=0, and to generate each byte, do:

i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap S[i] and S[j]
output S[(S[i] + S[j]) mod 256]

The sequence of bytes outputted is XOR'd with the ciphertext to recover the original message.

SSL, one common system that uses RC4, has a small added complexity. Instead of the key being copied
into the array K, as described above, it is �rst processed by the MD5 hash function; the result of the MD5
computation is then copied into K. Our design and analysis does not include MD5, which is quite large,
complicated, and includes many 32-bit additions, so readers hoping to break SSL should keep in mind that
their performance will be substantially worse than that determined below.

The resource requirements for RC4 are considerable. Most notably, it requires 258 bytes of state (compare
8 bytes of state for A5), 256 bytes of which need to be accessed randomly. Such resources were beyond the
capabilities of the programmable logic chips we had available, but fortunately the board on which the logic
chips were mounted had 128 KB of SRAM accessible to the logic chips via a bus; we stored the array S in
this SRAM. Note that the key array K is accessed in a predictable order, so it was not necessary to store it
in the SRAM.

Unfortunately, when trying to produce intstruction-level parallelism in the algorithm, the single port to the
SRAM becomes a structural hazard. For this reason, it was necessary to serialize accesses to this SRAM.
Initially, we expected that going o�-chip to access the SRAM would be the bottleneck that determined the
minimum clock cycle time; section 5.5, below, shows that we were incorrect.

We now calculate the \Cycles per Key" value for RC4. Examining the key setup code, it is clear that the
�rst loop requires 1 cycle to initialize i to 0, and 256 cycles to complete, and each iteration of the second
loop requires 4 cycles (1 each to read and write S[i] and S[j]), for a total key setup time of 1281 cycles.

Similarly, each byte of output requires 5 cycles to produce (1 each to read and write S[i] and S[j], and 1 to
read S[(S[i] + S[j]) mod 256]. The expected number of bytes needed to determine whether the guessed

key is correct is
�
1� 1

256

�
�1

< 1:004, so the value of \Comparison" is very near 5. Thus we calculate the
total Cycles per Key to be CPK = KeySetup + Comparison = 1281 + 5 = 1286.

8

5.4 DES and CDMF

DES is the national Data Encryption Standard; it enjoys widespread use by the banking industry, as well as
being one of the preferred algorithms for securing electronic communications. DES transforms a 64 bit input
block into a 64 bit output by a reversible function which depends on the 56 bit key in a highly non-linear
way.

The DES algorithm was designed primarily for e�ciency in hardware, and thus has several distinguishing
features worth noting. It consists of an initial and �nal permutation and 16 rounds of main processing, with
each round transforming the input bits via a \mix-and-mash" process. Bit permutations are used extensively;
of course, they are trivial to do in hardware by simply reordering wires. Each round also contains 8 di�erent
\Substitution" boxes (or S-boxes for short); the S-boxes are non-linear functions which map 6 input bits to
4 output bits. S-boxes are not very resource-intensive in hardware: they can be implemented as four 6-input
boolean functions, and their small size keeps the gate count reasonable. The key is stored in a shift register,
rotated before each round, and exclusive-or-ed into the block during each round. This is also straightforward
to implement in hardware.

CDMF (Commercial Data Masking Facility) [23] is a related algorithm which uses DES as the underlying
transformation; the only di�erence is that it weakens the key to meet US export restrictions. CDMF has an
e�ective 40-bit keylength, which is then expanded to a 56 bit DES key by using another DES transformation.
Loading a CDMF key requires one initial DES operation, and transforming each 64 bit block requires one DES
operation. Therefore an implementation of a DES keysearch application leads easily to a CDMF keysearch
engine with half the search rate.

Our DES implementation was forced to be rather minimal to �t in the limited resources available on our
chip. We implemented one round of DES, with the appropriate S-boxes and bit permutations. Some extra
ip-ops and a state machine allow us to iterate the round function 16 times; there was not su�cient space
(i.e. logic gates) available to implement 16 instantiations of each S-box.

The S-boxes are perhaps the most critical component, and we tried several di�erent implementation ap-
proaches for them. One natural way to describe each S-box is as a 64-entry lookup table containing 4 bit
entries. This might be a good choice if the chip had contained some user-con�gurable ROM; ours didn't. A
similar approach takes advantage of the compiler support for \case" statements, which gets translated into
a hardware structure containing a 64-line demultiplexor and or gates expressing the relevant minterms. This
structure minimizes gate delay at the expense of space resources. In fact, this structure increased the gate
requirements signi�cantly, to the point where the 8 S-boxes alone required more hardware resources than
our overworked chip had to o�er. The compiler was not particularly helpful at doing space-time tradeo�s to
minimize the space requirements, so we ended up optimizing the S-box functions by hand.

The manual optimization we settled on can be viewed as a form of speculative execution. First, note that
it su�ces to describe how to compute the 6-bit to 1-bit boolean function that calculates one output bit of
some S-box. Since the S-boxes behave roughly like they were chosen at random, we don't expect to �nd any
structure in the outputs|i.e. each output will be an uncorrelated non-linear function of the inputs|so this
is roughly optimal. To compute such a 6-to-1 function, we �rst isolate 2 of the 6 input bits as control bits.
We do speculative execution with four functional cells; each cell computes the output of the 6-to-1 function
under a speculative assumption about the 2 control bits. As there are four possible values of the control
bits, the four functional cells enumerate all possibilities. At the same time the functional cells are computing
their 4-to-1 function, a multiplexor unit concurrently selects one of the functional cells. The calculation of
the 6-to-1 function via speculative execution is depicted in Figure 3. This choice of S-box implementation
structure is tailored to our Altera FLEX8000 chips: these chips are organized as an array of logic cells, where
each logic cell can compute an arbitrary (con�gurable) 4-to-1 boolean function. For chips with a di�erent
organization, some other manual optimization might be more appropriate.

The \Search time" equation for our CDMF implementation is not hard to analyze. One can easily count the
CPK by direct inspection of our implementation. We have a �nite state machine with 4 states, labelled from
a to d. The cycle-by-cycle breakdown of the \KeySetup" time for one CDMF encryption is as follows:

9

Figure 3: Calculation of a boolean function with 6 inputs

z
y

x
w

z
y

x
w

z
y

x
w

z
y

x
w

f(0,0,w,x,y,z)

f(0,1,w,x,y,z)

f(1,0,w,x,y,z)

f(1,1,w,x,y,z)

Speculative execution cells

u

v

u

v

Control unit / multiplexor

f(u,v,w,x,y,z)

a 1 cycle to increment the key and load in the 40-bit CDMF trial key

b 1 cycle to perform the DES input permutation

c 16 cycles to perform 16 rounds of encryption

d 1 cycle to perform the DES �nal permutation and load in the 64 bit plaintext block

We can see that the \KeySetup" time is 19 cycles. An enumeration of the output generation and comparison
stage yields

b 1 cycle to perform the DES input permutation

c 16 cycles to perform 16 rounds of encryption

d 1 cycle to perform the DES �nal permutation, compare the ciphertext block to the expected value, and
return to state a if this trial key was incorrect

This means that the \Comparison" time is 18 cycles, so the total CPK is 19 + 18 = 37. Note that DES
encrypts the entire 64 bit block at once, unlike a stream cipher, so we check all of the output bits in parallel.

The hardware resources required by CDMF are reasonable but non-negligible for commercial CPLDs. Our
minimal implementation required (the equivalent of) roughly 10000 gates. This is certainly within reach for
many newer commercial CPLDs, although there are also many older or less expensive CPLDs which cannot
handle the requirements. It is important to keep the entire keysearch engine on one chip; otherwise, inter-chip
I/O will severely limit performance.

10

Figure 4: CDMF cryptanalysis economics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500

P
er

fo
rm

an
ce

 (
m

ill
io

n
ke

ys
 s

ea
rc

he
d

pe
r

se
co

nd
 p

er
 c

hi
p)

Cost (dollars per chip)

small quantities, 81188AQC208 family
small quantities, 81188ARC240 family

small quantities, 81188GC232 family
small quantities, 81500ARC240 family

small quantities, half_81500ARC240 family
500+, 81188AQC208 family
500+, 81188ARC240 family

500+, 81188GC232 family
500+, 81500ARC240 family

500+, half_81500ARC240 family

5.5 Analysis

We cross-compiled our cryptanalysis implementations for many di�erent Altera CPLDs, and ran a simulation
and timing analysis to measure the maximum applicable clock cycle time. The results are plotted in Figure 4
for CDMF, Figure 5 for A5, and Figure 6 for RC4. Some explanation is in order, as there are a lot of data
summarized there. The chip speci�cation (e.g. 81188GC232-3) can be dissected as follows: the 81188 refers
to the general family, the 232 speci�es a 232-pin package, and the -3 refers to the speed grade (lower numbers
are faster). The 81500 is the top of the line Altera FLEX8000 device; the 81188 is a bit less powerful. Chips
without the \A" designation were fabricated with an older .8 micron process; the \A" indicates chips that
were manufactured with a newer, faster .6 micron process. The �gure shows throughput graphed against the
initial investment required; the chips with the best performance-to-cost (y=x) ratio are the best buy. The
prices are taken from a very recent Altera price list [7, 24]. As there are discounts in large quantities, we
have plotted price points for small quantities with a red line and for large batches with a blue line.

We also measured the performance for the 81188GC232-3 chip directly|it is the only one we had access
to. Our measurements agreed closely with the simulated timing analysis, con�rming the validity of our
experimental methodology.

Measurements for DES are not listed. Nonetheless, they track the CDMF performance �gures very closely.
CDMF consists of two DES encryptions|one for key setup, and one for output generation|with very little
overhead. The DES keysearch rates can be derived from Figure 4 by simply doubling the CDMF rate. Also,
remember that the DES keyspace is 216 times as large. Our data indicate that if one wanted a machine which
could perform a DES keysearch in a year on average, it would su�ce to spend $45,000 to buy 600 of the
Altera 81500ARC240-4 CPLDs. (This is a very rough estimate, which does not include overhead such as
mounting shelves, etc.)

One can note several interesting things from the graph. First, examine the peculiar zig-zag nature of the
81188ARC240 lines. The points are plotted in order of the chip's rated speed grade, from A-6 on the bottom
to A-2 on the top. The strange \zag" occurs because the price for a faster A-4 chip drops signi�cantly below
the price for the slower A-5. Altera speci�es the A-4, A-3, and A-2 as their \preferred" grades for that chip,
presumably because there is more sales volume for those speed grades. If you were to build a keysearch
engine out of 81188ARC240 chips, you should try to be right at the \hump"|the A-4 speed grade is the best

11

Figure 5: A5 cryptanalysis economics

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500

P
er

fo
rm

an
ce

 (
m

ill
io

n
ke

ys
 s

ea
rc

he
d

pe
r

se
co

nd
 p

er
 c

hi
p)

Cost (dollars per chip)

small quantities, 81188AQC208 family
small quantities, 81188ARC240 family

small quantities, 81188GC232 family
small quantities, 81500ARC240 family

small quantities, half_81500ARC240 family
500+, 81188AQC208 family
500+, 81188ARC240 family

500+, 81188GC232 family
500+, 81500ARC240 family

500+, half_81500ARC240 family

Figure 6: RC4 cryptanalysis economics

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 100 200 300 400 500

P
er

fo
rm

an
ce

 (
m

ill
io

n
ke

ys
 s

ea
rc

he
d

pe
r

se
co

nd
 p

er
 c

hi
p)

Cost (dollars per chip)

small quantities, 81188AQC208 family
small quantities, 81188ARC240 family

small quantities, 81188GC232 family
small quantities, 81500ARC240 family

500+, 81188AQC208 family
500+, 81188ARC240 family

500+, 81188GC232 family
500+, 81500ARC240 family

12

buy for that chip.

We have not yet explained the green and black dotted lines. The 81500 line of chips contains more hardware
resources than the 81188|1296 instead of 1008 \logic elements"|and this extra space should be taken into
account when comparing hardware devices. With our A5 and CDMF implementations, there is quite a bit of
space left over on the 81500 chip, as it turns out. Therefore, it is natural to ask whether two independent key
trial engines might �t on the same chip. We believe (from close examination of the resource usage) that, with
A5 and CDMF, there are su�cient hardware resources on the 81500 to support two superscalar keysearch
operations. (It would admittedly be a tight �t.) Because of time pressures, we have not actually implemented
this. RC4 requires, it seems, too many resources (mainly ip-ops for internal state) to use this strategy.
There would be other di�culties with RC4, anyhow|one would probably need a dual-ported SRAM, or two
SRAM chips attached to the CPLD (as discussed below).

One might wonder why we proposed taking advantage of extra hardware resources with a multiple-issue
architecture, instead of using (say) advanced pipelining techniques. It is worthwhile to recall why advanced
pipelining techniques were developed. On a traditional general-purpose computer, programs are typically
serialized so highly that if one were to implement several independent simple processors on the same chip,
there simply would not be enough tasks to keep the co-processors busy with useful work. Architects have
been blessed with plentiful hardware resources and cursed with the need to speed up single-instruction-stream
uniprocessors; this explains the proliferation of sophisticated pipelining methods. (Of course, pipelining does
not provide linear speedup with linear increases in hardware resources, like parallelism would, but it is
better than nothing!) We are faced with an entirely di�erent situation here. Our cryptanalytic applications
encourage virtually unlimited parallelism, so there is no need to look to sophisticated caching schemes for
speeds. Achieving parallelism via a superscalar architecture is both simpler and more e�ective for our
purposes.

The projected performance for parallelized 81500 A5 and CDMF keysearch is indicated on the plots with a
green and block dotted line, labelled \half 81500ARC240 family", with the unit price halved to indicate its
factor-of-two multiple-issue nature. (We could have doubled the performance instead, but that would have
made the graph harder to read, so for ease of comprehension and comparison we chose to halve the cost
instead.)

We discussed in class why the future of high-performance computing lies in massively-parallel collections
of low-end processors (say, Pentiums), instead of in specialized advanced CPUs. One major reason is that
Pentium processors are sold in such large quantities that tremendous economies of scale apply, and specialized
processors simply cannot compete with the low-end's ever-increasing performance-cost ratio. We can see
that an analogous situation applies here as well. The graphs show that, for our applications, upgrading to
a higher speed grade is almost never worth the increased cost. (Two notable exceptions|the \hump" in
the 81188ARC240 plot, and the bene�ts of using a 81500 with enough hardware resources to implement two
keysearch engines on-chip|have already been discussed.) Within each family, the least expensive chip turns
out to yield the best performance-to-cost ratio; spending twice as much money on a higher-grade chip in the
family never results in twice the performance. On the other hand, upgrading to a more recent \A" designated
family|one fabricated with a newer .6 micron process|is a worthwhile move. Altera has listed the \A"
chips as their preferred technology, and presumably there is more sales volume for devices on their preferred
list (though it might be hard to separate cause from e�ect here). These charts don't tell the whole story.
Altera is as we write starting to release a new advanced line of recon�gurable logic devices, the FLEX10K
architecture. In recommending the 81188 and 81500 devices, we gain extra price-performance bene�ts by
staying a bit behind behind the bleeding edge. Exploiting parallelism with low-end devices is a win for our
applications.

We have not yet discussed the impact of software in relation to the hardware performance measurements.
Software is a bit trickier to evaluate and compare to the other measurements, as it is not clear how to compare
the price of a software solution to a hardware approach. While hardware devices would typically be purchased
with one application in mind, often a certain amount of idle cycles on general-purpose computers is available
\for free". Nonetheless, software and hardware approaches typically won't be in serious competition: the
extra expense of hardware is usually not justi�ed until \free" software implementations on general-purpose

13

Figure 7: Typical software performance on cryptanalytic applications

Algorithm Keys searched per second
RC4 21900
CDMF 29800
DES 41300
A5 355000

computers are unacceptably slow.

Figure 7 lists the performance of brute-force keysearch applications, as measured on a Pentium P100 machine.
Of course these �gures will vary widely from computer to computer. For example, we estimate that we could
perform a distributed RC4 40-bit keysearch in a weekend or so, and a CDMF 40-bit keysearch in about a
night or two, by using idle cycles on the hundreds of general-purpose computers we have access to as Berkeley
computer science graduate students.

Many other organizations also have large numbers of computers which are idle much of the time. Many
employees and students thus have access to spare computational power which may be harnessed for crypt-
analysis, at essentially zero cost. Compare this to Netscape's estimate that amassing enough processing
power to break 40-bit RC4 would cost roughly $10,000. For much less than this, one could probably con-
vince a starving graduate student to lend out access to the necessary computer account. In any event, if
Netscape were willing to pay $10,000 for the amount of computing power required to break 40-bit RC4, some
enterprising student could easily form a extremely pro�table business model.

Given a distributed system of general-purpose computers, one can easily compute the maximum rate of 40-bit
keysearching possible in idle cycles by assuming that most machines are idle at least half of the time and
using estimates such as those in Figure 7; achieving better performance than this calls for hardware. We
can see from Figure 7 that our hardware implementations of CDMF, DES, and A5 keysearch are orders
of magnitude faster than software; this is not surprising, as these encryption algorithms were designed for
e�ciency in hardware.

RC4, by contrast, was designed to run e�ciently in software, and indeed, as can be seen by comparing
Figures 6 and 7, RC4 performs about twice as well in software than on programmable logic. The primary
reasons for the large search time on programmable logic are that RC4 has a large \Cycles per Key" value, and
a large \Clock cycle time" value: as seen above, the total CPK for the RC4 algorithm is 1286; far larger than
the 3 for A5 or the 37 for CDMF. The large clock cycle time stems from the fact that the algorithm contains
a number of register additions; as discussed above, these can produce very large gate delays. Unfortunately,
changing the additions to LFSRs (as was done above), or using tricks such as carry-save arithmetic, is not
appropriate for RC4, as can be seen by examining the algorithm.

Another blow to implementing RC4 e�ciently was the particular hardware architecture we had. The pro-
grammable logic devices we used were not large enough to store the necessary 256-byte state array on-chip, so
we were forced to store them in the external SRAM. However, the algorithm utilizes the SRAM every cycle,
so the number of simultaneous RC4 trials we can compute is limited by the number of ports to SRAM that
we have available. Unfortunately, on the RIPP10 programming board, not only is the SRAM single-ported,
but each SRAM is shared by two logic chips. Thus on a fully-populated board with eight logic chips and four
SRAMs, we can only perform four simultaneous RC4 trials. Redesigning the programming board to include
a port to SRAM for each simultaneous RC4 trial would save some overhead (wasted space on the board),
but would not increase the relatively poor performance to cost ratio shown above.

One advantage of software is that the development process is signi�cantly easier. By reusing code (from
cryptographic libraries available on the Internet, for example), we prototyped RC4, A5, CDMF, and DES
software keysearch applications in a total time of under an hour. In contrast, our programmable logic design
and implementation e�ort took roughly 4 weeks to complete.

14

Figure 8: Estimating the cost of cryptanalysis: a summary

Algorithm Investment for average keysearch time of Architecture components
1 year 1 week 1 day 1 hour

RC4 $0 $0 - - 100 general-purpose computers
CDMF $0 $0 - - 100 general-purpose computers
CDMF $93 $93 $745 $15,000 Altera 81500ARC240-4 CPLDs
DES $45,000 - - - Altera 81500ARC240-4 CPLDs

Programmable logic has similar advantages over custom-hardware. Development and design would be still
more time-consuming and costly for a custom-hardware approach, such as an ASIC. Furthermore, such an
ASIC can only be used for one limited algorithm. Programmable logic is more exible|the hardware devices
can be reused for cryptanalysis of many di�erent encryption algorithms with little extra e�ort. Apparently
AccessData, a business that specializes in recovering lost data (i.e. cryptanalysis) for the corporate and law
enforcement industries, prefers programmable logic over custom hardware for exactly these reasons [28].

Let us summarize what the charts recommend to one in need of cryptanalytic computational power. RC4
keysearches appear to be most e�ciently performed in general-purpose distributed systems. Performing
a single isolated 40-bit CDMF keysearch is perhaps best done with distributed software, if time is not of
the essence and there are su�cient general-purpose computational resources easily available. For CDMF
and A5 keysearch in anything more than that extremely minimal setting, though, recon�gurable logic is the
most appropriate solution of the technologies that we examined. Of the devices we surveyed, the Altera
81500ARC240-4 device is the most appropriate and economical choice for cryptanalytic applications; for
instance, a $15,000 initial investment buys about 200 of these chips, allowing one to perform on average
one CDMF keysearch every hour. The cost scales linearly, requiring approximately 108 dollar-seconds for a
complete CDMF keysearch; that is, an initial investment of x dollars allows one to search the entire CDMF
keyspace in 108=x seconds, while the average time to �nd a key is half that. In addition, we provisionally
estimate that about $45,000 of CPLD hardware could perform a DES keysearch in a year, as calculated above.
Figure 8 summarizes some of these calculations. It takes into account the economies of scale associated with
buying many logic devices, and is based on the average-case (not worst-case) search time; the worst-case
�gure would be twice as large. No �gures for A5 are included, because at the moment, there is no consensus
among cryptographers as to the size of the keyspace [26].

6 Future work

Due to time and resource limitations, we were only able to examine the Altera FLEX8000 series of program-
mable logic devices. An obvious extension of this work would be to examine other kinds of devices, such as
the new Altera FLEX10K series, or devices from other vendors such as Xylinx. Additionally, it would be
worthwhile to examine the technology trends in programmable logic, to determine how they compare to those
for general-purpose hardware.

We leave it as an open problem to the reader to actually construct a fully operational DES keysearch engine.

7 Conclusions

We found that RC4 cryptanalysis is most e�ectively implemented in software. Since RC4 was speci�cally
designed for e�ciency on general-purpose computers, it is not entirely surprising that programmable logic
fares so poorly. We showed that the estimate in [4] (which inspired the term \8-cent encryption" for 40-bit
RC4) is over-optimistic and unrealistic. On the other hand, Netscape's $10,000 estimate was far too large.

15

Programmable logic devices are very e�cient at CDMF cryptanalysis. We estimate that an initial investment
of $745 buys enough programmable logic to recover one CDMF key each day; this shows that CDMF is
practical to break. Moreover, DES is nearly practical to break; a cryptanalytic engine to do a DES keysearch
each year can be built with roughly $45,000 of programmable logic.

Several architectural techniques from the design of general-purpose processors were useful in this project.
Adding parallelism, identifying structural and data hazards, identifying performance bottlenecks, and other
techniques helped maximize the performance of our design. The cryptanalytic analogue to the \CPU time"
equation from [20] was surprisingly useful, lending structure to our analysis.

We also identi�ed several important aspects found only with cryptanalytic applications on programmable
logic. In this application, superscalar parallelism is more e�ective than pipelining. Also, register additions
can often be a limiting bottleneck for programmable logic|we avoided them where possible, and su�ered
large performance hits elsewhere.

By considering architectural issues both common to general-purpose processors and unique to programmable
logic, we examined the feasability of using commodity logic devices for cryptanalytic applications.

8 Acknowledgements

This work would not have been possible without the assistance of a number of people. We would like to
thank Eric Hughes and Bruce Koball for providing the hardware and software. We would also like to thank
Clive McCarthy and Stephen Smith, both of Altera, for their generous support.

9 Availability

This paper, and other related materials, are available on the World Wide Web at
http://www.cs.berkeley.edu/~iang/isaac/hardware.html

References

[1] Ross Anderson. A5, June 1994. Post to sci.crypt newsgroup. Available on the Internet as
http://chem.leeds.ac.uk/ICAMS/people/jon/a5.html.

[2] Ross Anderson, April 1996. Personal communication.

[3] Adam Back. Another SSL breakage..., August 1995. Post to cypherpunksmailing list. Available on the
Internet as http://dcs.ex.ac.uk/~aba/ssl/.

[4] Matt Blaze, Whit�eld Di�e, Ronald L. Rivest, Bruce Schneier, Tsutomu Shimomura, Eric Thompson,
and Michael Wiener. Minimal key lengths for symmetric ciphers to provide adequate commercial security:
A report by an ad hoc group of cryptographers and computer scientists, January 1996. Available on the
Internet as http://www.bsa.org/policy/encryption/cryptographers.html.

[5] Piete Brooks. Hal's second challenge, August 1995. Available on the Internet as
http://www.brute.cl.cam.ac.uk/brute/.

[6] Albert G. Broscius and Jonathan M. Smith. Exploiting parallelism in hardware implementation of the
DES. In Advances in Cryptology: Proceedings of CRYPTO '91, pages 367{376. Springer-Verlag, 1992.

[7] Altera Corporation. Altera components North America price list, May 1996.

[8] Altera Corporation. Altera home page, 1996. Available on the Internet as http://www.altera.com/.

16

[9] Netscape Communications Corporation. Key challenge, 1995. Available on the Internet as
http://www.netscape.com/newsref/std/key challenge.html.

[10] Wei Dai. Speed benchmarks, 1996. Post to cypherpunks mailing list. Available on the Internet as
http://www.eskimo.com/~weidai/benchmarks.txt.

[11] Whit�eld Di�e and Martin E. Hellman. Exhaustive cryptanalysis of the NBS data encryption standard.
Computer, 10(6):74{84, June 1977.

[12] Damien Doligez. SSL challenge|broken, August 1995. Post to cypherpunks mailing list. Available on
the Internet as http://pauillac.inria.fr/~doligez/ssl/.

[13] H. Eberle and C. P. Thacker. A 1 Gbit/second GaAs DES chip. In Proceedings of the IEEE 1992

Custom Integrated Circuits Conference, pages 19.7/1{4. IEEE, May 1992.

[14] Hans Eberle. A high-speed DES implementation for network applications. Technical Report 90, DEC
SRC, September 1992.

[15] R. C. Fair�eld, A. Matusevich, and J. Plany. An LSI digital encryption processor (DEP). In Advances

in Cryptology: Proceedings of CRYPTO '84, pages 115{143. Springer-Verlag, 1985.

[16] Hal Finney. SSL RC4 challenge, July 1995. Post to cypherpunks mailing list. Available on the Internet
as http://www.portal.com/~hfinney/sslchallong.html.

[17] A.O. Freier, P. Karlton, and P.C. Kocher. SSL version 3.0, 1995. Internet-Draft
draft-freier-ssl-version3-00.txt, work in progress.

[18] Gilles Garon and Richard Outerbridge. DES Watch: An examination of the su�ciency of the data
encryption standard for �nancial institution information security in the 1990's. Cryptologia, XV(3):177{
193, July 1991.

[19] Martin E. Hellman. DES will be totally insecure within ten years. IEEE Spectrum, 16(7):32{39, July
1979.

[20] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., San Francisco, 2nd edition, 1996.

[21] Frank Hoornaert, Jo Goubert, and Yvo Desmedt. E�cient hardware implementation of the DES. In
Advances in Cryptology: Proceedings of CRYPTO '84, pages 147{173. Springer-Verlag, 1985.

[22] Eric Hughes and Bruce Koball. Cryptography and the Altera FLEX 81188, December 1994. Unpublished
manuscript.

[23] D.B. Johnson, Sm.M. Matyas, A.V. Le, and J.D. Wilkins. Design of the commercial data masking
facility data privacy algorithm. In 1st ACM Conference on Computer and Communications Security,
pages 93{96. ACM Press, 1993.

[24] Clive McCarthy. Personal communication, April 1996.

[25] Robert McLaughlin. Yet another machine to break DES. Cryptologia, XVI(2):136{144, April 1992.

[26] Michael Roe, April 1996. Personal communication.

[27] Bruce Schneier. Applied Cryptography. John Wiley and Sons, New York, 2nd edition, 1994.

[28] Bruce Schneier, April 1996. Personal communication.

[29] David Wagner and Steven M. Bellovin. A probable plaintext recognizer, September 1994. Unpublished
manuscript.

[30] Peter C. Wayner. Content-addressable search engines and DES-like systems. In Advances in Cryptology:

Proceedings of CRYPTO '92, pages 575{586. Springer-Verlag, 1993.

17

[31] Michael J. Wiener. E�cient DES key search. In Advances in Cryptology: Proceedings of CRYPTO '93,
Santa Barbara, CA, 1994. Springer.

18

