
 

  
 

The Third Manifesto
Hugh Darwen and C.J. Date1

All logical differences are big differences
 —Wittgenstein (attrib.)

 ABSTRACT

We present a manifesto for the future direction of data
and database management systems. The manifesto con-
sists of a series of prescriptions, proscriptions, and “very
strong suggestions.”

 INTRODUCTION

This is a manifesto regarding the future of data and
database management systems. It is intended to follow
and, we hope, supersede two previous manifestos
[1,25]—hence our choice of title. Reference [1], in
spurning the Relational Model of Data, ignores its
importance and significance and also, we think, fails to
give firm direction. Reference [25], while correctly
espousing the Relational Model, fails to mention and
emphasize the hopelessness of continuing to follow a
commonly accepted perversion of that model, namely
SQL, in fond pursuit of the Relational Model's ideals.
By contrast, we feel strongly that any attempt to move
forward, if it is to stand the test of time, must reject
SQL unequivocally. However, we do pay some atten-
tion to the question of what to do about today's SQL
legacy.

BACK TO THE FUTURE

We seek a firm foundation for the future of data. We
do not believe that the database language SQL is
capable of providing such a foundation. Instead, we
believe that any such foundation must be firmly rooted
in the Relational Model of Data, first presented to the
world in 1969 by E. F. Codd in reference [6].

We fully acknowledge the desirability of supporting
certain features that have been much discussed in more
recent times, including some that are commonly
regarded as aspects of Object Orientation. We believe
that these features are orthogonal to the Relational
Model, and therefore that the Relational Model needs no
extension, no correction, no subsumption, and, above
all, no perversion, in order for them to be accommo-
dated in some database language that could represent the
foundation we seek.

Let there be such a language, and let its name be D2.

D shall be subject to certain prescriptions and certain
proscriptions. Some prescriptions arise from the Rela-
tional Model of Data, and we shall call these Relational
Model Prescriptions, abbreviated to RM Prescriptions.
Prescriptions that do not arise from the Relational
Model we shall call Other Orthogonal Prescriptions,
abbreviated to OO Prescriptions. We similarly cate-
gorize D's proscriptions.

We now proceed to itemize D's prescriptions and pro-
scriptions. The RM Prescriptions and Proscriptions are
not negotiable3. Unfortunately, the same cannot quite
be said of the OO Prescriptions and Proscriptions, as
there is not, at the time of writing, a clear and com-
monly agreed model for them to be based on. We do
believe that OO has significant contributions to make in
the areas of user-defined data types and inheritance,
but there is still no consensus on an abstract model,
even with respect to these important topics; thus, we
have been forced to provide our own definitions in these

1 Authors' addresses: Hugh Darwen, IBM United Kingdom Limited, P.O. Box 31, Warwick CV34 5JL, England (email:
darwen@vnet.ibm.com); C.J. Date, PO Box 1000, Healdsburg, CA 95448, USA (fax: (1)-707-433-7322). Comments are
welcome; in particular, readers are invited to write indicating briefly whether they support or oppose the ideas expressed
herein.

2 No special significance attaches to this choice of name; we use it merely to refer generically to any language that conforms to
the principles laid down in subsequent sections.

3 Some might feel this statement to be excessively dogmatic. What we mean is that prescriptions and proscriptions that arise
from the Relational Model are only as negotiable as the features of the Relational Model themselves are.



  
 

areas. And it is only fair to warn the reader that
inheritance, at least, raises a number of questions that
still do not seem to have been satisfactorily answered in
the open literature. As a result, our proposals in this
area must necessarily be somewhat tentative at this time
(see OO Prescriptions 2 and 3).

As well as prescriptions and proscriptions, this
manifesto includes some Very Strong Suggestions, also
divided into RM and OO categories.

Three final preliminary remarks:

1. The version of the Relational Model that we
espouse is, very specifically, that version first
described in reference [16] (Chapter 15) and further
refined (slightly) in reference [11] (Part II). Note,
however, that the definitions given herein for tuple
and relation represent a small improvement over the
definitions given in those earlier publications.

2. In what follows, we deliberately do not go into a lot
of detail on the various prescriptions, proscriptions,
and suggestions. (We do sometimes offer a few
explanatory comments on certain points, but all
such commentary could be deleted without affecting
the technical substance of our proposal.) It is our
intention to follow this manifesto with a series of
more specific papers describing various aspects of
our proposal in more depth.

3. In case it might not be obvious, we would like to
make it crystal clear that our overriding concern in
what follows is with an abstract model, not with
matters of implementation (though the explanatory
comments do sometimes touch on such matters for
clarification reasons).

 RM PRESCRIPTIONS
1. A domain is a named set of values. Such values,

which shall be of arbitrary complexity, shall be
manipulable solely by means of the operators
defined for the domain(s) in question (see RM Pre-
scription 3 and OO Proscription 3)—i.e., domain
values shall be encapsulated (except as noted under
RM Prescription 4). For each domain, a notation
shall be available for the explicit specification (or
“construction”) of an arbitrary value from that
domain.

Comments:

! We treat the terms domain and data type (type
for short) as synonymous and interchangeable.
The term object class is also sometimes used
with the same meaning, but we do not use this
latter term.

! We refer to domain values generically as scalar
values (scalars for short). Note, therefore, that
we explicitly permit “scalar” values to be arbi-
trarily complex; thus, e.g., an array of stacks of
lists of ... (etc.) might be regarded as a scalar
value in suitable circumstances.

2. Scalar values shall always appear (at least conceptu-
ally) with some accompanying identification of the
domain to which the value in question belongs. In
other words, scalar values shall be typed.

3. For each ordered list of n domains, not necessarily
distinct (n ≥ 0), D shall support the definition of the
valid n-adic operators that apply to corresponding
ordered lists of n values, one from each of those n
domains. Every such operator definition shall
include a specification of the domain of the result
of that operator. Such operator definitions shall be
logically distinct from the definitions of the
domains to which they refer (instead of being
“bundled in” with those definitions).

Comments:

! We treat the terms operator and function as
synonymous and interchangeable. The term
method is also sometimes used with the same
meaning, but we do not use this latter term.

! A function that directly or indirectly assigns to
one of its arguments is known as a mutator, or
simply as a function with side-effects. Such
functions are generally deprecated, but they
cannot be prohibited and they may be needed
in connection with inheritance.

4. Let V be a domain. The operators defined for V
must necessarily include operators whose explicit
purpose is to expose the actual representation of
values from V. Observe that these operators—but
no others—thus violate the encapsulation of values
from V.

Comments:

! It is our intention (a) that such encapsulation-
violating operators be used only in the imple-
mentation of other operators, and (b) that this
effect be achieved by means of the system's
authorization mechanism. In other words, the
actual representation of domain values should
be hidden from most users.

! Let V be a domain. We remark that it will
often be desirable to define a set of operators
whose effect is to expose one possible repre-
sentation (not necessarily the actual represen-
tation) for values from V; given such operators,



  
 

the user will effectively be able to operate on
values from V just as if the actual represen-
tation were exposed.

! Although the actual representation of domain
values is not relevant to the specifications of
this manifesto, it might be helpful to point out
that if v1 and v2 are distinct values from
domain V, nothing in the D language requires
the actual representations of v1 and v2 to be the
of the same form. For instance, V might be the
domain “text,” and v1 and v2 two documents
prepared using different word processors.

5. D shall come equipped with certain builtin domains,
including in particular the domain of truth values
(true and false). The usual operators (NOT, AND,
OR, IF ... THEN ..., IFF, etc.) shall be supported
for this domain.

6. Let H be some tuple heading (see RM Prescription
9). Then it shall be possible to define a domain
whose values are tuples with heading H—in other
words, TUPLE shall be a valid type constructor.
The operators defined for such a domain shall be,
precisely, the set of tuple operators supported by D.
Those operators shall include one for constructing a
tuple from specified scalars and another for
extracting specified scalars from a tuple. They shall
also include tuple “nest” and “unnest” capabilities
analogous to those described for relations in refer-
ence [16] (Chapter 6).

7. Let H be some relation heading (see RM Pre-
scription 10). Then it shall be possible to define a
domain whose values are relations with heading
H—in other words, RELATION shall be a valid
type constructor. The operators defined for such a
domain shall be, precisely, the set of relational
operators supported by D. Those operators shall
include one for constructing a relation from speci-
fied tuples and another for extracting specified
tuples from a relation. They shall also include rela-
tional “nest” and “unnest” capabilities along the
lines described in reference [16] (Chapter 6).

Comment: Note that from the perspective of any
relation that includes an attribute defined on such a
domain, the “scalar” values in that domain are still
(like all domain values) encapsulated. (An analo-
gous remark applies to RM Prescription 6 also.)
We explicitly do not espouse NF2 (“NF squared”)
relations as described in, e.g., reference [24], which
involve major extensions to the classical Relational
Algebra.

8. The equals comparison operator (“=”) shall be
defined for every domain. Let v1 and v2 each

denote some value from some domain, V. Then v1
= v2 shall be true if and only if v1 and v2 are the
same member of V.

9. A tuple, t, is a set of ordered triples of the form
<A,V,v>, where:

! A is the name of an attribute of t. No two
distinct triples in t shall have the same attribute
name.

! V is the name of the (unique) domain corre-
sponding to attribute A.

! v is a value from domain V, called the attri-
bute value for attribute A within tuple t.

The set of ordered pairs <A,V> that is obtained by
eliminating the v (value) component from each
triple in t is the heading of t. Given a tuple
heading, a notation shall be available for the
explicit specification (or “construction”) of an arbi-
trary tuple with that heading.

10. A relation, R, consists of a heading and a body.
The heading of R is a tuple heading H as defined
in RM Prescription 9. The body of R is a set B of
tuples, all having that same heading H. The attri-
butes and corresponding domains identified in H are
the attributes and corresponding domains of R.
Given a relation heading, a notation shall be avail-
able for the explicit specification (or “construction”)
of an arbitrary relation with that heading.

Comments:

! Note that each tuple in R contains exactly one
value v for each attribute A in H; in other
words, R is in First Normal Form, 1NF.

! We draw a sharp distinction between relations
per se and relation variables (see RM Pre-
scription 13). An analogous distinction applies
to databases also (see RM Prescription 15).
We recognize that these terminological dis-
tinctions will, regrettably, be unfamiliar to most
readers; we adopt them nevertheless, in the
interests of precision.

11. A scalar variable of type V is a variable whose
permitted values are scalars from a specified
domain V, the declared domain for that scalar vari-
able. Creating a scalar variable S shall have the
effect of initializing S to some scalar value—either
a value specified explicitly as part of the operation
that creates S, or some implementation-dependent
value if no such explicit value is specified.

12. A tuple variable of type H is a variable whose
permitted values are tuples with a specified tuple



  
 

heading H, the declared heading for that tuple var-
iable. Creating a tuple variable T shall have the
effect of initializing T to some tuple value—either a
value specified explicitly as part of the operation
that creates T, or some implementation-dependent
value if no such explicit value is specified.

13. A relation variable—relvar for short—of type H
is a variable whose permitted values are relations
with a specified relation heading H, the declared
heading for that relvar.

14. Relvars are either base or derived. A derived
relvar is a relvar whose value at any given time is
a relation that is defined by means of a specified
relational expression (see RM Prescriptions 18-20);
the relational expression in question shall be such
that the derived relvar is updatable according to the
rules and principles described in references [11]
(Chapter 17) and [18-19]. A base relvar is a relvar
that is not derived. Creating a base relvar shall
have the effect of initializing that base relvar to an
empty relation.

Comment: Base and derived relvars correspond to
what are known in common parlance as “base
relations” and “updatable views,” respectively.
Note, however, that we consider many more views
to be updatable than have traditionally been so con-
sidered [18-19].

15. A database variable—dbvar for short—is a named
set of relvars. Every dbvar is subject to a set of
integrity constraints (see RM Prescriptions 23 and
24). The value of a given dbvar at any given time
is a set of ordered pairs <R,r> (where R is a relvar
name and r is the current value of that relvar), such
that (a) there is one such ordered pair for each
relvar in the dbvar, and (b) together, those relvar
values satisfy the applicable constraints. Such a
dbvar value is called a database (sometimes a data-
base state, but we do not use this latter term).

Comment: It is worth pointing out that we explic-
itly do not regard domains as belonging to any par-
ticular dbvar.

16. Each transaction interacts with exactly one dbvar.
However, distinct transactions can interact with dis-
tinct dbvars, and distinct dbvars are not necessarily
disjoint. Also, a transaction can dynamically
change its associated dbvar by adding and/or
removing relvars (see RM Prescription 17).

Comments:

! One purpose of the dbvar concept is to define a
scope for relational operations. That is, if
dbvar X is the dbvar associated with transaction

T, then T shall not mention any relvar R that is
part of some distinct dbvar Y and not part of
dbvar X.

! The set of all base relvars might be regarded as
the “base” dbvar. Individual transactions,
however, interact with a “derived” or “user”
dbvar that consists (in general) of a mixture of
base and derived relvars.

! The mechanism for making and breaking the
connection between a transaction and its unique
corresponding dbvar is not specified in this
manifesto.

17. D shall provide operators to create and destroy
domains, variables (including in particular relvars),
and integrity constraints. Every explicitly created
domain, variable, or integrity constraint shall be
named. Every base relvar shall have at least one
candidate key, specified explicitly as part of the
operation that creates that base relvar.

Comment: The creation and destruction of dbvars
(which we assume to be “persistent”) is performed
outside the D environment.

18. The Relational Algebra as defined in reference
[11] (Part II) shall be expressible without excessive
circumlocution.

Comment: “Without excessive circumlocution”
implies among other things that:

! Universal and existential quantification shall be
equally easy to express. For example, if D
includes a specific operator for relational
projection, then it should also include a spe-
cific operator for the general form of relational
division described (as DIVIDEBY PER) in ref-
erence [16] (Chapter 11).

! Projection over specified attributes and
projection over all but specified attributes shall
be equally easy to express.

19. Relvar names and explicit (“constructed”) relation
values shall both be legal relational expressions.

20. D shall provide operators to create and destroy
named functions whose value at any given time is
a relation that is defined by means of a specified
relational expression. Invocations of such functions
shall be permitted within relational expressions
wherever explicit relation values are permitted.

Comment: Such functions correspond to what are
known in common parlance as “read-only views,”
except that we permit the relational expressions
defining such “views” to be parameterized. Such



  
 

parameters represent scalar values and are permitted
within the defining relational expression wherever
explicit scalar values are permitted. (It might be
possible to support tuple and relation parameters
also. See RM Very Strong Suggestion 7.)

21. D shall permit:

a. (The value of) a tuple expression to be
assigned to a tuple variable, and

b. (The value of) a relational expression to be
assigned to a relvar,

provided in both cases that the requirements of type
compatibility as described in reference [11]
(Chapter 19) are satisfied.

Comment: Of course, this prescription does not
prohibit the additional provision of convenient
shorthands such as INSERT, UPDATE, and
DELETE as described in reference [11] (Part II).

22. D shall support certain comparison operators. The
operators defined for comparing tuples shall be “=”
and “≠” (only); the operators defined for comparing
relations shall include “=”, “≠”, “is a subset of”
(etc.); the operator “∈” for testing membership of a
tuple in a relation shall be supported. In all cases,
the requirements of type compatibility as described
in reference [11] (Chapter 19) shall be satisfied.

23. Any expression that evaluates to a truth value is
called a conditional expression. Any conditional
expression that is (or is logically equivalent to) a
closed WFF of the Relational Calculus [11] (Part II)
shall be permitted as the specification of an integ-
rity constraint. Integrity constraints shall be clas-
sified according to the scheme described in
references [11] (Chapter 16) and [18-19] into
domain, attribute, relation, and database con-
straints, and D shall fully support the constraint
inference mechanism required by that scheme.

24. Every relvar has a corresponding relation predicate
and every dbvar has a corresponding database
predicate, as explained in references [11] (Chapter
16) and [18-19]. Relation predicates shall be satis-
fied at statement boundaries. Database predicates
shall be satisfied at transaction boundaries.

Comments:

! These concepts, which we believe to be both
crucial and fundamental, have unfortunately
been very much overlooked in the past, and we
therefore amplify them slightly here. Basically,
a relation predicate is the logical AND of all
integrity constraints that apply to the relvar in
question, and a database predicate is the logical

AND of all integrity constraints that apply to
the dbvar in question. The point cannot be
emphasized too strongly that it is predicates,
not names, that represent data semantics.

! To say that relation predicates shall be satisfied
at statement boundaries is to say, precisely, that
no relational assignment shall leave any relvar
in a state in which its relation predicate is vio-
lated. To say that database predicates shall be
satisfied at transaction boundaries is to say,
precisely, that no transaction shall leave the
corresponding dbvar in a state in which its
database predicate is violated.

! This prescription further implies that it shall not
be possible to update an “updatable view” (i.e.,
derived relvar) in such a way as to violate the
definition of that view. In other words,
“updatable views” shall always be subject to
what SQL calls CASCADED CHECK OPTION
[17].

25. Every dbvar shall include a set of relvars that con-
stitute the catalog for that dbvar. It shall be pos-
sible to assign to relvars in the catalog.

Comment: This prescription implies that the
catalog must be what is commonly known as “self-
describing.”

26. D shall be constructed according to well-established
principles of good language design as documented
in, e.g., reference [3].

Comment: Arbitrary restrictions such as those doc-
umented in references [8] (Chapter 12), [14] and
[17], and all other ad hoc concepts and constructs,
shall thus be absolutely prohibited.

 RM PROSCRIPTIONS

The observant reader will note that many of the pro-
scriptions in this section are logical consequences of the
RM Prescriptions. In view of the unfortunate mistakes
that have been made in SQL, however, we feel it is nec-
essary to write down some of these consequences by
way of clarification.

1. D shall include no construct that depends on the
definition of some ordering for the attributes of a
relation. Instead, for every relation R expressible in
D, the attributes of R shall be distinguishable by
name.

Comment: This proscription implies no more anon-
ymous columns, as in SQL's SELECT X + Y
FROM T, and no more duplicate column names, as



  
 

in SQL's SELECT X, X FROM T and SELECT
T1.X, T2.X FROM T1, T2.

2. D shall include no construct that depends on the
definition of some ordering for the tuples of a
relation.

Comment: This proscription does not imply that
such an ordering cannot be imposed for, e.g., pres-
entation purposes; rather, it implies that the effect
of imposing such ordering is to convert the relation
into something that is not a relation (perhaps a
sequence or ordered list).

3. For every relation R, if t1 and t2 are distinct tuples
in R, then there must exist an attribute A of R such
that the attribute value for A in t1 is not equal to
the attribute value for A in t2.

Comment: In other words, “duplicate rows” are
absolutely, categorically, and unequivocally out-
lawed. What we tell you three times is true.

4. Every attribute of every tuple of every relation shall
have a value that is a value from the applicable
domain.

Comment: In other words—no more nulls, and no
more many-valued logic!

5. D shall not forget that relations with zero attributes
are respectable and interesting, nor that candidate
keys with zero components are likewise respectable
and interesting.

6. D shall include no constructs that relate to, or are
logically affected by, the “physical” or “storage” or
“internal” levels of the system (other than the func-
tions that explicitly expose the actual representation
of domain values—see RM Prescription 4). If an
implementer wants or needs to introduce any kind
of “storage structure definition language,” the state-
ments of that language, and the mappings of dbvars
to physical storage, shall be cleanly separable from
everything expressed in D.

7. There shall be no tuple-at-a-time operations on
relations.

Comments:

! INSERT, UPDATE, and DELETE statements,
if provided, insert or update or delete (as appli-
cable) a set of tuples, always; a set containing a
single tuple is just a special case (though it
might prove convenient to offer a syntactic
shorthand for that case).

! Tuple-at-a-time retrieval (analogous to SQL's
FETCH via a cursor)—though prohibited, and
generally deprecated to boot—can effectively

be performed, if desired, by converting the
relation to an ordered list of tuples and iterating
over that list.

! Tuple-at-a-time update (analogous to SQL's
UPDATE and DELETE via a cursor) is
categorically prohibited.

8. D shall not include any specific support for “com-
posite domains” or “composite columns” (as pro-
posed in, e.g., reference [4]), since such
functionality can be achieved if desired through the
domain support already prescribed. See reference
[9].

9. “Domain check override” operators (as documented
in, e.g., reference [4]) are ad hoc and unnecessary
and shall not be supported.

10. D shall not be called SQL.

 OO PRESCRIPTIONS
1. D shall permit compile-time type checking.

Comment: By this prescription, we mean
that—insofar as feasible—it shall be possible to
check at compilation time that no type error can
occur at run time. This requirement does not pre-
clude the possibility of “compile and go” or inter-
pretive implementations.

2. (Single inheritance) If D permits some domain V'
to be defined as a subdomain of some superdo-
main V, then such a capability shall be in accord-
ance with some clearly defined and generally
agreed model.

Comments:

! It is our hope that such a “clearly defined and
generally agreed” inheritance model will indeed
someday be found. The term “generally
agreed” is intended to imply that the authors of
this manifesto, among others, shall be in
support of the model in question. Such support
shall not be unreasonably withheld.

! We note that support for inheritance implies
certain extensions to the definitions of scalar
variable, tuple variable, relation, and relvar. It
also seems to imply that OO Prescription 1
might need to be relaxed slightly. A possible
model for inheritance that incorporates these
points is sketched in a forthcoming appendix to
this manifesto (draft version currently available
from the authors).

3. (Multiple inheritance) If D permits some domain
V' to be defined as a subdomain of some superdo-



  
 

main V, then V' shall not be prevented from addi-
tionally being defined as a subdomain of some
other domain W that is neither V nor any superdo-
main of V (unless the requirements of OO Pre-
scription 2 preclude such a possibility).

4. D shall be computationally complete. That is, D
may support, but shall not require, invocation from
so-called “host programs” written in languages
other than D. Similarly, D may support, but shall
not require, the use of other programming languages
for implementation of user-defined functions.

Comment: We do not intend this prescription to
undermine such matters as D's optimizability
unduly. Nor do we intend it to be a recipe for the
use of procedural constructs such as loops to
perform database queries or integrity checks.
Rather, the point is that computational completeness
will be needed (in general) for the implementation
of user-defined functions. To be able to implement
such functions in D itself might well be more con-
venient than having to make excursions into some
other language—excursions that in any case are
likely to cause severe problems for optimizers. Of
course, we agree that it might prove desirable to
prohibit the use of certain D features outside the
code that implements such functions; on the other
hand, such a prohibition might too severely restrict
what can be done by a “free-standing” application
program (i.e., one that does not require invocation
from some program written in some other lan-
guage). More study is needed.

5. Transaction initiation shall be performed only by
means of an explicit “start transaction” operator.
Transaction termination shall be performed only by
means of a “commit” or “rollback” operator;
“commit” must be explicit, but “rollback” can be
implicit (if the transaction fails through no fault of
its own).

Comment: If transaction T terminates via commit
(“normal termination”), changes made by T to the
applicable dbvar are committed. If transaction T
terminates via rollback (“abnormal termination”),
changes made by T to the applicable dbvar are
rolled back. In other words, dbvars (only) possess
the property of “persistence.”

6. D shall support nested transactions—i.e., it shall
permit a transaction T1 to start another transaction
T2 before T1 itself has finished execution, in which
case:

a. T2 and T1 shall interact with the same dbvar
(as is in fact required by RM Prescription 16).

b. D shall not preclude the possibility that T1 and
T2 be able to execute asynchronously.
However, T1 shall not be able to complete
before T2 completes (in other words, T2 shall
be wholly contained within T1).

c. Rollback of T1 shall include the undoing of T2
even if T2 was committed.

7. Let A be an aggregate operator (such as SUM) that
is essentially just shorthand for some iterated dyadic
operator θ (the dyadic operator is “+” in the case of
SUM). If the argument to A happens to be empty,
then:

a. If an identity value exists for θ (the identity
value is 0 in the case of “+”), then the result of
that invocation of A shall be that identity value;

b. Otherwise, the result of that invocation of A
shall be undefined.

 OO PROSCRIPTIONS
1. Relvars are not domains.

Comment: In other words, we categorically reject
the equation “relation = object class” (more accu-
rately, the equation “relvar = object class”)
espoused in, e.g., reference [23].

2. No value (scalar or any other kind) shall possess
any kind of ID that is somehow distinct from the
value per se.

Comments:

! In other words, we reject the idea of “object
IDs.” As a consequence, we reject (a) the idea
that “objects” might make use of such IDs in
order to share “subobjects,” and (b) the idea
that users might have to “dereference” such IDs
(either explicitly or implicitly) in order to
obtain values.

! We also reject the idea of “tuple IDs” (some
writers seem to equate tuple IDs and object
IDs).

! This proscription does not prevent objects
outside the dbvar from having IDs that are
“somehow distinct from” the object per se, nor
does it prevent such IDs from appearing within
the dbvar. (We should stress that we use the
term “object” here in its general sense, not in
its specialized object-oriented sense.) Thus, for
example, a domain of host operating system
filenames is a legal domain.

3. Any “public instance variable” notation provided
for operating on values in domains shall be mere



  
 

syntactic shorthand for certain special function
invocations (and perhaps “pseudovariable refer-
ences,” if such instance variables can appear on the
left-hand side of assignment operations). There
shall not necessarily be any direct correlation
between such instance variables and the actual rep-
resentation of the domain values in question.

4. D shall not include either the concept of
“protected” (as opposed to private) instance vari-
ables or the concept of “friends” (see reference [20]
for an explanation of these concepts).

Comment: We believe the problem that such con-
cepts are intended to address is better solved by
means of the system's authorization mechanism.

RM VERY STRONG SUGGESTIONS
1. It should be possible to specify one or more candi-

date keys for each derived relvar. For each relvar
(base or derived) for which candidate keys have
been specified, it should be possible to nominate
exactly one of those candidate keys as the primary
key.

Comment: Every relvar does possess one or more
candidate keys (of which at least one, and prefer-
ably all, must be so designated by the user in the
case of base relvars, as required by RM Prescription
17). Designation of one particular candidate key as
primary is optional, however, for reasons explained
in reference [13].

2. D should include support for system-generated
keys along the lines described in references [16]
(Chapter 5) and [7] (Chapter 19).

3. D should include some convenient declarative short-
hand for expressing (a) referential constraints and
(b) referential actions such as “cascade delete.”

4. It is desirable, but thought not to be completely fea-
sible, for the system to be able to infer the (time-
independent) candidate keys of every relation R
expressible in D, such that:

a. Candidate keys of R become candidate keys of
R' when R is assigned to R', and

b. Candidate keys of R may be included in the
information about R that is available to a user
of D.

D should provide such functionality, but without
any guarantee that inferred keys are not proper
supersets of actual keys, or even that some superset
(proper or otherwise) is discovered for every actual
key. Implementations of D can thus compete with

each other in their degree of success at discovering
candidate keys.

Comment: The recommendation that candidate
keys should (as far as possible) be inferred for
derived relations is in fact subsumed by RM Pre-
scription 23, which requires support for a general
constraint inference mechanism. We mention can-
didate keys explicitly here because we regard them
as an important special case, for reasons explained
in reference [16] (Chapter 10).

5. D should provide some convenient (nonprocedural)
means of expressing quota queries (e.g., “find the
three youngest employees”). Such a capability
should not be bundled with the mechanism that
converts a relation into an ordered list (see RM Pro-
scription 2).

6. D should provide some convenient (nonprocedural)
means of expressing the generalized transitive
closure of a graph relation, including the ability to
perform generalized concatenate and aggregate
operations as described in reference [21].

7. D should permit the parameters to relation-valued
functions to represent tuples and relations as well as
scalars.

Comment: We make this a suggestion merely,
rather than a prescription, because we believe it
requires further study at this time.

8. D should provide a mechanism for dealing with
“missing information” along the lines of the default
value scheme described in Chapter 21 of reference
[16] (but based on domains rather than attributes).

Comment: The term “default values” is perhaps
misleading, inasmuch as it suggests an interpretation
that was not intended—namely, that the value in
question occurs so frequently that it might as well
be the default. Rather, the intent is to use an
appropriate “default” value, distinct from all pos-
sible genuine values, when no genuine value can be
used. For example, if the genuine values of the
attribute HOURS_WORKED are positive integers,
the default value “?” might be used to mean that
(for some reason) no genuine value is known.
Note, therefore, that the domain for
HOURS_WORKED is not simply the domain of
positive integers.

9. SQL should be implementable in D—not because
this is desirable per se, but so that a painless
migration route might be available for current SQL
users. To this same end, existing SQL databases
should be convertible to a form that D programs
can operate on without error.



  
 

Comment: The foregoing does not imply that D
must be a superset of SQL, but rather that it should
be possible to write a frontend layer of D code on
top of D's true relational functionality that:

a. Will accept SQL operations against converted
SQL data, and

b. Will give the results that SQL would have
given if those SQL operations had been exe-
cuted against the original unconverted SQL
data.

We should stress that we believe it possible to con-
struct such an SQL frontend without contravening
any of the prescriptions and proscriptions laid down
in this manifesto.

OO VERY STRONG SUGGESTIONS
1. Some form of type inheritance should be sup-

ported (in which case, see OO Prescriptions 2 and
3). In keeping with this suggestion, D should not
include: (a) the concept of implicit type conversion;
(b) the concept that functions have a special “distin-
guished” or “receiver” parameter.

Comment: Implicit type conversions would under-
mine the objective of substitutability; distinguished
parameters would introduce an artificial and unnec-
essary degree of asymmetry. Both these points are
amplified in the forthcoming appendix on
inheritance mentioned in OO Prescription 2.

2. “Collection” type constructors, such as LIST,
ARRAY, and SET, as commonly found in lan-
guages supporting rich type systems, should be sup-
ported. (See also RM Prescription 7.)

3. Let C be a collection type constructor other than
RELATION. Then a conversion function, say
C2R, should be provided for converting values of
type C to relations, and an inverse function, say
R2C, should also be provided, such that:

a. C2R(R2C(r)) = r for every relation r expres-
sible in D;

b. R2C(C2R(c)) = c for every expressible value c
of type C.

4. D should be based on the “single-level storage”
model as described in, e.g., reference [15]. In other
words, it should make no logical difference whether
a given piece of data resides in main memory, sec-
ondary storage, tertiary storage, etc.

 CONCLUDING REMARKS

We have presented a manifesto for the future direction
of data and database management systems. Now
perhaps is the time to confess that we do feel a little
uncomfortable with the idea of calling what is, after all,
primarily a technical document a “manifesto.”
According to Chambers Twentieth Century Dictionary, a
manifesto is a “written declaration of the intentions,
opinions, or motives” of some person or group (e.g., a
political party). This particular written declaration, by
contrast, is—we hope—a matter of science and logic,
not mere “intentions, opinions, or motives.” Given the
historical precedents that led us to write this document,
however, our title was effectively chosen for us.

By way of summary, we present an abbreviated mne-
monic list of all of the prescriptions, proscriptions, and
very strong suggestions discussed in the foregoing
sections.

 RM Prescriptions

 RM Proscriptions

 1. Domains
 2. Typed scalars
 3. Scalar operators
 4. Actual representation
 5. Truth values
6. Type constructor TUPLE
7. Type constructor RELATION

 8. Equality operator
 9. Tuples
10. Relations
11. Scalar variables
12. Tuple variables
13. Relation variables (relvars)
14. Base vs. derived relvars
15. Database variables (dbvars)
16. Transactions and dbvars
17. Create/destroy operations
18. Relational algebra
19. Relvar names and explicit relation values
20. Relational functions
21. Relation and tuple assignment
22. Comparisons
23. Integrity constraints
24. Relation and database predicates
25. Catalog
26. Language design

1. No attribute ordering
2. No tuple ordering
3. No duplicate tuples

 4. No nulls
5. No nullological mistakes
6. No internal-level constructs
7. No tuple-level operations
8. No composite columns
9. No domain check override

10. Not SQL



  
 

 OO Prescriptions

 OO Proscriptions

RM Very Strong Suggestions

OO Very Strong Suggestions
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