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Abstract

We give evidence that Single Tranferable Vote (STV) is computation-

ally resistant to manipulation: It is NP-complete to determine whether

there exists a (possibly insincere) preference that will elect a favored can-

didate, even in an election for a single seat. Thus strategic voting under

STV is qualitatively more difficult than under other commonly-used vot-

ing schemes. Furthermore, this resistance to manipulation is inherent to

STV and does not depend on hopeful extraneous assumptions like the

presumed difficulty of learning the preferences of the other voters.

We also prove that it is NP-complete to recognize when an STV elec-

tion violates monotonicity. This suggests that non-monotonicity in STV

elections might be perceived as less threatening since it is in effect “hid-

den” and hard to exploit for strategic advantage.
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1 Strategic voting

For strategic voting the fundamental problem for any would-be manipulator is

to decide what preference to claim. We will show that this modest task can

be impractically difficult under the voting scheme known as Single Transferable

Vote (STV). Furthermore this difficulty pertains even in the ideal situation in

which the manipulator knows the preferences of all other voters and knows that

they will vote their complete and sincere preferences. Thus STV is apparently

unique among voting schemes in actual use today in that it is computationally

resistant to manipulation. It might be that this resistance can help protect

the integrity of social choice: If the work to construct a strategic preference is

excessive, this might mean that strategic voting is not practical, even though

theoretically possible.

Following the conventions of [14] we formalize the fundamental problem of

strategic voting as the following “yes/no” question.

EFFECTIVE PREFERENCE

GIVEN: A set C of candidates; a distinguished candidate c; and the set V of

sincere, transitive, strict, and complete preferences of the voters.

QUESTION: Is there a preference ordering on C that when tallied with the

preferences of V will ensure the election of c?

A polynomial-time algorithm for EFFECTIVE PREFERENCE is one that

will always answer the question correctly within a number of steps bounded

above by a polynomial in the size of a description of the election (which is

O(|V ||C|)). Polynomial-time algorithms are considered fast because the work to

answer the question does not increase too rapidly as a function of the size of the

problem; similarly, problems for which there exist polynomial time algorithms

are considered “easy”. In contrast, an algorithm which requires exponential time

quickly becomes impractical as the size of the problem increases; accordingly,

such problems are considered “hard”. This theoretical distinction is widely

borne out in practical experience [14].
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The celebrated theorems of Gibbard, Satterthwaite, and Gärdenfors show

that any voting scheme that is minimally fair is in principle susceptible to strate-

gic voting; that is, there exist instances in which some voter has incentive to

misrepresent his true preferences [13, 15, 28]. For a susceptible voting scheme,

if there exists an algorithm that is guaranteed to answer EFFECTIVE PREF-

ERENCE within polynomial time, then, following [5], we say the voting scheme

is vulnerable; otherwise the voting scheme is resistant.

This paper may be read as a companion to [5], which proved that most voting

schemes in common use are vulnerable to strategic voting. Here we prove that

STV, a voting scheme in widespread practical use, is qualitatively different from

the others in that it requires distinctly more effort to vote strategically. Thus

STV might encourage sincere voting, since it can be difficult to do otherwise.

In [4] it was observed that voting schemes due to Dodgson and to Kemeny

had the undesirable property that it is NP-hard to tell whether any particular

candidate has won the election. Such schemes are hard to manipulate for the

uninteresting reason that they are hard to operate. What is wanted is a voting

scheme that supports quick computation for authorized use, such as determining

winners, but erects computational barriers to abuse. In [5] there was displayed

a scheme that computes winners quickly but resists manipulation. However it

is a rather contrived scheme whose only use, as far as we know, has been as a

tie-breaking rule by the International Federation of Chess. This paper, taken

with the results of [5] suggest that STV is the only voting scheme in actual use

that computes winners quickly (in polynomial time) but is inherently resistant

to strategic voting.

Note that we are not arguing for the adoption of STV—it has troubling

faults documented elsewhere [6, 9, 12, 17, 21]—rather we are contributing to

the argument begun by [4, 5] that computational properties ought to be among

the criteria by which a prospective voting scheme is evaluated. In this regard

STV differs in an interesting and possibly helpful way from other common voting

schemes.
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2 Single Transferable Vote

Under STV each voter submits a total order of the candidates. STV tallies votes

by reallocating support from “weaker” candidates to “stronger” candidates and

excess support from elected candidates to remaining contenders. In comparison

with other voting schemes in practical use, it is rather complicated. However,

despite its relative complexity, STV or its variants are used in elections for the

parliaments of the Republic of Ireland, Tasmania, and Malta; for the senates

of Northern Ireland, Australia, and South Africa; for all local authorities in the

Republic of Ireland and some in Australia and Canada; and in the United King-

dom for many public and professional institutions, trade unions, and voluntary

societies [23]. In the U. S. A. it is used by Cambridge, Massachusetts for the

election of its city council and school committee and by New York City for the

election of its district school boards [1]. John Stuart Mill praised its advantages

as being “. . . such and so numerous . . . that, in my conviction, they place [STV]

among the greatest improvements yet made in the theory and practice of gov-

ernment” [19]. Subsequent analysis has tempered this enthusiasm somewhat,

since STV, like any voting system, must be imperfect. Most troubling of its

weaknesses is that it is possible for a candidate to change from a winner to a

loser as a result of gaining more support [9]. Nevertheless, STV has much to

commend it, most notably its tendency to guarantee proportional representa-

tion. Largely for this property, STV is championed by such organizations as

The Electoral Reform Society of Great Britain and Ireland [23].

We formalize STV as an algorithm in Figure 1, with supporting procedures

in Figures 2, 3, and 4. All variants we know differ most significantly in how they

reallocate excess support from an elected candidate to the remaining contenders.

The “pure” form of STV uses the procedure given in Figure 4. For comparison,

Figure 5 gives the procedure used by the city of Cambridge, Massachusetts. Our

complexity results will hold for all such variants of STV, independently of how

excess votes are reallocated.

For a picturesque rather than algorithmic description of STV, see [10]. For
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an official guide to one version of STV in practice, see Rules for Counting

Ballots under Proportional Representation, City of Cambridge Election, 1941,

reproduced in [1]. A good summary assessment of the strengths and weaknesses

of STV may be found in [7]. Finally, [16] contains compilable source code for

a program to tabulate ballots in an STV election. The program is documented

and seems suitable for practical use, as it handles administrative complications

such as ties and incompletely specified ballots.

3 Strategic voting under STV

Others have remarked on the apparent difficulty of strategic voting under an

STV election. Most immediately, Steven J. Brams, in private communication

to the first author, conjectured that strategic voting is computationally diffi-

cult under STV. In addition, Chamberlin found that by several empirical mea-

sures strategic voting under STV seemed more difficult than under other voting

schemes he tested (Plurality, Borda, and Coombs) [8]. He observed that STV,

in contrast to the other schemes, “. . . usually has a much more complex and

election-specific manipulation strategy”. This is consistent with our results since

the NP-completeness of EFFECTIVE PREFERENCE under STV means that

there is no simple pattern, structure, or rule to simplify the construction of

an effective preference. Thus, for each strategic voter, the search for an effec-

tive preference must be essentially enumerative search over an exponentially

large set—even when the strategic voters are trying to coördinate their votes

to achieve a common goal. In contrast, for Plurality, Borda, and Coombs it

is always the case that a voter can, within polynomial time, either construct a

strategic preference or else conclude that none exists [5].

We will prove that EFFECTIVE PREFERENCE is hard, even for the spe-

cial case of STV in which all candidates vie for a single seat. In this case the

voting scheme works by successively eliminating a candidate with the fewest

votes and reallocating his support. This type of voting scheme is also called

alternative voting or successive elimination. The following is strong theoreti-
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procedure STV;
begin;

InitializeScores();
quota := d |V |

k+1 + 1e;
repeat

if any candidate has score ≥ quota then
status of candidate := elected;
ReallocateVotesOfWinner( candidate );

else
with candidate of lowest score do

status := defeated;
ReallocateVotesOfLoser( candidate );

end;
end;

until total of elected candidates and viable candidates = k;
for each remaining viable candidate do

his status := Elected;
end;

end;

Figure 1: STV, written in pseudo-Pascal. This tallies votes to elect k candidates

from a set C based on the preferences of a set V of voters. A viable candidate

is one who has not yet been defeated or elected.

procedure InitializeScores();
begin;

for each candidate do
his score := 1.0;
his status := viable;

end;
for each ballot do

its weight := 1.0;
add its weight to the score of the first viable candidate on ballot;

end;
end;

Figure 2: Procedure to initialize scores for the STV algorithm
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procedure ReallocateVotesOfLoser( candidate );
begin;

for each ballot do
if candidate is the first viable candidate on the ballot then

Increase score of next viable candidate on ballot by weight of ballot;
end;

end;
end;

Figure 3: Procedure ReallocateVotesOfLoser

procedure ReallocateVotesOfWinner( candidate );
begin;

excess votes for candidate := score of candidate – quota;
for each ballot do

if candidate is the first viable candidate on the ballot then
Set weight of this ballot := (weight) (excess/score);
Increase score of next viable candidate on ballot by weight of ballot;

end;
end;

end;

Figure 4: Procedure ReallocateVotesOfWinner for the “pure” form of STV

procedure ReallocateVotesOfWinner( candidate );
begin;

excess votes for candidate := score of candidate – quota;
for j := 1 to excess do

Draw a ballot randomly from among those on which candidate is the
first viable candidate;

Increase score of next viable candidate on ballot by weight of ballot;
end;

end;

Figure 5: Procedure ReallocateVotesOfWinner for the variant of STV that is

used in Cambridge, Massachusetts

7



cal evidence that there is no dependably fast algorithm to solve EFFECTIVE

PREFERENCE under Successive Elimination.

Theorem 1. EFFECTIVE PREFERENCE is NP-complete under Successive

Elimination.

Proof. First observe that EFFECTIVE PREFERENCE under Successive Elim-

ination is in NP, since the effectiveness of a preference can be verified in poly-

nomial time by tallying the election and checking whether c wins.

Now we prove that EFFECTIVE PREFERENCE under Successive Elimi-

nation is “as hard as” the following problem that is known to be NP-complete

[14].

3-COVER

GIVEN: A set S with |S| = n; subsets S1, . . . , Sm ⊂ S, with |Si| = 3 for

i = 1, . . . ,m.

QUESTION: Does there exist an index set I with |I| = n/3 and
⋃

i∈I Si = S?

Now let {S1, . . . , Sm} denote an instance of 3-COVER. We will create an

STV election for which there exists an effective preference if and only if there

exists a 3-cover for S. Our contrived election will be to select a single winner

from among 5m+n+3 candidates. In this election the candidates fall naturally

into the following five groups.

1. “possible winners” c and w;

2. “first losers” a1, . . . , am and a1, . . . , am;

3. “second line” b1, . . . , bm and b1, . . . , bm;

4. “w-bloc” d0, d1, . . . , dn;

5. “garbage collectors” g1, . . . , gm;

The election we construct will have the following properties.

Property 1: Of the first 3m candidates to be eliminated, 2m of them are

a1, . . . , am and a1, . . . , am.
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Property 2: Let I = { i : ai is eliminated prior to ai }. Then c will win the

election if and only if I is a 3-cover.

Property 3: For any specified index set I ⊆ {1, . . . ,m}, there exists a prefer-

ence which, when tallied with all the other preferences, guarantees that ai

is eliminated prior to ai if and only if i ∈ I. Furthermore, such a preference

can be constructed by allocating the first m positions on the preference

list as follows: if i ∈ I then place ai in the ith position; otherwise place ai

in the ith position.

Properties 1–3 together imply that a strategic voter can guarantee victory

for c in this election if and only if he can solve the 3-cover problem.

Now we describe the details of our contrived election. The voters are as

follows. (Wherever we leave preferences unspecified, they can be arbitrary.)

• 12m voters with preference (c, . . .);

• 12m− 1 voters with preference (w, c, . . .);

• 10m + (2n/3) voters with preference (d0, w, c, . . .);

• For each i = 1, . . . , n, 12m− 2 voters with preference (di, w, c, . . .);

• For each i = 1, . . . ,m, 12m voters with preference (gi, w, c, . . .);

• For each i = 1, . . . ,m: 6m + 4i− 5 voters with preference (bi, bi, w, c, . . .)

and, for each of the three j such that j ∈ Si, 2 voters with preference

(bi, dj , w, c, . . .);

• For each i = 1, . . . ,m: 6m + 4i− 1 voters with preference (bi, bi, w, c, . . .)

and 2 voters with preference (bi, d0, w, c, . . .);

• For each i = 1, . . . ,m: 6m + 4i− 3 voters with preference (ai, gi, w, c, . . .);

1 voter with preference (ai, bi, w, c, . . .); and 2 voters with preferences

(ai, ai, w, c, . . .);
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• For each i = 1, . . . ,m: 6m + 4i− 3 voters with preference (ai, gi, w, c, . . .);

1 voter with preference (ai, bi, w, c, . . .); and 2 voters with preferences

(ai, ai, w, c, . . .);

Now we consider the election.

Votes for c and w. Initially c has 12m votes and w has 12m−1 votes. Except

for the 12m initial supporters of c, all voters rank c immediately below w. Thus

c cannot get another vote until w is eliminated. Moreover, if w gets another 2

votes, then w cannot be eliminated before c. Thus, to be effective, a strategic

preference must ensure that w is eliminated from the election before c.

The w-bloc. Candidate d0 initially receives 10m + 2n/3 votes and each of

the other di receives 12m− 2 votes. For every voter whose first choice is di, the

second choice is w, so that if any di is eliminated prior to w, then w will obtain

more than 2 additional votes, and c cannot win. Thus the strategic voter must

ensure that each candidate di achieves a score of at least 12m. We will contrive

the remainder of the election so that this can be accomplished only if certain of

the “second line” candidates are eliminated early and their votes reallocated to

candidates in the w-bloc.

The second line. Candidate bi initially receives 6m + 4i + 1 votes. If bi is

eliminated, his votes are reallocated as follows: for each j ∈ Si, 2 votes go to

dj and the remainder go to bi. Similarly, candidate bi also receives 6m + 4i + 1

votes initially. If bi is eliminated, his votes are reallocated as follows: 2 votes

go to d0 and the remainder go to bi. The third choice of all initial supporters

of bi or bi is w.

Note that if bi is eliminated before bi, then the revised score of bi will exceed

12m. Similarly, if bi is eliminated before bi, then the revised score of bi will

exceed 12m. This means that at most one of bi, bi can be eliminated before c

or w.

The First Losers. The initial score of each candidate ai, ai is 6m + 4i,

which is one less than bi and bi. If ai is eliminated, his votes are reallocated
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as follows: 1 vote goes to bi; 2 votes go to ai; and the remainder goes to gi.

Similarly, if ai is eliminated, his votes are reallocated as follows: 1 vote goes to

bi; 2 votes go to ai; and the remainder goes to gi.

The Garbage Collectors. Each candidate gi initially has 12m votes.

Now we show how the sequence in which candidates are eliminated in the

election can encode a 3-cover.

Lemma 1. Exactly one of bi, bi will be among the first 3m candidates to be

eliminated. Furthermore, candidate c will win the election if and only if the set

J = { j : bj is among the first 3m candidates to be eliminated }is the index of a

set cover for the 3-cover problem.

Proof. The first claim is true because the first 3m candidates to be eliminated

must be among the ai, ai, bi, bi; and if one of bi, bi is eliminated, then the other

will have score exceeding 12m.

To establish the second claim, suppose that J is the index of a set cover.

Then |J | = n/3. Consider the election after the first 3m candidates have been

eliminated. Suppose i ∈ Sj and j ∈ J . Then bj has been eliminated and di

has received 2 of bj ’s votes. Thus the revised score of di is at least 12m, which

exceeds that of w. Since J is the index of a set cover, each di, i = 1, . . . ,m, has

a revised score of at least 12m. Also, bj has been eliminated for j /∈ J . Thus

m− n/3 of the bj ’s have been eliminated and the revised score of d0 is at least

(10m + 2n/3) + 2(m− n/3) = 12m, which exceeds that of candidate w.

After 3m candidates have been eliminated there remain only c, w, all the di,

all the gi, bj for j /∈ J , bj for j ∈ J , all of which excepting w have at least 12m

votes. Candidate w, with 12m− 1 votes, will be eliminated next. Candidate c

will inherit his votes and his score will rise to at least 24m− 1.

Next the di candidates are eliminated since each has only 12m votes. The

votes of each di are reallocated to c, whose score rises to at least (24m − 1) +

(n + 1)(12m) = (12n + 36)m− 1.
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Now no gi has more than then 24m + 8m = 32m votes. Similarly, no

remaining bi or bi has more than 32m votes. Since each gi, bi, or bi that is

eliminated will have his votes reallocated to c, it must be that c is the eventual

winner of the election.

Conversely, suppose that J is not the index of a set cover; we will show that

c cannot win the election. If |J | > n/3, then fewer than m−n/3 of the bj ’s have

been eliminated, and the revised score of d0 cannot exceed 12m − 2. Thus d0

will be eliminated prior to w, and w will receive his votes and achieve a higher

score than c. In such case w cannot be eliminated before c and so c cannot win

the election.

If |J | ≤ n/3 and i ∈ S is not covered by the corresponding set cover, then

the score of di has not increased and di must be eliminated before w. Thus

w will receive his votes and achieve a higher score than c. Again w cannot be

eliminated before c and so c cannot win the election.

Now we show how to construct a preference that will control which of the bi

are among the first 3m candidates to be eliminated.

Lemma 2. Let I ⊆ { 1, . . . ,m } and consider the strategic preference in which

the ith candidate is ai if i ∈ I and ai otherwise. Then the following is the order

in which the first 3m candidates are eliminated.

• The 3i− 2 candidate to be eliminated is ai if i ∈ I, and ai otherwise;

• The 3i− 1 candidate to be eliminated is bi if i ∈ I, and bi otherwise;

• The 3i candidate to be eliminated is ai if i ∈ I, and ai otherwise;

Proof. (By induction) Assume that the first 3i− 3 candidates have been elimi-

nated and that these candidates were, for each j < i, both aj and aj and exactly

one of each pair bj , bj .

Case 1 i ∈ I. The next viable candidate on the strategic preference is ai, who

therefore has 6m + 4i + 1 votes. Candidate ai has 6m + 4i votes and is

eliminated, after which the revised score of bi is 6m + 4i + 1; the revised
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score of bi is 6m + 4i + 2; and the revised score of ai is 6m + 4i + 3.

Next, candidate bi is eliminated, followed by ai. Thus, by induction, the

elimination of candidates is as claimed.

Case 2 i /∈ I. The next viable candidate on the strategic preference is ai.

Candidate ai must be eliminated next, after which the revised score of bi

is 6m + 4i + 1; the revised score of bi is 6m + 4i + 2; and the revised score

of ai is 6m + 4i + 3. Next, candidate bi is eliminated, followed by ai. By

induction, the elimination of candidates is as stated in the theorem.

Now by Lemmas 1 and 2 candidate c will win the election if and only if I is

a solution to the set cover problem.

Now since the single elimination voting scheme is a special case of STV in

all its variants, we have our main result.

Corollary 1. EFFECTIVE PREFERENCE under STV is NP-hard indepen-

dently of how the excess votes of a winning candidate are reallocated among the

remaining contenders.

4 An alternative formalization

To a certain extent the formalization of a problem is a matter of taste. Dif-

ferent formalizations emphasize different aspects of the problem. For example

EFFECTIVE PREFERENCE emphasizes the problem of a manipulator with

a specific goal: to make c the winner. The following alternative formalization

emphasizes that the manipulator simply wants a strategy that is “better than”

sincere behavior.

PREFERRED OUTCOME

GIVEN: A set C of candidates; the set V of sincere, transitive, strict, and com-

plete preferences of the voters; and the sincere preferences of the manipulator
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QUESTION: Can the manipulator achieve a preferred outcome in the election

by voting other than his true preferences?

The proof of Theorem 1 can easily be modified to show NP-completeness of

PREFERRED OUTCOME for STV. We need only add to the contrived election

that the true preferences of the manipulator are (c, w, . . .), so that if he votes

sincerely w will win. There is only one preferred outcome for the manipulator—

that c win—and so our proof applies equally well to this problem.

PREFERRED OUTCOME may present our result more dramatically, but

it does not generalize well. EFFECTIVE PREFERENCE, however, supports

natural generalization to coalitions of strategic voters. For example, we can

study the computational problem of coördinating votes by asking whether there

is any set of preferences that could be claimed by the members of a coalition

that would elect c. This is the topic of a subsequent paper.

5 Non-monotonicity

We say that a voting procedure is monotonic if a candidate can never change

from a winner to a loser by gaining support (that is, by rising in the preferences

of some of the voters, with all other candidates retaining their relative rankings

in the preferences of the individual voters). Doron and Kronick have shown

that STV is non-monotonic: there exist elections for which a candidate can

change from an STV winner to a loser simply as a result of gaining support

[9]. We show that it is NP-complete to recognize when non-monotonicity occurs

in STV elections. Thus it can be impractical to exploit non-monotonicity for

strategic purposes. To some extent this weakens any argument against STV that

is based on non-monotonicity. Since non-monotonicity can be hard to recognize,

voters are unlikely to be regaled with examples of its pernicious effects in real

elections. Furthermore, even if voters know that non-monotonicity is possible,

its distortions, since hidden, might be perceived as “random” and even, since

unlikely to be exploited, benign. It might be seen by voters as similar in spirit
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to the randomness occasionally designed into voting systems, as in [1]. Thus

non-monotonicity might be more easily tolerated than flaws that are easy to

find. When flaws are easy to find, then they are more likely to be exploited by

manipulators and they are easier to display to an outraged electorate. Indeed,

when flaws easy to find, manipulative behavior might be encouraged, while if

flaws are hard to find, manipulative behavior might be uneconomic.

Doron and Kronick argue that any non-monotonic voting procedure is “per-

verse”. They vividly make their point by imagining an STV election in which

it is observed that non-monotonicity affected the outcome.

Most voters would probably be alienated and outraged upon hearing

the hypothetical (but theoretically possible) election night report:

“Mr. O’Grady did not obtain a seat in today’s election, but if 5,000

of his supporters had voted for him in second place instead of first

place, he would have won!”

However, because it is NP-complete to recognize an instance of non-monotonicity,

voters would almost certainly not hear any such news on election night. In fact

they would probably would never hear it—not because the claim was false, but

because it would simply take too long to discover.

We formalize the problem of recognizing non-monotonicity as follows.

NON-MONOTONICITY

GIVEN: A set C of candidates; the set V of sincere, transitive, strict, and

complete preferences of the voters; and a distinguished candidate c ∈ C who

would be a loser if the election was tallied now.

QUESTION: Is there a subset of voters in V who can change c from a loser to

a winner by lowering c in their preferences?

Theorem 2. NON-MONOTONICITY is NP-complete for Successive Elimina-

tion.

Proof. Our proof is similar to that of Theorem 1 and so we omit details. Again
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let {S1, . . . , Sm} denote an instance of 3-COVER. Consider the following elec-

tion (which is almost the same as in the proof to Theorem 1).

• 12m voters with preference (c, w, . . .);

• 12m− 1 voters with preference (w, c, . . .);

• 12m voters with preference (w′, w, c, . . .);

• 10m + (2n/3) voters with preference (d0, w, c, . . .);

• For each i = 1, . . . , n, 12m− 2 voters with preference (di, w, c, . . .);

• For each i = 1, . . . ,m, 12m voters with preference (gi, w, c, . . .);

• For each i = 1, . . . ,m: 6m voters with preference (bi, bi, w, c, . . .) and, for

each of the three j such that j ∈ Si, 2 voters with preference (bi, dj , w, c, . . .);

• For each i = 1, . . . ,m: 6m voters with preference (bi, bi, w, c, . . .) and 2

voters with preference (bi, d0, w, c, . . .);

• For each i = 1, . . . ,m: 1 voter with preference (c, bi, . . .) and 1 voter with

preference (c, bi, . . .);

Candidate c will lose this election since reallocated votes will always go to

w before c. However the last group of voters, and only that group, can make

c a winner by moving him down on their preferences. By lowering c in the

appropriate preferences of the last group of voters, w can be prevented from

gaining any (reallocated) votes until all remaining candidates have at least 12m

votes; then w will be eliminated and c will win the election. The preferences

in which c must be moved down are exactly those (c, bi, . . .) and (c, bi, . . .) for

which the {i} ⊆ { 1, . . . ,m } is a solution to the 3-cover problem.

Corollary 2. NON-MONOTONICITY under STV is NP-hard independently of

how the excess votes of a winning candidate are reallocated among the remaining

contenders.
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A byproduct of our analysis is to show that even a single voter in an STV

election can change a candidate from winner to loser by moving him up in his

preferences, which slightly strengthens the example of [9]. In the contrived elec-

tion of Theorem 1, if the manipulative voter constructs an effective preference

then his favored candidate c will win; but if the voter moves c to the top of his

preferences then c will lose. Thus STV is apparently as sensitive as it can be to

changes in preferences, since non-monotonicity can be realized by just a single

voter.

Finally, we caution the reader that there does not seem to be a standard

use of the term “monotonic”. Fishburn [11] agrees with our use of the term,

but Doron and Kronick call the same idea “non-perversity”. Moulin [20] also

agrees with our use of the term, but observes that the idea is sometimes called

“positive responsiveness”. Elsewhere in the literature the term “monotonicity”

is sometimes used to mean “strong positive association” or “Maskin monotonic-

ity” [2], which refers to a similar but stronger property: that a winner remain

a winner when gaining support even when the relative rankings of the other

candidates are allowed to change in the preferences of each voter. As shown in

[22, 27], this stronger sense of monotonicity is equivalent to strategy-proofness;

and since we have shown that it is NP-complete to recognize opportunities to

vote strategically, it follows that it is also NP-complete to recognize when an

election violates Maskin monotonicity.

6 Conclusions

There are several ways to measure the vulnerability of a voting procedure to

strategic voting (see, for example, [8, 24, 26]). We have suggested measuring

the computational effort. This complements the established approach, which is

to count the opportunities for manipulation. Both of these measures of manip-

ulability are useful but imperfect. The primary weakness of the former is that

it is a worst-case measure. A weakness of the latter is that it is based on some

assumption about the distribution of societies and that assumption is difficult
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to justify. Frequently it is chosen for convenience of analysis.

We think that even the weakest reading of our theorem makes three con-

tributions. First, we have helped explain Chamberlin’s empirical observation

that strategies to manipulate STV are complex and instance-specific [8], since

such behavior is the hallmark of NP-complete problems. Also, our results show

how a would-be manipulator is constrained to plot his strategy in an STV elec-

tion: he cannot do significantly better than enumerative search for an effective

preference. This is different from other standard voting procedures, for which a

natural, “greedy” algorithm will either produce an effective preference or show

that none exists [5]. Finally, our result refines the conclusions of impossibility

theorems such as those of Gibbard, Satterthwaite, and Gärdenfors: All voting

procedures have flaws, but for some it can be difficult to exploit those flaws.

The strongest interpretation of our result is that one cannot in practice ex-

pect to vote strategically in an STV election, even given perfect information.

This probably overstates the case, for like some of the notions of fairness, com-

putational complexity does not perfectly model our concerns. In particular,

the caveats of [5] hold here, the most important of which we briefly summa-

rize. Most immediately, NP-completeness is an asymptotic, worst-case measure

of complexity. This means that, for large enough instances of EFFECTIVE

PREFERENCE under STV, some are difficult. This might be insufficient to

provide practical protection against strategic voting. Certainly for small enough

elections one can simply generate each of the |C|! possible preference orders and

check each one to see whether it elects the favored candidate. Whether elections

with many candidates are in fact difficult to manipulate is an empirical question.

Naturally this will depend on the structure of a “typical” instance. It is worth

remarking that Chamberlin’s observations on the complexity of manipulating

STV were based on small elections (3 candidates and electorates of size 21 and

1000); this suggests that the computational difficulty becomes palpable rather

quickly as the size of the election increases.

We close with some additional comments on points that are frequently mis-

understood. First, it is important to note that our assumptions of perfect infor-
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mation and sincere voting by most of the voters are intentionally unrealistic—

we are not describing voter behavior, but making a conservative assumption to

show that even when the situation is unrealistically favorable it can still be too

difficult to determine how to vote strategically. Furthermore, we have shown

that it is difficult for even a single manipulator to determine how to vote. One

expects it to be only harder, at least in an informal sense, for a group of people

to coördinate their votes to achieve a preferred outcome.

A second possible misunderstanding is that one might be tempted to con-

clude, by the contrived nature of the election in the proof of Theorem 1, that only

pathological instances are difficult. This would be overinterpreting the proof.

The contrived nature of our election is an artifact of human proof-building: We

needed only to show that there exist some instances that are as difficult as an-

other hard problem; we constructed an instance that made our proof as simple

as possible, but not necessarily representative. In short, our theorem does not

say whether any particular election is difficult to manipulate.

We also point out that the issues of computational difficulty are only inten-

sified when the computational device is a relatively slow one, such as a person

with pencil and paper. For example, in [18] it was reported that the site of the

1996 Summer Olympics was chosen by successive elimination, with six cities

voted on by the 88 members of the International Olympic Committee. Our

results imply that, even with perfect information, a strategic voter would have

had to search for an effective preference over 6! = 840 possibilities. Even if 90%

of the possible preferences could have been eliminated a priori, the prospect

of evaluating the remaining 84 elections by hand might have been sufficiently

discouraging to prevent strategic voting.

Finally, we speculate on some broader suggestions of our results. For STV

elections we have established the formal difficulty of recognizing when strategic

voting is possible and of recognizing instances of non-monotonicity. Most imme-

diately, this suggests that STV might rise somewhat in our estimation, since two

of its weaknesses—susceptibility to strategic voting and non-monotonicity—are

perhaps less threatening than previously thought.
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More generally, we have illustrated that even when voting procedures can

fail to satisfy fairness criteria, nevertheless it can be hard to verify when this

occurs. This might be interpreted as offering an explanation for an observation

made by Nurmi and others of the “. . .the differences in difficulty of devising

counterexamples showing the violations of criteria by various procedures. For

some procedures and criteria the productions of a counterexample may be rather

obvious while for other procedures it may be exceedingly difficult” [25].
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