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Abstract

We study a class of single round, sealed bid auctions for items in unlimited supply such as digital

goods. We focus on auctions that are truthful and competitive. Truthful auctions encourage bidders to

bid their utility; competitive auctions yield revenue within a constant factor of the revenue for optimal

fixed pricing. We show that for any truthful auction, even a multi-price auction, the expected revenue

does not exceed that for optimal fixed pricing. We also give a bound on how far the revenue for optimal

fixed pricing can be from the total market utility. We show that several randomized auctions are truthful

and competitive under certain assumptions, and that no truthful deterministic auction is competitive. We

present simulation results which confirm that our auctions compare favorably to fixed pricing. Some of our

results extend to bounded supply markets, for which we also get truthful and competitive auctions.

∗STAR Lab., InterTrust Technologies Corp., 4750 Patrick Henry Dr., Santa Clara, CA 95054.
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1 Introduction

Consider the problem of selling a number of identical
items to consumers who each want a single item and
the items are available in unlimited supply. By un-
limited supply we mean that either the seller has at
least as many items as there are consumers, or that
the seller can reproduce items on demand at negli-
gible marginal cost. Of particular interest are digi-
tal items such as downloadable audio files and pay-
per-view movies. With unlimited supply, consumer
utilities , the maximum amounts that consumers are
willing to pay for the item, are the sole factor deter-
mining sale prices. The seller’s goal is to maximize
their total revenue.

One way to set prices for items in unlimited supply
is to estimate consumer utility via market analysis
and then set a fixed price. We refer to this method
as fixed pricing. Pay-per-view movies are an exam-
ple of fixed pricing for an unlimited supply market.
With perfect knowledge of consumer utilities, optimal
fixed pricing maximizes fixed-price revenue by select-
ing the optimal price at which to sell items. Fixed
pricing generally cannot achieve this ideal due to the
inherent inaccuracy of market analysis. If the price
is set too high, not enough items may be sold; if the
price is set too low, insufficient revenue may be col-
lected per item.

Auctions automatically adjust prices to market
conditions. We study single round, sealed bid auc-
tions. Such auctions have been studied for items
available in scarce supply, where maximizing the rev-
enue requires that all available items be sold. They
are especially practical when the number of con-
sumers is large. In particular, Vickrey [18] introduced
a multi-item auction that is truthful. A truthful auc-
tion encourages bidders to bid their utility value. In
an untruthful auction, bidders may bid significantly
below their utility values, reducing auction revenue.

In a truthful auction, rational bidders bid their
utilities. In addition, we would like such an auction
to be competitive: it must yield revenue within a con-
stant factor of optimal fixed pricing. To be compet-
itive, a truthful auction must vary how many items
are sold depending on the bid values. For example, as
we show in Section 3, the multi-item Vickrey auction
is not competitive if the seller chooses the number
of items to sell before knowing the bid values (and
not truthful if the seller chooses the number of items

after knowing the bid values). As with fixed pricing,
selling too few or too many items may not maximize
revenue. Thus, the method for choosing how many
bids to satisfy is an integral part of a truthful com-
petitive auction.

To our knowledge, auctions have never been stud-
ied in a competitive framework. Nor are any existing
auctions competitive in the sense that we introduce
here. As we explore in Sections 11 and 12, this com-
petitive framework is useful in studying any kind of
auction where identical goods are being sold, not just
auctions for unlimited supply.

Auctions are becoming a popular pricing mecha-
nism in electronic commerce, both for human users
and for trading agents (bots). In many cases, the use
of auctions is complicated by the fact that a good bid-
ding strategy for a buyer requires an understanding
of strategies and utilities of other buyers. Truthful
auction mechanisms may be attractive in this con-
text because they avoid this complication.

In this paper we study a class of truthful auc-
tions for unlimited supply. We study both single-
price auctions, where every winning bidder pays the
same price, andmulti-price auctions, where the prices
may differ. In addition to deterministic auctions, we
study randomized auctions that use randomization to
decide which bids to fill and at what price. We de-
velop techniques for design and analysis of auctions
for unlimited supply. Our approach is reminiscent
of competitive analysis of on-line algorithms [1, 16],
where performance of an on-line algorithm is gauged
in terms of performance of an optimal off-line algo-
rithm. Here the optimal off-line algorithm is analo-
gous to the optimal fixed pricing mechanism.

Although we develop our results for unlimited sup-
ply, some of the results extend to bounded supply,
where the number of items for sale is bounded, but
maximizing revenue might not result in all items be-
ing sold. We discuss bounded supply in Section 11.

We view auctions as algorithms for deciding which
input bids to fill, and at what price. As with any algo-
rithm, one needs to address the issues of correctness,
efficiency, and performance. In the context of this
paper, an auction is correct if the auction is truthful
and fills each winning bid at or below the bid value.
Efficiency of an auction refers to the time needed to
process bids. The auctions introduced in this paper
are very fast; sorting of the input bids is the most
expensive computational operation we perform. As
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discussed above, we measure auction performance by
its revenue relative to the fixed pricing revenue. This
computer science approach allows us not only to de-
sign new truthful auctions, but also to give theoreti-
cal guarantees for their performance. Such provable
performance guarantees are new to the area of auc-
tion mechanism design.
To state our results more formally, we introduce

the following notation. Let n denote the number of
bidders. Without loss of generality, we assume that
the lowest bid is one and denote the highest bid by
h. Let the total utility T be the sum of all bidders’
utilities. T is an obvious upper bound on the revenue
that can be obtained from this set of bidders. Let F
be the optimal fixed pricing revenue. Clearly F ≤
T . F is an upper bound on the revenue that can be
obtained by any fixed priced sale or any single-price
auction. We want revenues of our truthful auctions
to be competitive with F . We assume that h is small
compared to F .1 This assumption prevents a trivial
upper bound on the revenue; see Section 2.
We state some of our results in terms of the total

utility, T , and others in terms of the optimal fixed
pricing revenue, F . We show that F compares fa-
vorably to T ; specifically, F = Ω(T / logh), and also
F = Ω(T / logn). This result shows that the optimal
fixed pricing revenue is within a min(log h, logn) fac-
tor of the revenue of any pricing scheme. We use this
result to relate various bounds expressed in terms of
T to those expressed in terms of F .
We introduce a class of truthful single-price auc-

tions and a class of truthful multi-price auctions.
A randomized auction from the first class is com-
petitive: it has an expected revenue of Ω(F) =
Ω(T / logh). A dual-price variant of this auction has
revenue that is close to F if F/h is large enough. A
randomized multi-price auction from the second class
has an expected revenue of Ω(T / logh). Thus, both
of these auctions have the same worst-case bound
in terms of T . However, we show that the latter
auction is not competitive. Its expected revenue is
Ω(F/

√
log h), and this bound is tight: on certain in-

puts, the expected revenue is O(F/
√
log h).

This provides support for using F , rather than T ,
to define competitive auctions. Another result pro-
vides further support. We show that for any truthful
auction, even a multi-price one, the expected revenue
does not exceed F . This result is somewhat surpris-

1Some of our results hold under weaker assumptions.

ing: using single-price auctions does not hurt revenue
by more that a constant factor.
A natural question to ask is if there is a truthful de-

terministic auction with an Ω(F) revenue. We show
that there is none: for any such auction, there is a set
of bids that leads to an O(F/h) revenue, i.e., revenue
that is a small fraction of F if h is large. Thus, for
worst-case performance, randomized auctions yield
better revenue than the deterministic ones.
Our theoretical analyses are limited in that their

performance metrics are accurate only up to a con-
stant factor. As a result, the analyses do not reveal
whether one of our auctions dominates the others, or
which auction is better for a natural distribution. As
a supplement to our theoretical results, we performed
a number of simulations to compare our auctions with
each other and to fixed pricing on a variety of input
families. Our simulations suggest that, on natural in-
puts, some of our auctions attain revenue very close
to F if the number of bids is large enough. Fur-
thermore, our auctions can outperform fixed pricing
with market analysis unless that analysis is fairly ac-
curate. We also show a deterministic auction that,
despite the worst-case result, does very well on nat-
ural inputs.
We develop a framework for a theoretical and ex-

perimental analysis of revenue-maximizing truthful
auctions and introduce auctions that perform well
in this framework. We show how algorithm analy-
sis techniques can be used within this framework to
obtain results that are interesting and in some cases
surprising.

2 Competitive Analysis

We consider auctions with n bidders, each bidder i
having a utility value ui and bidding bi. We also as-
sume that the bids are ordered so that bi ≤ bi+1. In
auctions where ties need to be broken, we can as-
sume an arbitrary total order on the bid values that
respects the partial order. That is, we can assume
that the order given by the indices is strict. We as-
sume that there is no collusion among the bidders.
Given a set of bids, the outcome of an auction is the

subset of bids that are satisfied and a corresponding
set of sale prices such that, for each winning bid bi,
the associated sale price is at most bi. A determin-
istic auction mechanism maps sets of bids to auction
outcomes. A randomized auction mechanism maps
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sets of bids to probability distributions on auction
outcomes. We use R to denote the auction revenue
for a particular auction mechanism and set of bids. R
is the sum of all sale prices. For randomized auctions,
R is a random variable.

We say that an auction is truthful if bidding ui is
a dominant strategy for bidder i. More specifically,
let a bidder’s profit be the difference between the bid-
der’s utility value and the price the bidder pays if they
win the auction, or zero if they lose. Then an auction
is truthful if a bidder’s profit (or expected profit, for
randomized auctions), as a function of the bidder’s
bid, is maximized at the bidder’s utility value, for
any fixed values of the other bidders’ bids. Truthful
auctions encourage bidding at utility value if the bid
value that maximizes the (expected) profit is unique.
If the bid value is not unique, truthfulness at least
does not discourage bidders from bidding their util-
ity value. When considering truthful auctions, we
assume that bi = ui.

To enable analysis of auction revenue we define sev-
eral properties of an input set of bids. As stated in
the introduction, T is the sum of all of the bids. An
equivalent definition of T is the revenue due to the
optimal multi-price untruthful auction, the one that
satisfies all bids at their value. The revenue for op-
timal fixed pricing is F . Note that F can also be
interpreted as the revenue due to the optimal single-
price untruthful auction. More discussion of F and
its relation to the optimal single-price untruthful auc-
tion is given in Section 4. Other properties that we
use in analysis are ℓ, the smallest bid value, and h,
the highest bid value. Because bids can be arbitrar-
ily scaled, we assume, without loss of generality, that
ℓ = 1, in which case h is really the ratio of the highest
bid to the lowest bid.

Analogous to on-line algorithm theory, we express
auction performance relative to that for optimal un-
truthful auctions, as ratios R/T or R/F . However,
we solve a maximization problem while on-line algo-
rithms solve minimization problems. Thus, positive
results, which are lower bounds on R/T or R/F , are
expressed using “Ω”. Impossibility results, which are
upper bounds on R/T or R/F for any auction in a
certain class, are expressed using “O”.

Note that h, F , and T are used only for analysis.
Our auctions work without knowing their values in
advance.

If we do not impose any restrictions on h, we get

the upper bound of R/T = O(1/h). To see this,
imagine n − 1 bids at 1 and one bid, bn, at h. An
auction that wishes to do better than O(1/h) must
base the selling price on bidder n’s bid. However, this
would encourage bidder n to bid below un.

To prevent this upper bound on auction revenue we
can make the assumption that the optimal revenue F
is significantly larger than h, the highest bid. That
is, for some constant α, we assume that αh ≤ F .
With this assumption, optimal fixed pricing sells at
least α items. In some cases α is a fixed constant. In
other cases, success probability approaches 1 as α →
∞. For some proofs, this assumption is stronger than
what we need and we make the weaker assumption
that αh ≤ T .
We say that an auction is competitive under certain

assumptions if when the assumptions hold, the auc-
tion’s revenue is Ω(F), or equivalently R/F = Ω(1).

3 Prior Results

Our results are related to the field of mechanism de-
sign that combines microeconomic motivation with
game-theoretic tools and includes auction mecha-
nisms. For introduction to the area, see for exam-
ple [10, 13]. In particular, auctions for scarce supply
markets have been extensively studied. See [14] for a
survey. Some work in the Computer Science commu-
nity combines economic or game-theoretic questions
with computational questions. Earlier results are sur-
veyed in [9]; for more recent results, see e.g. [4, 8, 12].

Truthful auctions are an example of strategyproof
mechanisms. Such mechanisms have been developed
for several goals. For example, the Vickrey–Clarke–
Groves mechanism [3, 6, 18] maximizes the general
welfare of a system. The Shapley Value [15] mech-
anism shares costs among the participants. We ad-
dress a less well-understood problem of maximizing
the revenue of one of the parties (the seller).

The k-item Vickrey auction [18] was a starting
place for our work. The k-item Vickrey auction is a
single-price auction that sells k items to the k high-
est bidders at the price equal to the k+1 highest bid
(bn−k−1). For generalizations of Vickrey auctions to
the multiple resource case, see e.g. [3, 6, 17].

In the unlimited supply case, taking k = f(n)
yields a truthful auction for any function f with
1 ≤ f(n) < n. This auction mechanism is not
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competitive, however. To see this, consider a bipo-
lar input that has k bids at h and n − k bids at
1. In this case R = k and F ≥ hk. This gives an
R/F = O(1/h) bound. As we show later no deter-
ministic auction can do much better on worst-case
distributions, but a randomized auction can.

4 Optimal Untruthful Auctions

In this section we study the two untruthful auc-
tions, the optimal multi-price auction and the op-
timal single-price auction, and establish the relation-
ship between their revenues, T and F . We show that
F ≥ T /(2 log h). This bounds the penalty for re-
quiring auctions to be single-price and allows us to
compare bounds expressed in terms of T with those
expressed in terms of F .
To get a better understanding of how the opti-

mal single-price auction works, we define the optimal
threshold function, opt(B). This function on a set of
bids B returns the fixed price at which items should
be sold to achieve revenue F . In the optimal single-
price auction, all bid values that are at least opt(B)
will be satisfied at price opt(B). All other bids will
be rejected. That is,

opt(B) = argmaxbi∈B bi · (n− i+ 1).

Note that n− i+ 1 is the number of bids that are at
least bi. The main result of this section is as follows.

Theorem 4.1 F ≥ T /(2 logh).

Proof. Divide the bids into logh bins by partition-
ing the bids at values of powers of two. Thus, each
bid is less than a factor of two from any other bid
in the same bin. Since the sum of the bids is T and
there are log h bins, then some bin has a sum of at
least T / log h. Note that the lowest bid in this bin is
at least half of any other bid in the bin. If the opti-
mal single-price auction chose, as its selling price, the
price of the lowest bid in this bin, then the contribu-
tion of each bid in this bin to the revenue is at least
half of the bid’s value. Since the bin sums to more
than T / logh, this means that the revenue is greater
than T /(2 logh). Thus the optimal fixed pricing can
always achieve a revenue of at least T /(2 logh).

One can make this bound strongly polynomial as sug-
gested by Satish Rao and Eva Tardos.

Corollary 4.2 F ≥ T /(4 logn).

Proof. Let p be the optimal price; clearly p ≥ h/n.
If one drops all bids with values below p, F does not
change and T decreases by at most a factor of two.
After the bids are dropped, the ratio of the highest
and the lowest bid values is at most n, yielding the
desired result.

Now we turn our attention to truthful auctions.

5 Generalized Truthful Auc-

tion Mechanisms

By making observations about auctions that encour-
age utility value bids, in particular the Vickrey auc-
tion, we can design general auction mechanisms. We
present two general auction mechanisms that facili-
tate the design of truthful auctions. The first, the bid-
independent auction mechanism, is based on the ob-
servation that the price that a bid is satisfied at must
be independent from that bid’s actual value. The
second, the random sampling auction mechanism, is
based on the observation that rejected bids can be
used to set prices for bids that are to be satisfied.

5.1 Bid-Independent Auctions

The first general truthful auction mechanism that we
discuss is one that is typically multi-price, although
some variants are single-price. The motivation for
this mechanism is the observation that bidder i’s bid
value should only determine whether bidder i wins
or loses the auction (as a threshold). The bid value
should not determine bidder i’s price. As we will
show in section 9.3, for deterministic auctions turth-
fulness is equivalent to being bid-independent.

Let B be the set of all bids and let Bi be the set
of bids without bidder i’s bid. A bid-independent
auction uses a predetermined function, f , from sets
of bid values to prices. The auction works as follows.
Bidder i wins the auction at price f(Bi) if bi ≥ f(Bi).
2 Otherwise, the bidder loses.

2For maximum generality, we allow f to also return whether

to use ≥ or > in this comparison. For the perpose of maxi-

mizing revenue we can allways just use ≥; however, to prove

Lemma 9.2 we need the full generality.
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Lemma 9.2 shows that this auction mechanism is
quite general: any truthful deterministic auction is
equivalent is bid-independent.
We can immediately see how this generalizes the

traditional Vickrey auction. The 1-item Vickrey auc-
tion fits into this general framework with f = max.
Note that bidder n wins this auction and pays bn−1.
If f is the function that returns the kth highest el-
ement of the set of bids, we get the k-item Vickrey
auction.

5.2 Random Sampling Auctions

Another general truthful auction mechanism is based
on randomized sampling. We select a subset B′ of B
at random, independent of the bid values. Let m be
the size of B′. We then compute a function on these
sampled bids, f(B′), and use this as a threshold value
for the n−m bids in the non-sample, B\B′. Note that
this auction mechanism is inherently single-price.
If a multi-price auction is acceptable, then this auc-

tion can be modified to be dual-price with m ≈ n/2,
by using f(B′) to compute the threshold to use for
bids in B \B′ and f(B \ B′) as the threshold to use
for bids in B′. This is a good way to avoid revenue
loss due to the rejected bids in the sample; however,
it is at the expense of making the auction dual-price.

6 Random Sampling Optimal

Threshold Auction

The random sampling optimal threshold auction
takes f = opt, the optimal threshold function, in
the random sampling auction. Intuitively we use the
sample to get an idea for a good threshold value,
then we apply that threshold to the remaining bids.
The auction samples m = n/2 bids at random, com-
putes opt of this sample, and uses this value as a
threshold for the non-sample, accepting all bids above
this threshold at the threshold value. In this section
we show that the expected revenue of this auction is
within a constant factor of F , assuming F/h is not
too small.

For the purpose of simplifying our analysis, we will
be analyzing a different method of sampling, one that
selects a bid to be in the sample independently at ran-
dom with probability 1/2. This method of sampling
is simpler to analyze, and it does worse than the for-

mer (this can easily be seen when the probabilistic
bounds are discussed).
In practice, for the single-price auction, we might

want to set m = n/10 or even m =
√
n. For the

dual-price version of the auction, m = n/2 is a good
choice.

6.1 Performance Analysis

In this section we show that, under certain assump-
tions, the expected revenue of the random sampling
optimal threshold auction is within a constant factor
of F . This result implies that restricting a single-
price auction to be truthful does not affect perfor-
mance by more that a constant factor. As we have
seen, restricting a multi-price auction to be truth-
ful may affect its performance by roughly a factor of
log h.
Our analysis of the random sampling auction uses

the following lemma, which is a variation of the Cher-
noff bound (see e.g. [2, 11]).

Lemma 6.1 Consider a set A and its subset B ⊂ A.
Suppose we pick an integer k such that 0 < k < |A|
and a random subset (sample) S ⊂ A of size k. Then
for 0 < δ ≤ 1 we have

Pr[|S ∩B| < (1− δ)|B| · k/|A|] < exp(−|B|·kδ2/(2|A|)).

Proof. We refer to elements of A as points. Note
that |S ∩ B| is the number of sample points in B,
and its expected value is |B| · k/|A|. Let p = k/|A|.
If instead of selecting a sample of size exactly k we
choose each point to be in the sample independently
with probability p then the Chernoff bound would
yield the lemma.
Let A = {a1, . . . , an} and without loss of gener-

ality assume that B = {a1, . . . , ak}. We can view
the process of selecting S as follows. Consider the
elements of A in the order induced by the indices.
For each element ai considered, select the element
with probability pi, where pi depends on the selec-
tions made up to this point.
Let t be the number of points already selected when

ai+1 is considered. Then i− t is the number of points
considered but not selected. Suppose that t/i < p.
Then pi+1 > p.
We conclude that when we select the sample as a

random subset of size k, the probability that the num-
ber of sample points in B is less than the expected
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value is smaller than in the case we select each point
to be in the sample with probability p.

Let R be the revenue of the random sampling opti-
mal threshold auction. The following theorem shows
that R = Ω(F) with probability going to one as α
goes to ∞.
Theorem 6.2 Assume αh ≤ F . Then R ≥ F/6
with probability of at least 1− e−α/36 − 40e−α/72.

Proof. Let k be the number of bids satisfied in
the optimal single-price solution. Consider the opti-
mal fixed pricing revenue of the sample, F ′. Since
we expect k/2 of these bids to be in the sample,
E[F ′] ≥ F/2. Applying Lemma 6.1 with A the set
of all bids, B the set of bids in the optimal thresh-
old solution on A, and δ = 1/3, we conclude that
|S ∩ B| < |B|/3 = k/3 with probability at least
1 − e−k/36. The assumption αh ≤ F implies k ≥ α.
Thus F ′ ≥ F/3 with probability at least 1− e−α/36.
Let ks be the number of bids satisfied by optimal

fixed pricing on the sample (i.e. the number of bids
in the sample that are at least opt(B′)) and let kn

be the number of bids in the non-sample that are at
least opt(B′). If F ′ ≥ F/3 then ks ≥ α/3.
Now, assuming that ks ≥ α/3, we show that the

probability that kn < ks/2 is small. Note that kn <
ks/2 implies that among the top (3/2)ks bids, at least
ks are in the sample. Note that the sample and the
non-sample are symmetric: taking a random subset
containing half of the elements in A is equivalent to
taking a complement of a random subset of half of
the elements. We apply Lemma 6.1 with S being
the non-sample, B being the top i = (3/2)ks bids,
and δ = 1/3, and conclude that the probability that
kn < ks/2 = i/3 is at most e−i/36.
If R < F ′/2 then kn < ks/2 and thus for some

i ≥ (3/2)α/3 = α/2 we have kn < i/3. Using the
union bound, the probability that this happens is at
most

∞
∑

i=α/2

e−i/36 < 40e−α/72.

Using the union bound for the probabilities that
R ≥ F ′/2 and F ′ ≥ F/3, we conclude that R ≥ F/6
with probability at least 1− e−α/36 − 40e−α/72.

Note that in the above theorem, we can trade off
the bound on R and the probability that this bound
holds. In particular, for any constant ǫ > 0, we can

show thatR ≥ F/(2+ǫ) with probability that goes to
1 as α goes to infinity, but the convergence is slower
for smaller ǫ.
By symmetry, the expected revenue of the dual-

price variant of the random sampling auction is twice
the expected revenue of the original. One can show
that the expected revenue of the dual-price auction
is at least F/(1 + ǫ) if α is large enough.
On the other hand, for may input distributions the

threshold value of a sample has a non-zero probability
of being non-optimal for the non-sample. If this is the
case, the expected value of the revenue in the random
sampling auction that samples half of the bids is less
than F/2, and the expected value of the dual price
auction is less than F .

7 Weighted Pairing

All truthful auctions we introduced so far are either
single-price or dual-price. In this section we describe
a multi-price auction. The weighted pairing auction
we present is in the bid-independent class with the
function f defined as follows:

f(B) = b ∈ B w.p. b
∑

b′∈B
b′

Thus, to determine if bidder i wins the auction and
at what price, pick a bid b ∈ Bi with probability pro-
portional to the value of b, i.e., b/(T − bi). This pairs
bi with b. If b ≤ bi, bidder i wins at cost b, other-
wise i loses. Note that the result of this selection for
i does not affect the auction outcome for the bidder
who bid b.
To understand the intuition behind this auction,

consider a related random pairing auction. Assume
that n is even and pair bidders at random, indepen-
dent of their bid values. For each pair, conduct a 1-
item Vickrey auction, that is, for a pair (bi, bj) with
bi < bj , i loses and j wins at cost bi.
Compared to the random pairing auction, a bidder

in the weighted pairing auction is less likely to win,
but when a bidder wins they are likely to pay more.
It turns out that high bidders are still likely to win
the auction, and the benefit of high bidders paying
higher prices outweighs the benefit of more low bid-
ders winning the auction. In particular, Theorems 7.1
and 8.2 imply that for the weighed pairing auction,
in the worst case E[R] is proportional to T / logh in
worst case. For the (unweighted) pairing auction, we
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have shown that the worst case E[R] is proportional
to T /

√
h. We do not include the latter result because

it is dominated by the former.
Next we prove the following result.

Theorem 7.1 If 4h ≤ T , then for the weighted pair-
ing auction E[R] = Ω(T / logh).

Proof. Partition the n bids into log h bins as be-
fore such that bin j contains only bids in the interval
[2j−1, 2j]. Recall that an important property of these
bins is that bids in the same bin are within factor
of two from each other. Let Sj be the sum of the
bids in bin j. Note that the sum of the contents of
bins that contain only one bid is upper bounded by
∑log h

j=1 2
j = 2h− 1 < T /2. We will ignore such bins

in our analysis below. Consider all bins with two or
more bids, and let T ′ be the sum of bids in these
bins. We have T ′ > T /2.
For each bin j, we look at pairings of bids that

are both in j and we bound the expected revenue
due to such pairings. First, the probability that a
bid i in bin j is paired with another bid in bin j is
(Sj − bi)/(T − bi) > Sj/(3T ), since bin j contains at
least two bids and Sj − bi ≥ Sj/3.

Let b′1, . . . , b
′
k be the values of bids in bin j in the

increasing order. Given that a bid b′i from the bin is
paired with another bid in the same bin, the proba-
bility that the bid wins is at least

i− 1
2(k − i) + (i− 1) >

i− 1
2k

.

This comes from assuming that all bids below bid i
are at value 2j−1 and all bids above bid i are at value
2j. This is the worst it could possibly be. The ex-
pected number of bids in bin j that win when paired
with other bids from the bin is at least

k
∑

i=1

i− 1
2k

=
k − 1
4

.

The smallest bid in bin j has the value of at least
Sj/(2k). Let Rj be the revenue generated by bids in
bin j being paired with other bids in bin j. We have:

E[Rj ] ≥
Sj

3T · Sj

2k
· k − 1

4

≥
(k − 1)S2

j

24kT

Since k ≥ 2, we have (k − 1)/k ≥ 1/2 so

E[Rj ] ≥
S2

j

48T

We are interested in E[R] ≥ ∑

E[Rj ] ≥ ∑ S2

j

48T .
Since Sj ’s sum up to T ′, the sum is minimized when
all log h of the Sj ’s are equal to T ′/ logh. In this
case,

E[R] ≥ T ′2(log h)

48T log2 h

Since T ′ > T /2, we have

E[R] ≥ T
192 logh

Thus, E[R] = Ω(T / log h).

Note that the constant here is 1/192 which does
not seem too good. However, the analysis was very
loose in contributions to R that it considered. In
practice, this auction has much better constants. See
Section 10 for details.
Lower bounds on revenues of the weighted pairing

and the random sampling optimal threshold auctions,
stated in terms of T , are the same, Ω(T / logh). The
next result shows that the latter auction has a better
worst-case performance.
We show that the expected revenue of the weighted

pairing auction is Ω(F/
√
log h), and that this bound

is tight in the worst case. This implies that the
wighted pairing auction is not competitive.
We use the following notation. We denote the ex-

pected revenue of the wighted pairing auction by W ,
let k = log h and s =

√
log h First we give bound the

revenue from below.

Theorem 7.2 If F ≥ 2h, then W = Ω(F/
√
log h)

and this bound is tight.

Proof. If F ≤ T /s, then sinceW = Ω(T /k) we have
W = Ω(T /s).
Assume F > T /s. Partition the bids over buckets,

with bucket i containing bids in the range [2i, 2i+1).
Let M be the set of bids in a bucket with the largest
total bid value and assume that M is defined by the
value range [t, 2t). We show that the revenue due
only to M is big. The assumption F ≥ 2h implies
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that |M | ≥ 2. (If |M | = 1 than M = {h} and the
previous bucket contains a single bid; in this case
F < 2h.) Recall that |M |t = Ω(F). Let M ′ be the
highest ⌊|M |/2⌋ elements ofM and letM ′′ =M \M ′.
The probability that an item in M ′ is paired up

with an item in M ′′ is Ω(T /F) = Ω(1/s), and the
expected revenue is Ω(|M ′|t/s) = Ω(F/s).
The above argument considers only contributions

of items in M . Somewhat surprisingly, the resulting
bound is tight up to a constant factor. We give an ex-
ample where the expected revenueW of the weighted
pairing auction is O(T /s). The bid values are 2i for
i = 1, . . . , k. For each i = 1, . . . , k − 1 the number
of bids of this value is 2k−i and the total value of
such bids is 2k. For the last value, 2k, there are s
bids of this value for the total of s2k = F . Note that
T = 2k(s+ k − 1).
We show thatW = O(2k) by first showing that the

expected contribution of all bids of value less then 2k

toW is O(2k) and then showing that the contribution
of all bids of value 2k is O(2k).
For i < k, the probability that a bid of value 2i

wins is less than

i2k − 2i

T − 2i
≤ i2k

T
≤ i

k
.

The expected contribution of a winning bid is less
than

1

i

i
∑

j=1

2j <
1

i
2i+1.

This all bids of value 2i contribute less than 2k+1/k.
Summing over i = 1, . . . , k − 1, we conclude that
the expected contribution of the corresponding bids
is less than 2 · 2k.
Next we consider the bids of value 2k. The prob-

ability that such a bid wins is at least one and the
expected revenue of a winning bid is at least

s

k + s
2k +

1

k + s

k−1
∑

i=1

2i <
s+ 1

k + s
2k =

2k

s
.

Thus the total contribution of such bids is less than
2k.

Although the weighted pairing auction is not com-
petitive in the worst case, it is only a factor of

√
log h

away from being competitive, is quite different from
our random sampling auctions, and performs rela-
tively well on inputs that are bad for the latter. One
may be able to improve this auction; see Section 13.

8 An Upper Bound

A natural question to ask is if the bound of Theo-
rem 7.1 can be improved upon. We already know
that no single-price auction can do better than F .
In this section we prove that no truthful multi-price
auction can have an expected revenue greater than
F . This result contrasts that of Section 6. In that
section, we show that a truthful single-price auction
performance is within a constant factor of the opti-
mal single-price auction. Results of this section im-
ply that no truthful multi-price auction performance
is within a constant factor of the optimal multi-price
auction.
Consider a collection of bids B = {b1, . . . , bn} with

bi ≤ bi+1. Note that b1 = 1 and bn = h. Define
the following quantities, which are dependent on the
auction mechanism:

pi the probability a bid i is satisfied,

ci expected cost to winning bidder i,

gi expected profit (gain) for bidder i.

With probability pi a bidder i wins. The bidder’s
expected gain, having won, is their utility value minus
the expected price they paid, i.e.

gi = pi(ui − ci) (1)

Now we show that in a truthful auction, probabili-
ties of winning are monotone functions of bid values.

Lemma 8.1 Suppose in a truthful auction bi < bj.
Then pi ≤ pj.

Proof. Suppose that i and j have the same utility
equal to bi. Since the auction is truthful, i’s gain is
at least as big as j’s, thus

pi(bi − ci) ≥ pj(bi − cj).

Similarly, if both utilities are bj, we get

pj(bj − cj) ≥ pi(bj − ci).

Adding the above inequalities and simplifying, we get

pibi + pjbj ≥ pjbi + pibj.

Rearranging, we get

pj(bj − bi) ≥ pi(bj − bi).

Since bj > bi, we have pj ≥ pi.

The main result of this section is as follows.
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Theorem 8.2 For any truthful auction, E[R] ≤ F .

Proof. In a truthful auction, if a bidder i − 1 had
the utility value of bi but bids bi−1, their gain would
not exceed gi, thus

gi ≥ pi−1(bi − ci−1). (2)

So,

gi ≥ pi−1(bi − bi−1 + bi−1 − ci−1)

= pi−1(bi − bi−1) + pi−1(bi−1 − ci−1)

= pi−1(bi − bi−1) + gi−1.

We can recursively expand gi−1 in the same way until
we get to g1 which is 0 because all bids are satisfied
at value at least 1, and get

gi ≥
i−1
∑

j=1

pj(bj+1 − bj). (3)

Now let Ri be the total expected revenue from bid-
der i. That is

Ri = pici.

We can rearrange equation (1) as pici = pibi −gi and
get

Ri = pibi − gi.

Using equation (3) we get

Ri ≤ pibi −
i−1
∑

j=1

pj(bj+1 − bj).

Looking at the sum of the Ri’s, we see that the first
term is mostly canceled by the summation term and
we get a telescoping effect.

E[R] =
n

∑

i=1

Ri

≤
n

∑

i=1

pibi −
n

∑

i=1





i−1
∑

j=1

pj(bj+1 − bj)



 .

By counting the number of times each pj(bj+1 − bj)
occurs, we can rearrange the second summation to
get

E[R] ≤
n

∑

i=1

pibi −
n−1
∑

j=1

pj(bj+1 − bj)(n− j)

E[R] ≤ pnbn +

n−1
∑

j=1

pibi −
n−1
∑

j=1

pj(bj+1 − bj)(n− j).

= pnbn +
n−1
∑

j=1

pj [bj − (bj+1 − bj)(n− j)] .

Regrouping

E[R] ≤ pnbn +

n−1
∑

j=1

pj [bj(n− j + 1)− bj+1(n− j)] .

Now, let Vj = bj(n − j + 1). Intuitively, this is the
revenue attained by using bj as the sale price in fixed
pricing. Note that Vj ≤ F .

E[R] ≤ pnVn +

n−1
∑

j=1

pj (Vj − Vj+1) .

Rearrange this sum to sum over Vj instead of pj and
for symmetry, define p0 = 0.

E[R] ≤
n

∑

j=1

(pj − pj−1)Vj .

But, Vj ≤ F and by Lemma 8.1, pj − pj−1 is non-
negative.

E[R] ≤ F
n

∑

j=1

(pj − pj−1)

This sum telescopes to pn − p0, but since p0 = 0, we
have

E[R] ≤ pnF ≤ F .
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9 Deterministic Auctions

We have shown several randomized auctions with an
Ω(F) expected performance under the assumption
that αh ≤ F and α is big enough. In this section
we study deterministic auctions.

First we study the bid-independent version of the
optimal threshold auction, a natural auction that
performs well on some input distributions. We show
that its worst case performance, however, is O(F/h).

We extend this upper bound by showing that any
truthful deterministic bid-independent auction has
an O(F/h) worst-case performance even for αh ≤ F .
Then we show that any deterministic truthful auction
is bid-independent. This implies an upper bound on
worst-case performance for all truthful deterministic
auctions.

9.1 Deterministic Optimal Threshold

Auction

The deterministic optimal threshold auction is the
bid-independent auction with f = opt, the optimal
threshold function defined in Section 4. The only dif-
ference between the deterministic optimal threshold
auction and the optimal fixed pricing mechanism is
that the former uses threshold opt(Bi) for bidder i
and the latter uses opt(B). Recall that Bi and B
only differ in that bi is not in Bi. From this, we
might also expect that for large n with suitable con-
straints on h, the the deterministic optimal threshold
auction would perform to within a constant fraction
of F . However, this is not the case as the following
example illustrates.

The input that shows that the deterministic opti-
mal threshold auction performance is O(F/h) is one
with r bids at value h and q = (h − 1)r − 1 bids
at value 1. On this input, the optimal single-price
auction takes r high bids at price h for a revenue of
F = hr. Note that the second-best threshold would
take all n bids at price 1 for revenue of hr − 1. The
deterministic optimal threshold auction takes all the
high bids at value 1 and none of the low bids. This
yields a revenue of R = r. None of the low bids are
accepted because their threshold is still h (removing
a low bid from the optimal threshold auction does
not change the threshold). The high bids are taken
at value 1 because removing one h causes the opti-
mal threshold to switch to 1. Thus, the deterministic

optimal threshold auction on this input family has
revenue of R = F/h.

Next we generalize this result.

9.2 Upper Bound for Deterministic

Bid-Independent Auctions

In this section we prove the following upper bound.

Theorem 9.1 For any truthful deterministic bid-
independent auction and any constant α, there exists
an input for which R/F = O(1/h) and αh ≤ F .

Proof. Let f be the (deterministic) function that
defines the auction. Consider an input with nh bids
at value h and nℓ bids at value 1. Restricted to such
inputs, f is a function of nh and nℓ. Note that we
can assume, without loss of generality, that f takes on
only two values: 1, in which case all bids are satisfied
at the price of 1, and h, in which case the high bids
are satisfied at price h. Other values of f lead to
smaller revenues.

We wish to find an input family such that the
bid-independent auction with function f has revenue
O(F/h). To obtain this family, we chose nh and nℓ in
such a way that f(nh − 1, nℓ) = 1, f(nh, nℓ − 1) = h,
and nh > α (implying αh ≤ F). For such an input,
R = nh and F ≥ hnh so R/F ≤ 1/h. Our goal now
is, given a deterministic f , to find values of nh and
nℓ that have the above properties.

Consider the nh, nℓ plane. For a fixed m look at
the line nh = k and nℓ = m−k, and consider the line
segment connecting (0,m) and (m, 0). We need to
find a value of k with k > α where, when k increases
by one, f changes from 1 to h.

Set m = h2α. Assume that f(α,m − α) = 1. As
we increase k from k = α the value of f(k,m − k)
must change from 1 to h because for k = m we have
f(k,m− k) = f(m, 0) = h. Thus it must be at some
k∗ that f(k∗,m−k∗) = h and f(k∗−1,m−k∗+1) = 1.
If we now choose nh = k∗ and nℓ = m − k∗ + 1, we
satisfy our criteria that nh > α and that f(nh −
1, nℓ) = 1 and f(nh, nℓ − 1) = h. Thus, R/F =
O(1/h).

Suppose now that our assumption that f(α,m −
α) = 1 is false and instead it is h. Then for nh = k =
α and nℓ = m− k+ 1 we have F = m+ 1 = h2α+ 1
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and R ≤ hα so

R/F ≤ hα
h2α+1

≤ hα
h2α

= 1
h

Thus for any bid-independent auction with deter-
ministic function f there exists an input family such
that R = O(F/h).

9.3 Truthful Deterministic Auctions

are Bid-Indepentent

The following lemma allows us to extend the result
of Theorem 9.1 to arbitrary deterministic auctions.

Lemma 9.2 Any truthful deterministic auction is
bid-independent.

Proof. Let Bi = B \ {i} as before, and let Bx
i be

the set of bids with bi replaced with value x. Let
A be a truthful deterministic auction. Let A(B) de-
note the result of running A on set B and let Ai(B)
denote the result for bidder i (∞ if i is rejected).
Consider function g defined as g(x) = Ai(B

x
i ). Here

g is clearly a function of A and Bi. We show that
g is ∞ everywhere except for some region (v,∞),
[v,∞), or {} where it has value v. This would im-
ply that A is bid-independent. If g(x) =∞ for all x
then we have the empty interval, {}. Otherwise, let
b = inf{x : g(x) �= ∞} and let v = minx g(x). We
now show that b = v and for all b′ > b, g(b′) = v.

1. v = b

First we show that v ≤ b. This is simple to see
because g(x) is defined so that either g(x) is ∞
(and a bid value of x will lose) or g(x) ≤ x (and
a bid of value x will win at price g(x) which is
necessarily at most x).

Now we show that v ≥ b. Assume for a contra-
diction that there exists a b′ such that v < b′ < b.
This auction is not truthful because a bidder
with utility value b′ would be better off bidding
greater than b, win the aucion and pay price v
which is less than b′. Thus, v = b.

2. For all b′ > b, g(b′) = v.

Let b′′ be such that g(b′′) = v. Since b′ > v,
if g(b′) were not exactly v a bidder with utility

value b′ would be better off bidding b′′ and pay-
ing only v. Since the auction is truthful, it must
be that g(b′) = v.

The only loose end remaining is showing that g(b)
is v or∞. This is true because b = v and by definition
either g(b) ≤ b or g(b) =∞.

Using Lemma 9.2, we generalize Theorem 9.1 as
follows.

Theorem 9.3 For any truthful deterministic auc-
tion and any constant α, there exists an input for
which R/F = O(1/h) and αh ≤ F .

In terms of asymptotic worst-case performance, de-
terministic auctions are significantly worse than ran-
domized auctions. This is not to say that determin-
istic auctions are bad to use for all input families.
In fact our experimental results reveal that for many
families, the deterministic optimal threshold auction
works very well. Adequate knowledge of the bidding
distribution may make it possible to use a determin-
istic auction.

10 Experimental Results

Our theoretical analysis of auctions has limitations.
The worst-case analysis leaves a

√
log h gap for inputs

which come from “typical” (as opposed to tailored to
be hard) distributions. In addition, constant factors
we obtain in our analysis are often too pessimistic.
Theoretical analysis for specific distributions seems
non-trivial even for simple distributions.
In practice, constant factors of the auction revenue

are important. We introduced several auction mecha-
nisms that provably perform within a constant factor
of each other in worst-case. However, we do not know
which one is better. We would also like to know how
these auctions compare to fixed pricing with imper-
fect market analysis.
We turn to experiments to answer these questions.

In our experiments, we simulate various auctions on
several input families and see how they compare.

10.1 Experimental Setup

Our experiments consist of picking a family of bidder
utilities with a single parameter and a set of auc-
tions and comparing resulting revenues for different
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parameter values. If either the family is randomized
or the auction mechanism is randomized then the rev-
enue for the auction is average over a number of runs.
The number of times we repeat the auction depends
on the size of the set of bids. This is because standard
deviations are bigger for small sets of bids.

10.2 Auction Mechanisms

We experimented with the following auctions: the
deterministic optimal threshold, the weighted pair-
ing, and variations on the randomized sampling op-
timal threshold. We have limited our presentation
of the experimental results to the following specific
auctions:

DSO dual-price sampling optimal threshold.
SSO single-price sampling optimal threshold,

m =
√
n. (We justify this choice of m

later.)
WP weighted pairing.
DOT deterministic optimal threshold.
FP− fixed pricing with the price equal to op-

timal − 25%.
FP+ fixed pricing with the price equal to op-

timal + 25%.
The revenue for fixed pricing is at most F , which

can be achieved by an optimal price choice. If the bid
distribution is known in advance and well-behaved,
one can choose a near-optimal price. However, if the
distribution is not known or changes, the selling price
might not be near optimal. FP− and FP+ simulate
fixed pricing with non-optimal selling price by setting
the selling price to the optimal price minus and plus
25%, respectively. Note that the former’s revenue is
at least 75% of F while for the latter the revenue can
be zero, for example if all bids are the same.
The auctions we introduce adapt to the input bid

distribution. Comparing their revenue to that of
FP− and FP+ allows us to see how well our auctions
adapt.

10.3 Input Families

We found the following input families to be of inter-
est because of their average-case or worst-case prop-
erties.

uniform(low,high) Each bid is chosen indepen-
dently from the uniform distribution distributed
between high and low. Note that the ratio of

high to low is an upper bound for h. In our ex-
periments we tried various moderate and large
values for this ratio as well as the extreme value
for low = 0 and high = 1. The results were simi-
lar in all cases, so we present data for the latter
distribution only. Note that for this distribution,
E[ℓ] = 1/(n+ 1) and E[h] = n/(n+ 1).

normal(mean,dev) Each bid is chosen indepen-
dently from the normal distribution with mean
mean and standard deviation dev. We have ac-
tually skewed the normal distribution so as not
to allow negative bid values. If a negative bid
is generated we discard it and pick another bid
from the normal distribution to replace it.

Zipf(theta,high) Each bid is chosen independently
from the Zipf distribution [19]. This is a gen-
eralization of the distribution with 80% of the
total bid value coming form 20% of the bid-
ders. For i in the interval [1, high], we define
Pr[X = i] = c/iθ, with c chosen so that the
probabilities integrate to one. We tried several
values of θ, and report the results for θ = 1/2;
according to G. K. Zipf, this distribution models
personal income.

equal-revenue(α) Inputs in this family have h =
n/α. These inputs have the property that for
any bid except for the largest α bids, setting the
selling price to that bid value and satisfying all
bids greater than or equal to this value yields
the same revenue. Thus, bid bi = n/(n − i) if
n − i > α and n/α otherwise. This distribution
is bad for several auctions.

bipolar(low,high,ratio) This is the bipolar family
with bids at high or at low only. The ratio of
the number of high bids to the total number of
bids is ratio. In the experiment we report on,
we keep high, low, and the total number of bids
constant, and vary the ratio.

10.4 Size Simulations

For the all problem families we report on, except for
the bipolar family, we ran a size test where we varied
the number of bidders between 10 and 100,000. The
auctions tested behaved roughly in the same manner
on the uniform, normal, and Zipf families. These
“average-case” families have the property that any
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Figure 1: Uniform(0,1) with n = [10, 100k]
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Figure 2: Normal(1,1) with n = [10, 100k]

uniformly chosen random subset of the bids has the
same distribution as the original. In particular, the
random sample in a random sampling auction has
the same distribution as the non-sample. Because of
this property, the random sampling auctions perform
very well these families.

Figures 1, 2, and 3 show the results of simulation.
For large n, DSO and DOT are the best auctions.
As n increases, the ratio of their revenue to F ap-
proaches 1. This is also the case for SSO. As n
increases, the ratios for FP− and FP+ approach a
constant less than 1. As a result, even for moder-
ately large n our best auctions perform better than
fixed pricing with a 25% price error. On average-
case distributions, WP is the worst auction; its ratio
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Figure 3: Zipf(theta=0.5, high=n) with n =
[10, 100k]

asymptotically approaches 2/3.
Equal-revenue is a “worst-case” family for many

auctions, as we see in Figures 4 and 5. Since this
family is such that the fixed pricing with any price
between 1 and h works well, we do not plot FP− and
FP+.
WP, the worst auction on the average-case families,

is the best of our auctions on the equal-revenue fam-
ilies. On these families, the sampling optimal thresh-
old mechanisms with larger sample sizes perform
poorly in comparison to the ones with smaller sam-
ple sizes. This is why DSO performs worse than SSO
(More experiments with sample size in the sampling
optimal threshold mechanism are presented later).
DOT performs poorly on the equal-revenue families
because it satisfies only the highest bids at the price
of the lowest bid.
Recall that our theoretical bounds improve as α

increases. Comparing the equal-revenue distributions
with α equal to 1.0 (the lowest possible value for any
input) and 10.0, we observe that auction performance
is better for the higher value of α. However, even for
α = 1.0 (in which case most of our theoretical lower
bounds do not apply), our randomized auctions bring
a revenue that is a substantial fraction of F .

10.5 Bipolar Family

For the bipolar family, we varied the ratio of high
bids to the total number of bids and computed the
revenue for various auctions. The results appear in
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Figure 4: Equal-Revenue(α = 1.0) with n =
[10, 100k]

Figure 6. We do not plot FP− and FP+ auction
revenues.

There are several key things to note about the bipo-
lar family. First, it demonstrates the problem with
the DOT auction. There is a sharp dip in the revenue
of DOT precisely when the number of high bids is 10
and the number of low bids is 90. This is because
opt(B \ {h}) = 1 and opt(B \ {1}) = h in this sce-
nario and thus 10 high bids get satisfied at price 1
and the 90 low bids get rejected3. The optimal solu-
tion in this case is to accept the 10 high bids at price
h = 10. Aside from this case, DOT performs well.
The randomized optimal threshold variants have de-
graded revenues for the number of high bids around
10. However, due to randomness, the revenue loss is
significantly smaller, but spread over a wider region.
The DSO auction outperforms WP and SSO for most
ratios. The WP auction usually outperforms SSO.

Note that WP revenue actually spikes up in the
area where the optimal threshold auctions’ revenues
dip. This is more evidence to the notion that the WP
seems to do well on worst-case families.

3Note that in this scenario 1 and h produce the same rev-

enue when used as a threshold for B \ {h}; however, f must

deterministically break the tie one way or the other. We have

chosen to break ties in favor of using a smaller threshold. Note

that if we had made the opposite choice then we would have

encountered the worst-case behavior on the distribution with

with 9 bids at h and 91 bids at 1 which has the property that

1 and h yield equal revenues when used on B \ {1}.
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Figure 5: Equal-Revenue(α = 10.0) with n =
[10, 100k]

10.6 Sample Size

In this section we address the choice of the sample
size for the sampling optimal threshold auction. Fig-
ures 7 and 8 show the revenue of the single-price sam-
pling optimal threshold auction as the sample size
varies. One plot is for n = 100 and the other for
n = 10, 000. We plot a curve for every input distri-
bution except for the equal-revenue with α = 10.0
(which is similar to that with α = 1.0) and the bipo-
lar distribution. We omit the latter because other-
wise we need to plot a curve for several values of the
high to low bid ratio.

These plots show that for the average-case distri-
butions, there is a tradeoff: a bigger sample allows to
choose a better threshold, but loses revenue due to
the discarded sample. For the equal-revenue distri-
bution, there is no tradeoff; smaller samples lead to
higher revenues as any threshold is a good threshold.
The sample size of around

√
n (10 for the first plot

and 100 for the second) is a good compromise, giving
near-maximum values for all our distributions.

These plots help explain why DSO performs so
poorly on the equal-revenue distribution. The best
sample size for this distribution is one. If the value
of the single sampled bid is b, the auction revenue is
F − b, and the expected value of b is small. If we
sample more than one element then the we are likely
to select a threshold value that has more than its fair
share of elements above it in the sample – and less
than its fair share of elements above that value in
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Figure 6: Bipolar(low=1,high=10,ratio=[0, 1]) with
n = 100

the non-sample. In this sense, the sampling optimal
threshold auction mechanisms are poorly conditioned
on the equal-revenue distribution.

One question related to the sample size is whether
the dual-price auction can do better with lopsided
sample sizes. It does do slightly better in auctions
with a small number of bids, but as the number of
bids gets large the benefit of accepting bids from the
sample becomes negligible. Note that a dual-price
auction with the sample size

√
n will do better than

the single-price sampling optimal threshold auction
with the same sample size.

10.7 Experimental Conclusions

Our experiments suggest that for well-behaved in-
puts, the random sampling auctions achieve a revenue
ratio to F that approaches one as the number of bids
increases. The weighted pairing auction, although
not bad overall, does not perform as well as the ran-
domized sampling mechanisms on such inputs. We
also saw that even on contrived worst-case families,
these auctions’ revenue is a large constant fraction
of F . The deterministic optimal threshold, while ex-
hibiting its F/h worst-case behavior on specific fam-
ilies, performs very well on the average-case families
of inputs. Finally, sampling about a square root of
the number of bids for the sampling auction mecha-
nisms seems to balance out the loss due to rejecting
all of the sample and the loss due to having a non-
representative sample.
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Figure 7: The effect of sample size on the sampling
optimal threshold auction revenue.

11 Bounded Supply

Up to this point, we have studied the unlimited sup-
ply case which is motivated by the digital goods mar-
ket where the cost of making a copy of an item is neg-
ligible. In this section we consider the case where the
number of items available for sale is bounded. This
case is typical of physical goods markets. We de-
note the number of items available by k. Here again,
the seller wishes to maximize their revenue, possibly
not selling all of the items. Note that the defini-
tions of truthful and competitive auctions, which we
stated for the unlimited supply case, also apply to the
bounded supply case. We denote by Fk the revenue
for optimal fixed pricing that sells at most k items,
and it is this quantity that we wish to be competitive
with.

The bounded supply case is a generalization of the
unlimited supply case as items are available in unlim-
ited supply when the number of available items is the
same as the number of bidders (i.e. k = n). Where
unlimited supply is one extreme of the bounded sup-
ply case, scarce supply is another extreme. In the
scarce supply case, the optimal fixed pricing revenue
is maximized by selling all the items when the num-
ber of available items is around k.4 Previous work on
auctions concentrated on the scarce supply case. The
multi-item Vickrey auction is the best single-price

4Formally, items are in scarce supply if we have k items and

the optimal fixed pricing with k or k + 1 items would sell all

of the items.
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auction for the scarce supply case (and it is compet-
itive). Our results, extended to bounded supply, are
competitive in the full range of the supply-demand
spectrum with only the assumption that αh < Fk.
We now show how to extend our optimal threshold

sampling auctions to the k-item bounded supply case.
Let optk be the function that, given a set of bids,
returns the optimal threshold that sells k items or
less. This function, on the entire set of bids, gives
the threshold to use for Fk. The single-price sampling
optimal threshold mechanisms can now be modified
to use threshold function optmk/(n−m) on sample of
sizem. If this results in too many bids being satisfied,
arbitrarily (e.g. at random) reject bids until there are
only k left. One can show that with high probability,
the number of bids rejected this way will be small
and that this auction is competitive.
In the dual-price auction with the sample size of

m = n/2, use optk/2 so that about k/2 bids are se-
lected from each of the sample and the non-sample.
Once can show that the resulting auction is also
truthful and competitive.
We have shown that in a relatively straight-forward

way, our sampling auctions extend from the unlimited
to the bounded supply case. One can extend the
deterministic optimal threshold auction to bounded
supply as well. Also, all of our upper bounds apply
to bounded supply because it generalizes unlimited
supply.
To generalize Theorem 4.1 for the k-item case, re-

call the alternative definition of T as the revenue due

to the optimal untruthful multi-price auction. Define
Tk to be the revenue of the optimal multi-price auc-
tion restricted to only satisfying k bidders (i.e. the
sum of the highest k bids) and Fk as above. Then
the generalized result is Fk ≥ Tk/(2 logh).

One result we do not know how to extend to
bounded supply is that for the weighted pairing auc-
tion.

12 Concluding Remarks

We have demonstrated that there exist truthful auc-
tions for unlimited supply markets. We have shown
randomized auctions that are competitive in that
they yield revenue that is within a constant factor of
optimal fixed pricing. We have shown that this result
is tight up to a constant factor, even for multi-price
auctions. We have also shown that no deterministic
auction is competitive in the worst-case. Finally, via
simulations, we have argued that our auctions com-
pare favorably to fixed pricing with market analysis.

For unlimited supply markets, our analysis as-
sumes that there is no cost for producing the items
being auctioned. With the following modification we
can also accommodate non-zero marginal costs. If
the marginal cost is v per item, then first subtract v
from each bid and reject all negative value bids. After
running the auction, add v back to the selling price
of all winning bids. If the marginal cost of producing
k items is a more complicated function of k, we can
modify the opt function used in the sampling optimal
threshold auction to take into account these marginal
costs. In this case the opt function would, as above
for bounded supply, need to be parameterized by the
ratio of the sample size and the non-sample size so as
to correctly use marginal cost information.

To prevent cheating by the auctioneer or the bid-
ders, one may need a trusted third party or a special
cryptographic protocol. Note that cheating preven-
tion is a problem shared by all on-line auctions. Re-
lated results appear in [5].

Recently we have shown that the deterministic op-
timal threshold auction is single-price. This fact leads
to interesting results. We will report on these results
in a future paper.
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13 Open Problems

We proved that the weighted pairing auction is not
competitive. It is possible, however, that a variant of
this auction that uses different weighting is competi-
tive.

The weighted pairing auction can have revenue
greater than F for some random pairings. It seems
like this might not be the case for the dual-price sam-
pling optimal threshold auction. Can one prove that
it is always the case that for any randomly chosen
sample, the auction revenue does not exceed F?
We have not considered issues such as the extent

to which bidders can remain anonymous or bid values
can remain secret. See [7] for ways to maintain bid
secrecy in an on-line Vickrey auction.

A significant issue in auctions like ours is resistance
to adversarial attacks. How resistant are our auctions
to bidder collusion, and can collusion resistance be
improved? How well do our auctions resist attacks
such as a competitor attempting to reduce the rev-
enue of an auction by submitting a large number of
low bids?

Repeated auctions for the same item may be of
interest in some applications. In this case, the chal-
lenge is to design an auction mechanism that encour-
ages consumers to bid their utilities in every auction
(I.e. they are truthful).
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