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Abstract. A family (St) of sets isp-bounded Diophantine ifSt has a represent-
ing p-bounded polynomialRS;t, s.t.x 2 St () (9y)[RS(x; y) = 0℄. We say
that(St) is unbounded Diophantine if additionally,RS;t is a fixedt-independent
polynomial. We show thatp-bounded (resp., unbounded) Diophantine set has
a polynomial-size (resp., constant-size) statistical zero-knowledge proof system
that a committed tuplex belongs toS. We describe efficient SZK proof systems
for several cryptographically interesting sets. Finally,we show how to prove in
SZK that an encrypted number belongs toS.

Keywords: Diophantine equations, integer commitment, statistical zero knowl-
edge.

1 Introduction

A setS of orderedn-tuples of positive integers is calledDiophantineif there is a
representing polynomialRS(x; y) with integer coefficients such that a givenn-
tuplex = (x1; : : : ; xn) belongs toS iff there exists a tupley = (y1; : : : ; ym) of
integerswitnesses) for whichRS(x; y) = 0: I.e.,x 2 S () (9y)[RS(x; y) =0℄. Based on earlier work by Davis, Putnam and Robinson, in 1970Matiyase-
vich [Mat70] showed that every recursively enumerable set is Diophantine (this
is known as the Davis-Putnam-Robinson-Matiyasevich or theDPRM theorem),
solving finally Hilbert’s tenth problem.

We are interested in cryptographic applications of this result. For this, we
look at familiesS = (St) of Diophantine sets and say thatS is p-bounded Dio-
phantine if there exists a uniform familyRS = (RS;t) of p-computable polyno-
mials, such that for everyt, x 2 St iff there exists a witnessy suchRS;t(x; y) =0. We say thatS possesses a certifierCS = (CS;t) iff RS;t(x;CS;t) = 0 for? Preliminary version, 05.11.01
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everyt. If RS;t is the same polynomial for allt then we say thatS is unbounded
Diophantine. In the latter case, we often identifyS and

St St.
Given a statistically hiding integer commitment scheme like [DF01] where

it is possible to prove in statistical zero-knowledge (SZK)that two committed
integers are in an additive or multiplicative relationship, one can also prove in
SZK any polynomial relationship between a tuple of committed numbers. Thus,
if S is p-bounded Diophantine then one can prove in SZK that committed tuplex belongs toSt by proving thatx together with another committed tupley satis-
fiesRS;t(x; y) = 0. We call this membership proof a Diophantine membership
proof (forS).

When S is unbounded Diophantine, the resulting SZK proof forS has
interaction length�(log2 T ), whereT is the a priori maximum of any in-
put xi or yi in the concrete application. The situation changes whenS is p-
bounded Diophantine. In such a case, eachSt could have a designated proof
system. This means that the resulting SZK proof has polynomial communica-
tion complexity; on the other hand, even some easyp-bounded Diophantine
sets seem not to be unbounded. As an example, it is known that the Dio-
phantine setS = f(x1; x2; xx21 ) : (x1; x2) 2 Zg has a representing polyno-
mial RS in 14 witnessesyi [JSWW76]. However, several witnessesyi of RS
have superpolynomial length injxj. On the other hand, the familyS = (St),St = f(x1; x2; xx21 ) : x1 2 Z^ x2 2 ZTg, T = 2t, is p-bounded Diophantine;
it even has a certifier!

We present a number ofp-bounded familiesS with certifier that have cryp-
tographic relevance; all such families have efficient SZK proof systems. We
show thatS = [0;1) is unbounded and present corresponding SZK proof. This
proof bases on the result of Lagrange that every nonnegativeinteger is a sum
of four squares and on the randomized algorithm of Rabin and Shallit [RS86]
that finds these squares inO(t4) bit-operations. Note that efficient proof sys-
tem for [0;1) is crucially important for our entire framework, since in the
definition of Diophantine sets one often requires the solutions to be positive.
Moreover, our proof system for[0;1) requires about20% more communica-
tion than Boudot’s membership proof [Bou00] for[0;1); however, differently
from Boudot’s proof system, our proof system is perfectly complete.

Based on the proof for nonnegativity, we show for an arbitrary functiong : Zn! Z how to construct an efficient perfectly complete SZK proof system
for proving thatxn 6= g(x1; : : : ; xn�1), given that there exists an efficient SZK
proof for proving thatxn = g(x1; : : : ; xn�1). We derive an SZK proof system
for x3 = g
d(x1; x2). More examples will be given in Section 4.

In practice, it is often necessary to show that anencrypted(as opposed to
a committed) value belongs to some setS. For many interesting setsS we are
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not aware of anefficientmembership proof forS that would use only the cor-
responding public-key cryptosystem and no other primitives. Instead, we can
build up a membership proof for encrypted numbers by using a SZK proof that
a committed integer and an encrypted integer are equal (modulo the message
space size), and then applying our SZK membership proof forS to the commit-
ted number. Sequential composition of these two proofs is naturally SZK. Fi-
nally, we construct an efficient SZK proof that discrete logarithm of encrypted
value belongs to an interval, and show how to use it in the Damgård-Jurik voting
scheme [DJ01] to achieve shorter proofs of vote correctness.

Road-map. Necessary preliminaries are given in Section 2. We will describe
a Diophantine membership proof for[0;1) in Section 3. Extension to general
Diophantine equations is shown in Section 4. Section 5 presents protocols that
allow to apply our proofs together with homomorphic cryptosystems. Finally,
the appendix contains technical proofs of some theorems, a short description of
the Rabin-Shallit algorithm and an discussion about proof systems for exponen-
tial relationship.

2 Preliminaries

Homomorphic encryption. A public-key cryptosystem� is a triple of efficient
algorithms,� = (G;E;D), whereG is the key generation algorithm,E is the
encryption algorithm andD is the decryption algorithm. Throughout this paper,
let t be the security parameter. LetM (resp.,C andR) denote the message space
(resp., the ciphertext space and the randomness space), corresponding to a fixed
value oft. We assume that all three sets(M;R; C) are Abelian groups, withC
written multiplicatively. We say that public-key cryptosystem� = (G;E;D)
is homomorphicif EK(m1 +m2; r1 + r2) = EK(m1; r1)EK(m2; r2). Some
example homomorphic cryptosystems are the Paillier cryptosystem [Pai99] and
the Damgård-Jurik cryptosystem [DJ01]. LetM := dlog2 jMje, C:= dlog2 jCje
andR:= dlog2 jRje. We will assume in our calculations thatM = R = 1024
andC = 2048.

Proofs-of-knowledge.For a bit-string� and predicateP (�), PKy(� : y =P (�)) is a proof-of-knowledge between two parties that given a publicly known
valuey, the first party knows a value of�, such that the predicateP (�) is true.
To simplify notation, we will always denote the values, knowledge of which
has to be proven, by Greek letters. Additionally, we assume that the scope of
such variables lies within one proof-of-knowledge. E.g.,PK(
 = EK(m; �)) is
a proof that given a ciphertext
, plaintextm and a public keyK, the prover
knows a nonce� such that
 = EK(m; �).
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Most of the protocols in this paper are three-round interactive honest-verifier
(statistical) zero-knowledge (abbreviated as HVZK or HVSZK, resp.) proof sys-
tems for proofs-of-knowledge of typePK(y = P (�)). One usually proves that
such protocols are (1) Complete: That is, a honest verifier accepts a honest
prover with probability1�neg(t), whereneg(t) is a negligible function int; (2)
Honest-verifier (statistical) zero-knowledge: Even without knowing�, one can
generate a view of the protocol that has distribution, indistinguishable from (or
statistically close to) the distribution of real views in the case when the verifier is
honest; (3) Specially sound: Given two views of the protocolthat begin with the
same move but have different second moves, one can compute secret�. A proof
system is calledperfectly completeif a honest verifier always accepts a hon-
est prover. An honest-verifier (statistical) zero-knowledge proof system can be
made noninteractive by using the Fiat-Shamir heuristic [FS86] in the random-
oracle model. For this, we introduce a random oracleH : f0; 1g� ! f0; 1g2t.
Damgård-Fujisaki integer commitment scheme.A (statistically hiding) in-
teger commitment schemeCom allows a a participantP (a polynomial-time
algorithm) to commit to any integerm 2 Z, so that (1) For anym1;m2 2 Z,
the distributionsComK(m1) andComK(m2) are statistically close; and (2) It
is intractable forP to findm2 6= m1, such thatComK(m1) = ComK(m2).
The first integer commitment scheme that allowed an efficientproof system that
committed integers are in multiplicative relationship wasproposed by Fujisaki
and Okamoto [FO97], but soundness proof of this scheme was later found to be
flawed. This flaw has been only recently corrected by Damgårdand Fujisaki,
who proposed a new integer commitment scheme in [DF01]. Since the latter
scheme is relatively new, we will give next give a longer description of it.

Let G be a suitable group. (We refer to [DF01] for the exact definition of
suitable, but remark thatG can be chosen asZn for RSA modulusn = pq,
wherep � q � 3 (mod 4), g
d(p � 1; q � 1) = 2, and the parts ofp � 1,q � 1 with prime factors less thanF areO(t). One may chooseB asB  dlog2 ne+1. Then the security follows from the strong RSA assumption.)While
the prover knows a reasonably close upper bound2B > ordG to the order ofG,
he doesnotknow the order itself. A large numberF is chosen, such that it is still
feasible to factor numbers that are smaller thanF . Say,F = O(tlog t) though
in our calculations we will takeF = 280. During the setup phase of Damgård-
Fujisaki integer commitment scheme,P andV agree on a groupG and a large
integerF . Verifier V chooses a randomF -rough elementh 2 G and a randomx 2 [0; 2B+t). Let g = hx. V sends the public keyK = (g; h) to P and then
proves in SZK thatg 2 hhi. When committing tom 2 Z,P chooses a randomr  [0; 2B+t) and sendsComK(m; r) := gmhr to V . To open commitment
,P sends(m; r; b), s.t.
 = gmhrb andb2 = 1.
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Protocol 1SZK proof system for multiplicative relationship between committed
numbers.
1. Prover P chooses a randomm1  R [0; 2tFT ), r1  R [0; 2B+2tF ), r2  R[0; 2B+2tFT ) and sends
5  gm1hr1 , 
6  
m11 hr2 toV .
2. VerifierV generates a randome R [0; F ) and sends it toP .
3. Prover sendsm2 = m1 + e�2, r3  r1 + e�2 andr4  r2 + e(�3 � �2�1) to V .
4. Verifier checks thatgm2hr3
�e2 = 
5 and
m21 hr4
�e3 = 
6.

One can build different SZK proof systems for different relationships be-
tween committed numbers�i. In all such proof systems, prover and verifier
have to fix a priori upper boundTi to every input�i. Proof system is guaran-
teed to be SZK only ifj�ij < Ti. In most of the protocols, proof complexity
depends onlog2 Ti, and hence it is beneficial to compute as precise values ofTi
as feasible. At least it must be the case thatlog2 Ti = tO(1).

Let CCom denote the commitment space of the used integer commitment
scheme (in this concrete case,CCom = G) and letCCom := dlog2 jCCom je, with
security parameter understood from the context. We will assume in our calcula-
tions thatCCom = 1024.

Proof system for multiplicative relation. For their own integer commitment
scheme, Damgård and Fujisaki [DF01] constructed an efficient proof system forPK��V3i=1 
1 = ComK(�1; �1)� ^ �3 = �1�2�; that is, a proof that a com-

mitted integer�3 is product of another two committed integers. We will next
give a description of this proof system. LetCom be the Damgård-Fujisaki in-
teger commitment scheme, lett be the security parameter, letK = (g; h) be
the public key and letlog2 T = tO(1). Then Protocol 1 is a complete, honest-
verifier SZK, specially sound proof-of-knowledge for multiplicative relation-
ship, assuming that�i 2 [0; T ) and�i 2 [0; 2B+t):

Noninteractive version of this proof is(e;m2; r3; r4), with e = H(
5; 
6),
whereV verifies thate = H(gm2hr3
�e2 ; 
m21 hr4
�e3 ) (mod 2t). With parame-
tersCCom = 1024, F = 280, T = 21024, t = 160 andB = 1024, the noninter-
active proof has length4 log2 F +2 log2 T +6t+2B = 320+2 log2 T +480+2048 = 2848 + 2 log2 T bits or 356 + 14 log2 T bytes. WhenT = 1024 then
this length is1024 bits. When�1 = �2 (i.e., Protocol 1 is used to prove that�3
is a square), one can assume that�1 = �2 � 2512 and the noninteractive proof
is 484 bytes long. Note that only�2 has to be less thanT , thus if it is known a
priori that one of the arguments might be much greater than another one, it will
make sense to use this argument as�1.
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Boudot’s membership proof for [0;1). Boudot’s proof system [Bou00] forPK(
 = ComK(�; �) ^ (� � 0)) consists of several steps: First, represent�
as�21+�2, where�1; �2 = O(p�). Since�21 � 0, one is now only left to prove
that�2 � 0. Second, one can prove that�2 � �� for �:=2tFT 1=2 by using
the membership proof with tolerance by Chan, Frankel and Tsiounis [CFT98].
Now, one has proved that� � ��. Fourth, one can achieve zero tolerance by a
priori multiplying � with a suitably chosen constant2x such that� < 2x=2. In
this case,2x=2� > �2x=2 or �2 > �1. When modified for Damgård-Fujisaki
integer commitment system, this proof system has completeness error�(1=F );
its noninteractive version is1166 + 18 �log2 T 1=2� bytes long.

Algebraic complexity theory. A p-family overZ is a sequencef = (ft) of
multivariate polynomials such that the number of variablesas well as the degree
of ft are polynomially bounded (p-bounded) functions ofn. Let L(ft) (resp.,L�(ft)) denote the total complexity offt, that is, the minimum number of arith-
metic operationsf�;+;�g (resp.,f�g) sufficient to computeft from the input
variables and constants inZ by a straight-line program. We call ap-family fp-computableiff the mapt 7! L(ft) is p-bounded.

3 Proof that a Committed Number is Nonnegative

Before treating the general situation of an arbitrary (p-bounded) Diophantine
family S, we will give an efficient membership proof for[0;1), i.e., that a
committed number is nonnegative. There are a few good reasons for proceeding
in this order. First, the approach we use in constructing this proof system has
much in common with the general solution, and hence it servesas a motivational
example. Second, for manyS, there is a more efficient representing polynomial
when we consider only nonnegative solutions to this equation; for such anS it
might make sense to use this polynomial and then to prove for every witness that
it is nonnegative. Third, a proof system for[0;1) is interesting in its own right,
since it is used in many cryptographic protocols. (See [Bou00] for examples.)

The next theorem is crucial for our membership proof:

Theorem 1. An integer� can be represented as� = �21 + �22 + �23 + �24 with
integer�i iff � � 0. Moreover, if� � 0 then the representation(�1; �2; �3; �4)
can be computed efficiently.

Proof. If � � 0, such�i exist by a well-known result of Lagrange from 1770.
Rabin and Shallit [RS86] proposed a probabilistic polynomial-time algorithm
(described in Appendix B) for computing the representation. On the other hand,
no negative number is a sum of four squares. ut
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Protocol 2SZK proof system for nonnegative integers.
1. ProverP represents� as�21+�22+�23+�24, using the Rabin-Shallit algorithm. Fori 2 [1; 4℄,P chooses random�i  R [0; 2B+t) such that

Pi �i = �; P chooses randomm1i  R[0; 2tFT 1=2), r2i  R [0; 2B+2tF ), r3  R [0; 2B+2tFT 1=2), and lets
1i  g�ih�i ,
2i  gm1ihr2i , 
3  Qi 
m1i1i � hr3 . Prover sends((
1i; 
2i)4i=1; 
3) to V .
2. V generates a randome R [0; F ) and sends it toP .
3. P computesm2i = m1i+e�i, r4i  r2i+e�i, i 2 [1; 4℄, andr5  r3+ePi(1��i)�i.P sends((m2i; r4i)4i=1; r5) to V .
4. V checks that (a)gm2ihr4i
�e1i = 
2i for i 2 [1; 4℄, and (b)

Qi 
m2i1i � hr5
�e = 
3.

Briefly, during our proof system for[0;1), prover first uses the Rabin-
Shallit algorithm to represent� as�21 + �22 + �23 + �24 (or a witness). After
that, he proves toV in SZK that she knows such a representation. Complete
proof system is given by the next theorem:

Theorem 2. Let Com be the Damg̊ard-Fujisaki integer commitment scheme,
let t be the security parameter and letT = nO(1). Let K = (g; h) be the
public key. Protocol 2 is a perfectly complete, honest-verifier SZK and specially

sound proof system forPK�
 = ComK(P4i=1 �2i ; �)�, or equivalently in the

epistemic sense, forPK(
 = ComK(�) ^ � � 0), if � < T .

(Proof of this theorem is given in Appendix A.) Noninteractive version of
this protocol is((
1i)4i=1; e; (m2i; r4i)4i=1; r5), where the verifier checks thate = H((
11)4i=1; (gm2ihr2i
�e1i )4i=1; 
�eQi 
m2i1i � hr5) (mod 2t). The length of
noninteractive proof system is4CCom +2t+4(B+3t+2 log2 F + 12 log2 T )+B +2t+ log2 F + 12 log2 T = 4096 + 160 + 4 � (1024 + 240 + 160) + 1024 +160 + 80 + 52 log2 T = 11216 + 52 log2 T bits or1402 + 516 log2 T bytes.

Hence, noninteractive version of Protocol 2 is� 20% longer than Boudot’s
proof system for the same problem. However, our proof systemenjoys the prop-
erty of perfect completeness, while Boudot’s proof system has completeness
error�(1=F ). This result in interesting by itself, in particular since by a re-
sult of Vadhan, no complexity-preserving strong black-boxtransformation can
eliminate completeness error [Vad00].

4 Membership Proofs from Diophantine Equations

The ideas used in Section 3 to build an efficient membership proof for [0;1) can
be generalized for proving in SZK that the committed tuple� = (�1; : : : ; �m)
belongs to many other (not necessary finite) setsS � Zm. For this we have to
introduce a more complexity-theoretic flavor of Diophantine sets.
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Definitions. Let S = (St) be a family of sets, such that the elements inSt have
length that is polynomial int. We say that the familyS is p-bounded Diophan-
tine if there exists a uniform familyRS = (RS;t) of p-computable polynomials
with integer coefficients, such that for everyt, x 2 St iff there exists awitnessy such thatRS;t(x; y) = 0. We say that the familyS is possesses a certifierRS
if there exists a familyRS = (RS;t) of p-bounded polynomials and a family
of polynomial-time algorithmsCS = (CS;t), such that for everyt, x 2 St iffRS;t(x;CS;t) = 0. If RS;t is a polynomial that does not depend ont, we say
thatS has an unbounded Diophantine membership proof. In the latter case one
often (but not always) assumes thatS = St St is a set itself.

Given a statistically hiding integer commitment scheme like [DF01] where
one can prove in SZK that two committed integers are in an additive or in a
multiplicative relationship, one can prove in SZK that a polynomial relation-
ship holds between a number of committed integers, by using the methodol-
ogy of [FO97]. Now, letS = (St) have ap-bounded Diophantine membership
proof. By using an integer commitment scheme, one can then prove in SZK that
he knows ay, s.t.RS;t(x; y) = 0. Thus, such a proof is a valid proof system forPK(
i = ComK(�i; �i) ^ � � � ^ 
n = ComK(�n; �n) ^ (�1; : : : ; �n) 2 St).
Discussion.The first example SZK proof system (forS = [0;1)) was already
given in Section 3. As seen from this example, communicationcomplexity of
such a proof system depends linearly onL�(St) and on valueslog2 Ti, whereTi
is an a priori upper bound on inputxi. If the membership proof is unbounded
thenL�(St) is a constant and communication complexity is just a linear function
of log2 Ti-s. (That is, on the input length, being hence optimal.) Thisexplains
why we are especially interested in unbounded Diophantine familiesS. Sur-
prisingly, as we will see later on, there are many cryptographically interesting
unbounded Diophantine familiesS.

Certifier is needed in situation where a party in a cryptographic protocol
needs to prove that he has performed correct calculations over some data that
were received from sources not controlled by him. On the other hand, when the
prover can generate a committed number by himself and just has to prove that
this number belongs to some correct set (e.g., is nonnegative, or is composite),
certifier is not necessary.

Often, in the definition of Diophantine sets it is required that the witness
must be nonnegative. However, ifS has a representing polynomialRS(x; y)
thenx 2 St () (9y; y0 2 [0;1))[RS;t(x; y1 � y01; : : : ; ym � y0m) = 0℄. One
the other hand, ifS has a nonnegative representing polynomialR0S(x; y) with
nonnegative witnesses then it is represented byR0S;t(p211 + � � �+ p214; : : : ; p2n1 +� � �+ p2n4; q211 + � � �+ q214; : : : ; q2m1 + � � �+ q2m4).



9S RS CS[a;1) y21 + y22 + y23 + y24 � x+ a [RS86][�1; b) y21 + y22 + y23 + y24 + x� b [RS86]f(x1; x2; x3) : g
d(x1; x2) j x3g x1y1 + x2y2 � x3 Extended Euclideanf(x1; x2) : x2 j x1g x1 � x2y1 y1  x1=x2
Table 1.Some unbounded Diophantine setsS with representing polynomials and certifiers.

Next, letS1 andS2 be Diophantine sets with representing polynomialsRSi ,
s.t.x 2 Si () (9y)[RSi(x; y) = 0℄. Then (1)S = S1 [ S2 is Diophantine,
with RS1[S2(x; y; z) = RS1(x; y)RS2(x; z); and (2)S = S1 \ S2 is Diophan-
tine, withRS1\S2(x; y; z) = P 2S1(x; y) +P 2S2(x; z). Therefore, ifS1 andS2 are
(p-bounded) Diophantine then so areS1 [ S2 andS1 \ S2; thus the latter sets
also have Diophantine membership proofs. However, described compositions
add an extra multiplication per every union and two multiplications per every
intersection, which is an undesirable overhead. A more efficient way is to use
the methodology of Cramer, Damgård and Schoenmakers [CDS94] of compos-
ing several proofs-of-knowledge; when using their methods, we get Diophantine
membership proofs forS1 [ S2 andS1 \ S2 that do not require extra multipli-
cations.

The methodology of [CDS94] is is limited to composing sets byusing the
union and interaction but not complementing. (This is not surprising. More gen-
erally, the complement of a recursively enumerable set is not always recursively
enumerable.) For example, one cannot derive from the framework of [CDS94]
an efficient proof that a committed integer� is not equal to some constanta,
starting only from positive proofs. (Although efficient proof systems for� 6= a
exist [MS97].) An important feature of our approach is that we can implement
nonmembership proofs. Reason for this lies in the flexibility that we have when
choosing the setsS. More precisely, efficient negative proofs are possible since
some of these setsS (like [a;1) and(�1; b℄) are infinite, but their intersec-
tions are finite. We will present corresponding examples in afew paragraphs.

Examples.Some unbounded Diophantine setsS together with their represent-
ing polynomials and certifiers are depicted by Table 1. A few sets that are inter-
sections of simpler sets are depicted by Table 2. Note that noninteractive version
of SZK proof system for� 2 [a; b℄ has interaction length2804 + 58 log2(b� a)
bytes, since one can setT  b�a. The set of composite numbers does not have
a certifier unless factoring is easy. Other sets in this tablehave a certifier.

Let us look at more interesting examples. An efficient Diophantine mem-
bership proof system forPK(
 = ComK(�) ^ � 62 [a; b℄) can be based on the
fact thatx 62 [a; b℄ iff (9y)[R[b+1;1)(x; y) = 0℄ _ (9y)[R(�1;a�1℄(x; y) = 0℄.



10 S To prove that you know suchxi, show that . . .[a; b℄ (a � b) x 2 [a;1), x 2 (�1; b℄Zn f2s : s 2 Zg x = y1(2y2 + 1)� x, y2 > 0
Set of composite numbers x = y1y2, y1 > 1, y2 > 1

Set of nonsquares x = y21 + y2, x = (y1 + 1)2 � y3, y2 > 0, y3 > 0f(x1; x2; x3) : x1 = x2 (mod x3)g x1 = x2 + x3y1, x1 < x3.f(x1; x2; x3) : x3 = g
d(x1; x2)g g
d(x1; x2) j x3, x3 j x1, x3 j x2
Table 2.Some more examples.

If a = b, this yields a Diophantine proof system that a committed number
is not equal to some constanta. Moreover, one can prove that two commit-
ted numbersx1 andx2 are not equal, by proving that(9y)[(x1 = x2 + y) ^(y1 6= 0)℄. This approach can be generalized to an arbitrary functiong. LetS = f(x1; : : : ; xn) : xn = g(x1; : : : ; xn�1)g, g a function, be ap-bounded
(resp., unbounded) Diophantine set with representing polynomialRS = (RS;t).
ThenS 0 = f(x1; : : : ; xn) : xn 6= g(x1; : : : ; xn�1)g is p-bounded (resp., un-
bounded) Diophantine: Namely, it suffices to show thaty = g(x1; : : : ; xn) and
thatx0 6= y.

Since the set of primes is recursively enumerable the DPRM theorem says
that it is also Diophantine. Jones, Sato, Wada and Wiens [JSWW76] described
a certain Diophantine equation system of14 equations in26 variables that has a
positive integral solution iff one of parameters is a prime.Thus, one can prove
that a committed number is prime by proving that he knows an integral solu-
tion to this equation system, and then proving that all solutions are positive.
However, several witnessesyi have superpolynomial length injxj and hence the
set of primes is not known to have a Diophantine membership proof. Finally, a
longer example for exponential relationship will be given in Appendix C

5 Applications to Encrypted Numbers

Proof that committed number = encrypted number.Let (G;E;D) be a ho-
momorphic public-key cryptosystem withM = ZM and public keyKe. In
cryptographic protocols, one often needs a zero-knowledgeproof that anen-
crypted number belongs to some setS. For many cryptographically interest-
ing setsS 2 Zn, we are not aware of any efficient membership proofs forPK((Vi 
 = EKe(�i; �i)) ^ (�1; : : : ; �n) 2 S) that base solely on the secu-
rity of the used encryption scheme. However, the next methodology enables
to construct such proof systems, assuming thatS � ZnM (an exampleS could
be S = f(x1; x2; xx31 : (x1; x2; xx21 ) 2 Z3g) and there is an efficient proof
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system forPK(
 = ComK
(�; �) ^ � 2 S), whereCom is an integer commit-
ment scheme with keyK
:
1. For everyi,P creates a randomri and sends
0i = ComK
(�i; ri) to verifier.
2. For everyi, P thatPK(
i = EKe(�i; �i) ^ 
0i = ComK
(�i; �0i)).
3. Finally,P thatPK((Vi 
i = ComK
(�i; �)) ^ (�1; : : : ; �n) 2 S).

Note thatEKe(m+ kM ; r) = EKe(m; r) and therefore in the second step,P should prove thatPK(
i = EKe(�i (mod M); �i) ^ 
0i = ComK
(�i; �0i)).
We will omit the “(modM)” notation for the sake of simplicity.

Now, assuming that there is an efficient (Diophantine) proofsystem forPK(
 = ComK
(�; �) ^ � 2 S), we are only left to prove the next result.

Theorem 3. Let Com be the Damg̊ard-Fujisaki integer commitment scheme
and let � = (G;E;D) be a homomorphic public-key cryptosystem. Lett
be the security parameter and letT = tO(1). Let �2 2 [0; 2B+t). The next
protocol is a complete, honest-verifier SZK, specially sound proof system forPK(
1 = EKe(�; �1) ^ 
2 = ComK
(�; �2)), given that� < T :

1. Prover generatesm1  R [0; 2tFT ), r1  R R, r2  R [0; 2B+2tF ), sets
3  EKe(m1; r1), 
4  ComK
(m1; r2) and sends(
3; 
4) to verifier.
2. Verifier generatese R [0; F ) and sendse to Prover.
3. Prover setsm2  m1 + e�, r3  r1 + e�1 andr4  r2 + e�2 and sends(m2; r3; r4) to verifier.
4. Verifier checks that
3 = EKe(m2; r3) �
�e1 and
4 = ComK
(m2; r4) �
�e2 .

Proof of this theorem is given in Appendix D.
As previously, letC denote the ciphertext space of� andCCom the commit-

ment space ofCom . Noninteractive version of the presented proof system has
length5t+2 log2 F+B+log2 T+R = 5�80+2�80+1024+1024+1024 = 3632
bits or454 bytes.

Interval membership proof for an encrypted integer. As a concrete applica-
tion, let us describe a proof system forPK(
 = EK(�; �) ^ � 2 [a; b℄):
1. ProverP generatesr1  R [0; 2B+2t), 
1  ComK
(�; r1) and sends
1 to

verifier.
2. P proves toV thatPK(
 = EK(�; �) ^ 
1 = ComK
(�; �1)).
3. P proves toV thatPK(
1 = ComK
(�; �) ^ � 2 [a; b℄).

Noninteractive version of this proof system is128+454+2784+ 58 log2(b�a) =3366 + 58 log2(b� a) bytes long.
As noted before, it must be the case that[a; b℄ �M for this proof to work.

In particular, we cannot takeS = [0;1). Therefore, to construct a proof that an
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encrypted number� does not belong to[a; b℄ �M = ZM, it does not suffice to
prove in step 3 that� 2 (�1; a� 1℄_� 2 [b+1;1): Instead, one must prove
that� 2 [0; a� 1℄ _ � 2 [b+ 1;M � 1℄.
Membership proof in exponents for encrypted numberIn several crypto-
graphic protocols like electronic voting [DJ01], one needsmembership proofs
in exponents: That is, proofs of typePK(
 = EKe(n�; �) ^ � 2 [0; b℄) for somen. We will give an efficient SZK proof-of-knowledge of a small discrete loga-
rithm of committed number in the special case whenn is a prime. Sincen is
a prime thenlognm 2 [0; b℄ iff m j nb and� > 0. (Thus, we use two sets,S1 = fx1 : x1 j nbg andS2 = fx1 : x1 � 0g.) Using this observation and ideas
from the previous sections of the current paper, we have established that one
needs to describe a SZK proof that
 = EKe(�; �)^
2 = ComK
(�; �2)^
3 =ComK
(�3; �3)^ 
4 = ComK
(nb; �4)^��3 = nb ^ � > 0. This can be done
as follows:

1. Prover letsr1  R [0; 2B+2t), 
2  ComK
(�; r1), r2  R [0; 2B+2t),
3  ComK
(nb=�; r2), 
4  ComK
(�4; 0). She sends(
2; 
3) to verifier
who computes
4  ComK
(�4; 0).

2. P proves toV thatPK(
 = EKe(�; �1) ^ 
2 = ComK
(�; �2)).
3. P proves toV thatPK��V4i=2 
i = EKe(�i; �i)� ^ (�4 = �3�2)�. (I.e.,

that�2 j nb.)
4. P proves toV thatPK(
2 = EKe(�; �) ^ � � 0).

Noninteractive version of this proof system has length256+454+612+1402+516 log2(b� a) = 2724 + 516 log2(b � a) bytes. As an interesting sidenote, one
could further shorten this proof by using the result of Legendre that ifn� 6=4s(8k + 7) for somes; k (for example, ifn is a power of two) thenn� can be
represented as a sum of three squares.

Application to E-voting. Until now, the best (perfect) zero-knowledge proof
system for the same problem seems to be due Damgård and Jurik[DJ01], who
used membership proof in exponents to prove vote correctness withn being the
(maximum) number of voters. While their membership proof inexponents did
not requiren to be a prime, its length was� dlog2 V e � (6C +M + 3t+ 4R),
whereV being the number of candidates to vote for. In the Damgård-Jurik proof
system, the length of the interaction will be greater than inours as soon asV � 8. However, our constant-size proof system is possible only since we
restrictedn to be prime.
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Further Work

Efficient Diophantine membership proofs can be given for many interesting setsS � Z. We did certainly not mention all cryptographically relevant setsS that
have such proofs. Full version of this paper will also give more insight into the
complexity-theoretic aspects ofp-bounded Diophantine sets.
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A Proof of Theorem 2

This appendix provides the proof of Theorem 2.

Proof. Completeness:gm2ihr4i
�e1i = gm1i+e�ihr2i+e�ig�e�ih�e�i =gm1ihr2i = 
2i and
Qi 
m2i1i � hr5
�e = Qi 
m1i1i � Qi(g�ih�i)e�i �hr3+ePi(1��i)�ig�ePi �2i h�e� =Qi 
m1i1i � hr3 = 
3.

Honest-verifier SZK. The simulator acts as follows. Fori 2 [1; 4℄, gen-
erate 
1i  R CCom , m2i  R [0; 2FT ), r4i  R [0; 2B+2tF ). Generatee  R [0; F ), r5  R [0; 2B+2tFT ). For i 2 [1; 4℄, let 
2i  gm2ihr4i
�e1i . Let
3  Qi 
m2i1i �hr5
�e. The resulting view((
1i; 
2i)4i=1; 
3; e; (m2i; r4i)4i=1; r5)
is accepting and has distribution, statistically close to the distribution of views
in a real execution.

Special soundness (from two accepting views,((
1i; 
2i)i; 
3; e; (m2i; r4i)i; r5) and ((
1i; 
2i)i; 
3; e0; (m02i; r04i)i; r05) withe 6= e0, one can efficiently find a pair((�i)i; �), such that
 = ComK(P�2i ; �)):
Given such views,gm2i�m02ihr4i�r04i = 
e�e01i , for i 2 [1; 4℄, andQi 
(m2i�m02i)1i � hr5�r05 = 
e�e0 . We say that we have a bad case, if ei-
ther (e � e0) 6j (m2i � m02i) or (e � e0) 6j (r4i � r04i) for somei 2 [1; 4℄
or (e � e0) 6j (r5 � r05). As in [DF01], we can argue that the bad case
appears with a negligible probability if the group assumptions hold. Other-
wise (when we do not have the bad case), let�i  (m2i � m02i)=(e � e0)
and �i  (r4i � r04i)=(e � e0); then 
1i can be opened as
1i = g�ih�i ,
for i 2 [1; 4℄, and 
 can be opened as
 = Qi 
�i1i � h(r5�r05)=(e�e0) =((gPi �ihPi �i)�i)h(r5�r05)=(e�e0) = gPi �2i hPi �i�i+(r5�r05)=(e�e0). ut
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B Rabin-Shallit Algorithm

For completeness, we will next give a short overview of the Rabin-Shallit algo-
rithm [RS86] that takesO((log �)4) bit-operations:

1. Write� in the form� = 2s(2k + 1), wheres; k � 0.
2. If s = 1, then

(a) Choose random�1; �2 � p�, with exactly one of�1, �2 even. Letp �� �21 � �22. Note thatp � 1 (mod 4).
(b) Hoping thatp is prime, try to expressp = �23+�24 as follows: First, find

a solutionu to the equationu2 � �1 (mod p). (This can be done in
various efficient ways; for details see [RS86].) Now computeg
d(u +i; p) = �3 + �4i over the Gaussian integers. Again, this can be done
efficiently. Check to see thatp = �23+�24. If not, p was not prime, so go
back to step 2a.

(c) Return�21 + �22 + �23 + �24 as a representation.
3. If s is odd but not1, find a representation for2(2k + 1) and then multiply

each term by the squaret2, wheret = 2(s�1)=2.
4. If s is even, find a representation�21 + �22 + �23 + �24 for 2(2k + 1) by

step 2. Then convert this to a representation for(2k + 1) as follows: Group�1, �2, �3, �4 so that�1 � �2 (mod 2) and�3 � �4 (mod 2). Then(2k+1) = (12 (�1+�2))2+(12(�1��2))2+(12(�3+�4))2+(12(�3��4))2.
Now multiply by t2, wheret = 2s=2.

C Longer Example: Proof Systems for Exponential Relationship

We will next describe a few proof systems for the exponentialrelation-

ship, i.e., forPK��V3i=1 
1 = ComK(�1; �1)� ^ �1 = ��32 �. Since the setf(x1; x2; x3) : x1 = xx32 g is recursively enumerable, it is Diophantine. Matiya-
sevich was the first to describe an explicit representing polynomial forS. Next,
we will give a description of such aRS due to [Dav73,JSWW76].

All nonnegative integral solutions(xn(a); yn(a)) of the Pell equationx2 �(a2 � 1)y2 = 1 can be derived from the next recurrent identities. First, let(x0(a); y0(a)) = (1; 0) and (x1(a); y1(a)) = (a; 1). Second, letxn+1(a) =2axn(a)� xn�1(a) andyn+1(a) = 2ayn(a)� yn�1(a). Equivalently,xn(a) =Pni=0;2ji �ni�an�i(a2 � 1)i=2 and yn(a) = Pni=1;26ji �ni�an�i(a2 � 1)(i�1)=2.
Clearly,an � xn(a) � (2a)n.

Theorem 4 ([Dav73,JSWW76]). m = nk iff the next 9 equa-
tions have a positive integral solution in remaining14 arguments(a; 
; d; e; f; g; h; l; r; u; w; x; y; z): x2�(a2�1)y2 = 1, u2�(a2�1)r2y4 = 1,
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u)2 � ((a + u2(u2 � a))2 � 1)(k + 4(d � 1)y)2 = 1, y = k + e � 1,(x � y(a � n) �m)2 = (f � 1)2(2an � n2 � 1)2, m + g = 2an � n2 � 1,w = n+ h, w = k + l, a2 � (w2 � 1)(w � 2w + 1)z2 = 1.

From one side, this representation ofS seems to give a very efficient unbounded
Diophantine proof system. Only25 essentially different multiplications need to
be performed. Computing witnesses is also “easy”. Namely, if m = nk thenw  max(k; n) + 1, a  xw�1(w), thena > 1. Seth  w � n, l  w � k,x  xk(a), y  yk(a), y  yk(a), u  x2kyk(a)(a), r  y2kyk(a)(a)=y2,
  (xk(a + u2(u2 � a)) � x)=u, d  (yk(a + u2(u2 � a)) � k)=(4y) + 1,e y� k+1. Finally letf be such thatf = 1� (x� y(a� n)�m)=(2an�n2 � 1). Therefore it might seem that to prove the exponential relationship by
using Theorem 4, one only one need to use Protocol 125 times (and then to
prove that some witnesses are positive).

However, there is a serious catch. The total amount of computation is su-
perlinear in log2 T , whereT is an a priori upper limit on the size of any
multiplicands and any variables. And in this case, the largest multiplicand isx+ 
u = xk(a+u2(u2�a)) � (a+u2(u2�a))k � u4k = (x2kyk(a)(a))4k �a8k2yk(a) � a8k2ak = (xw�1(w))8k2(xw�1(w))k � w(w�1)8k2w(w�1)k

, which is is
definitely way and beyond the current computational power whenk � 50.

On the other hand,S = (St) is clearlyp-bounded Diophantine. LetSt =f(x1; x2; x3) : x3 = x1x2 ^ x2 < 2tg. Here, following [CM99,DJ01] and many
other publications, one can representx2 as a binary number,x2 = Pti=0 ki2i.
After that, one can prove thatx3 = Qi ni, where eitherni = 1 or ni = x2i1 .
In the previous proof system we had a constant number of multiplications, but
inputs of superpolynomial size. In the current case we have�(log2 k) multipli-
cations but the multiplicands are never bigger thanx3.

Finally, note that given ap-bounded (resp., unbounded) Diophantine proof
system for exponential relationship, one can prove thatx1 = �x2x3� by showing
thaty1 = 2x2+1, (y1 + 1)x2 = y2y1x3+1 + x1y1x3 + y3, y3 = y1x3 andx1 <y1 for some nonnegativeyi. In this case, all intermediate results have length
polynomial injx1j and hence the proof system for binomial relationship would
also bep-bounded (resp., unbounded).

D Proof for Theorem 3

Proof. Completeness. If prover is honest thenEKe(m2; r3) � 
�e1 = EKe(m2 �e�; r3� e�1) = EKe(m1; r1) = 
3 andComK
(m2; r4) � 
�e2 = ComK
(m2�e�; r4 � e�2) = EKe(m1; r2) = 
4.
Honest-verifier SZK. Simulator generates a random tuple(e;m2; r3; r4) [0; F ) � [0; 2tFT ) � R � [0; 2B+2t) and sets
3  EKe(m2; r3) � 
�e1 , 
4  
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(m2; r4) � 
�e2 . Clearly, this view is an accepted view. Moreover, it has
distribution that is statistically close to the distribution of real view.

Special soundness. Let the next two views be accepting:(
3; 
4; e;m2; r3; r4) and (
3; 
4; e0;m02; r03; r04) with e 6= e0. We know
from [DF01] that then with an overwhelming probability(e� e0) j (m2 �m02).
Therefore,
2 = ComK
(�; �2) with � = m2�m02e�e0 . Similarly, 
1 = EKe(�0; �1),
where�0 = m2�m02e�e0 (mod M). Hence,�0 = � (mod M). ut


