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Abstract. A family (S;) of sets igp-bounded Diophantine if; has a represent-
ing p-bounded polynomiaRs s, s.t.z € S; <= (Jy)[Rs(z;y) = 0]. We say
that(S;) is unbounded Diophantine if additionallis . is a fixed¢-independent
polynomial. We show thap-bounded (resp., unbounded) Diophantine set has
a polynomial-size (resp., constant-size) statisticab#arowledge proof system
that a committed tuple belongs taS. We describe efficient SZK proof systems
for several cryptographically interesting sets. Finallg show how to prove in
SZK that an encrypted number belongsSto
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edge.

1 Introduction

A setS of orderedn-tuples of positive integers is call&@ophantineif there is a
representing polynomiaks (z; y) with integer coefficients such that a given
tuplez = (z1,...,x,) belongs taS iff there exists a tupley = (y1, ..., ym) Of
integerswitnesselfor which Rg(z;y) = 0: l.e.,z € S < (Jy)[Rs(z;y) =
0]. Based on earlier work by Davis, Putham and Robinson, in 19dflyase-
vich [Mat70] showed that every recursively enumerable s&iophantine (this
is known as the Davis-Putnam-Robinson-Matiyasevich oD{R&M theorem),
solving finally Hilbert's tenth problem.

We are interested in cryptographic applications of thisiltegor this, we
look at familiesS = (.S;) of Diophantine sets and say th&is p-bounded Dio-
phantine if there exists a uniform famigs = (Rs ;) of p-computable polyno-
mials, such that for everyy z € S, iff there exists a witnesg suchRg ;(z;y) =
0. We say thatS possesses a certifi€s = (Cs,) iff Rs(z;Cs;) = 0 for
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everyt. If Rs; is the same polynomial for aflthen we say tha$ is unbounded
Diophantine. In the latter case, we often identifyand(J, S;.

Given a statistically hiding integer commitment scheme [[RF01] where
it is possible to prove in statistical zero-knowledge (SZIK3t two committed
integers are in an additive or multiplicative relationshome can also prove in
SZK any polynomial relationship between a tuple of commdittembers. Thus,
if S is p-bounded Diophantine then one can prove in SZK that comdhittple
x belongs taS; by proving that: together with another committed tupjesatis-
fiesRs(z;y) = 0. We call this membership proof a Diophantine membership
proof (for S).

When S is unbounded Diophantine, the resulting SZK proof frhas
interaction length®(log, T'), whereT" is the a priori maximum of any in-
put z; or y; in the concrete application. The situation changes wHda p-
bounded Diophantine. In such a case, eé¢cltould have a designated proof
system. This means that the resulting SZK proof has polyaboummunica-
tion complexity; on the other hand, even some eadyounded Diophantine
sets seem not to be unbounded. As an example, it is known HbeabDio-
phantine sefS = {(z1,z9,27%) : (z1,22) € Z} has a representing polyno-
mial Rg in 14 witnesseg;; [JSWW76]. However, several withessgsof Rg
have superpolynomial length iz|. On the other hand, the family = (S;),

Sy = {(z1,22,27?) : 11 € Z N z9 € Z7}, T = 2, is p-bounded Diophantine;
it even has a certifier!

We present a number ptbounded familiesS with certifier that have cryp-
tographic relevance; all such families have efficient SZKobrsystems. We
show thatS = [0, oo) is unbounded and present corresponding SZK proof. This
proof bases on the result of Lagrange that every nonnegatigeger is a sum
of four squares and on the randomized algorithm of Rabin daliE[RS86]
that finds these squares @(t*) bit-operations. Note that efficient proof sys-
tem for [0, o00) is crucially important for our entire framework, since ireth
definition of Diophantine sets one often requires the sohgtito be positive.
Moreover, our proof system fdf), o) requires abou20% more communica-
tion than Boudot’'s membership proof [Bou00] ok, oo); however, differently
from Boudot’s proof system, our proof system is perfectlynptete.

Based on the proof for nonnegativity, we show for an arbjtriamnction
g : Z™ — 7 how to construct an efficient perfectly complete SZK prodafteyn
for proving thatz,, # g(x1,...,z,_1), given that there exists an efficient SZK
proof for proving thate,, = g(z1,...,z,—1). We derive an SZK proof system
for x3 = ged(z1, z2). More examples will be given in Section 4.

In practice, it is often necessary to show thatesmcrypted(as opposed to
a committed) value belongs to some Set~or many interesting sets we are
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not aware of arefficientmembership proof foS that would use only the cor-
responding public-key cryptosystem and no other primitiMastead, we can
build up a membership proof for encrypted numbers by usingka [@oof that
a committed integer and an encrypted integer are equal (lmakde message
space size), and then applying our SZK membership prod§ torthe commit-
ted number. Sequential composition of these two proofs tigrally SZK. Fi-
nally, we construct an efficient SZK proof that discrete hithan of encrypted
value belongs to an interval, and show how to use it in the Cachdurik voting
scheme [DJO01] to achieve shorter proofs of vote correctness

Road-map. Necessary preliminaries are given in Section 2. We will dbsc
a Diophantine membership proof f(r, oc) in Section 3. Extension to general
Diophantine equations is shown in Section 4. Section 5 ptsggotocols that
allow to apply our proofs together with homomorphic crygtisms. Finally,
the appendix contains technical proofs of some theoremwra description of
the Rabin-Shallit algorithm and an discussion about prgstiesns for exponen-
tial relationship.

2 Preliminaries

Homomorphic encryption. A public-key cryptosysteni! is a triple of efficient
algorithms,IT = (G, E, D), whereG is the key generation algorithn#; is the
encryption algorithm and is the decryption algorithm. Throughout this paper,
let ¢ be the security parameter. L& (resp.C andR) denote the message space
(resp., the ciphertext space and the randomness spaaesmamding to a fixed
value oft. We assume that all three sét$1, R,C) are Abelian groups, witly
written multiplicatively. We say that public-key cryptaggmIl = (G, E, D)

is homomorphidf Ex(mi + mo;r + 1r9) = Ex(my;r)Er(me;ry). Some
example homomorphic cryptosystems are the Paillier ceystem [Pai99] and
the Damgard-Jurik cryptosystem [DJO1]. Let:= [log, |M|], C:= [log, |C|]
and R:= [log, |R|]. We will assume in our calculations th&f = R = 1024
andC = 2048.

Proofs-of-knowledge.For a bit-stringe and predicate”(-), PK,(« : y =
P(«)) is a proof-of-knowledge between two parties that given diplytknown
valuey, the first party knows a value of, such that the predicate(«) is true.
To simplify notation, we will always denote the values, khesge of which
has to be proven, by Greek letters. Additionally, we assumag the scope of
such variables lies within one proof-of-knowledge. ERIK (¢ = Ex (m;p)) is
a proof that given a ciphertex{ plaintextm and a public keyK, the prover
knows a nonce such that: = Ex (m; p).



Most of the protocols in this paper are three-round int@radtonest-verifier
(statistical) zero-knowledge (abbreviated as HVZK or HKS#esp.) proof sys-
tems for proofs-of-knowledge of tydeK (y = P(«)). One usually proves that
such protocols are (1) Complete: That is, a honest verifiee@s a honest
prover with probabilityl —neg(t), whereneg(¢) is a negligible function int; (2)
Honest-verifier (statistical) zero-knowledge: Even withknowing«, one can
generate a view of the protocol that has distribution, itiigiishable from (or
statistically close to) the distribution of real views irtbase when the verifier is
honest; (3) Specially sound: Given two views of the protdbat begin with the
same move but have different second moves, one can compuugtseA proof
system is callegperfectly completéf a honest verifier always accepts a hon-
est prover. An honest-verifier (statistical) zero-knowgegroof system can be
made noninteractive by using the Fiat-Shamir heuristic8g}$ the random-
oracle model. For this, we introduce a random ord¢le {0, 1}* — {0, 1}*.

Damgard-Fujisaki integer commitment scheme.A (statistically hiding) in-
teger commitment schem@om allows a a participan® (a polynomial-time
algorithm) to commit to any integen € Z, so that (1) For anyn,my € Z,
the distributionsCom - (m1) and Com i (m-) are statistically close; and (2) It
is intractable forP to find my # mq, such thatCom x(m,) = Com g (ms).
The first integer commitment scheme that allowed an effigemf system that
committed integers are in multiplicative relationship vpasposed by Fujisaki
and Okamoto [FO97], but soundness proof of this scheme wersftaind to be
flawed. This flaw has been only recently corrected by Damgadi Fujisaki,
who proposed a new integer commitment scheme in [DF01].eSihe latter
scheme is relatively new, we will give next give a longer diggion of it.

Let G be a suitable group. (We refer to [DF01] for the exact debnitof
suitable, but remark tha% can be chosen ag,, for RSA modulusn = pgq,
wherep = ¢ = 3 (mod 4), ged(p — 1,q — 1) = 2, and the parts op — 1,

g — 1 with prime factors less tha#' are O(t). One may choos# as B «+
[logy, n]+1. Then the security follows from the strong RSA assumptigvhjle
the prover knows a reasonably close upper batfhid ord G to the order of7,
he doeswotknow the order itself. A large numbéris chosen, such that it is still
feasible to factor numbers that are smaller tharSay, ¥ = O(t'°¢¢) though
in our calculations we will také” = 2%°. During the setup phase of Damgard-
Fujisaki integer commitment schem@,andV agree on a groufr and a large
integerF'. Verifier V chooses a randorfi-rough element € G and a random
x € [0,287). Letg = h*. V sends the public ke, = (g, h) to P and then
proves in SZK thay € (h). When committing tan € Z, P chooses a random
r « [0,2B%") and sendLom i (m;r) := g™h" to V. To open commitment,
P sendg(m,r,b), s.t.c = g"h"bandb? = 1.
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Protocol 1SZK proof system for multiplicative relationship betwe@mgnitted
numbers.
1. Prover P chooses a randomn: g [0,2°FT), r1 =& [0,2°T%F), ry <p
[0,2PT2 FT) and sendgs < g™ h"", cs « c"" "2 tO V.
2. VerifierV generates a random« g, [0, F') and sends it td°.
3. Prover sendsis = mi + epa, r3 < 11 + ep2 andry < r2 + e(ps — pap1) toV.
4. Verifier checks thag™?h"3c; © = ¢5 ande"?h™¢; © = cg.

One can build different SZK proof systems for different tielaships be-
tween committed numberg;. In all such proof systems, prover and verifier
have to fix a priori upper bound; to every inputu;. Proof system is guaran-
teed to be SzK only ifu;| < T;. In most of the protocols, proof complexity
depends otog, T;, and hence it is beneficial to compute as precise valu&s of
as feasible. At least it must be the case thgt 7; = (1),

Let Coom denote the commitment space of the used integer commitment
scheme (in this concrete cagk;,,, = G) and letC ¢y := [logy |Coom|], With
security parameter understood from the context. We willasin our calcula-
tions thatC'¢,,,, = 1024.

Proof system for multiplicative relation. For their own integer commitment
scheme, Damgard and Fujisaki [DF01] constructed an efitigisof system for
PK ((/\?:1 cr = Comp (uq; p1)> A g = ,ul,u2>; that is, a proof that a com-
mitted integerus is product of another two committed integers. We will next
give a description of this proof system. Lébm be the Damgard-Fujisaki in-
teger commitment scheme, lebe the security parameter, |&t = (g, h) be
the public key and lelog, T = t“(!). Then Protocol 1 is a complete, honest-
verifier SZK, specially sound proof-of-knowledge for mplitative relation-
ship, assuming that; € [0,7") andp; € [0, 257):

Noninteractive version of this proof ig, ms, r3,74), With e = H(cs, ¢g),
whereV verifies thate = H(g™2h"3 ¢, ®, ¢["*h™¢5¢) (mod 2"). With parame-
tersCoom = 1024, F = 280 T = 21024 + — 160 and B = 1024, the noninter-
active proof has lengtilog, F'+2log, T+ 6t +2B = 320+ 2log, T'+ 480 +
2048 = 2848 + 2log, T bits or 356 + %logg T bytes. Wherl' = 1024 then
this length is1024 bits. Whenu; = us (i.e., Protocol 1 is used to prove that
iS a square), one can assume that= u, < 2°'2 and the noninteractive proof
is 484 bytes long. Note that only, has to be less thah, thus if it is known a
priori that one of the arguments might be much greater thathan one, it will
make sense to use this argumenu.as



6

Boudot’s membership proof for [0, oc). Boudot's proof system [Bou00] for
PK (¢ = Comg (u; p) A (u > 0)) consists of several steps: First, represent
asyi + p2, Whereus, pa = O(,/i). Sincepi > 0, one is now only left to prove
that uo > 0. Second, one can prove that > —@ for 9:=2'FT"'/? by using
the membership proof with tolerance by Chan, Frankel andurss [CFT98].
Now, one has proved that > —6. Fourth, one can achieve zero tolerance by a
priori multiplying 1. with a suitably chosen consta®t such that) < 2%/2. In

this case2?/2;, > —2%/2 or uy, > —1. When modified for Damgard-Fujisaki
integer commitment system, this proof system has compstearro© (1/F);

its noninteractive version is166 + & [log, 7'/?| bytes long.

Algebraic complexity theory. A p-family overZ is a sequencg¢ = (f;) of
multivariate polynomials such that the number of variablesvell as the degree
of f; are polynomially boundedp(bounded) functions of.. Let L(f;) (resp.,
L,.(f:)) denote the total complexity gf, that is, the minimum number of arith-
metic operationg-, +, —} (resp.,{-}) sufficient to computef; from the input
variables and constants # by a straight-line program. We callafamily f
p-computabléff the mapt — L(f;) is p-bounded.

3 Proof that a Committed Number is Nonnegative

Before treating the general situation of an arbitrgiyb6unded) Diophantine
family S, we will give an efficient membership proof fo0, o), i.e., that a
committed number is nonnegative. There are a few good redsoproceeding
in this order. First, the approach we use in constructing phoof system has
much in common with the general solution, and hence it sexs@smotivational
example. Second, for mai§y, there is a more efficient representing polynomial
when we consider only nonnegative solutions to this eqnafmr such anS it
might make sense to use this polynomial and then to proveséoyevitness that
it is nonnegative. Third, a proof system for co) is interesting in its own right,
since it is used in many cryptographic protocols. (See [Bdédr examples.)
The next theorem is crucial for our membership proof:

Theorem 1. An integery, can be represented as= p? + p3 + p3 + pi with
integery; iff © > 0. Moreover, ify > 0 then the representatiofu, uo, i3, f14)
can be computed efficiently.

Proof. If 4 > 0, suchu; exist by a well-known result of Lagrange from 1770.
Rabin and Shallit [RS86] proposed a probabilistic polyrairime algorithm
(described in Appendix B) for computing the representatn the other hand,
no negative number is a sum of four squares. O



Protocol 2 SZK proof system for nonnegative integers.

1. ProverP representg asp} +u3 4 pi +p3, using the Rabin-Shallit algorithm. Foe [1, 4],
P chooses random; < r [0,2°%") such thaty", p; = p; P chooses randomy; < r
[0,28FT2), 1a; «r 0,257 F), rs g [0,28T2*FT"/?), and letsci; < gtih*:,
Cai = g™ R™ e« [ €13 - h7S. Prover send$(cii, cai)i—y,c3) O V.

2. V generates a randoen«r [0, F') and sends it td.

3. P computesny; = mi; +epi, r4i < r2: +epi, i € [1,4], andrs < ra+ed (1 — pi)pi.
P sends((mai, rai)i—1,75) O V.

4. V checks that (a)™2¢ h"i¢;," = ca; for i € [1,4], and (D)[]; ¢[;* - h"5¢™ ¢ = cs.

Briefly, during our proof system fof0, co), prover first uses the Rabin-
Shallit algorithm to represent asu? + p3 + p3 + p3 (or awitness. After
that, he proves td in SZK that she knows such a representation. Complete
proof system is given by the next theorem:

Theorem 2. Let Com be the Dam§rd-Fujisaki integer commitment scheme,
let ¢ be the security parameter and 18t = n°(). Let K = (g,h) be the
public key. Protocol 2 is a perfectly complete, honestfierSZK and specially

sound proof system fd?PK (c = ComK(Zf:] 2 p)), or equivalently in the
epistemic sense, f&tK (¢ = Comg () Ap > 0),if u < T.

(Proof of this theorem is given in Appendix A.) Noninteraetiversion of
this protocol is((c1;)i_q;e; (mai,r4i)i_,,75), Where the verifier checks that
e=H((c11)iq, (gmh™2icf) iy, ¢ ¢, ¢ - ™) (mod 2¢). The length of
noninteractive proof system4€” com + 2t +4(B + 3t +2logy F + 5 log, T) +
B+2t+1log, F + % logy T = 4096 + 160 + 4 - (1024 + 240 + 160) + 1024 +
160 + 80 + 5 log, T' = 11216 + 5 log, T bits 0r1402 + - log, T' bytes.

Hence, noninteractive version of Protocol 2420% longer than Boudot's
proof system for the same problem. However, our proof systejoys the prop-
erty of perfect completeness, while Boudot’s proof systeas bompleteness
error ©(1/F). This result in interesting by itself, in particular since & re-
sult of Vadhan, no complexity-preserving strong black-f@asformation can
eliminate completeness error [Vad00].

4 Membership Proofs from Diophantine Equations

The ideas used in Section 3 to build an efficient membersloipfor [0, oc) can
be generalized for proving in SZK that the committed tuple- (1, ..., fim)
belongs to many other (not necessary finite) sets 7Z™. For this we have to
introduce a more complexity-theoretic flavor of Diophaatgets.
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Definitions. Let S = (S;) be a family of sets, such that the element§jrave
length that is polynomial in. We say that the family$ is p-bounded Diophan-
tine if there exists a uniform familjR ¢ = (Rs ) of p-computable polynomials
with integer coefficients, such that for everyr € S, iff there exists avitness
y such thatRs :(z; y) = 0. We say that the family is possesses a certifi® s

if there exists a familyRy = (Rs;) of p-bounded polynomials and a family
of polynomial-time algorithm&s = (Cs;), such that for every, 2 € S iff
Rs(z;Csy) = 0. 1f Rg, is a polynomial that does not depend ©rwe say
thatS has an unbounded Diophantine membership prbothe latter case one
often (but not always) assumes tisat= | J, S; is a set itself.

Given a statistically hiding integer commitment scheme [[RF01] where
one can prove in SZK that two committed integers are in antiaddbr in a
multiplicative relationship, one can prove in SZK that aymamial relation-
ship holds between a number of committed integers, by us$iagrtethodol-
ogy of [FO97]. Now, letS = (S;) have ap-bounded Diophantine membership
proof. By using an integer commitment scheme, one can therepn SZK that
he knows ay, s.t. Rs(z;y) = 0. Thus, such a proof is a valid proof system for

PK (¢; = Comg (i pi) N+ ANep = Comp (pn; pn) A (1 - -« i) € St).

Discussion.The first example SZK proof system (f6r= [0, co)) was already
given in Section 3. As seen from this example, communicatimmplexity of
such a proof system depends linearly/ar{S;) and on valuetog, T;, whereT;

is an a priori upper bound on input. If the membership proof is unbounded
thenL,(S;) is a constant and communication complexity is just a lineacfion
of log, T;-s. (That is, on the input length, being hence optimal.) Exisglains
why we are especially interested in unbounded Diophantineilies S. Sur-
prisingly, as we will see later on, there are many cryptolicglly interesting
unbounded Diophantine famili¢s

Certifier is needed in situation where a party in a cryptogiagprotocol
needs to prove that he has performed correct calculatioassmme data that
were received from sources not controlled by him. On therdthad, when the
prover can generate a committed number by himself and jisstdhprove that
this number belongs to some correct set (e.g., is nonnegativis composite),
certifier is not necessary.

Often, in the definition of Diophantine sets it is requiredttthe witness
must be nonnegative. However, Sf has a representing polynomi&ls(z;y)
thenz € S; <= (Jy.y’ €[0,00))[Rs+(=;91 — ¥),- -, Ym — Y,) = 0]. One
the other hand, if5 has a nonnegative representing polynonial(z; y) with
nonnegative witnesses then it is represente®by(p}, + - - +ply, ..., Py +

A Dr G T G G+ Q)



S Rs Cs
la, o0) vi+tys+tyityi—x+a [RS86]
[~00,b) yi+ys+ys+yita b [RS86]
{(z1,z2,23) : gcd(z1,x2) | z3} T1Yy1 + Tay2 — T3 Extended Euclidedn
{($1,$2) 1 D) |$1} r1 — TaY1 Y1 <—$1/$2

Table 1. Some unbounded Diophantine sétsvith representing polynomials and certifiers.

Next, letS; andS; be Diophantine sets with representing polynomiajs,
stz e S, < (Jy)[Rs,(z;y) = 0]. Then (1)S = S; U S, is Diophantine,
with Rs,us, (7;y, 2) = Rs, (z;y)Rs, (z;2); and (2)S = S; N Sy is Diophan-
tine, with Rs, ns, (x;y, z) = P3, (2;y) + P3, (x; z). Therefore, ifS; andS, are
(p-bounded) Diophantine then so &g U S; andS; N Sy; thus the latter sets
also have Diophantine membership proofs. However, destrdmmpositions
add an extra multiplication per every union and two multiations per every
intersection, which is an undesirable overhead. A moreieffiovay is to use
the methodology of Cramer, Damgard and Schoenmakers [@R$8ompos-
ing several proofs-of-knowledge; when using their methaasget Diophantine
membership proofs faf; U S; andS; N Ss that do not require extra multipli-
cations.

The methodology of [CDS94] is is limited to composing setaubing the
union and interaction but not complementing. (This is nopgsing. More gen-
erally, the complement of a recursively enumerable settislmays recursively
enumerable.) For example, one cannot derive from the frameaf [CDS94]
an efficient proof that a committed integeris not equal to some constant
starting only from positive proofs. (Although efficient pifcsystems fop # a
exist [MS97].) An important feature of our approach is tha @an implement
nonmembership proofs. Reason for this lies in the flexibitiat we have when
choosing the setS. More precisely, efficient negative proofs are possibleesin
some of these setS (like [a, o0) and (—oo, b]) are infinite, but their intersec-
tions are finite. We will present corresponding examplesfewaparagraphs.

Examples.Some unbounded Diophantine sétsogether with their represent-
ing polynomials and certifiers are depicted by Table 1. A fetg ¢hat are inter-
sections of simpler sets are depicted by Table 2. Note thahteractive version
of SZK proof system fop € [a, b] has interaction length804 + 2 log, (b — a)
bytes, since one can sBEt« b— a. The set of composite numbers does not have
a certifier unless factoring is easy. Other sets in this thale a certifier.

Let us look at more interesting examples. An efficient Diopghee mem-
bership proof system fdPK (¢ = Comg(u) A i € [a, b]) can be based on the
fact thatz & [a, b] iff (3y)[Rp11.00)(239) = O]V (FY)[R( 0. 17(z5y) = 0.
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S To prove that you know such;, show that ...
[a,b] (a < b) z € [a,0),z € (—o0,b)
Z\{2°:s €} r=y1(2y2+1) —z,y2 >0
Set of composite numbers T=1y1y2,y1 > 1,y2 > 1
Set of nonsquares z=yl4+ynz=@n+12 —yz,y2>0,y3 >0
{(z1,22,23) : 1 = z2» (mod z3)} T1 =Ty + T3y1, 11 < T3.
{(z1,22,23) : 3 = ged(z1,22)} ged(zr, z2) | x3, 23 | 1, 23 | 2

Table 2. Some more examples.

If a = b, this yields a Diophantine proof system that a committed loem
is not equal to some constant Moreover, one can prove that two commit-
ted numbersc; andz, are not equal, by proving th&By)[(z1 = z2 + y) A
(y1 # 0)]. This approach can be generalized to an arbitrary fungjiobet
S = {(z1,...,z,) : ®, = g(z1,...,2,-1)}, g & function, be a-bounded
(resp., unbounded) Diophantine set with representingnooiyal Rs = (Rs,).
ThenS' = {(z1,...,24) : z, # g(x1,...,2,-1)} IS p-bounded (resp., un-
bounded) Diophantine: Namely, it suffices to show that g(z1,...,z,) and
thatzy # y.

Since the set of primes is recursively enumerable the DPRidrém says
that it is also Diophantine. Jones, Sato, Wada and Wiens Y¥38Y described
a certain Diophantine equation systeml éfequations ir26 variables that has a
positive integral solution iff one of parameters is a prifikus, one can prove
that a committed number is prime by proving that he knows #gnal solu-
tion to this equation system, and then proving that all smhgt are positive.
However, several withessgshave superpolynomial length jm| and hence the
set of primes is not known to have a Diophantine membershipfpFinally, a
longer example for exponential relationship will be givarAippendix C

5 Applications to Encrypted Numbers

Proof that committed number = encrypted number.Let (G, E, D) be a ho-
momorphic public-key cryptosystem witM = 7Z;, and public keyK,. In
cryptographic protocols, one often needs a zero-knowlgutgef that anen-
crypted number belongs to some s€t For many cryptographically interest-
ing setsS € Z", we are not aware of any efficient membership proofs for
PK((A,; ¢ = Er. (pi;pi)) A (g1, --., o) € S) that base solely on the secu-
rity of the used encryption scheme. However, the next metlogy enables

to construct such proof systems, assuming fhat 7', (an exampleS could
beS = {(z1,72,27° : (w1,22,27?) € Z3}) and there is an efficient proof
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system folPK (¢ = Comg, (15 0) A p € S), whereCom is an integer commit-
ment scheme with ke¥( ..

1. Foreveryi, P creates arandom and sends, = Com g, (u;; r;) to verifier.
2. Foreveryi, P thatPK (¢; = Ex, (ui; pi) A ¢; = Compg, (pi; p))).
3. Finally, P thatPK ((A; ¢ = Comg, (pi; p)) A (15 - -+, pin) € S).

Note thatEx, (m + kM;r) = Ek, (m;r) and therefore in the second step,
P should prove thaPK (¢; = FEk, (p; (mod M);p;) Ac; = Comp, (1i; p})).
We will omit the “(mod M)” notation for the sake of simplicity.

Now, assuming that there is an efficient (Diophantine) preggtem for
PK (¢ = Comg, (u; p) A u € S), we are only left to prove the next result.

Theorem 3. Let Com be the Damgrd-Fujisaki integer commitment scheme
and letII = (G, E,D) be a homomorphic public-key cryptosystem. Let
be the security parameter and lgt = t°(1), Letp, € [0,25+"). The next
protocol is a complete, honest-verifier SZK, specially soproof system for
PK (c1 = Ek,_(; p1) A ca = Compg, (u; p2)), given thaty < T

1. Prover generatesi; < g [0,2'FT), 1 < R, ro g [0,2872F), sets
Cc3 < EKE (ml; 7"1), Cq — C’()TTLKC (ml; 7“2) and send$03, (34) to verifier.

2. Verifier generates < [0, F') and sendg to Prover.

3. Prover setsny < mi + eu, r3 < 1 + epy andry < ro + epo and sends
(o, r3,14) tO Verifier.

4. Verifier checks that; = E, (mo;73)-¢; “andes = Comg, (ma;ra) - cq .

Proof of this theorem is given in Appendix D.

As previously, leC denote the ciphertext spacel@fandC ., the commit-
ment space olom. Noninteractive version of the presented proof system has
length5t+2 logy F+B+logy T+ R = 5-80+2-80+102441024+1024 = 3632
bits or454 bytes.

Interval membership proof for an encrypted integer. As a concrete applica-
tion, let us describe a proof system 10K (¢ = Ex (u; p) A s € [a, b]):

1. ProverP generates; < g [0,25%2%), ¢; « Comy, (u;r1) and sends; to
verifier.

2. P proves toV thatPK (¢ = Ex(u; p) A c1 = Compg, (1; p1)).

3. P proves toV thatPK (c¢; = Comg, (u; p) A p € [a,b)).

Noninteractive version of this proof systemi 28+454+2784+ 2 log, (b—a) =
3366 + 2 log, (b — a) bytes long.

As noted before, it must be the case that] C M for this proof to work.
In particular, we cannot tak& = [0, co). Therefore, to construct a proof that an
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encrypted number does not belong tf:, b] C M = Z,, it does not suffice to
prove in step 3 that € (—oc,a — 1]V u € [b+ 1, 00): Instead, one must prove
thaty € [0,a — 1]V ep+1,M —1].

Membership proof in exponents for encrypted numberin several crypto-
graphic protocols like electronic voting [DJO01], one neatsmbership proofs
in exponents: That s, proofs of typ (¢ = Ex, (n*; p) A p € [0, b]) for some
n. We will give an efficient SZK proof-of-knowledge of a smalkdrete loga-
rithm of committed number in the special case wheis a prime. Since: is
a prime thenlog,, m € [0,b] iff m | n® andy > 0. (Thus, we use two sets,
Sy = {1 : 2 | n®} andSy = {x; : ; > 0}.) Using this observation and ideas
from the previous sections of the current paper, we havélsiad that one
needs to describe a SZK proof that Ex_ (u; p) Aca = Comp, (u; p2) Aeg =
Comp, (35 p3) Acq = Comp, (n®; ps) A pus = n® A > 0. This can be done
as follows:

1. Prover letsr; «p [0,2P%%), ¢y « Compg, (pu;71), ro g [0,2PF%),
c3 < Comp, (n®/p;r9), cq « Comp, (143 0). She sendées, ¢3) to verifier
who computesy < Com g, (p4;0).

2. P proves toV thatPK (¢ = Eg, (u; p1) A co = Com (s p2))-

3. P proves toV that PK ((/\?:2 ci = FEg, (,U,i; pq)) A (,U,4 = ,Uf;,UQ)) . (lLe.,
that s, | n’.)
4. P proves toV thatPK (co = Exk, (1;0) A > 0).

Noninteractive version of this proof system has lerijth+ 454+ 612+ 1402+

2 logy (b — a) = 2724 4+ 2 log,(b — a) bytes. As an interesting sidenote, one
could further shorten this proof by using the result of Ledyenthat ifn* #
45(8k + 7) for somes, k (for example, ifn is a power of two) them* can be
represented as a sum of three squares.

Application to E-voting. Until now, the best (perfect) zero-knowledge proof
system for the same problem seems to be due Damgard andDd@k], who
used membership proof in exponents to prove vote correcinigs n being the
(maximum) number of voters. While their membership prooéxponents did
not requiren to be a prime, its length was [log, V'] - (6C + M + 3t + 4R),
whereV being the number of candidates to vote for. In the Damgarikproof
system, the length of the interaction will be greater tharmuns as soon as
V' > 8. However, our constant-size proof system is possible omlgeswe
restrictedn to be prime.
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Further Work

Efficient Diophantine membership proofs can be given foryrateresting sets
S C 7Z.We did certainly not mention all cryptographically relavaetsS that
have such proofs. Full version of this paper will also givereniosight into the
complexity-theoretic aspects pfbounded Diophantine sets.
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A Proof of Theorem 2

This appendix provides the proof of Theorem 2.

Proof. Completeness: g™ h™ic, * =  gMuteHipruterigmenipTeri =
g™ih™i = ¢y and HZ cﬂﬂ . hTseTe = Hicﬁli . Hi(gﬂihpi)e#i

prated(1-pi)pig—e3; wipep — [, ™ - hrs = ¢
Honest-verifier SZK. The simulator acts as follows. Foe [1,4], gen-
erateci; +r Ccom,» m2i +r [0,2°T), ryy +r [0,28%2F). Generate
e <np [0,F), r5 <r [0,2PF2FT). Fori € [1,4], letcy; <+ g™ h™ic,°. Let
c3 <11, 0717;2" -h"5¢™¢. The resulting view((c;, czi);l:l, cs; e; (moy, 7“4Z~);;1:1, rs5)
is accepting and has distribution, statistically closeh distribution of views
in a real execution.
Special soundness (from two accepting views,
((c1iyc2i)i c3ie; (mai, rai)i,rs)  and ((cii, c2i)is i€’y (mb;, )i, 15)  With
e # €', one can efficiently find a pai; ), p), such that = Com k(3" u?; p)):

Given such views,g™ ™apri T = (£7¢ for i € [1,4], and
PR l_ - .
[T, 7 ™) s = ¢’ We say that we have a bad case, if ei-

ther (e — ¢') |/ (mo; — mb;) or (e —€') |/ (rai — 1);) for somei € [1,4]

or (e —¢€) |/ (rs — r). As in [DFO1], we can argue that the bad case
appears with a negligible probability if the group assumpi hold. Other-
wise (when we do not have the bad case),det« (mo; — mb;)/(e — ¢€')
and p; < (rs — rl;)/(e — €'); theney; can be opened as; = g"ih”,

for i € [1,4], and ¢ can be opened as = [[;ct - hlrs—7s)/(e=¢)

(g2 i h2oi Pi Yk ) prs—r35)/(e—€') — gZiu?hZiumz‘+(rrr’5)/(8*8’)_ 0
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B Rabin-Shallit Algorithm

For completeness, we will next give a short overview of theiR&hallit algo-
rithm [RS86] that take®)((log 12)*) bit-operations:

1. Write i in the formy = 2%(2k + 1), wheres, k& > 0.
2. If s =1, then
(@) Choose randomy, s < /m, With exactly one ofuq, pz even. Let
p <+ p— p? — pi. Note thatp = 1 (mod 4).

(b) Hoping tha is prime, try to expresg = u2 + u2 as follows: First, find
a solutionu to the equationi? = —1 (mod p). (This can be done in
various efficient ways; for details see [RS86].) Now compité(u +
i,p) = us + ugi Oover the Gaussian integers. Again, this can be done
efficiently. Check to see that= u3 + 42 If not, p was not prime, so go
back to step 2a.

(c) Returnui + p3 + pé + pj as a representation.

3. If sis odd but notl, find a representation f&(2k + 1) and then multiply
each term by the squaté, wheret = 2(6-1/2,

4. If s is even, find a representatiqrf + p3 + p% + p3 for 2(2k + 1) by
step 2. Then convert this to a representation(2dr+ 1) as follows: Group
W1, b2, 3, pa SO thatu; = pe (mod 2) andus = pg (mod 2). Then
(2k+1) = (5 (1 +p2))” + (5 (11— p2)) 2+ (5 (3 +11a))? + (5 (13— pa)) .
Now multiply by ¢2, wheret = 2/2.

C Longer Example: Proof Systems for Exponential Relationsip

We will next describe a few proof systems for the exponente&htion-
ship, i.e., forPK ((/\?:1 c = C’om;((m;p])) Apy = Ng@). Since the set
{(x1, 22, 3) : 1 = x5*} is recursively enumerable, it is Diophantine. Matiya-
sevich was the first to describe an explicit representingrmohial forS. Next,
we will give a description of such Bs due to [Dav73,JSWW?76].

All nonnegative integral solutiong:,, (a), y,(a)) of the Pell equation:? —
(a®> — 1)y?> = 1 can be derived from the next recurrent identities. Firdt, le
(zo(a),yo(a)) = (1,0) and(zi(a),y1(a)) = (a,1). Second, letr,1(a) =
2ax,(a) — z,_1(a) andy,1(a) = 2ay,(a) — y,_1(a). Equivalently,z,, (a) =
> im02i (F)a(a> = 1)"/* andy,(a) = Dlim1,2 (Pa"(a® — 1)i=D/2,
Clearly,a™ < x,(a) < (2a)".

Theorem 4 ([Dav73,JSWW76]). m = n* iff the next 9 equa-
tions have a positive integral solution in remaining4 arguments
(a,c,d,e, f,g,h, 1, r,u,w, 2y, 2): 22— (a®—1)y? = 1,u®—(a® —1)rPy* =1,
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(x+cu)? — ((a+u?(w? —a)? —1)(k+4(d -1y’ =1lLy=k+e—1,
(z —y(a —n) —m)? = (f —1)?2an —n? —1)2, m + g = 2an — n? — 1,
w=n+hw=k+1l,a — (w?—1)(w—2w+1)2? = 1.

From one side, this representationSo$eems to give a very efficient unbounded
Diophantine proof system. Onb essentially different multiplications need to
be performed. Computing witnesses is also “easy”. Namely, i= n* then

w  max(k,n) +1,a < z, 1(w), thena > 1. Seth «+ w —n, | < w -k,

z < z(a), y < ye(a), y  yr(a), u < Topy,(a) (@), T Yory,(a)(@) /Y7,
¢« (wpla+u?(u® — a)) = 2)/u, d < (yx(a + u?(u® — a)) — k)/(dy) + 1,
e+ y—k+1.Finallyletf besuchthaf =1+ (z — y(a —n) —m)/(2an —

n? — 1). Therefore it might seem that to prove the exponential icelahip by
using Theorem 4, one only one need to use Protoczl fimes (and then to
prove that some witnesses are positive).

However, there is a serious catch. The total amount of coatipat is su-
perlinear inlog, 7', whereT" is an a priori upper limit on the size of any
multiplicands and any variables. And in this case, the Ergeultiplicand is
T+ cu = zp(a+u?(u? —a)) > (a+u?(u? —a)F > u'* = (2o, (o) ()™ >
a8k ur(a) > a8k2ak _ (:Uw,1(’w))8k2(x“’*1(w))k > w(w71)8k2w(“’*1)k, which is is
definitely way and beyond the current computational poweswh>>> 50.

On the other hand$ = (S,) is clearlyp-bounded Diophantine. Lef; =
{(w1, 2, 23) : +3 = 1172 A 29 < 2'}. Here, following [CM99,DJ01] and many
other publications, one can representas a binary number,; = Z;ZO k2.
After that, one can prove that; = [[; n;, where eithem; = 1 orn; = 2%".

In the previous proof system we had a constant number of ptiaditions, but
inputs of superpolynomial size. In the current case we ld&\teg, &) multipli-
cations but the multiplicands are never bigger than

Finally, note that given a-bounded (resp., unbounded) Diophantine proof
system for exponential relationship, one can prove that (2) by showing
thaty,; = 271, (y; + 1)™ = yoyr ™t + 211" + y3, ys = 1™ anda; <
y1 for some nonnegativg;. In this case, all intermediate results have length
polynomial in|z;| and hence the proof system for binomial relationship would
also bep-bounded (resp., unbounded).

D Proof for Theorem 3

Proof. Completeness. If prover is honest thBg_(mg;r3) - ¢, © = Ek, (mg —
ep;rs —epr) = Ex, (mi;r1) = czandCom g, (mao;ra) - ¢ © = Compg, (mg —
ep; Ty — epa) = Ex (my1;m2) = cy.

Honest-verifier SZK. Simulator generates a random tg@lews, 3, r4) <
[O,F) X [0, 2tFT) X R % [0,2B+2t) and sets:; <+ EKE (m2;r3) . C;e, Cq —
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Comp, (mg;ry) - ¢y ©. Clearly, this view is an accepted view. Moreover, it has
distribution that is statistically close to the distrilartiof real view.

Special soundness. Let the next two views be accepting:
(c3,ca5€;mo,73,7m4) aNd (cs, caze’smb,ry, ry) with e # €. We know
from [DFO1] that then with an overwhelming probability — ') | (mq — m}).
Thereforegy = Comg, (u; p2) With p = ma Similarly, ¢; = Ex_ (1 p1),

e—e’
wherey' = 272 (mod M). Hencey' = i (mod M). O

8/




