
3/28/13

1

Copyright @ Dr. M. Brian Blake, University of Miami

Software Engineering

Professor M. Brian Blake

Lecture 8: Mapping Models to Code

Lecture Objectives

n How do we take what we have learned

(OO Modeling techniques) and move it
to a design that can be implemented
into software?

n How do models fit together?

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

2

State of the Art of Model-based
Software Engineering
n  The Vision

¨  During object design we would like to implement a system that realizes the use
cases specified during requirements elicitation and system design.

n  The Reality
¨  Undocumented parameters are often added to the API to address a requirement

change.
¨  Additional attributes are usually added to the object model, but are not handled

by the persistent data management system, possibly because of a
miscommunication.

¨  Many improvised code changes and workarounds that eventually yield to the
degradation of the system.

Copyright @ Dr. M. Brian Blake, University of Miami

Model transformations

Source code space

Forward engineering	

Refactoring	

Reverse engineering	

Model space	

Model
transformation	

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

3

Choice of Classes During
Analysis Phase

n Domain Classes
¨ Classes found in real-world problem

domain
¨ Carry semantics of the problem
¨ Consistent from application to application
¨ Very reusable

Copyright @ Dr. M. Brian Blake, University of Miami

Choice of Classes During
Analysis Phase

n  Implementation Classes
¨ Implementation-dependent and invisible to

the user (stacks, buffers, queues)
¨ Avoid these classed in analysis phase
¨ But occasionally they are necessary

n  When Specified by Customer
n  Conversion from existing system

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

4

Choice of Classes During
Analysis Phase

n Application Classes
¨ Encapsulate characteristics and behavior of

application that are visible to user
¨ Represent the intersection of the application and

user
¨ Built on top of domain model
¨ Types

n  Views, Controllers, External Interfaces,
Devices, Surrogates, and Metaclasses

Copyright @ Dr. M. Brian Blake, University of Miami

Application Classes

n View Classes
¨ An external format for presenting information

n  Pictorial, textual, video, audio, report, document
¨ Contain both output and input of information
¨ Also referred to as presentation classes

n Device classes
¨ Represent physical devices that support the

system (printer, monitor, keyboard, etc.)

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

5

n Controller Classes
¨ Class that manages an application and its

interactions with the outside world
n  User interface controller, scheduler, etc.

¨ Multiple controller classes can occur if an
application has multiple independent
threads of control

Copyright @ Dr. M. Brian Blake, University of Miami

Application Classes

n  Interface Classes
¨ Class for communicating information to and

from an application
¨ Mediate all communication with external

classes, processes, files and databases
¨ Provide a layer of interdependence for the

application
¨ A mechanism to encapsulate interactions

between the subsystems and between
applications

Copyright @ Dr. M. Brian Blake, University of Miami

Application Classes

3/28/13

6

n Surrogate Classes
¨ Internal representation of real-world

external classes
¨ Abstracts relevant data from the external

class

n Metaclasses
¨ Data that defines how a class is defined
¨ Useful when a number of classes would

otherwise be excessive or rapidly changing
Copyright @ Dr. M. Brian Blake, University of Miami

Application Classes

Copyright @ Dr. M. Brian Blake, University of Miami

Identifying Class types
Pump

Configuration

Customer

Corporate
Communication

Register

Receipt

Modem Corporate
Credit

Company
Credit

Surrogate
Pump

Valve

Pump
Motor

Amount
Pumped
Sensor

Card ReaderNozzle PrinterSelection
PadDisplay

Tank Full
SensorLever Hose

grade

enables
usesuses

updates

printed on

generates

3/28/13

7

Class choices

n View Classes - Display and Receipt
n Controller Class - Pump
n  Interface Class - Corporate

Communication
n Device Class - Modem
n Surrogate Class - Corp Credit Surrogate
n Metaclass - Pump Configuration

Copyright @ Dr. M. Brian Blake, University of Miami

Prior to integrating
implementation

n  Analysis
¨ Create structural (i.e. class diagram), behavioral (i.e.

state diagrams), and interaction models (i.e.
sequence diagrams)

¨ Capture requirements for the domain and application

n  System design
¨ Defined the subsystems and architectural framework
¨ Allocate requirement to individual application

programs

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

8

Identifying and Mapping
Operations

n  Identify and Mapping Operations
¨ Convert dynamic model features to processes and

provide functional descriptions for them
¨ Map functional model features into operations and

attach them to classes
n  This conversion begins the process of mapping the

logical structure of the analysis model to the physical
structure of the software system to be created

n  Target Classes - Class chosen to perform actual
functionality

Copyright @ Dr. M. Brian Blake, University of Miami

Integration Process
numbuttons
dial type:(tone,pulse)

dial
conduct conversation
initiate call
terminate call

Phone

event
current state
dial
transform digit {abstract}
manage conversation
transform to signal
receive voice
initiate call
wait for dial tone {private}
terminate

Phone

transform digit()

Tone Phone

transform digit()

Pulse Phone

transmit conversation
transmit digit(digit)
transmit start signal ()
transmit stop signal ()

Phone Line IF

numbuttons
dial
type:(tone,pulse)
pickup ()
hang up()

Handset

numbuttons
device properties ...
receive digit()

Digit Input Device

Microphone

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

9

Sequence Diagrams

n Functions in Sequence Diagrams translate

into real implementation-based functions.

Copyright @ Dr. M. Brian Blake, University of Miami

State diagrams

n Convert domain state diagrams to
implementation class-based diagrams
¨ Events sent by an object represent operations

on another object
¨ Transitions are the change of state on an

object
¨ State names and Guard conditions represent

state attributes on objects

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

10

Sample Model
Transformations

Copyright @ Dr. M. Brian Blake, University of Miami

Model Transformation Example
Object design model before transformation	

Object design model after transformation: 	

Advertiser

+email:Address

Player

+email:Address

LeagueOwner

+email:Address

Player Advertiser LeagueOwner

User
+email:Address

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

11

Refactoring Example: Pull Up
Field

public class Player {

 private String email;

 //...

}

public class LeagueOwner {

 private String eMail;

 //...

}

public class Advertiser {

 private String email_address;

 //...

}

public class User {
 private String email;

}
public class Player extends User {

 //...

}

public class LeagueOwner extends User {

 //...

}
public class Advertiser extends User {

 //...

}

Copyright @ Dr. M. Brian Blake, University of Miami

Collapsing an object without
interesting behavior

Person SocialSecurity

number:String

Person

SSN:String

Object design model before transformation	

Object design model after transformation	

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

12

Delaying expensive computations
Object design model before transformation	

Object design model after transformation	

Image

filename:String

paint()
data:byte[]

Image

filename:String

RealImage

data:byte[]

ImageProxy

filename:String

image

1 0..1

paint()

paint() paint()

Copyright @ Dr. M. Brian Blake, University of Miami

Realization of a unidirectional,
one-to-one association

Account Advertiser
1 1

Object design model before transformation	

Source code	

public class Advertiser {
 private Account account;

 public Advertiser() {

 account = new Account();

 }

 public Account getAccount() {

 return account;

 }

}

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

13

Bidirectional one-to-one
association

public class Advertiser {
 /* The account field is initialized

 * in the constructor and never

 * modified. */

 private Account account;

 public Advertiser() {

 account = new Account(this);

 }

 public Account getAccount() {

 return account;

 }

}

Account Advertiser 1 1

Object design model before transformation	

Source code	

public class Account {

 /* The owner field is initialized
 * during the constructor and
 * never modified. */
 private Advertiser owner;

 public Account(owner:Advertiser) {
 this.owner = owner;
 }
 public Advertiser getOwner() {
 return owner;
 }

}

Copyright @ Dr. M. Brian Blake, University of Miami

Bidirectional, one-to-many
association

public class Advertiser {
 private Set accounts;
 public Advertiser() {
 accounts = new HashSet();
 }
 public void addAccount(Account a){
 accounts.add(a);
 a.setOwner(this);
 }
 public void removeAccount(Account a){
 accounts.remove(a);
 a.setOwner(null);
 }

}

public class Account {
 private Advertiser owner;
 public void setOwner(Advertiser
newOwner) {
 if (owner != newOwner) {
 Advertiser oldOwner = owner;
 owner = newOwner;
 if (oldOwner != null)
 old.removeAccount(this);
 }
 }

}

Advertiser Account
1 *

Object design model before transformation	

Source code 	

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

14

Bidirectional, many-to-many association

public class Tournament {
 private List players;
 public Tournament() {
 players = new ArrayList();
 }
 public void addPlayer(Player p) {
 if (!players.contains(p)) {
 players.add(p);
 p.addTournament(this);
 }
 }

}

public class Player {
 private List tournaments;
 public Player() {
 tournaments = new ArrayList();
 }
 public void addTournament(Tournament t) {
 if (!tournaments.contains(t)) {
 tournaments.add(t);
 t.addPlayer(this);
 }
 }

}

Tournament Player * *

Source code after transformation	

{ordered}

Object design model before transformation	

Copyright @ Dr. M. Brian Blake, University of Miami

Bidirectional qualified
association

Object design model before forward engineering	

	

Player nickName
0..1 * League

Player
* *

Object design model before transformation	

	

League

nickName	

Source code after forward engineering	

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

15

Bidirectional qualified
association (continued)

public class League {
 private Map players;

 public void addPlayer
 (String nickName, Player p) {

 if (!players.containsKey(nickName)) {

 players.put(nickName, p);

 p.addLeague(nickName, this);

 }

 }

}

public class Player {
 private Map leagues;

 public void addLeague

 (String nickName, League l) {

 if (!leagues.containsKey(l)) {

 leagues.put(l, nickName);

 l.addPlayer(nickName, this);

 }

 }

}

Source code after forward engineering	

Copyright @ Dr. M. Brian Blake, University of Miami

Transformation of an association class

Tournament Player
* *

Object design model before transformation	

Object design model after transformation: 1 class and two binary associations	

Statistics

+ getAverageStat(name)
+ getTotalStat(name)
+ updateStats(match)

Tournament Player
*	

 *	

1 1

Statistics

+ getAverageStat(name)
+ getTotalStat(name)
+ updateStats(match)

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

16

Mapping an object model to a
relational database
n  UML object models can be mapped to relational databases:

¨  Some degradation occurs because all UML constructs must be
mapped to a single relational database construct - the table.

n  UML mappings
¨  Each class is mapped to a table
¨  Each class attribute is mapped onto a column in the table
¨  An instance of a class represents a row in the table
¨  A many-to-many association is mapped into its own table
¨  A one-to-many association is implemented as buried foreign key

n  Methods are not mapped

Copyright @ Dr. M. Brian Blake, University of Miami

Mapping the User class to a
database table

User

+firstName:String
+login:String
+email:String

id:long	

 firstName:text[25]	

 login:text[8]	

 email:text[32]	

User table!

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

17

Primary and Foreign Keys

n  Any set of attributes that could be used to uniquely
identify any data record in a relational table is called a
candidate key.

n  The actual candidate key that is used in the application
to identify the records is called the primary key.

n  The primary key of a table is a set of attributes whose
values uniquely identify the data records in the table.

n  A foreign key is an attribute (or a set of attributes) that
references the primary key of another table.

Copyright @ Dr. M. Brian Blake, University of Miami

Example for Primary and Foreign Keys
User tab	

le	

Candidate key	

login	

 email	

“am384”	

 “am384@mail.org”	

“js289”	

 “john@mail.de”	

fi	

r	

stName	

“alice”	

“john”	

“bd”	

 “bobd@mail.ch”	

“bob”	

Candidate key	

Primary key	

League table	

 login	

“am384”	

“am384”	

name	

“tictactoeNovice”	

	

“tictactoeExpert”	

“js289”	

“chessNovice”	

Foreign key referencing User table	

Copyright @ Dr. M. Brian Blake, University of Miami

3/28/13

18

Increase Inheritance
n  Rearrange and adjust classes and operations to prepare for

inheritance
¨  Generalization: Finding the base class first, then the sub

classes.
¨  Specialization: Finding the the sub classes first, then the base

class
n  Generalization is a common modeling activity. It allows to abstract

common behavior out of a group of classes
¨  If a set of operations or attributes are repeated in 2 classes the

classes might be special instances of a more general class.
n  Always check if it is possible to change a subsystem (collection of

classes) into a superclass in an inheritance hierarchy.

Copyright @ Dr. M. Brian Blake, University of Miami

Create a domain-specific and
software-specific class diagram

An Internet Calendar is a personal display of a users daily activities.
The Internet calendar displays regular hyperlinks for each activity.
Each hyperlink can be pressed to see more detail of the activity.
When a user sets up his/her calendar, he/she decides on a calendar
year and the calendar software pre-configures the entire year.
When the user requires a new entry, there is a pull-down menu to
set a specific day/hour, a field for the title, and field for the additional
text. The software will create the additional page to hyperlink the
additional text. The calendar can only be set by the hour. A user
can add/delete as many calendars as he/she likes and can maintain
multiple calendars. A calendar can be one of several specialized
types, personal business, personal leisure, or group planning.

Copyright @ Dr. M. Brian Blake, University of Miami

