Two Strategies for Approximate Computational Geometry

Elisha Sacks, Purdue University

joint work with

Victor Milenkovic, University of Miami
Problem

- Algorithms are expressed in real RAM model.
- Input is assumed in general position.
- Implementations must use computer arithmetic.
- Implementations must handle degenerate input.
Geometric Predicates

- Main interface with real RAM model (also geometric constructions).
- Predicate $P(x)$ is true when polynomial $f(x)$ is positive.
- Unsafe predicate: $|f(x)|$ near the rounding unit.
- Degenerate predicate: $f(x) = 0$.
- Singular predicate: $f(x) = 0$ and $f'(x) = 0$.
Exact Computational Geometry

- Implement predicates exactly using real algebraic geometry.
- Symbolic perturbation of degenerate predicates.
- Technical Problems
 - Running time grows rapidly with algebraic degree.
 - Bit complexity grows rapidly in iterated computation.
 - Large constant factors and programming overhead.
Conceptual Problem

- Scientific computing is approximate because exact solutions are impractical and unnecessary.
- That is why rounding and numerical analysis were invented.
- Why should computational geometry be exact?
Approximate Comp. Geometry

- Implement predicates approximately using floating point arithmetic and numerical solvers.
- Advantages:
 - Running time grows modestly with degree.
 - Constant bit complexity.
 - Small constant factors.
- Challenge: generate consistent output.
Consistency

• Error metric: distance from input to perturbed input for which the computed output is correct.
• Inconsistent output: no such perturbation exists.
• Example: plane curves in cyclic vertical order.
 • $a < b$ before p_x, $b < c$ before r_x, $c < a$ after q_x.
• Numerical error causes $q_x < p_x$.
• Inconsistency: $a < b < c < a$ on (q_x, p_x).
Inconsistency Sensitive Strategy

- Adapt RAM algorithms to generate consistent output despite computation error.
- Bound output error and extra cost in terms of computation error and inconsistency count.
- Advantage: speed and accuracy.
- Disadvantage: lack of generality.
Arrangement Algorithm

- **Input:** x-monotonic semi-algebraic curves, crossing module.
- **Step 1:** Compute curve crossings and y-order.
- **Step 2:** Embed curve endpoints.
- **Output:** $O(\epsilon + kn\epsilon)$ accurate arrangement for n curves and an ϵ-accurate crossing module with k inconsistencies.
- Proving consistency is much easier than proving an error bound!
Crossing Module

- Crossings computed with custom eigensolver.
- Accuracy, ϵ, of 12–16 decimal digits.
- Running time cd^4 for degree d.
- $c = 6$ microseconds on 2.2 GHz processor.
Step 1: Curve y-order

- Crossing module defines curve y-order, $a <_x b$.
- k inconsistencies: $a <_x b <_x c <_x a$ on maximal open interval.
- Bentley sweep with two modifications:
 1. Don’t swap non-adjacent curves.
 2. Immediately swap out-of-order curves.
- Sweep list defines output y-order, $a <'_x b$.
- Error analysis: bound distance between a, b at x where $a <'_x b$ and $b <_x a$.
- Key idea: there exists a sequence
 $a <_x s_1 <_x \cdots <_x s_p <_x b$ with $p \leq k$.
Step 2: Endpoint Embedding

Inconsistency between endpoint and curve y-orders.

inconsistency

fix

Two Strategies for Approximate Computational Geometry – p. 12/26
Step 2: Endpoint Embedding

inconsistency

fix
Perturbation Methods

- Perturb input to avoid inconsistency and degeneracy.
- Minimize perturbation size relative to success probability.
- Advantage: general.
- Disadvantages of prior work
 - inaccurate, especially for near-singular input.
 - incompatible with equality constraints (implicit parameters).
Constrained Linear Perturb.

Strategy: assign signs to polynomials then compute minimal perturbation that realizes these signs.

- No error or cost for safe polynomials.
- Accurate perturbation of singular polynomials.
- Implicit parameters handled.
- Signs can be set to zero.
CLP Implementation Strategy

- Online algorithm: compute perturbation for both signs of polynomial subject to prior signs; select smaller perturbation.
- Linear programming implementation.
- Linear Taylor series for regular polynomials.
- Replace a near-singular polynomial with a regular proxy and constrain it to have the same sign.
CLP Definition

- CLP defined for polynomials f_1, \ldots, f_m at $x = a$.
- f_i safe: $|f_i(a)| > k_i \mu$ with μ the rounding unit.
- Perturbation: $p = a + \delta v$, $\delta \geq 0$, $||v|| = 1$.
- CLP: p and signs s_1, \ldots, s_m with $s_i = \pm 1$.
- If f_i is safe, s_i is the computed sign. If not, s_i is the sign of the rate of change $\nabla f_i \cdot v$.
- $s_i f_i(p) \geq k_i \mu$ for $i = 1, \ldots, m$.
Core Algorithm

- Extend CLP from f_1, \ldots, f_{m-1} to f_m.
- If f_m is safe, return the computed sign and the prior p.
- Else assign the sign and v that maximize the minimum of the rates, $r_i = s_i \nabla f_i \cdot v / k_i$, at which the unsafe f_i become safe.
- Maximize r subject to $r_i \geq r$ and $s_m = \pm 1$; assign s_m and v from the larger r value.
- Set $\delta = 2\mu / r$ to make s_i correct for the linearized f_i with margin $2k_i\mu$.
- Verify $s_i f_i(p) \geq k_i\mu$ for all unsafe f_i.
Sorting Example

- Sort four equal numbers $x_i = 0$.
- Predicate polynomials are $x_i - x_j$ with $k_i = 1$.
- Six signs assigned during sorting.
- Perturbation direction constraints: $-1 \leq v_i \leq 1$.
- Sign 1: $x_2 - x_1$ with cases $v_2 - v_1 \geq r$ and $v_1 - v_2 \geq r$; maximum of $r = 2$ for both, so $s_1 = 1$ and $x_1 < x_2$.

\[\begin{array}{cccc}
 x_1 & x_4 & x_2 \\
 \hline
 -1 & 0 & 1 \\
\end{array} \]
Sorting Example

• Sign 2: \(x_3 - x_2 \)
 - \(s_2 = 1: v_3 - v_2 \geq r \) and \(v_2 - v_1 \geq r \) with maximum \(r = 1 \) at \(v = (-1, 0, 1, 0) \).
 - \(s_2 = -1: v_2 - v_3 \geq r \) and \(v_2 - v_1 \geq r \) with maximum \(r = 2 \) at \(v = (-1, 1, -1, 0) \).
 - Set \(s_2 = -1 \) and \(x_3 < x_2 \).

\[
\begin{array}{cccc}
 x_3 & x_1 & x_4 & x_2 \\
 \hline
 \text{\(-1 \)} & 0 & 1 \\
\end{array}
\]

• Sign 6: \(x_1 < x_3 < x_4 < x_2 \).

\[
\begin{array}{cccc}
 x_1 & x_3 & x_4 & x_2 \\
 \hline
 \text{\(-1 \)} & -1/3 & 1/3 & 1 \\
\end{array}
\]
Pappus Example

- Sort x coordinates of the intersection points of 9 lines with 9 near-triple intersection points.
- First 8 triples permit all signs; 254 of these permit both signs for ninth triple.
Full CLP algorithm

- Proxies for near-singular polynomials.
 - Status: manual construction.
 - Research: automated construction for determinant polynomials.
- Implicit parameter definitions.
 - Status: regular definitions.
 - Research: singular definitions.
- Output simplification.
- Random perturbation direction.
CLP versus controlled pert.

- Convex hull of n identical points: $\delta = 121\mu$ for $n = 100$, $\delta = 238\mu$ for $n = 200$, $\delta = 1619\mu$ for $n = 1000$.

- Controlled perturbations 2×10^8 times larger.

- Delaunay triangulation of n identical points: $\delta = 399\mu$ for $n = 100$, $\delta = 1767\mu$ for $n = 200$, $\delta = 14959\mu$ for $n = 1000$.

- Controlled perturbations 10^{11} times larger.

- Delaunay triangulation of n points on unit line segment: $\delta = 636\mu$ for $n = 100$, $\delta = 2933\mu$ for $n = 200$, $\delta = 8479\mu$ for $n = 1000$.

- Controlled perturbations 2×10^6, 7×10^6, 2×10^9 times larger.
CLP versus ECG

- Arrangement of 100 random degree-6 algebraic curves: 22 seconds with CLP; 220 seconds with ECG [Eigenwillig, 2008].
- Arrangement of 100 degenerate degree-6 semi-algebraic curves.
CLP versus ECG

- Arrangement contains 1330 vertices, including 43 clusters of nearly equal vertices with an average of 23 vertices per cluster and 55 vertices in the largest cluster.
- 1.5 seconds with CLP; estimated 30,000 seconds with ECG.
- Estimate based on measured root separation, ρ, and on published $\log^2 \rho$ running time.
Conclusion

- Approximate computational geometry is fast and accurate.
- Consistency is the challenge.
- Consistency sensitivity works case by case.
- CLP is algorithm-independent.
- We aim for a black box CLP library.