
Path Planning in Approximations to 3D and 4D

Configuration Spaces
Seraphina Gibson, Oberlin College Dr. Victor Milenkovic, University of Miami

Dr. Elisha Sacks, Purdue University Chloe Arluck, University of Miami

Introduction

Figure 1: The robot inside it’s enclosure. It can fit through the first door, but it’s top half is too wide to fit

through the second door, so it must turn to make it to the outside. In this version of the problem, the robot

can translate in the x and y directions and rotate in the xy-plane, but cannot move vertically.

The path planning problem in 3D space is to find a series of translations and

rotations which the moves a “robot” from a given start to a given end without

intersecting the obstacles. Applications are primarily in robotics, with different

domains putting varied constraints on the problem such as degrees of freedom

of the robot and the cost metric by which the paths are judged.

Figure 2 : A slice of the configuration space of the robot in Fig. 1, parameterized by (x, y, θ). The part shown

ranges from negative pi to pi. As the structure is periodic in the θ dimension, this range is sufficient to

encompass all possible paths.

Methods

Figure 3: The configuration space, shown partially translucent, with the path generated by the PATHFIND

algorithm in bold from the inside of the room to the outside.

Figure 4: A QR code,

linked to a video of the

path in Fig. 3 animated.

The space in which the robot and obstacles exist is known as work space. Checking

whether the robot has collided with the obstacles in the work space is nontrivial, as

they are both complex 3D objects. Thus, the first step in generating our path was to

move to configuration space (c-space), which is parameterized by (x, y, θ). A single

point in c-space represents a translation and rotation of the robot in work space.

The obstacles are translated into configuration space, producing Fig 2. A valid path

traversed by a point in c-space is equivalent to a valid path for the robot in work

space. As the obstacles in c-space are curved and difficult to work with, they are

triangulated to produce a polyhedron. Due to the complex structure in the c-space,

this procedure requires care to preserve the necessary structure and avoid issues

such as self-intersections.

Figure 5: A toy example of two polyhedral figures (green, semi-transparent) and the path (orange) generated

from one side of them to the other, to demonstrate the working of the algorithm in a simple case.

The Algorithm

Optimal path planning in a 3D space is very computationally expensive, if

feasible at all. The focus was instead efficient generation of acceptable paths.

A greedy heuristic was used which maximizes time spent on the ray from the

start to end, deviating only when an obstacle was encountered.

Much of the work happens in step 4. In step 1, a list of all intersections

ordered by their distance from the start is obtained. Those intersections from

which progress can be made through empty space are precisely those with

odd indices in this (0-indexed) list. Thus the nearest one of these points found

by the search in step 3 is the next sub-goal of the algorithm, after which the

next segment of the path is always a segment of the ray from start to end.

PATHFIND

1. Find all intersections with obstacles on the ray from start

to end, through brute force, and sort by distance.

2. Move through empty space until an intersection is reached.

3. Breadth-first search over the faces of the intervening

polyhedron.

4. Move to the nearest located intersection point with odd

index from the start by alternating between centroids of

faces and midpoints of edges.

5. Return to step 2 if the end is not yet reached.

Figure 6: A simple drone (blue) and room (translucent green). The drone’s goal is to enter the room, but it is

too wide. It must rotate 90 degrees to fit through the small window.

Figure 7: The drone “smeared” through

an angle of 2 pi / 40.

A more difficult version of the path planning problem involves a “drone” which

can translate in all 3 directions and rotate in the xy-plane. Work space is still 3D,

but c-space is now 4D, adding complexity. The approach used was to “smear” the

drone over a range of angles, and use the resulting polyhedron to generate 3D

slices of the 4D config space at different angles. Due to the smearing, any valid

position in a given slice is valid at a range of angles that overlap between nearby

slices.

A helper algorithm first generates an order to jump between the different slices

that can produce a path from start to end, and then PATHFIND produces the sub-

paths within each slice. The resulting path alternates between rotations of the

drone and translations of the drone, equivalent to changing slices and moving

within a slice respectively.

Future Work

Figure 8: The slice of the c-space centered around the angle of zero.

The inside and outside of the room are disconnected because the

drone is too wide to fit through the window at this angle.

Figure 9: The slice of the c-space centered around an angle of pi/4. A

thin channel is now visible: the drone can fly through the window at this

angle.

Figure 10: The path (blue) generated in the slice of c-space

shown in Fig. 9. This path is a portion of the overall path

through 4D configuration space (not pictured).

The current path generated is guaranteed to be valid, but is not always

particularly efficient. One difficulty comes from the complexity of the c-space

and the issues with naively triangulating it such as creating self intersections.

The more complex method of triangulation often produces very small, or

worse, very long and thin triangles, which are not handled well by the

algorithm. As a consequence, there are likely significant improvements that

can be made by optimizing the path after generating it. One such

optimization would be to calculate the gradient of path length with regard to

the position of a particular vertex and shift it in that direction, then to repeat

this process iteratively over all the vertices multiple times.

Figure 11: A QR code, linked to a

video of the path in Fig. 10

animated.

4D Adaptation

Acknowledgements

Many thanks to Chloe Arluck, Dr. Elisha Sacks and particularly Dr. Victor

Milenkovic for constant support and guidance, and thank you to the program

director, Dr. Burt Rosenberg. Thanks goes to Harold Milenkovic for creating

the animations. Finally, much appreciation goes to the National Science

Foundation, the University of Miami Computer Science Department, and the

Center for Computational Science for the funding and support that made the

REU possible.

