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Introduction

Figure 1: The robot inside it’s enclosure. It can fit through the first door, but it’s top half is too wide to fit 

through the second door, so it must turn to make it to the outside. In this version of the problem, the robot 

can translate in the x and y directions and rotate in the xy-plane, but cannot move vertically.

The path planning problem in 3D space is to find a series of translations and 

rotations which the moves a “robot” from a given start to a given end without 

intersecting the obstacles. Applications are primarily in robotics, with different 

domains putting varied constraints on the problem such as degrees of freedom 

of the robot and the cost metric by which the paths are judged. 

Figure 2 : A slice of the configuration space of the robot in Fig. 1, parameterized by (x, y, θ). The part shown 

ranges from negative pi to pi. As the structure is periodic in the θ dimension, this range is sufficient to 

encompass all possible paths. 

Methods

Figure 3: The configuration space, shown partially translucent, with the path generated by the PATHFIND 

algorithm in bold from the inside of the room to the outside.

Figure 4: A QR code, 

linked to a video of the 

path in Fig. 3 animated.

The space in which the robot and obstacles exist is known as work space. Checking 

whether the robot has collided with the obstacles in the work space is nontrivial, as 

they are both complex 3D objects. Thus, the first step in generating our path was to 

move to configuration space (c-space), which is parameterized by (x, y, θ). A single 

point in c-space represents a translation and rotation of the robot in work space. 

The obstacles are translated into configuration space, producing Fig 2. A valid path 

traversed by a point in c-space is equivalent to a valid path for the robot in work 

space. As the obstacles in c-space are curved and difficult to work with, they are 

triangulated to produce a polyhedron. Due to the complex structure in the c-space, 

this procedure requires care to preserve the necessary structure and avoid issues 

such as self-intersections.

Figure 5: A toy example of two polyhedral figures (green, semi-transparent) and the path (orange) generated 

from one side of them to the other, to demonstrate the working of the algorithm in a simple case.

The Algorithm

Optimal path planning in a 3D space is very computationally expensive, if 

feasible at all. The focus was instead efficient generation of acceptable paths. 

A greedy heuristic was used which maximizes time spent on the ray from the 

start to end, deviating only when an obstacle was encountered.

Much of the work happens in step 4. In step 1, a list of all intersections 

ordered by their distance from the start is obtained. Those intersections from 

which progress can be made through empty space are precisely those with 

odd indices in this (0-indexed) list. Thus the nearest one of these points found 

by the search in step 3 is the next sub-goal of the algorithm, after which the 

next segment of the path is always a segment of the ray from start to end.

PATHFIND

1. Find all intersections with obstacles on the ray from start 

to end, through brute force, and sort by distance.

2. Move through empty space until an intersection is reached.

3. Breadth-first search over the faces of  the intervening 

polyhedron.

4. Move to the nearest located intersection point with odd 

index from the start by alternating between centroids of  

faces and midpoints of  edges.

5. Return to step 2 if  the end is not yet reached. 

Figure 6: A simple drone (blue) and room (translucent green). The drone’s goal is to enter the room, but it is 

too wide. It must rotate 90 degrees to fit through the small window.

Figure 7: The drone “smeared” through 

an angle of 2 pi / 40.

A more difficult version of the path planning problem involves a “drone” which 

can translate in all 3 directions and rotate in the xy-plane.  Work space is still 3D, 

but c-space is now 4D, adding complexity. The approach used was to “smear” the 

drone over a range of angles, and use the resulting polyhedron to generate 3D 

slices of the 4D config space at different angles. Due to the smearing, any valid 

position in a given slice is valid at a range of angles that overlap between nearby 

slices. 

A helper algorithm first generates an order to jump between the different slices 

that can produce a path from start to end, and then PATHFIND produces the sub-

paths within each slice. The resulting path alternates between rotations of the 

drone and translations of the drone, equivalent to changing slices and moving 

within a slice respectively.

Future Work

Figure 8: The slice of the c-space centered around the angle of zero. 

The inside and outside of the room are disconnected because the 

drone is too wide to fit through the window at this angle. 

Figure 9: The slice of the c-space centered around an angle of pi/4. A 

thin channel is now visible: the drone can fly through the window at this 

angle. 

Figure 10: The path (blue) generated in the slice of c-space 

shown in Fig. 9. This path is a portion of the overall path 

through 4D configuration space (not pictured). 

The current path generated is guaranteed to be valid, but is not always 

particularly efficient. One difficulty comes from the complexity of the c-space 

and the issues with naively triangulating it such as creating self intersections. 

The more complex method of triangulation often produces very small, or 

worse, very long and thin triangles, which are not handled well by the 

algorithm. As a consequence, there are likely significant improvements that 

can be made by optimizing the path after generating it. One such 

optimization would be to calculate the gradient of path length with regard to 

the position of a particular vertex and shift it in that direction, then to repeat 

this process iteratively over all the vertices multiple times.

Figure 11: A QR code, linked to a 

video of the path in Fig. 10 

animated.

4D Adaptation
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