
Proceedings of the IJCAI-03 Workshop on

Issues in Designing Physical Agents for Dynamic

Real-Time Environments: World modelling,

planning, learning, and communicating

Ubbo Visser
Patrick Doherty

Gerhard Lakemeyer
Manuela Veloso

(editors)

Held on August 11, 2003 in conjunction with the
International Joint Conference on Artificial Intelligence

Acapulco, Mexico

1

.

2

IJCAI-03 Workshop on

Issues in Designing Physical Agents for Dynamic Real-Time

Environments: World modelling, planning, learning, and
communicating

Held on August 11, 2003 in conjunction with the International Joint Conference
on Artificial Intelligence Acapulco, Mexico

Recent developments in multiagent systems (MAS) have been promising by achieving
autonomous, collaborative behavior between agents in various environments. However,
most of the agents, both software agents and physical agents, still have problems if the
environment is dynamic and the agents have to act in real time. Examples are obstacle
avoidance with moving obstacles or world models which are composed from egocentric
views of numerous agents. Another aspect is the need for quick responses. In an en-
vironment where a number of agents build a team and both single agent decisions and
team collaborative decisions have to be made methods have to be fast and precise. This
workshop addresses various problems that occur with respect to these issues.

The main focus of this workshop will be methods from various areas such as world
modelling, planning, learning, and communicating with agents in dynamic and real-time
environments. Within this general theme we aim to bring together researchers to discuss
the following topics:

• World modelling (quantitative, qualitative)

• Coaching (one agent gives advice to a group of agents)

• Planning with resources (especially time)

• Cooperation between agents (robot and/or humans)

• Communication between agents (implicit, non-verbal, or verbal one)

• Real-time systems software issues (often ignored but important if serious about
real-time issues in robotics)

• Scalability and robotics interfacing issues (demands a great deal of support from
the initial design of the system)

In the last decade, a lot of effort has been invested to develop methods that can be
used with multi-agent systems. The language development in the area of communication
between agents (ACL) might act as the first example. Speech acts serve as the basic

3

principle and various protocols have been invented (e.g. auctions, contract-nets, etc.).
Can we transfer these results to environments where quick decisions have to be made?
Consider planning as another example: there are promising methods for path planning,
but do they still hold if the observed obstacles are moving? Learning is another example:
we need on-line learning in a real-time scenario to give agents the option to learn more
about their environment. Usually, learning takes a fair amount of time but sometimes
this time is not available. Can we find methods which will consider these restrictions?

This workshop addresses researchers from various areas in AI who want to discuss the
mentioned issues from their point of view. How can we develop new methods or adapt
existing methods to meet these demands?

We received 18 submissions for the workshop. 13 contributions have been selected for
oral presentation at the workshop. These proceedings contain all papers, which can be
roughly categorized with the help of the following sketch of a general multiagent architec-
ture. Please note that this is only a rough categorization and that there are a number of
papers that belong to more than one component.

Figure 1: A general multiagent systems architecture. The papers are roughly categorized

The majority of contributions touch the areas of behavior modelling, which we divided
into planning and reactive components. Estlin et al. represent the former and describe
the OASIS system, which utilizes techniques from learning and planning for Mars missions.
These missions aim long distance travelling. Dylla et al. show how plans can be specified
with IPC-GOLOG. The authors developed this language as a variant of the logic-based
language GOLOG and demonstrate how agents can be modelled for a robotic soccer
scenario. Marling et al. deal with a case-based reasoning approach for both planning

4

and world-modelling. This approach is used to help physical robotic soccer agents to
plan individual moves and strategies. Dias et al. represent a reactive behavior approach.
Their hypothesis is that a large control system (IDEA) can be structured as a collection of
interacting control agents, each organized around the same fundamental structure. Nebel
& Babovich propose goal-converging behavior networks and self-solving planning domains
and deal with both, planning and reactive components.

Their paper can also be categorized between the behavior and monitoring and
execution. The same holds for Domshlak & Lawton’s contribution that describes an
approach on planning for multiagent execution. They introduce a model of planning and
execution that treats qualitative and quantitative effects of agents differently. The paper
of Wagner et al. deals with monitoring only. The authors claim that qualitative spatial
knowledge representation can help to overcome obstacles in highly dynamic environments.
Their approach is based on an extended panorama. Fichtner et al. propose an approach
for intelligent execution monitoring. A logical world representation allows planning and
reasoning about world states.

Two papers especially deal with multiagent coordination. Clement et al. describe
a Shared Activity Coordination (SHAC) framework, which provides a decentralized al-
gorithm for negotiating the scheduling of shared activities. Bowling et al. introduce the
concept of a play as a team plan and combine both reactive and deliberative principles.

Two papers can be categorized in the area of prediction. Autonomous vehicle sce-
narios are one example where the prediction of objects (obstacles) is crucial. Schlenoff et
al. discuss an approach to predict location of moving objects during on-road navigation.
The contribution of Nebel & Babovich can also be categorized in this group. They argue
that behavior networks converge to given goals regardless of the particular action scheme.

Nakadai et al. represent the communication component. Their problem is a situa-
tion where a humanoid robot has to deal with a number of simultaneous talkers. Their
approach follows a speech recognition by audio-visual integration. This paper also rep-
resents the sensor component of our general architecture. In addition, the contribution
by Dylla et al. also deals with sensor data and can therefore be categorized in this com-
ponent. Buchheim et al. propose a flexible and generic software framework for world
modelling enabling a realization of selective attention mechanisms.

5

Program Committee and Reviewers

We are grateful to the following members of the international program committee for
helping us to make this a high quality workshop:

• Minoru Asada, Osaka University, Osaka, JAPAN

• Andreas Birk, International University, Bremen, GERMANY

• Hans-Dieter Burkhard, Humboldt Universität, Berlin, GERMANY

• Gregory Dudek, McGill University, Montreal, CANADA

• Dieter Fox, University of Washington, Seattle, WA, USA

• Christian Freksa, Universität Bremen, Bremen, GERMANY

• Uli Furbach, Universität Koblenz-Landau, Koblenz, GERMANY

• Otthein Herzog, Universität Bremen, Bremen, GERMANY

• Sven König, Georgia Institute of Technology, Atlanta, GA, USA

• Paul Levi, Universität Stuttgart, Stuttgart, GERMANY

• Elena Messina, National Institute of Standards & Technology (NIST), Gaithersburg,
MD, USA

• Daniele Nardi, Università di Roma “La Sapienza”, Rome, ITALY

• Bernhard Nebel, Universität Freiburg, GERMANY

• Rolf Pfeifer, Universität Zürich, Zürich, SWITZERLAND

• Thomas Röfer, Universität Bremen, Bremen, GERMANY

• Andrzej Skowron, Warsaw University, Warsaw, POLAND

• Peter Stone, The University of Texas at Austin, Austin, TX, USA

6

Contents

Learning and Planning for Mars Rover Science 9
Tara Estlin, Rebecca Castano, Robert Anderson, Daniel Gaines,
Forest Fisher and Michele Judd

Specifying Multirobot Coordination in ICPGolog - From Simulations to-
wards Real Robots - . 19
Frank Dylla, Alexander Ferrein and Gerhard Lakemeyer

Case-Based Reasoning for Planning and World Modeling in the RoboCup
Small Size League . 29
Cynthia Marling, Mark Tomko, Matthew Gillen, David Alexander and
David Chelberg

A Real-Time Rover Executive Based On Model-Based Reactive Planning 37
M. Bernardine Dias, Solange Lemai and Nicola Muscettola

Shared Activity Coordination . 45
Bradley J. Clement and Anthony C. Barrett

Plays as Team Plans for Coordination and Adaptation 55
Michael Bowling, Brett Browning, Allen Chang and Manuela Veloso

Goal-Converging Behavior Networks and Self-Solving Planning Domains . 63
Bernhard Nebel and Yuliya Babovich

An Approach to Predicting the Location of Moving Objects During On-
Road Navigation . 71
Craig Schlenoff, Raj Madhavan and Stephen Balakirsky

On Planning for Multi-Agent Opportunistic Execution 81
Carmel Domshlak and James H. Lawton

Intelligent Execution Monitoring in Dynamic Environments 91
Thorsten Buchheim, Georg Kindermann, Reinhard Lafrenz and Paul Levi

A Dynamic Environment Modelling Framework for Selective Attention . . 99
Matthias Fichtner, Axel Großmann and Michael Thielscher

An Extended Panorama: Efficient Qualitative Spatial Knowledge Repre-
sentation for Highly Dynamic Environments 109
Thomas Wagner, Christoph Schlieder and Ubbo Visser

7

A Humanoid Listens to three simultaneous talkers by Integrating Active
Audition and Face Recognition . 117
Kazuhiro Nakadai, Daisuke Matsuura, Hiroshi G. Okunox and
Hiroaki Kitano

8

Abstract
With each new rover mission to Mars, rovers are
traveling significantly longer distances. In some
cases, distances are increasing by orders of mag-
nitude from previous missions. This increase en-
ables not only the collection of more science
data, but causes a large rise in the number of
new and different science collection opportuni-
ties. In this paper, we describe the OASIS sys-
tem, which provides autonomous capabilities for
dynamically pursuing these science-collection
opportunities during long-range rover traverses.
OASIS utilizes techniques from both machine
learning and planning and scheduling to address
this goal. Machine learning techniques are ap-
plied to analyze data as it is collected and
quickly determine new science tasks and priori-
ties on these tasks. Planning and scheduling
techniques are used to alter the rover’s behavior
so new science measurements can be performed
while still obeying resource and other mission
constraints. In addition to describing our system,
we also discuss how we are testing OASIS, in-
cluding the use of Mars rover prototypes and
validation using data gathered from expert plane-
tary geologists.

1 Introduction
As planetary exploration continues to increase, the use of
robotic vehicles to explore and analyze planet surfaces
will also expand. The Mars Pathfinder mission not only
demonstrated the feasibility of sending rovers to other
planets, but displayed the significance of such missions
to the scientific community. The Mars Exploration Rov-
ers (MER) mission is set to launch this year, and will
send two new rovers to the Martian surface. Further-
more, additional rover missions are already planned to
the red planet, which will provide major leaps in smart,
surface laboratory measurements. With each new mis-
sion, rovers are able to travel significantly longer dis-
tances and collect increasing amounts of valuable science
data. However, they must perform this task in unknown
environments where unexpected conditions can easily be

encountered. The Pathfinder rover traveled approxi-
mately 100 meters during its 90 day lifetime [Mishkin, et
al., 1988]. In contrast, the MER rovers will travel up to
100 meters per day, and future missions will likely con-
tinue to extend this measure. Though longer-range trav-
erses enable rovers to explore new territory and collect
large volumes of data, they also place increasing de-
mands on operating these missions. Collected images and
other science data must be analyzed (typically on earth),
and this process must be performed quickly if that data is
used to direct additional science measurements by the
rover. Furthermore, rover operations for both Pathfinder
and MER are handled by manually creating sequences of
rover commands on the ground and then uploading them
to the rover. This process is very time- and labor-
intensive and does not allow for the dynamic adjustment
of rover behavior if anything unexpected occurs, includ-
ing faults and new science opportunities.

This paper describes the Onboard Autonomous Science
Investigation System (OASIS) [Castano, et al., 2003],
which is directed at providing autonomous capabilities
for rover science operations during long-range traverses.
In upcoming missions, rovers will traverse many kilome-
ters between pre-designated science sites. OASIS was
developed to support science data analysis and new sci-
ence collection during these long traverses. OASIS con-
sists of several modules, including: 1) a data analysis
system that uses machine learning techniques to analyze
collected data and produce new science collection goals
and 2) a planning and scheduling system that dynami-
cally incorporates new science goals into the current
rover command sequence and interacts with the onboard
control software to achieve this goal. This system is cur-
rently being tested on data collected during test opera-
tions for the MER mission as well as with the Rocky 8
rover, a research rover built and supported at JPL.

Science data analysis in OASIS is performed using
several different machine-learning techniques, which can
prioritize acquired science data for downlink to earth and
create new science goals for the rover to achieve. This
paper concentrates on the latter capability of creating
new science goals. More information on prioritizing data
for downlink can be found in [Castano, et al., 2003].
Three different prioritization methods have been devel-

Learning and Planning for Mars Rover Science

Tara Estlin, Rebecca Castano, Robert Anderson, Daniel Gaines,
Forest Fisher, and Michele Judd

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr., Pasadena CA 91109
Tara.Estlin@jpl.nasa.gov

9

oped for OASIS. All use extracted rock features to rank
rocks in terms of scientific importance. The first tech-
nique, target signature detection, recognizes pre-
specified signatures that have been identified by ground
scientists as data of high interest. The second technique,
novelty detection, identifies unusual signatures that do
not conform to the statistical norm for the region. The
last technique, representative sampling, prioritizes sci-
ence measurements by ensuring data is collected on rep-
resentative rocks of the traversed region. These three
prioritization methods are used to trigger opportunistic
science observations by identifying valuable new science
opportunities that, if possible, should be taken advantage
of during the rover’s traverse.

When science opportunities arise on a traverse, a plan-
ning and scheduling system is used to determine the nec-
essary rover activities to achieve the new science goals.
Based on an input set of prioritized goals and the rover’s
current command sequence, the planner generates a
modified sequence of activities that satisfies as many
new goals as possible while still preserving high-priority
activities already in the sequence and obeying resource
and other operation constraints (e.g., such as ensuring
there will be enough power to complete the day’s activi-
ties). Our planner uses a continuous planning approach,
where plans are dynamically modified in response to
changing events and goal information. In this approach,
the planner continually monitors the execution of com-
mands on the rover and information on resource utiliza-
tion and current states. It also accepts new science goals
as they become available. As information is acquired
regarding these items, the planner updates its version of
the plan. From these updates, new problems and/or op-
portunities may arise, requiring the planner to re-plan in
order to accommodate the unexpected events.

The remainder of this paper is organized as follows.
We begin by presenting the OASIS system, including
characterizing the full architecture and presenting a more
detailed explanation of the system components. We will
then describe our testing plan for OASIS, which includes
using Martian data from upcoming missions, as well as

robotic vehicles developed at JPL. Finally, we will dis-
cuss related work and present our conclusions.

2 OASIS System
The OASIS system architecture is shown in Figure 1. As
highlighted in the figure, OASIS is comprised of three
major components:

• Feature Extraction: Enables extraction of fea-
tures of interest from collected images of the
surrounding terrain. This component both lo-
cates rocks in these images and extracts rock
properties, such as shape and texture.

• Data Analysis/Prioritization: Uses extracted
features to assess the scientific value of the
planetary scene and to generate new science ob-
jectives that will further contribute to this as-
sessment. This component consists of three dif-
ferent prioritization algorithms, that analyze
collected data, prioritize identified rocks, and
generate a new set of observation goals to
gather further data on rocks which were ranked
high priority.

• Planning and Scheduling: Enables dynamic
modification of the current rover command se-
quence (or plan) to accommodate new science
requests from the data analysis unit. This com-
ponent uses a continuous planning approach to
iteratively adjust the plan as new goals and/or
faults occur.

OASIS operates in an autonomous fashion where the data
analysis system can be seen as driving new science ex-
ploration. First, new science data is received by the Fea-
ture Extraction component. Currently, we have focused
the system on analyzing rocks within \image data, but
plan to expand to other types of data, such as spectrome-
ter measurements. Images are broken down by first locat-
ing individual rocks in each received image, and second,
by extracting a set of rock properties (or features) from
each identified rock. Extracted rock properties are then
passed to the Data Analysis component of the system.

Figure 1. Overview of OASIS system architecture. OASIS consists of three major components: Feature Extraction, Data Analysis/ Priori-
tization, and Planning and Scheduling.

10

This component consists of three different prioritization
algorithms, which analyze the data by searching for items
such as pre-known signatures of interest, which have
been identified by scientists on earth, or novel rocks (i.e.,
outliers) that have not been seen in past traverses.

As shown in Figure 1, this analysis produces two main
products. One is a set of prioritized images for transmis-
sion to Earth. Currently, spacecraft, such as rovers, can
collect significantly more data than can be transmitted to
Earth due to communication limits. OASIS ranks images
by scientific importance so more valuable images get
transmitted first for further analysis on the ground. This
paper is focused on the second product, which is a list of
new science measurement requests. OASIS uses the out-
put of its three prioritization algorithms to dynamically
produce a list of new science measurements that will take
advantage of new and interesting data collection oppor-
tunities. In current rover missions, images and other sci-
ence measurements are only sent to earth once or twice
during the day. Furthermore, many images cannot be
sent at all due to the communication restrictions men-
tioned above. This setup means that many valuable sci-
ence opportunities may be lost. One problem is that by
the time images are sent from Mars to Earth, analyzed on
the ground by scientists, and a new set of measurement
requests determined and sent back to Mars, the rover will
likely have passed the object of interest. Another problem
is the opportunity may never be recognized if the identi-
fying data is never sent to Earth for analysis. By analyz-
ing data onboard, OASIS enables these new science op-
portunities to be dynamically realized.

New science measurement requests (or goals) are
passed to the planning and scheduling module, which
produces a modified set of actions in order to achieve as
many new science goals as possible, without violating
resource or other mission constraints. In current mission
operations, rover behavior is directed by manually hard-
coding sequences of commands on Earth and then up-
loading these sequences to the rover. Sequence changes
are rarely performed onboard and if something unex-
pected happens, the rover must contact earth for further
instructions. The planning and scheduling component
addresses this problem by using a model of rover opera-
tions and constraints to dynamically modify the current
rover plan in order to accommodate new science goals.
This component can also monitor plan execution and
continue to modify the rover command plan if other un-
expected events or faults occur.
 Next, we discuss each of the OASIS components in
more detail.

2.1 Feature Extraction
The first step in the OASIS system is analyzing rock fea-
tures from images taken onboard the rover. As the rover
traverses, it takes a series of images to support not only
science, but also navigation operations. Images may be
taken from several different cameras to capture informa-
tion on the surrounding terrain for science analysis and/or

assist in path planning, obstacle avoidance, etc. Our ini-
tial emphasis in OASIS has focused on image analysis
and the characterization of surface rocks. Rocks are
among the primary features populating the Martian land-
scape and the understanding of rocks on the surface is a
first step leading towards more complex regional geo-
logical assessments by a robotic vehicle.
 Rocks are located in the images by determining the
ground plane from stereo range data, and then producing
a height image and level contours for that image. These
contours can be connected from peaks to the ground
plane to identify rocks in each image [Gor, et al., 2001].

Next, a set of properties is extracted from each rock.
Our feature extraction priorities are based upon our
knowledge of how a geologist in the field would extract
information. Important features to look for and categorize
include albedo (an indicator of rock surface reflectance
properties), visual texture (which provides valuable clues
to mineral composition and geological history), shape,
size, color and arrangement of rocks. Currently our sys-
tem identifies the first three of this set; future work will
expand this to cover additional features. Each property
or feature is measured using a different technique [Gil-
more, et al., 2000; Castano et al., 2002]. For instance,

 Igneous rock

 Metamorphic rock
(a)

(b)

Figure 2. Examples of visual texture providing information
about the geologic texture of rocks. (a) original image (b)
image segmented based on texture.

11

visual texture is measured by computing gray-scale in-
tensity variations at different orientations and spatial fre-
quencies within the image. Figure 2 shows visual texture
information produced from one sample image.

2.2 Data Analysis and Prioritization
The second step in the OASIS system is to use the ex-
tracted features to prioritize rocks. Three prioritization
techniques are used, which employ different machine
learning methods. The results from this analysis are then
used to identify rocks that should be further analyzed and
produce a new set of science measurement goals.

Key Target Signature
The first prioritization technique, key target signature,
enables scientists to efficiently and easily stipulate the
value and importance of certain features. Scientists often
have an idea of what they expect to find during a rover
mission and/or are looking for specific clues that reflect
signs of life or water (past or present). Using this tech-
nique, target feature vectors can be pre-specified and an
importance value assigned to each of the features. Rocks
are then prioritized as a function of the weighted Euclid-
ean distance of their extracted features from the target
feature vector.

Novelty Detection
The second prioritization technique, novelty detection,
detects and prioritizes unusual rocks that are dissimilar to
previous rocks encountered. We have looked at three
different learning techniques for novelty detection. First,
we have developed a distance-based k-means clustering
approach, in which a set of rocks are clustered and any
new rock that is a great distance from any of the cluster
centers is considered novel. In the second method, the
probability density over the feature space for a set of
rocks is approximated using a Gaussian mixture model.
The novelty of a new rock is inversely proportional to the
probability of that rock being generated from the learned
mixture model. The third method uses a discrimination
based kernel one-class classifier approach. We treat all
previous rock data as the “positive class” and learn the
discriminant boundary around that class. Future rocks
with features falling outside the boundary are considered
novel. An example of detecting a novel rock using data
collected from rover field tests is shown in Figure 3.
 These three approaches represent the three dominant
flavors of machine learning techniques for novelty detec-
tion: distance-based, probability-based (i.e., generative),
and discriminative. Considering all three types in one
hybrid approach allows us to tradeoff their respective
advantages and disadvantages.

Representative Sampling
In order to understand the region being traversed, it is
important to have information on representative rocks,
vs. very interesting or unusual rocks. A region is likely to
be populated by several types of rocks, with each type
having a different abundance. Thus, a uniform sampling

will be biased towards the dominant class of rock present
and may result in smaller rock classes not being repre-
sented at all in the downlinked data.

The third prioritization technique, representative sam-
pling, provides an understanding of the typical character-
istics of a region. Rocks are clustered into groups with
similar properties and the data is then prioritized to en-
sure that representative rocks from each class are sam-
pled. To determine the classes, the rock property values
are connected together in a series to form a feature vec-
tor. A weight is assigned to the importance of each prop-
erty. Unsupervised clustering is then used to separate the
feature vectors into similar classes. We currently use a
k-means clustering technique due to its relatively low
computational requirements. However, other unsuper-
vised methods could also be employed. For each class of
rocks, this technique can find the most representative
rock in the class (i.e., the single rock in any image that is
closest to the mean of the set) or rank rocks according to
this metric.

Science Alert
Using the above determined priorities, the data analysis
software can then flag rocks that should be further ana-
lyzed and produce a new set of measurement goals to
further characterize the identified rocks. We call this ca-
pability science alert, since it alerts other onboard soft-
ware that new and high priority science opportunities
have been detected. The number of new goals produced
by the data analysis software will vary depending on the
constraints of the mission. Some missions may want
only limited science alert capabilities, and thus new op-
portunities would only be flagged it they were deemed
critical. Other missions may allow onboard analysis to
direct a larger portion of planned science measurements.

Figure 3: Detection of significant novel rock. The marked rock
is a piece of petrified wood that was discovered during rover field
tests for the MER mission. This piece of wood was identified as
novel by the OASIS system, however was not identified by the
remotely located geologists during the rover tests.

12

 Science alert may also involve several different levels
of reaction. OASIS has been designed so a spectrum of
reactions can be supported. The most basic reaction is to
adjust the rover plan so that the flagged data is immedi-
ately sent back to Earth for further analysis and the rover
holds at the current position, delaying other tasks. The
next step would likely be to collect additional data at the
current site before transmitting data to earth. Further
steps include having the rover alter its path to get closer
to objects of interest before taking additional measure-
ments and/or scheduling a close contact measurement
(such as with a microscopic imager). These operations
would provide new data that could not be obtained
through image analysis alone. The level of allowed reac-
tion will likely be determined by the constraints and
goals of the rover mission. Reaction capabilities may
also be allowed to vary over the course of the mission.

2.3 Planning and Scheduling
Once the data analysis software has identified a set of
new science targets, these targets are passed to onboard
planning and scheduling software that can dynamically
modify the current rover plan in order to collect the new
science data. This component takes as input the new set
of science requests, the current rover command sequence
(or plan), and a model of rover operations and con-
straints. It then evaluates what new science tasks could
be added to the current plan while ensuring other critical
activities are preserved and no operation or resource con-
straints are violated.

CASPER Planner
Planning and scheduling capabilities are provided in OASIS
by the Continuous Activity Scheduling, Planning and Re-
Planning (CASPER) system [Estlin, et al., 2002; Chien, et
al., 2000]. CASPER provides a generic planning and sched-
uling application framework that can be tailored to specific
domains. Its components include:

• An expressive modeling language to allow the user
to naturally define the application domain.

• A constraint management system for representing
and maintaining domain operability and resource
constraints.

• A set of search strategies and repair heuristics.
• A temporal reasoning system for expressing and

maintaining temporal constraints.
• A graphical interface for visualizing plans.
• A real-time system that monitors plan execution

and modifies the current plan based on activity,
goal, state and resource updates.

CASPER employs a continuous planning technique where
the planner continually evaluates the current plan and modi-
fies it when necessary based on new state and resource in-
formation. Rather then consider planning a batch process,
where planning is performed once for a certain time period

and set of goals, the planner has a current goal set, a current
rover state, and state projections into the future for that plan.
At any time an incremental update to the goals or current
state may update the current plan. This update may be an
unexpected event (such as a new science opportunity) or a
current reading for a particular resource level (such as
power). The planner is then responsible for maintaining a
plan consistent with the most current information. And since
things rarely go as expected, especially during planetary
surface operations, the planner stands ready to continually
modify the plan.
 A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and behav-
iors. Activities can be at different levels of abstraction,
where low-level activities typically correspond to direct
rover commands. For example, a plan typically contains
several traverse activities that move the rover between dif-
ferent locations in order to visit science targets. Rover state
in CASPER is modeled by a set of plan timelines, which
contain information on both states, such as rover position,
and resources, such as power. Timelines are calculated by
reasoning about activity effects and represent the past, cur-
rent and expected state of the rover over time. As time pro-
gresses, the actual state of the rover drifts from the state
expected by the timelines, reflecting changes in the world.
State updates are relayed back from sensors and the rover
control software. As these updates are received, CASPER
updates the relevant timeline models with actual state val-
ues, resource values, activity completion times, etc. Each of
these updates may introduce problems into the current plan,
such as a power over-subscription due to a long traverse or
an instrument being in the incorrect position to perform a
particular science reading. These problems (or plan con-
flicts) cause CASPER to perform plan modifications to
bring the plan back into sync with the current state and set
of goals. An example of a plan in the CASPER GUI is
shown in Figure 4.
 To produce and/or modify a current rover plan,
CASPER uses an iterative repair algorithm [Zweben et
al., 1994], which classifies plan conflicts and attacks
them individually. Conflicts occur when a plan con-
straint has been violated where this constraint could be
temporal or involve a resource, state or activity parame-
ter. Conflicts are resolves by using one or more plan
modifications such as moving, adding, or deleting activi-
ties. One example of a conflict is when a new science
activity oversubscribes a resource such as power or
memory. Possible resolutions to this conflict might be
moving the science activity to a part of the plan that
doesn’t oversubscribe that resource, deleting the science
activity, or moving and/or deleting other contributing
activities.

Path Planning
To provide spatial reasoning capabilities to CASPER, we
are using a global path-planning module, which provides
rover route information to the planner based on a map of the

13

rover’s surrounding environment. This module is intended
to give a global perspective of the rover’s anticipated path
as opposed to the local perspective that would be considered
by obstacle avoidance software. We are assuming that for
most rover operations some global map information would
be available through orbital or descent imagery, or from
panoramic imagery generated onboard the rover itself. We
are also assuming this map information map be incomplete
and certain terrain features and/or obstacles may be missing.
 CASPER queries the path planner for two main pieces of
information. The first piece is estimated distances between
science target or other designated traverse waypoints. The
second piece is a list of intermediate-waypoint coordinates
that can be used to direct the rover’s traverse to a particular
targets. Path-distance information is used by the planner to
estimate duration and power required for rover traverses
between targets. Intermediate waypoints are used to track
the rover’s progress during a traverse. To provide path plan-
ning information to our system, we are currently using the
D* path planner, which produces paths in partially known or
changing environments using an efficient and optimal algo-
rithm [Stentz, 1994].

3 System Testing
We are in the process of testing the OASIS system using
data gathered during rover field tests for upcoming mis-
sions as well as using several JPL research rovers in the
JPL Mars Yard.
 The data analysis component is currently being tested
using a suite of image data collected during rover field
experiments performed in Flagstaff, AZ. (These field
experiments were done in preparation for the upcoming
2003 MER rover mission.) One of the primary goals of
using this data to test OASIS is to not only test our sys-
tem on realistic data, but to also ensure that the prioriti-
zations our algorithms produce are comparable to those
made by planetary geologists. Our approach for testing is
to gather sample prioritizations from expert planetary
geologists on various collections of images. Expert rank-
ings are input using a web-based application that enable
experts from across the country to easily prioritize im-
ages and add explanations for their decisions. We are
using statistical methods to combine these expert prioriti-
zations and compare them with the prioritizations pro-
duced by our algorithms.
 The planning component has already been used in sev-
eral tests [Estlin, et al., 2002] using two JPL rovers,
Rocky 7 and Rocky 8, which are pictured in Figure 5.

Plan
Activities

(traverse, image)

Resource
Timelines

(power, memory)

State
Timelines

(position, sun-angle)

Time & Date
(time advances

left to right)

Plan
Activities

(traverse, image)

Resource
Timelines

(power, memory)

State
Timelines

(position, sun-angle)

Time & Date
(time advances

left to right)

Figure 4: Sample rover plan displayed in planner GUI. Plan activities are shown as bars in upper portion of window, where bars rep-
resent the start and end time of each activity. State and resource timelines are shown in bottom portion of screen and show the effects
of the plan as time progresses. Time is depicted as advancing from left to right.

14

Rocky 7 is approximately the same size and mass as the
1997 Mars Pathfinder rover, Sojourner. It employs a
rocker-bogie six-wheel configuration, and is a partially-
steered vehicle, where it only has steering capability on
two corners. In contrast, Rocky 8 is roughly an order of
magnitude larger than Rocky 7 and is similar in size to
the twin MER rovers, set to launch later this year. Rocky
8 also employs a rocker-bogie six-wheel configuration,
however it is a fully-steered vehicle with all-wheel drive
and all-wheel steering.
 The planner was used to produce an initial rover plan
based on a set of science objectives (e.g., perform an im-
age at location A, perform a spectrometer read at location
B, etc.) and to dynamically modify that plan when unex-
pected events occurred during execution (e.g., more
power was required for a traverse or science activity than
originally estimated). Tests were performed in the JPL
Mars Yard. The initial plan contained 53 different activ-
ity instances and took the planner 3.7 seconds to con-
struct. The planning horizon for these tests was 4 hours.
Replans took an average of 7 seconds.1 During these tests
the planner interacted with the rover control software in
several different ways. One, it dispatched commands
from the plan for execution. Two, it monitored the suc-
cess or failure of these commands. And three, it moni-
tored a set of resource and state information including
items such as rover position, power levels, and onboard
memory levels. If unexpected events occurred, then the
plan was dynamically revised to accommodate the new
information. Note, that in these early tests all unexpected
events were undesirable (e.g., resources oversubscribed,
traverses taking longer than estimated), and none corre-
sponded to new science opportunities.
 The above-mentioned tests will be significantly ex-
panded on this year, including 1) testing all components
using real rovers 2) testing the online incorporation of
new science goals, and 3) testing with additional real data

1 Performance numbers reported in this paper were run on a Linux
1.7 GHz Pentium 4 workstation.

sets gathered during rover traverses both on earth and
Mars.

4 Related Work
The idea of having a scientific discovery system direct fu-
ture experiments is present in a number of other systems.
Work on learning by experimentation, such as IDS [Nord-
hausen and Langley, 1993] and ADEPT [Rajamoney, 1990],
varied certain quantitative and qualitative values in the do-
main and then measured the effects of these changes.
OASIS differs from these systems in that it interacts with
the environment to perform experimentation and it is spe-
cialized to particular problems and scenarios in planetary
science. OASIS is also integrated with a planning system,
which constructs the detailed activity sequence needed to
perform new science experiments.

Other work has used experimentation to learn from the
environment but experiments again have not been scientifi-
cally driven. EXPO [Gil, 1993] integrates planning and
learning methods to acquire new information by interacting
with an external environment. However, while EXPO tries
to improve its planning-related domain knowledge, OASIS
learns prioritization models of geological terrain features.
Another example of learning about the environment is the
Minerva museum tour-guide robot [Thrun, et al., 1999].
Minerva learns several pieces of environment knowledge,
including maps, sensor models and travel times between
museum locations. Minerva’s reactive planner uses learned
travel times to dynamically alter its tour of the museum
based on time limits. Conversely, OASIS learns new priori-
tized science goals for the rover to achieve, and uses an ac-
tivity planner/scheduler that reasons about mission goals
and resource and state constraints.

Several researchers have addressed methods for extract-
ing features from data with the intention of performing the
operations onboard a spacecraft. Gulick et al. [2001] pre-
sented methods for locating rocks in an image using infor-
mation about the sun angle, identifying the horizon and rec-

Figure 5: JPL Rocky 7 and Rocky 8 rovers

15

ognizing layers. Gazis and Bishop [Gazis and Bishop, 2002]
and Ramsey et al [Ramsey, et al., 2002] have both looked at
analyzing point spectra for mineral detection. There has
also been work on developing a framework for feature ex-
traction and event detection onboard Earth orbiting satellites
(EVE) [Tanner, et al., 2001]. Our work has specifically
focused on identifying and analyzing rocks in gray-scale
images thus far and, in contrast to the work mentioned here,
takes the next step of using the feature extraction to deter-
mine desirable additional actions a rover could autono-
mously take.

A number of other systems have used planning methods
to coordinate robot behavior. [Gat, 1992; Bonasso, et al.,
1997; Alami, et al., 1998]. However, these systems generate
plans in a batch approach where plans are generated for a
certain time period and if re-planning is required, an entire
new plan must be produced. In OASIS, plans are continu-
ously modified in response to changing conditions and
goals. The CPS planner, which is also directed towards
rover operations, generates contingent plans, which are then
executed onboard and can be modified at certain points if
failures occur [Bresina, et al., 1999]. This planner takes a
more limited approach then the OASIS planner, since the
only plan modifications that can be performed during execu-
tion are those that have previously identified as possible
change points. Furthermore, none of these systems has been
integrated with a machine learning system that drives future
plan goals.

5 Conclusions
This paper presents the OASIS system, which is being
developed to support autonomous science operation dur-
ing long-range rover traverses. OASIS integrates tech-
niques from machine learning with planning and schedul-
ing to dynamically analyze science data, request new
science operations, and generate a new plan of action to
support those requests. Often, in current rover missions,
volumes of data are collected during rover traverses,
however much of this data cannot be sent back to earth
due to communication restrictions. OASIS enables this
data to be analyzed onboard the rover and then used to
determine new science measurement goals for objects of
high interest. This system is currently being tested using
several real rovers and using data gathered during rover
field experiments.

Acknowledgments

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronau-
tics and Space Administration.

References

[Alami et al., 1998] R. Alami, R. Chautila, S. Fleury, M.
Ghallab, and F. Ingrand. An Architecture for Autonomy.

International Journal of Robotics Research. 17(4) April,
1998.

[Bonasso et al., 1997] R. Bonasso, R. Firby, E. Gat, D.
Kortenkamp, D. Miller, and M. Slack. Experiences with an
Architecture for Intelligent, Reactive Agents. Journal of
Experimental and Theoretical Artificial Intelligence Re-
search, 9(1), 1997.

[Bresina et al., 1999] J. Bresina, K. Golden, D. Smith,
D., and R. Washington. Increased Flexibility and Ro-
bustness of Mars Rovers. Proceedings of the Interna-
tional Symposium, on AI, Robotics and Automation for
Space. Noordwijk, The Netherlands, June 1999.

[Castano et al., 2002] R. Castano, R.C. Anderson, J. Fox,
J.M. Dohm, A.F.C. Haldemann, and W. Fink. Automating
shape analysis of rocks on Mars. Proceedings of the Lunar
and Planetary Science Conference, March 2002.

[Castano et al., 2003] Rebecca Castano, Robert Ander-
son, Tara Estlin, Dennis Decoste, Forest Fisher, Daniel
Gaines, Dominic Mazzoni, and Michele Judd. Rover
Traverse Science for Increased Mission Science Return.
Proceedings of the 2003 IEEE Aerospace Conference.
Big Sky, Montana, March 2003.

[Chien, et al., 2000] Steve Chien, Russell Knight, Andre
Stechert, Rob Sherwood, and Gregg Rabideau. Using Itera-
tive Repair to Improve the Responsiveness of Planning and
Scheduling. Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000.

[Estlin, et al., 2002] Tara Estlin, Forest Fisher, Daniel
Gaines, Caroline Chouinard, Steve Schaffer, and Issa
Nesnas. Continuous Planning and Execution for a Mars
Rover. Proceedings of the Third International NASA
Workshop on Planning and Scheduling for Space. Hous-
ton, TX, Oct 2002.

[Gat, 1992] Erann Gat. ESL: A Language for Supporting
Robust Plan Execution in Embedded Autonomous Agents,
Proceedings of the Tenth National Conference on Artificial
Intelligence, San Jose, CA, July 1992.

[Gazis and Bishop, 2002] P. Gazis and J. Bishop. Develop-
ment of rule-based autonomous spectral analysis techniques
for planetary surfaces: preliminary results using lab spectra.
American Geophysical Meeting Fall meeting, San Fran-
cisco, CA, Dec 2002.

[Gil, 1993] Yolanda Gil. Efficient domain-independent ex-
perimentation. Proceedings of the Tenth International Con-
ference on Machine Learning. 1993

16

[Gilmore, et al., 2000] M. Gilmore, R. Castano, T. Mann, R.
C. Anderson, E. Mjolsness, R. Manduchi, and R. S. Saun-
ders. Strategies for autonomous rovers at Mars. in J. of
Geophysical Res., Vol. 105, No. E12, Dec. 2000 pp. 29223-
29237.

[Gor, et al., 2001] V. Gor, R. Castano, R. Manduchi, R.
Anderson, and E. Mjolsness. Autonomous Rock Detection
for Mars Terrain. Space 2001, American Institute of Aero-
nautics and Astronautics, Aug. 2001.

[Gulick, et al., 2001] V. Gulick, R. Morris, M. Ruzon,
and T. Roush. Autonomous image analyses during the
1999 Marsokhod rover field test. Journal of Geophysical
Research-Planets, 106 (E4): 7745-7763 Apr. 2001.

[Mishkin, et al., 1998] A. Mishkin, J. Morrison, T.
Nguyen, H. Stone, B. Cooper, B. Wilcox. Experiences
with Operations and Autonomy of the Mars Pathfinder
Microrover. Proceedings of the 1998 IEEE Aerospace
Conference. Aspen, CO, March 1998.

[Nordhausen and Langley, 1993]. B. Nordhausen and P.
Langley. An integrated framework for empirical discovery.
Machine Learning. 12:17-47.

[Ramsey, et al., 2002] J. Ramsey, P. Gazis, T. Roush, P.
Spirtes, and C. Glymour. Automated remote sensing with
near infrared reflectance spectra: carbonate detection.
American Geophysical Meeting Fall meeting, San Fran-
cisco, CA, Dec. 2002.

[Rajamoney, 1990] S. Rajamoney, S. A computational ap-
proach to theory revision. In Shrager, J., and Langley, P.,
eds. Computational Models of Scientific Discovery and
Theory Formation. San Mateo, CA: Morgan Kaufman. 225-
254.

[Stentz, 1994] Anthony Stentz. Optimal and Efficient
Path Planning for Partially-Known Environments. Pro-
ceedings of the IEEE International Conference on Robot-
ics and Automation, San Diego, CA, May 1994.

[Tanner, et al., 2001] S. Tanner, K. Keiser, H. Conover,
D. Hardin, S. Graves, K. Regner, R. Wohlman, R.
Ramachandran, M. Smith. EVE: An on-orbit data mining
testbed. IJCAI-01 Workshop on Knowledge Discovery
from Distributed, Heterogeneous, Autonomous, Dynamic
Data and Knowledge Sources. Seattle, Washington, Aug.
2001.

[Thrun, 1999] S. Thrun, M. Bennewitz, W. Burgard, A.
Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg,
N. Roy, J. Schulte, and D. Schulz. MINERVA: A Sec-
ond-Generation Museum Tour-Guide Robot. Proceedings
of the IEEE International Conference on Robotics and
Automation, Detroit, MI May 1999.

[Zweben, et al., 1994] M. Zweben, B. Daun, E. Davis,
and M. Deale. 1994. Scheduling and Rescheduling with
Iterative Repair, In Intelligent Scheduling, Morgan
Kaufmann, San Francisco, CA. 1994. 241-256.

17

.

18

Specifying Multirobot Coordination in ICPGolog
— From Simulations towards Real Robots —

F. Dylla and A. Ferrein and G. Lakemeyer
Knowledge-based Systems Group, Ahornstr. 55, RWTH Aachen Germany

Phone: +49 241 80-21534, Fax: +49 241 80-22321
�dylla, ferrein, gerhard�@cs.rwth-aachen.de

Keywords: reasoning about actions and change, knowledge representation

Abstract

Deliberation in highly-dynamic domains such as
robotic soccer requires a rich representation lan-
guage that can deal with continuous change, un-
certainty, and multiple agents, among other things.
For this purpose we have developed the language
ICPGOLOG, a variant of the logic-based action lan-
guage GOLOG. We show how to specify plans for
soccer agents such as playing a double pass in ICP-
GOLOG and report on experimental results in the
ROBOCUP SIMULATION league. We have also re-
cently integrated ICPGOLOG as the high-level con-
trol language into our MID-SIZE soccer team. We
discuss the software architecture and some of the
differences between agent modeling in the SIMU-
LATION and MID-SIZE league.

1 Introduction
Highly dynamic real-time domains like robotic soccer place
stringent requirements on the decision making process of
agents. An action must be settled nearly immediately after
new sensory information is received. There is little time to
reason about the next action to perform. Especially in soccer,
it is better to do something, even if it is not optimal, than to
stay around on the field thinking about what to do. On the
other hand, for clever team play, there is a need to, say, cal-
culate the game position. Imagine you want to attack over
the right-hand side of the field but the opponent defense is in
good position while the left wing is open to advance. Esti-
mating the game situation like this the agent holding the ball
should play a pass back to a free midfielder that is in turn in
a position to serve a left forward.

It seems that only taking the currently available game data
into account, there is not enough information available for
such decisions. We therefore think that besides reactivity a
good decision module for a soccer agent needs a deliberative
component in one form or another. By deliberation we under-
stand the possibility to reason about actions and make plans
about future actions to perform. Moreover, it is not enough
to think only about one’s own actions. Due to soccer being a
team play it has to take possible actions of teammates into ac-
count. As in the example of the wing change, the ball holding
agent should also reason about what would be the best action

for the midfielder receiving the back pass to be able to esti-
mate that the midfielder has a good chance to complete the
wing change.

The logic-based programming language GOLOG
[Levesque et al., 1997] is an approach to reason about
action effects combining explicit agent programming as
in imperative programming languages with deliberation.
Based on the situation calculus [McCarthy, 1963] GOLOG
is able to reason about the world evolving from situation
to situation. Over the past years many extensions like
dealing with concurrency, exogenous and sensing actions,
a continuous changing world and probabilistic projections
[G. Lakemeyer, 1999; de Giacomo und H.J. Levesque, 1999;
Giacomo et al., 2000; Grosskreutz and Lakemeyer, 2000b;
Grosskreutz, 2000; Grosskreutz and Lakemeyer, 2000a;
2001] made GOLOG into an expressive agent programming
language. It was used as high-level controller in robotic’s
applications as a museum tour-guide [Burgard et al., 1998],
in computer animation [Funge, 1998], and for low-cost
robots like the Lego Mindstorms [Levesque and Pagnucco,
2000].

Combining many of the above mentioned features into a
single language, we propose ICPGOLOG as an agent pro-
gramming language suitable for highly-dynamic multiagent
domains like robotic soccer. Using a double pass as an exam-
ple, we demonstrate in the paper how multirobot coordination
can be achieved using ICPGOLOG. We also report on experi-
mental results obtained in the SIMULATION league. However,
our main goal is to use the language to control and coordinate
the actions of real robots. To this end we have recently in-
tegrated ICPGOLOG into our MID-SIZE league robots. We
discuss the software architecture and some of the differences
in agent modeling in simulated versus physical robots. At the
time of the workshop we hope to report on our first experi-
ences using ICPGOLOG on real robots.

The rest of the paper is organized as follows. After briefly
introducing relevant aspects of agent control languages in
Section 2, we present our system architecture in Section 3 as
a hybrid approach combining both the reactive and the delib-
erative paradigm. As the deliberative part of this architecture,
ICPGOLOG is presented in Section 4. We present experi-
mental results in Section 5. Section 6 gives a brief overview
of our MID-SIZE software architecture with ICPGOLOG as
the high-level controller. We further discuss some of the dif-

19

ferences between the SIMULATION and MID-SIZE league re-
garding high-level control. In Section 7, we give a brief sum-
mary and an outlook on future work.

2 Related Work
Below we give a short summary of several architecture ap-
proaches applied in ROBOCUP. The classification is based
on [Dorer, 1999b] and [Wooldridge, 1999].

Reactive architectures are based on an immediate assign-
ment between perception and action without an explicit de-
scription of how a goal can be achieved [Maes, 1990]. Ex-
amples are the Subsumption-Architecture [Brooks, 1986],
the Situated-Agents [Agre and Chapman, 1990], the Dual-
Dynamics approach by Jäger and Christaller [Jaeger and
Christaller, 1998], or UML-Statecharts [Arai and Stolzen-
burg, 2002]. BDI architectures are based on the work of
Bratman on practical reasoning [Bratman, 1987]. Following
Bratman the internal state of an agent is determined by its
knowledge about the environment (beliefs), the action facili-
ties the agent is able to choose from (desires) and the current
goals (intentions). Representatives for this approach are PRS
by Georgeff and Lansky [Georgeff and Lansky, 1987] and
the recent Double-Pass Architecture based on mental mod-
els [Burkhard, 2001]. Logic-based architectures try to obtain
a goal-directed plan (sequence of actions) by using a sym-
bolic description and a theorem prover. This manipulation of
symbolic data is also called deliberation. One of the most in-
fluencing approaches is McCarthy’s Situation Calculus [Mc-
Carthy, 1963]. Because deliberation is a complex, time con-
suming process, an optimal plan is only obtained for the situa-
tion where planning started, but not necessarily for the current
situation. Another system based on Plan Description Lan-
guages is introduced in [Iocchi et al., 2000]. Systems follow-
ing the hybrid approach try to combine the advantages of re-
active and goal-directed aspects of other architectures. Layers
found in most of these models are a reactive layer, a deliber-
ative layer and a modeling layer. Due to using separate mod-
ules a coherence problem arises, i.e. there has to be a module
making them work together reasonably. Examples are Tour-
ingmachines [Ferguson, 1994] or InterRAP [Müller, 1996].
Our own DR-Architecture [Dylla et al., 2002] belongs to this
class. Integrated architectures aim not only for the combina-
tion but the integration of reactive and goal directed behavior.
The Situated Automata [Kaelbling and Rosenschein, 1990]
and Enhanced Behavior Networks proposed by Dorer [Dorer,
1999a] are examples of this approach.

3 The DR-Architecture
While deliberation has many advantages for decision making
of an agent, it has the disadvantage of being slow compared to
generating actions in a reactive fashion. In [Dylla et al., 2002]
we proposed a hybrid architecture which allows the combina-
tion of deliberation with reactivity. In this Section we give an
overview of our architecture. This architecture is not only the
basis for our SIMULATION team but for the MID-SIZE team
as well.

Figure 1 shows the DR-Architecture. From the sensory in-
put we build our world model (gray box in Figure 1). It con-

Sensors

Reactive Component Deliberative Component

Effectors

Abilities

Action Selection

Basic Worldmodel

Team−level tactics

Group−level tactics

Sit. Classification

Figure 1: DR-Architecture

tains data like the positions of teammates, opponents, or the
ball (Basic World Model), classification data about the current
situation, e.g. good possible pass partners (Situation Classifi-
cation) and group resp. team-level information, e.g. the basic
formation of the team (Group- and Team-level tactics).

The decision module in the DR-Architecture is divided into
three modules. To be able to settle an action immediately the
Reactive Component computes the next action to be executed
based on the current game situation. The Deliberative Com-
ponent calculates a plan projecting into the future choosing
among the possible action sequences. Section 4 covers this in
detail. Having an immediate action and a plan concurring for
executing one needs to decide which of both to use. A simple
strategy for the Action Selection is to use the plan whenever
there exists one or execute the action provided by the Re-
active Component otherwise. More complex approaches are
currently being tested in [Riedel, 2003].

Abilities are the basic actions the agent can perform in
the world. In the SIMULATION league the system of UvA-
TRILEARN provides actions on three layers of granularity.
The fine grained layer contains actions like kick or dash,
which are given by the SOCCERSERVER while the coarse
model provides high-level abilities like dribble or intercept
ball. For a detailed description we refer to [de Boer and Kok,
2002]. We use the UvA-TRILEARN system as our basic sys-
tem.

4 From GOLOG to ICPGOLOG

GOLOG [Levesque et al., 1997] is a high-level programming
language for specifying complex tasks like those typically
found in robotic scenarios. Similar to ordinary imperative
languages, GOLOG offers constructs like sequence, if-then-
else, while, and recursive procedures. In addition, a nonde-
terministic choice operator allows the robot to choose at run-

20

time from the given alternatives. Another important differ-
ence compared to most other programming languages is the
notion of a test condition, which, in general, can be an arbi-
trary first-order sentence.

We will not go into any technical details of the semantics
of GOLOG except to note that it is based on the situation
calculus [Reiter, 2001]. From a user’s point of view, the fol-
lowing needs to be specified: a set of so-called fluents, which
are predicates and functions that may change over time like
the position of a robot, a set of primitive actions like mov-
ing to a certain location, preconditions and effects of primi-
tive actions, and a (first-order) description of the initial state
or situation. The user can then write programs which use
the given primitive actions and where test conditions refer to
fluents. We will see example programs below. Perhaps the
most interesting aspect of GOLOG is the ability to project
(or simulate) the outcome of a program before actually exe-
cuting it. This way an agent can evaluate different alternatives
and choose the best one for execution.1

The features offered by the original GOLOG were soon
found to be insufficient for realistic robot application. The
first major extension was CONGOLOG [Giacomo et al.,
2000], which added the ability to execute actions concur-
rently and the notion of an exogenous action, which is use-
ful to model events outside the robot controller like a low-
level routine reporting the current position of the robot. IN-
DIGOLOG [de Giacomo und H.J. Levesque, 1999] extends
CONGOLOG by allowing the interleaving of on-line execu-
tion and projection.

For robotic domains, however, at least two things were
still missing, actions that describe continuous change to,
say, reason about the movement of a mobile robot, and
noisy sensors and effectors. These features were added in
CCGOLOG [Grosskreutz and Lakemeyer, 2000b; 2001] and
PGOLOG [Grosskreutz, 2000; Grosskreutz and Lakemeyer,
2000a], respectively. Among other things, these offer con-
structs that allow an agent to wait for a certain event to occur
(waitFor), to execute a sub-program which can be blocked at
any time once a given condition is no longer satisfied (withC-
trl), and to execute an action with some probability � and an
alternative with probability �� �.

In our current work, we have integrated all these features
into a single framework called ICPGOLOG, whose Prolog-
implementation is based on an existing implementation of IN-
DIGOLOG. Before turning to applying ICPGOLOG to robotic
soccer, here is a brief summary of the language features and
the notation used:

� Sequence: ��� ��
� Nondeterministic Choice: ��� ��
� Test: ����

� Event-Interrupt: ������	���

� If-then-else: �
��� ��� ���

� While-loops: ������� ���

� Condition-bounded execution: ������	���� ���

1We remark that the language provides a solution to the frame
problem [Reiter, 2001].

� Concurrent actions: ��������� ���

� Probabilistic actions: �	����������� ��� ���

� Probabilistic (off-line) projection: ��	����� ���

� Procedures: �	���������	���	��� �����

4.1 A soccer agent in ICPGOLOG

For specifying an agent in ICPGOLOG one starts with a de-
scription of the domain knowledge. One has to specify the
actions the agent can perform. ICPGOLOG distinguishes be-
tween primitive, sensing, and exogenous actions. The prim-
itive actions are those the agent can perform in the world,
sensing actions are used to get information about the world. A
fluent is assigned to each sensing action which the agent can
test to get information about the world. Exogenous actions
are actions which occur in the world and to which the agent
can react. For each action one has to specify a precondition
to state when the action is possible. To describe the effects of
an action, one must provide effect axioms, describing which
fluents are changed when performing this particular action.
Following, we give an example of such a description for the
soccer domain.

1. ���� ������	��
����

2. ���� ��������������

3. ���� ����������������������� ��

4. ��		��������������� �����

5. ���	�	 �������������������� ��
���������� � �������� ��

6. ���� ��������		��������

7. ���� �������	����� ���� ��		���������������

8. 	��	�	�	����� ���� ��		�������������
��		��������

9. ���� ������������	������

10. ���� ���������������		������� ������������

11. ��		���������		�� �� ��
��������������� �� 	��������� ���

12. ���	�	 ������������		�� �� �� ��������� �
� �������		������������� �� ���

13. ������� ����������	������ �� � � ��

14. ������� ����� ������
��������

The relational fluent ����� tells the agent whether it sees
the ball or not. It is a primitive fluent in contrast to continuous
fluents which will be explained below.

The fluent of Item 2 denotes the server’s playmode. Every
time the playmode is changed by the SOCCERSERVER an ex-
ogenous action is generated by the basic system. The agent
notices a playmode change by testing the playmode fluent.
The effect axiom of this action (5) changes the value of the
playmode fluent when the exogenous action was generated by
the basic system and received by the ICPGOLOG agent. The
playmode is only changed if a legal playmode is transmitted
to the agent otherwise its value remains unchanged. This is
denoted by the last argument of the ���	�	 ��� predicate in

21

(5). An example for a precondition is given in (4) stating that
a playmode change can always happen.

To play a pass, an agent has to determine to which team-
mate it should play the pass. Next, the description for a possi-
ble pass partner follows. The fluent ��		������� is affected
by the sensing action 	����� ���� ��		������� ������ �.

The predicate ���� instructs the interpreter to set the flu-
ent ������	��	 to the respective value.

Fluent ������	����� holds the position of the ball. It
changes continuously every cycle and is therefore stored in
a special continuous fluent.

In (10) the primitive action for playing a direct pass from
the ������ to a pass ��������� is defined. The action only
seems reasonable if the sender is in ball possession and knows
where the recipient is (11). The action has the effect that the
ballholder changes from sender to the recipient, but only if
the ball was not intercepted by an opponent player.

Additionally, one has to define the fluent’s initial values,
e.g. the ball being in the center of the field before kick-off
(12). For continuous fluents one has to specify a so-called
low-level model (13). Those models are used in projections
to determine the correct fluent value. For the ball position a
linear approximation of the ball movement is used.

����(soccer agent,
�����([����	��
(playmode=pm BeforeKickOff,

place on field(playmode)),
����	��
(playmode=pm Null, wait(1)),
����	��
(playmode=pm FreeKick Left,...),
...
����	��
(playmode=pm PlayOn,

play soccer)],
[execute(next action), fail].

Figure 2: Top-Level structure of the soccer agent

The next step is to provide ICPGOLOG programs to
describe agent’s behavior. The playmode is the most
important parameter for determining a next action. If
the mode changes the agent has to react immediately.
Within the top level procedure 	����� ����� (see Fig-
ure 2) this is modeled by the ������	� statement.
���� ������	
��� � �� ������������� � � �� means that
the agent should take its position on the field before the game
is started. As long as this conditions holds, the agent will call
the ����� �� !��� procedure. At that moment a condition
fails, the respective procedure is interrupted. To be able to
catch all possible playmodes we use the ����� statement. By
this, the different ���� ��� statements are executed concur-
rently.

����(play soccer,
[try goal shot(Own);

...;
try double passes(Own);
try direct passes(Own);
...]).

Figure 3: Selecting a behavior

In the case of ������� � �� ��� �� the procedure
��� 	����� is called (see Figure 3). This procedure encodes
the behavior of the agent in normal play. If a plan is appli-
cable with respect to the low-level models in the situation the
projection is based on, it will be selected for execution. So far,
the order actions are evaluated is fixed. The first successful
complex action in this order will be selected, the others below
will be ignored. Methods changing this order in a reasonable
way are currently under investigation.

����(try double passes(Own),
[initializePassPartner,

search next Passpartner(Own),
���
� (���(passPartner=nil),
�� (����� (has ball(Own),

try double pass(Own, passPartner)) = 0.9,
[print(”PLANNED DOUBLE PASS.”),

set next action(double pass(Own, passPartner)),],
search next Passpartner(Own))

)]).

Figure 4: Module for evaluating several double pass opportu-
nities

In Figure 4 we display the procedure for evaluating dou-
ble pass possibilities with several pass partners. The agent
projects a double pass with a specific partner by ��	�� and
checks whether the projected probability is higher than 90%.
In this case the double pass with the computed pass partner is
selected and executed otherwise a next pass partner is tried.
To coordinate both agents, the pass partner uses the same plan
descriptions and projects from the ballholder’s view.

����(try double pass(Own, TargetPlayer),
[look for free space(Own, TargetPlayer),

directPass(Own, TargetPlayer, pass NORMAL),
�����([�����(receivePass(TargetPlayer),

intercept direct pass(closestOppToPass(TargetPlayer),
TargetPlayer)),

�� (isBallKickable(TargetPlayer),
[kickTo(TargetPlayer, freePos, 0.8),

intercept direct pass(closestOppToPass(Own),
Own)])],

[moveToPos(Own, freePos),
receivePass(Own)])]).

Figure 5: Module for projecting one double pass taking op-
ponents into account.

The description of a double pass with a specific teammate
is shown in Figure 5. In a double pass situation an opponent
is staying right before our agent. To determine a good po-
sition where to receive the pass back from the teammate the
agents look for a free space behind the opponent. The action
���" #�� #��� 	���� does right this setting the fluent #�����	
to a particular position in the free region. After that the agent
passes the ball to its partner it starts to run towards the free po-
sition. Meanwhile, the ball is moving towards his teammate
(modeled by �����). It is expected that the closest opponent
tries to intercept the moving ball (��������� ������ ��).
When the second player receives the ball, it kicks it back to
the position where the initiator waits for the ball. The oppo-

22

nent’s attempt to intercept the ball is modeled for this pass as
well.

����(execute double pass(Own, TargetPlayer),
[look for free space(Own, TargetPlayer),

directPass(Own, passPartner, pass NORMAL),
receivePass(passPartner),
kickTo(passPartner, freePos, 0.8),
moveToPos(Own, freePos),
receivePass(Own),
setPassFinished,
setTrySucceeded(true)].

Figure 6: Module for executing a double pass

The execution of the projected path is shown in Figure 6.
The ballholder has to look again where his teammate and the
free space is, because the world might have changed. The
actions with argument ��� are executed by the agent itself
while the actions with ������	��	 as argument are sup-
posed to be executed by the respective teammate.

To illustrate two more important features we show in Fig-
ure 7 two procedures for projecting a direct pass with two
possibilities to model opponent behavior. By the ������	
construct in Figure 7, the agent waits until it is able to stop
the ball or the ball is too far away, probably it was intercepted
and the current action is not reasonable anymore. With this
construct we can test the end of the pass action. Another con-
cept is the ���� statement. We can test two different models
of an opponent intercepting our pass. With probability 0.7 the
pass may be intercepted using model ��������� ������ ��		$
and with probability 0.3 using ��������� ������ ��		% . In the
first alternative the model can be very pessimistic, i.e. the op-
ponent will perform a real sophisticated intercept action, or
optimistic in the other case.

4.2 Executing a Double Pass
To illustrate how ICPGOLOG works in practice we give an
example execution of a double pass. We refer to the pro-
cedures given above. We first introduce the example set-
ting and show how a multiagent plan is generated and exe-
cuted in ICPGOLOG by an execution trace of the program
try double passes.

Our scenario is the following. Player 2 (the lower yellow
player in Figure 8) wants to outplay the opponent with a dou-
ble pass. Player 3 (upper yellow player in Figure 8) is in a
good position to play a double pass with Player 2. Player 2

����(try direct pass(Own, TargetPlayer),
[directPass(Own, TargetPlayer, pass NORMAL),
�����(prob intercept direct pass(closestOpp-

ToPass(TargetPlayer), TargetPlayer),
�������(or(ball near player(TargetPlayer),

ball far(TargetPlayer))))]).
����(prob intercept direct pass(Opp, TargetPlayer),

����(0.7, intercept direct pass1(Opp, TargetPlayer),
intercept direct pass2(Opp, TargetPlayer))).

Figure 7: Module for projecting a direct pass with probabilis-
tic opponent behavior

Player 2

Player 3

Opponent

(a) Beginning
of the double
pass

(b) Player 3
received first
pass

(c) Player 2
moves to receive
position

(d) Player 2 re-
ceives the sec-
ond pass

Figure 8: Double pass scenario

therefore initiates the double pass by playing a direct pass
to Player 3. Thereafter, Player 2 has to run to the position
where it can receive the pass from Player 3 (Figure 8(b)).
Player 3 receives the ball and should pass it back to Player 2
if Player 2 itself is near the reception position (Figure 8(c)).
Finally, Player 2 receives the ball (Figure 8(d)).

To make it more concrete, we show the ICPGOLOG exe-
cution trace of the described scenario in Figure 9. Although
we are able to reason about the behaviors of opponents by
appropriate models as well, we leave out this detail here.
The left column of this figure shows the trace for Player 2
which initiates the pass, the right one for Player 3. Player 2
starts by getting a new world model and intercepting the ball
to be able to play the first pass (lines 1 – 6). After the
successful intercept action both agents start the procedure
�� ������ ��		�	����� (refer to Figure 4). The variable
��� is set to Player 2 for both agents. Player 3 therefore
plans all actions of the double pass from Player 2’s point of
view. Of course, in the execution each agent performs only
actions regarding itself.

The first action in this procedure is to find a pass partner.
After resetting the fluent ��		������� , the agents projects all
possible partners for playing a pass. This is expressed by the
����& statement in Figure 7. This corresponds to the lines 7
to 13 in Figure 9. If this projection is successful with prob-
ability 0.9 the procedure ������� ������ ��		 is called. As
one can observe in lines 14 and 15 in Figure 9, both players
are executing the action ����������. The execution system
can determine by the command 	�
������� that this ac-
tion is for Player 2. Player 3 will not perform the action in
the real world.

23

Player 2 Player 3

1 send(getBasicWorldModel, true)
send(nextSkill(2), intercept)
WAITING FOR EXOGENOUS ACTIONS...
setPlayerProj(2,[-28.34,-2.33],...)

5 waitedIntercept
send(getBasicWorldModel, true)
initializePassPartner
setPassPartner(3)
Prob. Proj. Test

10 (# of initial configs: 1,
unsorted/sorted # of traces:1/1).

Prob. Proj. Test (cached result).
write(PLANNED DOUBLE PASS.)
send(nextSkill(2),

15 [directPass, [3, pass_NORMAL]])
setBallProj([-27.50,-3.88],...)
send(nextSkill(3), receivePass)

setBallProj([-23.27,-11.44],...)
20 send(nextSkill(3),

[kickTo, [[-18.71,-1.88],0.4])

setBallProj([-27.50,-3.88],...)
send(nextSkill(2),

25 [moveToPos,[[-18.71,-1.88],...])
WAITING FOR EXOGENOUS ACTIONS...
setPlayerProj(2,[-18.71,-1.88],...)
send(nextSkill(2), receivePass)
WAITING FOR EXOGENOUS ACTIONS...

30 setBallProj([-20.57,3.19],...)
send(getBasicWorldModel, true)
send(nextSkill(2), intercept)
setPlayerProj(2,[-20.96,3.47],...)
waitedIntercept

35 setPassFinished
setTrySucceeded(true)
send(nextSkill(2), intercept)
WAITING FOR EXOGENOUS ACTIONS...
setPlayerProj(2,[-21.01,3.62],...)

40 waitedIntercept

send(getBasicWorldModel, true)
initializePassPartner
setPassPartner(3)
Prob. Proj. Test

(# of initial configs: 1,
unsorted/sorted # of traces:1/1).

write(PLANNED DOUBLE PASS.)
send(nextSkill(2),

[directPass, [3, pass_NORMAL]])
setBallProj([-28.50, -3.00], ...)
send(nextSkill(3), receivePass)
WAITING FOR EXOGENOUS ACTIONS...
setBallProj([-23.19, -11.43],...)
send(nextSkill(3),

[kickTo, [[-21.42, 0.98],0.4])
WAITING FOR EXOGENOUS ACTIONS...
setBallProj([-23.26, -8.75], ...)
send(nextSkill(2),

[moveToPos,[[-21.42,0.98],...])

setPlayerProj(2,[-21.42,0.98],...)
send(nextSkill(2), receivePass)

setBallProj([-3.37, 2.97],...)
send(getBasicWorldModel, true)
send(nextSkill(2), intercept)
setPlayerProj(2,[-23.30,-6.25],...)
waitedIntercept
setPassFinished
setTrySucceeded(true)

Figure 9: Execution traces of the pass sender and receiver in the double pass situation

24

We now enter phase 2 of our double pass (Figure 8(b))
where the first pass is to be received by Player 3. Again, both
player settle the same action (�����������). To synchronize
actions of both players the execution system waits until some
condition meets denoting the end of the respective action. In
our example the reception of the first pass is acknowledged
by an exogenous event “received pass”.

This is modeled by an exogenous action (line 18 in Fig-
ure 9, WAITING FOR EXOGENOUS ACTION). The pass
back from Player 3 to Player 2 is not modeled by a direct
pass. Instead, a "��"'� action is performed to a position cal-
culated by ���" #�� #��� 	���� in Figure 6, i.e. a position in
a free region behind the opponent. Note that the goal position
of the "��"'� command slightly differs in both traces. This
can be explained by the different world models of the resp.
agent based on which this calculation is done.

Figure 8(c) shows the situation when Player 2 is near the
calculated receive position. Finally, Player 2 receives the pass
(Figure 8(d)). As stated above, there can be small differences
in values derived from agent’s world model. Therefore, to
ensure that Player 2 receives the ball, it performs an intercept
action in the end.

In this example we show a multiagent plan for a double
pass. This plan does not use explicit communication to co-
ordinate the agents involved. The execution of this plan is
possible because both player reason about the same actions.
Player 3 in the example generates the plan from the ball-
holder’s point of view and comes to the same conclusion as
Player 2. So, Player 3 identifies itself to be the best pass part-
ner for Player 2. Multiagent coordination like this only works
if agents’ world models are similar and not too uncertain.

For our implementation we used the PROLOG system
ECLIPSE [ECLiPSe, 2002] for the ICPGOLOG interpreter.
The primitive ICPGOLOG actions we used in the double pass
example are sent to the basic agent that is connected to the
SOCCERSERVER. Our basic agent is an extension of the UvA-
TRILEARN system from the University of Amsterdam [de
Boer and Kok, 2002]. The PROLOG system communicates
with the basic agent via shared memory. The high-level agent
receives its world model from the basic agent and sends the
next action to be executed to it which in turn translates it to
SOCCERSERVER commands.

Finally, we remark that for our implementation of ICP-
GOLOG, we needed to solve a problem that is common to
most GOLOG variants, but which becomes quite critical
in real-time environments like robotic soccer. The issue is
that in order to evaluate a test condition, the GOLOG inter-
preter usually applies what is called regression, which means,
roughly, that the interpreter needs to transform the test con-
dition to one that can be evaluated in the initial situation,
taking into account all the actions which have happened so
far. In our case the number of actions to be considered in
this process quickly grows into the thousands, which leads to
severe computational problems. As an alternative, Lin and
Reiter [Lin and Reiter, 1997] proposed what they call pro-
gression, which means that after an action has been executed,
the description of the initial situation is updated to reflect the
effects of the action. This way tests can always be evaluated
directly against the current state of the world. Unfortunately,

Lin and Reiter’s proposal does not lend itself to an efficient
implementation because the size of the world description eas-
ily grows exponentially when applying progression. For our
domain we developed a simpler, set-based form of progres-
sion which is more restricted than Lin and Reiter’s version
but which is computationally viable. In fact we were able to
gain an exponential speedup compared to using regression.
For details we refer the reader to [Dylla et al., 2003].

5 Experimental Results
We tested the above described framework in the scenario of
ROBOCUP SIMULATION league. Our agent programming
language is expressive at the cost of higher runtimes. We
therefore tested on which level of abstraction deliberation is
reasonable. Three models differing in their level of granular-
ity were implemented. The classification is roughly adopted
from the UvA-TRILEARN system. Fine granular actions are
the basic actions provided by the SOCCERSERVER, e.g. ����,
���� or ��	� valid for one cycle each. The medium granu-
lar model contains actions like ����������� and the coarse
consists of action on the level ���	������� or ��	������
continuing for several server cycles. In all tests the task was
to project and execute an action. The results are based on tests
where only few agents connected to the SOCCERSERVER, not
two whole teams.

The(������� tests a shot in each corner of the goal, while
concurrently simulating the behavior of the goalie and the
closest opponent to the ball’s trajectory. The)�������		
procedure models a direct pass to two different teammates
with an opponent trying to reach the pass-way. The test of
more pass options leads to a linear runtime increase per ad-
ditional teammate. Within)�������		 two different pos-
sibilities of playing a double pass are tested with the op-
ponent closest to the pass-way trying to intercept the ball.
For coordination purposes the teammate calculates his be-
havior by putting himself in the ballholder’s place. At last
the)�������		*����� models the same as)�������		 with
the difference the opponent having four probabilistic choices
of how to behave. Some test results are shown in Figure
10. For a complete overview we refer to [Jansen, 2002;
Dylla et al., 2003].

The runtime results in Figure 10 suggest that the use of
ICPGOLOG’s projection mechanism is currently only feasi-
ble computationally at a high level of abstraction like in the
coarse model. Here, the use of continuous fluents for project-
ing the ball position, for example, brings runtime advantages
over the fine grained model, where those continuous fluents
could not be used.

6 From Simulations towards Real Robots
While the SIMULATION league certainly provides a rich
environment to test ideas in multiagent coordination, our
main goal is to apply them to real robots. For that pur-
pose we recently acquired a team of robots for the MID-
SIZE league. Given the experience of other teams that
“off-the-shelf” robots must be completely reengineered for
ROBOCUP’s MID-SIZE to be competitive, we decided to de-
velop our own robotic platform from scratch [Wunderlich and

25

GoalShot fine middle coarse
average no of actions / plan 101 80 38
time [s] 1.91 1.12 0.31

DirectPass fine middle coarse
average no of actions / plan 93 40 39
time [s] 1.8 0.48 0.25

Doublepass fine middle coarse
average no of actions / plan 319 319 86
time [s] 6.16 5.8 0.69

DirectPassWithPO fine middle coarse
average no of actions / plan 95 42 41
time [s] 7.22 2.95 0.67

Figure 10: Runtime results in the SIMULATION-League

Dylla, 2002]. The intention was to develop robots competi-
tive in ROBOCUP which can also be used in office domains
for service-robot applications. The platform has a size of
39 cm � 39 cm � 40 cm (Figure 11). For power supply
we have two 12 V lead-gel accumulators with 15 Ah each on-
board. The battery power lasts for approximately one hour
at full charge. The robot has a differential drive, the motors
have a total power of 2.4 kW. This power provides us with a
top speed of 3 m/s and 1000Æ/s by a total weight of approxi-
mately 50 kg.

Figure 11: Robots of the AllemaniACs MID-SIZE team

Onboard we have two Pentium III PC’s at 500 MHz run-
ning Linux, one equipped with a framegrabber for a Sony
EVI-D100P camera mounted on a pan/tilt unit. Our other
sensor is a 360Æ laser range finder with a resolution of 0.75
degree at a frequency of 20 Hz. For communication a WLAN
adapter based on IEEE 802.11b is installed.

Figure 12 gives a schematic overview of the different soft-
ware components and the data and command flow between
them. The modules motor, kicker and the camera’s pan/tilt
are drivers for the actuators, laser and camera are driver mod-
ules for the sensors. The collision avoidance module colli
uses the �� algorithm to compute a collision free path to a

laser camera
(incl. pan/tilt)motor kicker

localize
monte_carlo

vision_localization
odometry ball_positioncolli

abilities hli worldmodel

ICPGologCommands
Data

Blackboard Communication:
(other robots’ data)

Figure 12: Components of our software system

target point every 50 ms. Localization is based on the fusion
of several methods. The module is dominated by a Monte
Carlo approach using the laser data. Due to complexity of
the Monte Carlo approach update frequencies are lower for
the localization. It turned out that a frequency of 2 up to 4
is sufficient for good localization. Between position updates
of localize the robot uses it’s odometry for position calcula-
tions. Additionally, information extracted from a vision algo-
rithm using probability maps [Jones and Rehg, 1999] is used
for resolving field symmetries. The ball is perceived by the
ball position module. The ability module defines different
basic actions the robot can perform. Abilities such as goto
and dribble send respective commands to the collision avoid-
ance module which in turn actuates the motor, camera and
kicker.

Our world model basically holds (quantitative) information
about the positions of the robots and the ball. Moreover, in-
formation about the game state like the robot’s role in the
play or the current play mode is represented as well. Our in-
terface to the high-level control is encoded in the module hli
(high-level interface) This interface is a wrapper program be-
tween the PROLOG system of our high-level control and the
basic robot system which is implemented in C++. For inter-
process communication we use a blackboard communicating
via shared memory. For inter-robot communication UDP is
used.

To ensure safe communication via UDP the blackboard
system has its own security layer. This feature offers the
possibility to implement a global world model. Figure 13
shows the communication infrastructure of inter-robot data
exchange. An external data synchronization module (sync)
receives local world information from each robot and trans-
mits them to a global blackboard to which the global world
model is connected. Each robot in turn receives the global
world model data in the opposite direction. To control the lo-
cal software modules, rccc (robocup control center) was im-
plemented. It offers the possibility to start the software on
each robot by a different communication channel using re-
mote procedure calls.

The possibilities to model robot behavior are much more
restricted compared to SIMULATION league. One obvious
reason is that the world model the robot can rely on is much
more uncertain than in SIMULATION league, e.g. regarding
one’s own position or the ball position. Moreover, it is harder
to get informations about, say, opponent positions. Another

26

local
blackboard
(robot 1)

global
blackboard

worldmodell

sync sync

local
blackboard
(robot n)

Communication
via wireless LAN

rccc

...

...

(robot software) (robot software)

Figure 13: Global connectivity of the robots’ local software
systems

problem is related to the actuators. While in SIMULATION
league it is rather simple to kick the ball or to play a pass it
is much more complicated in MID-SIZE league. On the other
hand, the coordination of the team should be easier than in the
SIMULATION league since only four robots have to be coor-
dinated. For a pass only two teammates have to be considered
as possible pass receivers whereas in SIMULATION this num-
ber is normally much higher. The robots, in general, have
more time to “think” about what action to perform because
there is not a strict decision cycle as in SIMULATION league.
Thus, the calculation times shown in Figure 10 seem not to
be too problematic. Another difference between the SIMU-
LATION and MID-SIZE league concerns communication. In
the MID-SIZE league no restriction of what amount of data
may be communicated between the robots via wireless LAN
exists whereas it is limited to a few bytes in the SIMULATION
league. Therefore communication may be used for more reli-
able coordination of the robots.

7 Discussion
We introduced the framework of ICPGOLOG for developing
deliberative agents. By integrating features like concurrency,
exogenous actions, continuous change and the possibility to
project into the future we are able to model agents for highly-
dynamic environments like robotic soccer. We showed how
multiagent coordination can be achieved without communi-
cation. The requirement for coordination without communi-
cation is that the world models of the agents do not differ
too much. In the tested cases of the SIMULATION league the
agents’ world models are not too uncertain due to the good
sensory information given by the SOCCERSERVER. There-
fore, this kind of multiagent coordination works well. In the
MID-SIZE league, where world models are not that elaborate
and more uncertain due to sensor noise, this approach to mul-
tiagent coordination might be problematic. It is likely that
communication between robots will play a much bigger role
here. It remains to be seen how much communication is nec-
essary for coordinated actions of real robots. However, it does
not necessarily only get harder when moving from simula-
tions to real robots. For example, in the MID-SIZE league the

real-time requirement for deciding on the next action is not as
strict as in the SIMULATION league. Therefore, the robot has
more time for generating plans with ICPGOLOG. Moreover,
fewer agents have to be coordinated. We are currently eval-
uating and testing what works best for our MID-SIZE robots
and hope to report on our experiences at the time of the work-
shop. Ultimately we also want to get deeper understanding
of the similarities and differences between the SIMULATION
and MID-SIZE leagues.

We end the paper with remarks on two other research is-
sues currently under investigation. The first concerns the ac-
tion selection mechanism. Having two decision components
(reactive and deliberative) competing for the next action to
be executed we have to select which action to use. This af-
fects also the problem of the validity of ICPGOLOG plans
over time. Once a plan is generated, it will be executed for
a number of cycles. The action selection also has to check
if the world evolved as anticipated in the plan. In [Riedel,
2003] those questions are investigated. Again it is likely that
there will be significant differences between simulated and
real soccer agents.

The second is about how to select optimal actions. In this
regard Boutilier et al. [Boutilier et al., 2000a] recently pro-
posed a decision-theoretic GOLOG dialect based on Markov
Decision Processes. We plan to integrate decision-theoretic
concepts into our ICPGOLOG framework as well. To this
end we are currently working on speeding up the computa-
tion of optimal policies in decision theoretic GOLOG [Fer-
rein et al., 2003] by incorporating the notion of macro actions
considered in the MDP literature [Boutilier et al., 2000b;
Hauskrecht et al., 1998; Sutton et al., 1999].

References
[Agre and Chapman, 1990] P. E. Agre and D. Chapman. What are

plans for? In P. Maes, editor, Designing Autonomous Agents,
pages 17–34. The MIT Press, San Francisco, CA, 1990.

[Arai and Stolzenburg, 2002] Toshiaki Arai and Frieder Stolzen-
burg. Multiagent systems specification by UML statecharts aim-
ing at intelligent manufacturing. In Proceedings of the 1st Inter-
national Joint Conference on Autonomous Agents & Multi-Agent
Systems, pages 11–18, Bologna, Italy, 2002. ACM Press. Vol-
ume 1.

[Boutilier et al., 2000a] C. Boutilier, R. Reiter, M. Soutchanski,
and S. Thrun. Decision-theoretic, high-level agent programming
in the situation calculus. In AAAI’2000, 2000.

[Boutilier et al., 2000b] C. Boutilier, R. Reiter, M. Soutchanski,
and S. Thrun. Decision-theoretic, high-level agent programming
in the situation calculus. In Proc. AAAI-2000, 2000.

[Bratman, 1987] M. E. Bratman. Intentions, Plans, and Practical
Reason. Harvard University Press, 1987.

[Brooks, 1986] R. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation, pages
14–23, April 1986.

[Burgard et al., 1998] W. Burgard, A.B. Cremers, D. Fox,
D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun.
The interactive museum tour-guide robot. In Proceedings of the
AAAI 15th National Conference on Artificial Intelligence, 1998.

[Burkhard, 2001] Hans-Dieter Burkhard. Mental models for robot
control. Dagstuhl Workshop on Plan-based Control of Robotic
Agents, 2001.

27

[de Boer and Kok, 2002] Remco de Boer and Jelle Kok. The In-
cremental Development of a Synthetic Multi-Agent System: The
UvA Trilearn 2001 Robotic Soccer Simulation Team. Master’s
thesis, University of Amsterdam, Februar 2002.

[de Giacomo und H.J. Levesque, 1999] G. de Giacomo und
H.J. Levesque. An incremental interpreter for high-level pro-
grams with sensing. In F. Pirri H. Levesque, editor, Logical
Foundations for Cognitive Agents, pages 86–102. Springer,
1999.

[Dorer, 1999a] Klaus Dorer. Behavior networks for continuous do-
mains using situation-dependent motivations. In Dean Thomas,
editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99-Vol2), pages 1233–1238, S.F.,
July 31–August 6 1999. Morgan Kaufmann Publishers.

[Dorer, 1999b] Klaus Dorer. Motivation, Handlungskontrolle und
Zielmanagement in autonomen Agenten. PhD thesis, Albert-
Ludwigs-Universität Freiburg, Freiburg, December 1999.

[Dylla et al., 2002] F. Dylla, A. Ferrein, and G. Lakemeyer. Acting
and Deliberating using Golog in Robotic Soccer – A Hybrid Ap-
proach. In Proc. 3rd International Cognitive Robotics Workshop
(CogRob 2002). AAAI Press, 2002.

[Dylla et al., 2003] F. Dylla, A. Ferrein, N. Jansen, and G. Lake-
meyer. Progression in the Framework of GOLOG. KBSG,
Aachen University, in preparation, 2003.

[ECLiPSe, 2002] ECLiPSe. (Version 5.5) - The ECRC Constraint
Logic Parallel System. http://www.icparc.ic.ac.uk/eclipse, 2002.

[Ferguson, 1994] I. A. Ferguson. Integrated control and coordi-
nated behavior: A case for agent models. In M. J. Wooldridge
and N. R. Jennings, editors, Intelligent Agents: ECAI-94 Work-
shop on Agent Theories, Architectures, and Languages, pages
203–218. Springer, Berlin,, 1994.

[Ferrein et al., 2003] A. Ferrein, C. Fritz, and G. Lakemeyer. Ex-
tending DTGolog with options. In Proc. IJCAI-03, 2003. to
appear.

[Funge, 1998] J. Funge. Making Them Behave: Cognitive Mod-
els for Computer Animation. PhD thesis, University of Toronto,
Toronto, Canada, 1998.

[G. Lakemeyer, 1999] G. Lakemeyer. On sensing and off-line in-
terpreting in golog. In H. Levesque und F. Pirri, editor, Logical
Foundations for Cognitive Agents. Springer, 1999.

[Georgeff and Lansky, 1987] M. P. Georgeff and A. L. Lansky. Re-
active reasoning and planning. In The Proceedings of AAAI-87,
pages 677–682, Seattle, 1987.

[Giacomo et al., 2000] Giuseppe De Giacomo, Yves Lésperance,
and Hector J. Levesque. ConGolog, A concurrent program-
ming language based on situation calculus. Artificial Intelligence,
121(1–2):109–169, 2000.

[Grosskreutz and Lakemeyer, 2000a] H. Grosskreutz and G. Lake-
meyer. Turning high-level plans into robot programs in uncertain
domains. In ECAI’2000, 2000.

[Grosskreutz and Lakemeyer, 2000b] Henrik Grosskreutz and Ger-
hard Lakemeyer. cc-Golog: Towards more realistic logic-based
robot controllers. In Proceedings of the 7th Conference on Arti-
ficial Intelligence (AAAI-00) and of the 12th Conference on In-
novative Applications of Artificial Intelligence (IAAI-00), pages
476–482, Menlo Park, CA, 2000. AAAI Press.

[Grosskreutz and Lakemeyer, 2001] H. Grosskreutz and G. Lake-
meyer. Online-Execution of ccGolog Plans. In IJCAI’2001,
2001.

[Grosskreutz, 2000] H. Grosskreutz. Probabilistic projection and
belief update in the pGolog framework. In Second International
Cognitive Robotics Workshop, 2000.

[Hauskrecht et al., 1998] M. Hauskrecht, N. Meuleau, L. Kael-
bling, T. Dean, and C. Boutilier. Hierarchical solutions of MDPs
using macro-actions. In Proc. UAI 98, 1998.

[Iocchi et al., 2000] Luca Iocchi, Daniele Nardi, and Riccardo
Rosati. Planning with sensing, concurrency, and exogenous
events: Logical framework and implementation. In Anthony G.
Cohn, Fausto Giunchiglia, and Bart Selman, editors, KR2000:
Principles of Knowledge Representation and Reasoning, pages
678–689, San Francisco, 2000. Morgan Kaufmann.

[Jaeger and Christaller, 1998] H. Jaeger and T. Christaller. Dual
dynamics: Designing behavior systems for autonomous robots,
1998.

[Jansen, 2002] Norman Jansen. A framework for deliberation in
uncertain, highly dynamic environments with real-time require-
ments. Master Thesis, in German, Knowledge Based Systems
Group, Aachen University, Aachen, Germany, 2002.

[Jones and Rehg, 1999] M. J. Jones and J. M. Rehg. Statistical
color models with application to skin detection. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, volume 1, pages
274–280, 1999.

[Kaelbling and Rosenschein, 1990] L. P. Kaelbling and S. J. Rosen-
schein. Action and planning in embedded agents. In Pattie Maes,
editor, Designing Autonomous Agents, pages 35–48. MIT Press,
Cambridge (MA), 1990.

[Levesque and Pagnucco, 2000] H. Levesque and M. Pagnucco.
Legolog: Inexpensive experiments in cognitive robotics. In Proc.
2nd International Cognitive Robotics Workshop (CogRob-00).
ECAI-00, 2000.

[Levesque et al., 1997] Hector J. Levesque, Raymond Reiter, Yves
Lesperance, Fangzhen Lin, and Richard B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of
Logic Programming, 31(1-3):59–83, 1997.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress a
database. Artificial Intelligence, 92:131–167, 1997.

[Maes, 1990] Patti Maes. Situated agents can have goals. In Patti
Maes, editor, Designing Autonomous Agents, pages 49–70. MIT
Press, 1990.

[McCarthy, 1963] J. McCarthy. Situations, actions and causal laws.
Technical report, Stanford University. Reprinted 1968 in Seman-
tic Information Processing (M.Minsky ed.), MIT Press, 1963.

[Müller, 1996] Jörg P. Müller. The design of intelligent agents. In
Lecture Notes in AI, volume 1177. Springer, 1996.

[Reiter, 2001] R. Reiter. Knowledge in Action. MIT Press, 2001.

[Riedel, 2003] B. Riedel. Developing similarity measures for the
comparison of game situations in Robocup. Master Theses, in
progress, in German, Knowledge Based Systems Group, Aachen
University, Germany, 2003.

[Sutton et al., 1999] R. Sutton, D. Precup, and S. Singh. Between
MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Journal of Artificial Intelligence, 1999.

[Wooldridge, 1999] Michael Wooldridge. Intelligent agents. In
Gerhard Weiss, editor, Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence, pages 27–78. The MIT
Press, Cambridge, MA, USA, 1999.

[Wunderlich and Dylla, 2002] Jost Wunderlich and Frank Dylla.
Technical description of the allemaniacs soccer robots. Techni-
cal report, LTI / KBSG, Aachen University, Germany, 2002. in
German.

28

Case-Based Reasoning for Planning and World Modeling
in the RoboCup Small Size League

Cynthia Marling, Mark Tomko, Matthew Gillen, David Alexander, and David Chelberg
School of Electrical Engineering and Computer Science

Ohio University, Athens, Ohio 45701, USA
Phone: +1 (740)593-1246, FAX: +1 (740)593-0007

Email:
�
marling,mark.tomko.1,matthew.gillen.1,david.r.alexander.1, chelberg � @ohio.edu

Keywords: planning, world modeling, RoboCup, case-based reasoning

Abstract

This paper presents three case-based reasoning
(CBR) prototypes developed for the RoboCats, a
team of five soccer playing robots in the RoboCup
small size league. CBR is used to help the Robo-
Cats plan individual moves and team strategies, as
well as to model the world of the playing field.
More specifically, the case-based reasoners posi-
tion the goalie, select team formations, and rec-
ognize game states for the RoboCats. This paper
also discusses issues and opportunities for CBR in
RoboCup and other endeavors in which physical
agents must operate in dynamic, real-time environ-
ments.

1 Introduction
RoboCup is an international, interdisciplinary research
project in which physical agents compete in dynamic real-
time environments. The game of robotic soccer provides
a backdrop and a test bed for research in artificial intel-
ligence, computer vision and robotics [Birk et al., 2002;
The RoboCup Federation, 2002]. At present, RoboCup
soccer comprises separate leagues for teams of small size
robots, middle size robots, four-legged robots, and humanoid
robots, plus a simulation soccer league. The ultimate goal of
RoboCup is to build a team of humanoid robots capable of
beating the best human soccer team in the World Cup by the
year 2050. Between now and then, many issues in designing
physical agents for dynamic real-time environments will need
to be explored and resolved.

Case-based reasoning (CBR) is a paradigm in which so-
lutions to current problems are found by recalling, adapting,
and reusing solutions to similar problems encountered in the
past [Kolodner, 1993]. A system’s (or a person’s) experiences
are encapsulated as cases that are organized to facilitate their
recall whenever they would prove useful again. Once a les-
son has been learned, such as how to shoot a penalty kick, or
that an opponent with a ball should be blocked, that lesson

can be quickly put to use whenever a penalty kick is called
or an opponent needs to be blocked. Rather than deliberate
about how to overcome all potential problems, a case-based
reasoner narrows its focus to problems known to have oc-
curred in its world. One might view this as narrowing the
search space to more quickly reach viable solutions and/or as
employing a more human-like approach to problem solving.

When Agent Team (AT) Humboldt became weltmeisters of
the RoboCup simulation league in 1997, they noted that agent
learning with CBR was one of the primary research interests
of their group [Burkhard et al., 1998]. By 1998, when they
returned as vice champions, they had experimented with CBR
for both off-line learning, or agent training, and on-line learn-
ing, or adaptation during games [Gugenberger et al., 1999].
They used CBR for dynamic situation assessment, comparing
a player’s current view of the field, as provided by the simula-
tor league’s SoccerServer, to game situations that had previ-
ously occurred. The most similar past situations were used to
determine where the player should move to be most effective
at present [Wendler and Lenz, 1998]. Since this early effort,
little mention has been made of CBR in this domain.

We are currently integrating CBR into the Ohio Univer-
sity RoboCats, a team that competes in the RoboCup small
size league. In this league, a team consists of five robots,
each of which may be no larger than 18 centimeters in di-
ameter and 15 centimeters high. We have built preliminary
prototypes, in simulation mode, to position the goalie, select
team formations, and recognize game states. Based on the
insights gained from our experiences with these prototypes,
we are now building case-based reasoners for planning team
strategies and for opponent modeling. These reasoners will
be fully integrated into our robotic soccer team in time for
the next Robot Soccer World Cup in Padua, Italy, to be held
in July, 2003. This paper describes our completed prototypes,
discusses the issues involved, and describes the opportunities
we see for CBR in RoboCup. We believe that these issues and
opportunities are also relevant for the design of other physical
agents that must operate autonomously in dynamic real-time
environments.

29

Meta Agent

Player AgentPlayer AgentPlayer AgentPlayer AgentPlayer Agent

World

Robot AgentRobot AgentRobot AgentRobot AgentRobot Agent

Percepts

Percepts

Worldview Agent

Figure 1: The RoboCats Architecture

2 CBR Prototypes for the RoboCats
2.1 The RoboCats
The RoboCats employ a hybrid hierarchical, schema-based
architecture that distributes planning throughout the team, as
fully described in [Gillen et al., 2002]. The CBR prototypes,
described next, fit within this architecture. An overview of the
RoboCats architecture is shown in Figure 1. In the RoboCup
small-size league, a camera mounted above the playing field
provides vision for the whole team. Raw vision updates from
the camera are input to a Worldview Agent. The Worldview
Agent analyzes the vision data to determine the state of the
game, and makes its analyses available to the Meta Agent
and to the five Player Agents. The Meta Agent makes high-
level decisions for the team as a whole, much as a human
coach would do. It determines team formations and assigns
individual roles to each Player Agent. The Meta Agent and
the Player Agents are focal points for CBR.

There is one Player Agent and one Robot Agent per phys-
ical robot. The Player Agent, given a role, determines how
to best fulfill that goal using strategies encoded as schemas.
Our view of agency includes, but is not limited to, physi-
cal agency in which individual robots act as an agents. The
schemas may also be viewed as hierarchically ordered soft-
ware agents. Higher level schemas generate plans to accom-
plish higher level goals, like scoring goals or blocking shots.
Lower level schemas generate plans to accomplish necessary
subgoals, like moving to particular locations. There may be
multiple schemas capable of achieving the same goal or sub-
goal, so selection of schemas involves evaluating both the
desirability of the schema’s goal and the feasibility of the
schema’s strategy for accomplishing that goal. Schemas deal-
ing with physical control of the robot hardware are grouped
together into the Robot Agents. The most reactive behaviors,
like those for trajectory control, are also included in the Robot
Agents.

Our first CBR prototype, which positions the goalie, was
built as part of a Player Agent. The other two, which select
team formations and recognize game states, are included in

the Meta Agent. The prototypes were constructed and tested
in simulation mode. Because the rules and environment of the
simulation league differ from those of the small size league,
we built our own custom simulator for the RoboCats. Our
simulator models the physical properties of our robots and
the ball and calculates the effects of collisions, kicking, and
dribbling. It allows us to test experimental software mod-
ules more thoroughly than would be possible on our physical
robots. Our system architecture makes communications with
the simulator transparent. The same agent code runs on either
simulator or physical robot, when conditionally compiled to
account for differences in command paths.

2.2 Positioning the Goalie
Our first prototype uses past experience to determine where
the goalie should move to successfully block an opponent’s
shot. A case is derived from a snapshot of the goalie’s half of
the field. From the raw vision data, values are derived for: the
position and orientation of the goalie, the position and orien-
tation of each attacker and defender, and the position of the
ball. A case contains the initial positions and orientations as
the description of the world situation. It also contains the po-
sition and orientation the goalie assumed in response to the
situation, whether that move resulted in success or failure in
blocking the shot, and the position of the ball after the at-
tempted block. An example case, and its associated graphical
view, are depicted in Table 1 and Figure 2. In Table 1, posi-
tions are represented by an (x,y) coordinate system, in which
(0,0) represents the upper left hand corner of the half-field
and (137,150) represents the lower right hand corner. Orien-
tations are expressed in degrees of rotation from the x axis. In
Figure 2, we can see how the goalie moves slightly out and to
the left to successfully block a shot, causing the ball to move
out in front of the goalie.

Cases are organized in the case base according to the loca-
tion of the ball on the field. To speed up case retrieval, the
case base is partitioned by region within the half-field. There
are three regions: near, middle and far. A case that lies on
or near regional boundaries is counted as being in both re-

30

Goalie’s Initial Position 9 92
Goalie’s Initial Orientation 118
Attacker’s Initial Position 73 141
Attacker’s Initial Orientation 309
Defender’s Initial Position 34 60
Defender’s Initial Orientation 103
Ball’s Initial Position 65 131
Goalie’s New Position 11 89
Goalie’s New Orientation 118
Direction of Goalie Move Left
Ball’s New Position 42 87
Outcome Success

Table 1: An Example Goalie Case

A

Y

A

B

Figure 2: Graphical View of Example Case

gions. Within each partition of the case base, cases are stored
in unordered lists. To retrieve a similar past case, a new case
is compared to all past cases having the same ball region. A
smaller distance between the past and current balls represents
a better matching case. The current blocking position for the
goalie is based on the blocking position of the most similar
past case that had a successful outcome.

Once this simple prototype was implemented, the simu-
lated goalie exhibited reasonable movement, but numerous
problems and opportunities for improvement immediately be-
came apparent. For one thing, we needed to consider addi-
tional factors, like whether or not another defender was in
position to help the goalie. The importance weights accorded
the various factors could also be fine-tuned. The case base
needed enlargement to provide a wider range of past expe-
riences. New cases could be obtained and added to the case
base during play to account for differences among opponents.
Failures could be analyzed to avoid repeating past mistakes.
Perhaps, when a goal was scored against the goalie, the goalie
had made the best possible move under the circumstances, but
the opponent was just too good. This represents failure for the
team, but can blame be assigned to the goalie?

While this prototype encouraged us that CBR could work
for the RoboCats, and improved our understanding of what
needed to be done to make it work, we decided against using

CBR to implement goalie positioning in our robots. There
were multiple reasons for this decision. From a practical
standpoint, building a really good case-based reasoner was
going to take a lot of time and effort. In the meantime, our
goalie robot had become the strongest part of the RoboCats
team, making the time and effort better spent elsewhere. Fur-
thermore, the goalie was functioning quite well using only a
reactive schema in which it tracked the position of the ball
and moved along the mouth of the goal accordingly. We were
unlikely to see improvements in results proportional to our ef-
forts. It became clear to us that that the opportunities for CBR
in RoboCup were far greater at the team level, where the de-
cisions that need to be made are more complex and require
more deliberation.

2.3 Selecting Team Formations
Our next prototype differs from the work pioneered by AT
Humboldt and from our preceding prototype, in that its fo-
cus is on making strategic decisions for the team as a whole,
rather than for an individual player. In the RoboCats, the
Meta Agent is responsible for selecting the team’s formation
and then assigning roles from that formation to the individual
robots on the team. In this prototype, CBR is used to select
the team’s formation. The assignment of roles and the imple-
mentation of the roles assigned lie beyond the scope of this
prototype.

Here, a case is based on a snapshot of the entire field. The
positions of the players and the ball are derived from the raw
vision data. From these positions, further discriminating fea-
tures are derived, including whether the situation is offensive,
defensive or transitional, and the appropriate short-term goals
for the team. The high level goals the team may have are: Get
the Ball, Score a Goal, and Prevent the Opponent from Scor-
ing. Subgoals that help in achieving these goals are: Control
an Area, Prevent a Pass, Prevent a Shot, Shoot the Ball, Get
in Position to Shoot, Send a Pass, and Receive a Pass. The
positions, goals and subgoals are all stored within the case, as
the situation description.

Past cases also contain the formation that was selected to
achieve the goals and subgoals. The formation facilitates
teamwork and prevents players on the same team from inad-
vertently interfering with each other’s actions. A formation
is defined as a set of player roles. A player role specifies the
region of the field that a player should cover and the task that
the player should strive to accomplish there.

Sample cases are shown in Figures 3 through 8. In these
figures, A, B, C, D and E represent our robots, while V, W, X, Y
and Z represent our opponent’s robots. Dotted lines indicate
previous positions on the field. Figure 3 shows a situation that
is clearly defensive, and so the associated high-level goal is
to Prevent the Opponent from Scoring. The most important
subgoal should be Prevent a Shot, since opponent W has the
ball and is in a good shooting position. The next most impor-
tant subgoal is to Prevent a Pass to player Y, since it too is
in a good scoring position. Figure 4 shows the formation that
was selected for this situation. Two players play back, with
one of them on the ball. In this case, player B moves to get
between the ball and the goal, while player C defends against
moves by player Y.

31

B

A

C Y

W

E

Z

XD

V

Figure 3: A Defensive Case

A

Y

W

E

Z

XD

V

B

C

B

C

Figure 4: Selected Formation for the Defensive Case

Figure 5 shows a situation where the ball is loose and could
be acquired by either team. Here, the high-level goal would
be to Get the Ball. We would like to choose a formation that
maximizes both defense, in case we are unable to get the ball,
and offense, for a quick transition. The selected formation
is shown in Figure 6. Here, one player is kept between the
ball and the goal, while the closest player goes to get the ball.
A third defender hangs back on the weak side of the field,
i.e., the side of the field not containing the ball, to cover that
region. In this case, player D is positioned between the ball
and the goal, player B goes for the ball, and player C hangs
back to block player Y.

Figure 7 shows a clearly offensive situation, where the
high-level goal would be to Score a Goal. The chosen for-
mation should maximize the likelihood of accomplishing the
Shoot the Ball, Send a Pass, and Receive a Pass subgoals,
while putting little emphasis on defense. Figure 8 shows the
formation selected for this situation. The player in the best
shooting position, in this case player E, stays up front and
looks for shots and rebounds, taking them whenever possible.
A second player, here player D, moves in, ready to receive a
pass from player E, while covering its region. A third player,
in this case player B, hangs back and tries to draw the oppo-
nent’s defenders away from the goal.

When a formation must be determined during play, the cur-
rent game situation is compared to the situation descriptions

W

C

A

E

X

Z

V

D

B

Y

Figure 5: A Transitional Case

W

A

E

X

Z

V

Y

B
D

D

B

CC

Figure 6: Selected Formation for the Transitional Case

in the case base. The case base is partitioned into sections for
defensive, transitional, and offensive cases. Since each game
situation is classified as belonging to one of these categories,
only cases in the associated partition must be considered. The
formation stored in the most similar past case is returned, as
the recommended formation, by the case-based reasoner to
the Meta Agent. It is then the job of the Meta Agent to assign
each role in the formation to a specific player and the job of
the Player Agents to carry out the the roles they are assigned.
While the ability of the Meta Agent to appropriately assign
roles remains a significant unknown in the ultimate success
of this approach, we are encouraged enough to extend this
work for use in RoboCup 2003.

2.4 Recognizing Game States
Our third prototype recognizes game states as recurring pat-
terns of behavior. It provides situation assessment that can be
used by the Meta Agent and the Player Agents for planning
team strategies and/or individual actions. Recognizing game
states is a useful precursor to successfully accomplishing the
tasks we tackled in our first two prototypes.

For this prototype, a case once again begins as a snapshot
of the field. The vision data is first represented as the x and y
coordinates, in millimeters, of the ball and each robot on the
field. Symbolic feature value pairs are then derived from this
data to describe the situation for each past and present case.

32

W

YC

A

E

B

V

Z

X

D

Figure 7: An Offensive Case

W

YC

A

E
V

Z

X

D

B
B

D

Figure 8: Selected Formation for the Offensive Case

Features stored include:
� Defenders Back, the number of defenders in the defen-

sive zone
� Attackers In, the number of attackers in the offensive

zone
� Effective Defenders Back, the number of defenders able

to affect the play
� Effective Attackers In, the number of attackers able to

affect the play
� Attackers Covered, the number of attackers being cov-

ered by defending robots
� Effective Imbalance, the imbalance between effective

defenders and attackers, zero when teams are evenly
matched

� Ball Near Goal, true if the ball is near the goal
� Ball Carrier, the team carrying the ball, unset if the ball

is loose; and
� Nearest to Ball, the team nearest a loose ball, unset if

one team possesses the ball.

Each past case also contains the game state, a characterization
of play during the snapshot, such as Man On or Two on One.
During play, the game state of a current case is determined by
finding the best matching case in the case base and retrieving

its state. A standard nearest neighbor algorithm is used to
determine the best match. The overall flow of reasoning for
this prototype is shown in Figure 9.

Game State

Vision Update

Nearest Neighbor Matching

Heuristic Calculations

Input Case

Case Library

Matching Case

Figure 9: Flow of Reasoning in Game State Recognition

As an example, when the vision system reports the raw data
shown in Table 2, the playing field would appear as shown
in Figure 10. Table 3 shows the input case that would be
derived from this data to describe this situation. The game
state, as stored for a past case or retrieved for a current case,
is Possible Shot for Player E or Possible Pass to an uncovered
attacker, in this instance, from Player E to Player D.

This prototype is still a small, proof of concept, system.
However, we plan to extend it for use in RoboCup 2003.
Planned extensions include: deriving and incorporating ad-
ditional descriptive features from the vision data; using two
or more vision frames, instead of a snapshot, to capture in-
formation about the motion of the robots and the ball; and
integrating this reasoner with other reasoning agents that can
generate strategic plans based on the game state information
provided.

Object � �
Ball 2060 478
Player A 215 1130
Player B 721 901
Player C 686 1366
Player D 1942 1449
Player E 1997 338
Player V 1435 2004
Player W 1713 882
Player X 2358 665
Player Y 1276 672
Player Z 2698 1061

Table 2: Sample Vision Data

3 Issues and Opportunities
We see both issues and opportunities in using CBR for phys-
ical agents in RoboCup and other dynamic, real-time envi-
ronments. The first real-world problem we encountered is
that mechanical, electrical and control issues slow the pace

33

C

A Z

B

Y

V

E
X

W

D

Figure 10: Graphical Case Representation

Feature Value
Defenders Back 2
Attackers In 2
Effective Defenders Back 1
Effective Attackers In 2
Attackers Covered 1
Effective Imbalance -1
Ball Near Goal false
Ball Carrier offense
Nearest To Ball unset

Table 3: Case Derived from Sample Vision Data

at which we can add intelligence of any sort to our robots.
The best intelligence is useless if the physical agents lack the
ability to robustly and reliably do what they know how to do.
This is analogous to the situation the first author finds her-
self in on those rare occasions when she plays soccer. As a
dedicated soccer Mom, she knows how to play soccer very
well. However, rusty actuators and weak batteries preclude
her success on the field.

The second issue is that success, ie., winning the game, is
not wholly attributable to having the best intelligence, even
when all hardware is functional. As in human sports en-
deavors, a team may win by virtue of its brilliant game plan,
its greater strength and stamina, the superior skills of a star
player, or even sheer luck. Two teams may play well, but
only one can win. This makes it difficult to assign credit or
blame when things go well or badly. We need to develop and
disseminate better guidelines and methodologies for evalu-
ating the goodness of AI approaches in complex, real-world
environments.

Third, it is not quick or easy to build a case-based reasoner.
All of our cases have been built by hand, although it is possi-
ble to acquire subsequent cases automatically, once the struc-
ture of a case has been determined. The case is the basic
knowledge representation for a case-based reasoner, and non-
trivial knowledge representations require significant time and
effort to develop. Cases must also be organized within the
case base for efficient retrieval. Memory organizations can
be fairly simple, when case bases are small or there are no
real-time requirements, but substantial effort may be required

to design and implement hierarchical memory structures that
can speed case retrieval without sacrificing the ability to find
the best case. Furthermore, retrieval metrics must be devel-
oped to determine case similarity. While we were able to use
standard nearest neighbor matching as an overall framework,
it was still necessary to determine the significant case fea-
tures, how important each feature is for overall case similar-
ity, and how to measure the degree of similarity among cases
for each feature. When past solutions must be adapted to fit
the present situation, it is usually necessary to determine and
encode domain dependent adaptation strategies. This is of-
ten cited as the most difficult part of developing a case-based
reasoner, and many implementors skirt the issue by avoiding
case adaptation altogether.

Nevertheless, opportunity abounds. Our immediate plans
are to integrate the CBR reasoners for selecting team forma-
tions and recognizing game states into the RoboCats robots
in time for the next Robot Soccer World Cup, in Padua, Italy.
We expect improvements over last year’s performance due
to greater team coordination, earlier recognition of impend-
ing threats, and more extensive inputs to our other reasoning
agents.

We see an even greater opportunity for CBR in opponent
modeling. Most RoboCup teams in the small size league deal
with opponents by reacting to, rather than anticipating, op-
ponent moves. Han and Veloso have noted that the ability to
recognize, model and predict opponent behaviors is advan-
tageous in RoboCup, because it enables teams to adapt their
game strategies to effectively counter the opponent at hand
[Han and Veloso, 1999]. They applied Hidden Markov Mod-
els (HMMs) to this task with positive results. HMMs are a
good fit for recognizing opponent behaviors, because the op-
ponent’s strategy is hidden, but its moves from state to state
provide clues about its likely next moves. However, Han and
Veloso noted that there’s a drawback, in that the complexity
of behavior increases exponentially with the number of agents
participating in that behavior. They limited their early work
to behaviors involving a single robot and a ball. CBR is a
promising alternate approach for this task that is not subject
to the same scalability issue. The moves from state to state
may be viewed as behavior patterns. A case can naturally
represent a team behavior pattern as a whole. The advantage
is that interactions among team members are implicit in the
case, and need not be explicitly inferred by combining the
behaviors of separate agents.

There is another aspect of opponent modeling that we are
just beginning to explore with CBR. In human sports endeav-
ors, a team may try to scout out the strengths and weaknesses
of its opponent before a game, by watching the opponent on
the field or by reviewing videos. A certain play or strategy
may be more effective against one type of team than another.
We are currently reviewing videos from RoboCup 2002 and
constructing a case to represent each team. New opponents
will be compared to those in our case base, and treated as
we would treat the most similar known opponent. While
much work lies ahead, this may well be the application that
is most generalizable to other physical agents in adversarial,
dynamic, real-time environments.

34

4 Future Work
It is easy to forget, in the heat of a RoboCup competition,
that winning the game of soccer is not the only goal. Yet
RoboCup, as an international research platform, has research,
technological, and societal goals that transcend the soccer
field. Approaches and technologies designed and developed
for RoboCup are meant to be extensible to other problem
domains, especially those with positive societal impact. A
striking example of using RoboCup technology for the public
good occurred when a team of search and rescue robots was
deployed at Ground Zero in the aftermath of the World Trade
Center attack in New York [Kahney, 2001]. The RoboCup
Rescue robot league is an integral part of the international
RoboCup competitions [The RoboCup Federation, 2003].

In this spirit, we have future plans to incorporate CBR
into the Robotic Caregiver’s Assistant (RCA), a team of
robotic agents designed to provide in-home surveillance of
Alzheimer’s Disease (AD) patients. AD is a progressive brain
disorder, marked by cognitive decline, forgetfulness, person-
ality changes, bizarre behaviors, and impairment of the abil-
ity to complete simple daily tasks. At advanced stages of the
disease, AD patients can not be left unsupervised, even for
short periods of time, making life difficult for family care-
givers. A primary concern for caregivers is patient safety,
as patients are unable to respond appropriately in emergency
situations, and are subject to hazards like falling, wandering
away from home, getting lost, and starting fires [Whitehouse
et al., 2002].

Robotic teams could be used to assist these caregivers by
continuously monitoring patients and alerting caregivers to
potential dangers. As in robot soccer, teams of robots would
cooperate to achieve a goal. Whereas in soccer the goal is
to win the game, here the goal is to guarantee the patient’s
safety. As in robot soccer, there is an active adversary, which
must be understood and thwarted. Whereas in soccer the ad-
versary is the opposing team, here the adversary is any un-
safe condition, whether caused by patient actions or stem-
ming from the surrounding environment. As in robot soccer,
the team’s success depends on its ability to observe the adver-
sary and to predict potential threats, in a dynamically chang-
ing environment, in real-time. CBR will be used to classify
observed situations as dangerous or benign, to predict pa-
tient movements, and to project whether a patient’s next move
could lead to danger.

5 Related Research
While early work in CBR focused on standalone, single-
modality systems, the current trend is to integrate CBR with
other reasoning modalities in hybrid intelligent systems [Mar-
ling et al., 2002]. For example, CBR has been integrated with
rule-based reasoning, constraint satisfaction problem solving,
model-based reasoning, genetic algorithms, information re-
trieval, STRIPS-style planning and hierarchical task network
(HTN) planning. However, CBR is still seldom found as an
integrated component of a hybrid deliberative/reactive robotic
system.

The first robotic system to employ CBR, A Case-BAsed
Reactive Robotic System (ACBARR), added CBR to a tradi-

tional reactive robot to improve its navigational capabilities
[Ram et al., 1992]. More recently, Fox has proposed using
CBR as the basis of an overall planning architecture for a
message delivery robot named RUPERT [Fox, 2000]. The
idea behind RUPERT is that, to navigate successfully in a real
world environment, a message delivery robot needs both reac-
tive behaviors and high level plans. CBR is used to enable the
robot to select an appropriate behavior or plan based on the
current world situation. Both reactive behaviors and delibera-
tive plans are stored as planning cases in a case library. Cases
are indexed by the circumstances under which they were use-
ful in the past. The robot analyzes the current world situation,
and then searches the case library for the most similar stored
situation. The most similar case is retrieved. Then the robot
can apply the associated behavior or plan, without having to
make an explicit choice of deliberating or reacting.

As previously noted, the use of CBR in RoboCup was pio-
neered by AT Humboldt, in the simulation league [Burkhard
et al., 1998; Gugenberger et al., 1999]. In AT Humboldt’s
winning implementation, an individual player determined
where to move next, based on previous moves made in similar
game situations. Case retrieval nets were used by this team to
enable real-time case retrieval, even in very large case bases
[Lenz and Burkhard, 1996]. Researchers for AT Humboldt
hypothesized early on that CBR would be useful for off-line
learning of capabilities and for on-line learning of opponent
behaviors [Burkhard et al., 1998].

Despite the limited use of CBR in physical agents to date,
it should be noted that CBR was originally proposed to fa-
cilitate the types of tasks physical agents may be called upon
to perform. These include planning, adversarial reasoning,
classification and interpretation, and prediction and projec-
tion [Kolodner, 1993]. Perhaps the earliest system to demon-
strate CBR’s potential for RoboCup was COACH [Riesbeck
and Schank, 1989]. COACH planned strategic plays for
American-style football teams.1 It did so by storing plays,
including moves and roles for specific players, and retrieving
the best play to suit a current situation. It would adapt a re-
trieved play, when necessary, to account for differences in the
past and present game situations.

6 Summary and Conclusions
This paper presents our work in developing case-based rea-
soners for the RoboCats, a team of five robots competing in
the RoboCup small size league. We have developed three
CBR prototypes, in simulation mode, for the tasks of po-
sitioning the goalie, selecting team formations, and recog-
nizing game states. While our first prototype did not pro-
vide any advantage over positioning the goalie reactively, the
other two prototypes enabled greater coordination of differ-
ent team members working to accomplish mutual goals and
earlier recognition of threats from opponents. We are cur-
rently integrating these two reasoners into our robotic team

1In American-style football, as in soccer, a team scores by mov-
ing a ball across a field against the efforts of opposing players. Un-
like in soccer (which is also called football), the ball is more fre-
quently moved by hand than by foot, and knocking over opponents
is not only legal, but encouraged.

35

for use in the next Robot Soccer World Cup. We believe that,
especially as robotic hardware becomes more robust and bet-
ter methodologies are developed for evaluating robotic intel-
ligence, CBR will become an important enabling technology.
It is especially useful in situations where reactivity alone is
insufficient to guarantee that appropriate actions occur within
time constraints, and for capturing and considering the ac-
tions and interactions of multiple agents as a unified whole.

Acknowledgments
This work has been supported, in part, by the NASA
CETDP grant “Resource Management for Real-Time Adap-
tive Agents” and by the Ohio University 1804 Research Fund.
The authors gratefully acknowledge the support of Mrs. Beth
K. Stocker, whose generosity enabled the RoboCats to travel
to Fukuoka, Japan, to compete in RoboCup 2002, and is en-
abling the trip to Padua, Italy, for RoboCup 2003. The authors
would also like to thank the entire RoboCats team, without
whose contributions this work would not be possible.

References
[Birk et al., 2002] A. Birk, S. Coradeschi, and S. Tadokoro,

editors. RoboCup 2001 : Robot Soccer World Cup V.
Springer, Berlin, 2002.

[Burkhard et al., 1998] H.-D. Burkhard, M. Hannebauer,
and J. Wendler. AT Humboldt — development, practice
and theory. In H. Kitano, editor, RoboCup-97 : Robot
Soccer World Cup I, Berlin, 1998. Springer.

[Fox, 2000] S. E. Fox. A unified CBR architecture for robot
navigation. In E. Blanzieri and L. Portinale, editors, Ad-
vances in Case-Based Reasoning: 5th European Workshop
- EWCBR 2000, pages 406–417, New York, NY, 2000.
Springer.

[Gillen et al., 2002] M. Gillen, A. Lakshmikumar, D. Chel-
berg, C. Marling, M. Tomko, and L. Welch. A hybrid
hierarchical schema-based architecture for distributed au-
tonomous agents. In Proceedings of the AAAI Spring Sym-
posium on Intelligent Distributed and Embedded Systems,
Menlo Park, CA, 2002. AAAI Press.

[Gugenberger et al., 1999] P. Gugenberger, J. Wendler,
K. Schröter, and H.-D. Burkhard. AT Humboldt in
RoboCup-98 (Team description). In M. Asada and
H. Kitano, editors, RoboCup-98 : Robot Soccer World
Cup II, Berlin, 1999. Springer.

[Han and Veloso, 1999] K. Han and M. Veloso. Automated
robot behavior recognition applied to robotic soccer. In
Proceedings of the IJCAI-99 Workshop on Team Behaviors
and Plan Recognition, pages 47 –52, 1999.

[Kahney, 2001] L. Kahney. Robots scour WTC wreck-
age, 2001. Wired News, World Wide Web site, http://
www.wired.com/news/technology/0,1282,46930,00.html.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Mor-
gan Kaufman, San Mateo, CA, 1993.

[Lenz and Burkhard, 1996] M. Lenz and H.-D. Burkhard.
Case retrieval nets: Basic ideas and extensions. In G. Görz

and S. Hölldobler, editors, KI–96: Advances in Artificial
Intelligence, pages 227–239, Berlin, 1996. Springer.

[Marling et al., 2002] C. Marling, M. Sqalli, E. Rissland,
H. Munoz-Avila, and D. Aha. Case-based reasoning in-
tegrations. AI Magazine, 23(1):69–86, 2002.

[Ram et al., 1992] A. Ram, R. C. Arkin, K. Moorman, and
R. J. Clark. Case-based reactive navigation: A case-based
method for on-line selection and adaptation of reactive
control parameters in autonomous robotic systems. Tech-
nical Report GIT-CC-92/57, Georgia Institute of Technol-
ogy, 1992.

[Riesbeck and Schank, 1989] C. K. Riesbeck and R. C.
Schank. Inside Case-Based Reasoning, pages 291–318.
Erlbaum, Hillsdale, NJ, 1989.

[The RoboCup Federation, 2002] The RoboCup Federation.
Robocup official site, 2002. World Wide Web site,
http://www.robocup.org/02.html.

[The RoboCup Federation, 2003] The RoboCup Federation.
Robocup-rescue official web page, 2003. World Wide Web
site, http://www.r.cs.kobe-u.ac.jp/robocup-rescue/.

[Wendler and Lenz, 1998] J. Wendler and M. Lenz. CBR for
dynamic situation assessment in an agent-oriented setting.
In D. Aha and J. J. Daniels, editors, Case-Based Reasoning
Integrations: Papers from the 1998 Workshop, pages 172–
176, Menlo Park, CA, 1998. AAAI Press.

[Whitehouse et al., 2002] P. Whitehouse, C. Marling, and
R. Harvey. Can a computer be a caregiver? In K. Haigh,
editor, Automation as Caregiver: The Role of Intelligent
Technology in Elder Care: Papers from the AAAI Work-
shop, Menlo Park, CA, 2002. AAAI Press.

36

M. Bernardine Dias

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213, USA
mbdias@ri.cmu.edu

Solange Lemai

LAAS/CNRS
7 ave. du Colonel Roche

31077 Toulouse cedex 4, France
slemai@laas.fr

Nicola Muscettola

NASA Ames Research Center
MS 269-2

Moffett Field, CA 94035, USA
mus@email.arc.nasa.gov

Abstract
This paper reports on the experimental verifica-
tion of the ability of IDEA (Intelligent Distrib-
uted Execution Architecture) to effectively oper-
ate at multiple levels of abstraction in an
autonomous control system. The basic hypothe-
sis of IDEA is that a large control system can be
structured as a collection of interacting control
agents, each organized around the same funda-
mental structure. Two IDEA agents, a system-
level agent and a mission-level agent, are de-
signed and implemented to autonomously con-
trol the K9 rover in real-time. The system is
evaluated in the scenario where the rover must
acquire images from a specified set of locations.
The IDEA agents are responsible for enabling
the rover to achieve its goals while monitoring
the execution and safety of the rover and recov-
ering from dangerous states when necessary. Ex-
periments carried out, both in simulation and on
the physical rover, produced promising results.
The rover successfully accomplished its goal
while correctly responding to successive alarms.
According to the preliminary results, we think
that the system-level agent can achieve a 1-2Hz
control rate on a 300MHz Pentium, adequate for
slow-moving planetary rovers.

1 Introduction
Robotics space exploration requires autonomous control.
While executing critical maneuvers or moving on rugged
terrain the needed speed of control does not allow closing
the loop with ground control due to large communication
delays. Limited communication bandwidth and high per-
sonnel costs also increase the time and cost for recover-
ing from on-board anomalies if large ground control
crews are involved. The need to increase science output
and operations safety while reaching for more ambitious
and complex exploration goals strongly calls for more
autonomous robots.

 Some of the most autonomous space systems that have
flown [Muscettola et al., 1998] or are preparing to fly
[Chien et al., 2002] employ on-board automated planning
systems. A planner receives goals either from the ground
or from on-board task experts. The planner has access to
a declarative model describing the necessary conditions
for a plan to correctly achieve a goal and execute any
supporting activities. The planner then builds a plan by
interpreting the model through a standard planning en-
gine, i.e., a search procedure that efficiently explores the
possibly large number of ways to concatenate goals and
supporting activities according to the model. This is done
within the temporal and resource constraints intrinsic in
the problem. Once a plan has been generated, it is read by
a simple interpreter that issues appropriate commands to
the performing system and monitors execution feedback
returning from it.
 Plan driven control is attractive in several respects.
Perhaps the most important is the high level of assurance
that it can deliver. The declarative model is essentially a
constraint-based formal specification of the possible con-
trol behaviors of the system. In traditional flight software
it is typical to manually translate this specification into
the running code. Plan-based control instead eliminates
this error-prone and difficult-to-validate development
phase. Provided that the model correctly captures the
physics of the devices and the desired control laws, the
planning engine will guarantee the correctness of the
control software. Of course, this argument relies on
achieving a high level of assurance for the search engine.
But reuse of the search engine without change across
several applications subjects it to several cycles of rigor-
ous testing, intrinsically increasing its reliability. More-
over, engine reuse also makes it economically feasible to
use high-cost/high-reliability validation such as applica-
tion of formal methods [Havelund et al., 2001].
 However, so far planners are rarely used in on-board
control systems for robots. When they are used, the plan-
ners are relegated to optimizing high-level task allocation
over extended horizon while lower-level control is
achieved with procedural execution [Simmons and
Apfelbaum, 1998] or behavior-based control [Brooks,
1986]. This situation is partly due to a reaction to early

A Real-Time Rover Executive Based On Model-Based Reactive Planning

37

attempts to build plan-based mobile control systems
[Fikes et al., 1972] where planning was identified as a
principal obstacle to the achievement of reactive behav-
iors. An important question, therefore, is whether it is
possible to build planner-based core controllers that are
fast enough to satisfy the reactive requirements of robotic
controllers while fulfilling the high-assurance promise of
plan-based computation.
 This paper describes preliminary work in this direc-
tion. We describe the design and implementation of a
rover controller that uses planning as the core-reasoning
engine of a real-time executive. The control system has
been demonstrated on the K9 rover test-bed (Figure 1) 0
at the NASA Ames Research Center. The tasks per-
formed include some simple mission scenarios requiring
the rover to take pictures with the on-board camera and
recovering from simple faults such as excessive tilt and
roll. The on-board executive was implemented using a
general-purpose, planner-based distributed agent archi-
tecture, the Intelligent Distributed Execution Architecture
(IDEA). The presented work demonstrates IDEA’s vi-
ability for the implementation of real-time robotic con-
trollers.

Figure 1 The K9 Rover

 This paper is organized as follows. Section 2 gives a
brief overview of IDEA agent architecture and describes
how planning is integrated at the core of the execution
cycle. Section 3 describes the test scenarios run on the
K9 rover and how the scenario is modeled using separate
IDEA agents. Section 4 reports experimental results
while section 5 concludes the paper and discusses future
work.

2 IDEA: Intelligent Distributed Execu-
tion Architecture

The most common organizational structure of autono-
mous control systems that have been used in practical
applications is hybrid multi-layered, with several techno-
logically diverse layers cooperating to achieve the ro-
bot’s desired behavior. In mobile robotics, for example, a
common layered controller separates between a low-level
functional layer, often organized as a collection of con-
trollers communicating according to a static routing map,
and a high level decision layer using a procedural execu-
tion system [Nesnas et al., 2001]. Technological diversity

among layers is problematic since each layer’s machinery
is described with a different computational model and
supports different programming languages and methods
without a clear mapping between them. This is problem-
atic for two reasons. First, it increases the cost and diffi-
culty of building complex autonomous controllers since a
roboticist is supposed to thoroughly understand each
computational model to be able to effectively program in
it. Second, it increases the cost of validation and de-
creases the reliability of the software, since often the
same information may need to be represented in two dif-
ferent ways in different layers. Moreover, lack of uni-
formity between layers makes the use of automated vali-
dation systems difficult.
 The Intelligent Distributed Execution Architecture
(IDEA) 0 postulates a different approach to the organiza-
tion of complex autonomous controllers. The basic hy-
pothesis is that a large control system can be structured
as a collection of interacting control agents. Each atomic
IDEA agent is structured in the same way and uses a
model-based reactive planner as its core engine for rea-
soning. Each agent is required to operate with real-time
guarantees. In fact, each agent has an intrinsic execution
latency, a time quantum within which all computations
needed to execute a “sense-plan-act” cycle must com-
plete. If the execution latency is not respected, the IDEA
agent is declared faulty and must be taken off-line. The
execution latency allows bridging the perceived gap be-
tween AI-based methodologies to control and traditional
control theory. In fact, the latency is directly mapped to a
controller’s sampling rate, the fundamental measurement
of responsiveness in traditional control theory.

2.1 IDEA Control Agents
Figure 2 describes the core structure of an atomic IDEA
agent. In comparison to earlier descriptions of IDEA
[Muscettola et al., 2002], here we emphasize an organiza-
tion that clearly isolates the services provided by IDEA
and those that must be provided by third-party planning
technology.
 The agent communicates with external systems
through a set of goal registers. At any point in time a
register must contain an active goal describing the “inter-
action contract” with an external system. The content of
the register always takes the form P(i→ s) where P is the
name of a procedure, i is a (possibly empty) vector of
input values and s is a (possibly empty) vector of return
status parameters. When the goal is established, all ar-
guments in i must be bound to some value i0 within the
domain of possible values for i. The contract terminates
when either s is bound to a specific value, due to sensory
feedback, or a timer associated to <P, i0> expires. The
latter allows procedures to be terminated by pre-emption
in cases such as lack of response within a maximum al-
lowable wait time. A subsystem interacting with the
IDEA agent can be either controlling or controlled. It is
controlled if the IDEA agent initially sets the value of the
goal register with a new procedure and then waits for the

38

controlled subsystem to set the status s or for the proce-
dure timer to expire. It is controlling in the symmetrical
case. A subsystem can be both controlling and controlled
by interacting with the IDEA agent with different regis-
ters with different communication directions. Subsystems
can be other IDEA agents or legacy software and hard-
ware devices whose incoming and outgoing communica-
tions can be mapped into a finite set of goal registers
maintained by the IDEA agent. The compositionality of
the communication infrastructure allows the implementa-
tion of arbitrary distributed multi-agent control system
structures.
 Each goal register must behave according to a “time-
line semantic”. This means that at any point in time all
goal registers must contain an active procedure. This, of
course, cannot be satisfied when a procedure returns or
must be terminated. In this case the agent goes through
an execution cycle whose goal is to eliminate expired or
returned procedures from goal registers and replace them
with new procedures. The agent must perform this activ-
ity with a strict real-time guarantee, within the execution
latency associated with the agent. The shorter the execu-
tion latency, the faster the IDEA agent can close the con-
trol loops in which it is involved.

Figure 2 Structure of an IDEA agent

2.2 Quantify ing Agent Reactivity
The module with the responsibility of starting and possi-
bly aborting an execution cycle is the Plan Runner. The
plan runner can only be activated at discrete times, syn-
chronously with the agent’s internal clock. The clock’s
granularity is the agent’s execution latency. If a sensor
value is received at time t, this will cause an execution
cycle to start at time kλ where λ is the agent’s latency
and (k-1)λ ≤ t < kλ. Moreover, if the agent decides to
start a new procedure during the execution cycle acti-
vated at time kλ, the procedure will be loaded in the goal
register at a time τ, where kλ ≤ τ < (k+1) λ. Note there-
fore that in the worst case an IDEA agent’s responsive-
ness, i.e., the maximum temporal distance between a
stimulus (sensor value) and its response (the message
announcing to the controlled agent that it should start a
new procedure), is always 2λ. This permits precise quan-

tification of the reactivity of a control agent, a measure
that is usually elusive in control approaches based on
planning or other Artificial Intelligence techniques.

2.3 Reactive Planning
The core reasoning in an IDEA agent is performed by the
Reactive Planner. During an execution cycle, the reactive
planner has the responsibility of determining the proce-
dures with which expired goal registers should be loaded.
The reactive planner explicitly represents histories for the
agent’s timelines in a Plan Database. These timelines
describe past and future evolution of several entities: the
content of each goal register (either incoming or outgo-
ing), auxiliary state variables describing hypotheses on
non-observable state of external systems, and state vari-
ables representing internal IDEA agent state implement-
ing its control law. In the reference implementation of an
IDEA agent, the planner uses a heuristic search proce-
dure guided by search control rules programmed in an
appropriate search control language. The planner con-
ducts the search by continuously consulting a Model, i.e.,
a description of how procedures can follow each others
on timelines and hence in goal registers. The model also
describes in which way start and end of procedures can
synchronize in all legal plans (see Section 3.3 for an ex-
ample). By directly interpreting a declarative model, we
believe that an IDEA agent can achieve higher levels of
assurance than procedural approaches to plan execution
and control.

2.4 The “Planning Bott leneck” Problem
The IDEA architecture supports several mechanisms for
addressing the “planning bottleneck” problem that in the
past has led to the summary dismissal of planning as a
core control technology.
 First of all, note that the architecture assumes the exis-
tence of a central plan database for each agent. It is pos-
sible for an agent to have several processes, besides the
reactive planner, manipulate the plan database. Some of
these processes can have the responsibility to build sec-
tions of plans over extended periods of time in the future,
usually with the goal of “optimizing” some quality crite-
ria. These processes operate at lower priority than the
reactive planner and are controlled by the plan runner
through goal registers, i.e., with the same coordination
protocol used with external systems. Therefore, as long
as the planning horizon over which the deliberative plan-
ner is working never intersects the current execution
time, deliberative planning can operate in parallel with
reactive execution and does not affect the reactivity of
the agent.
 The reactive planner itself may want to operate over
planning horizons that are longer than the minimum pos-
sible one (one latency interval starting at the current exe-
cution time). However, the length of this horizon and the
complexity of the model determine the worst case cost
for solving a reactive planner problem and therefore de-
termine the agent’s latency. Vice versa, if the latency is

Plan
Runner

...

Controlling
System

Goal Execution Feedback

Controlling
System

Goal

Execution
FeedbackControlled

System

Controlled
System

Plan Service
Layer Search

Engine
Search
Control

Plan Database

Model

Reactive Planner

Goal Register

Plan
Runner

Plan
Runner

...

Controlling
System

Goal Execution Feedback

Controlling
System

Controlling
System

Goal

Execution
FeedbackControlled

System Goal

Execution
FeedbackControlled

System

Controlled
System

Plan Service
Layer

Plan Service
Layer Search

Engine
Search
Engine

Search
Control

Plan Database

Model

Reactive Planner

Goal Register

39

bound by some characteristics of the controlled subsys-
tems, one can deduce strict limits to the planning horizon
as a function of the complexity of the model.
 Reducing the planning horizon will cause the agent to
be more reactively myopic which may require compiling
more information in the model’s “control law” timelines.
Alternatively more extensive deliberative planning may
be needed in advance, for example by explicitly repre-
senting contingency branches. This will allow the reac-
tive planner simply to select an action among those
cached in the plan database rather than having to synthe-
size a new plan from scratch every time.
 Another way to tune the performance of an IDEA
agent is to select a plan database/planning technology
with the appropriate expressivity/performance tradeoff.
For example, when it is important to reason about time,
resources and bound uncertainty, then it could be appro-
priate to use constraint-based temporal planning tech-
nologies such as the one employed in the Remote Agent
on-board planner. However, if the model matches an
asynchronous discrete event control system, then a pro-
positional representation and fast propositional incre-
mental planning may be better suited to the task and
achieve better performance. The IDEA architecture sup-
ports the use of different planning technologies by pro-
viding a standardized interface, the Plan Service Layer,
between the planner and the goal register. Different plan-
ning technologies can be used as long as they can support
a standard set of methods provided by the plan service
layer. Also, an appropriate mapping must be defined be-
tween the modeling infrastructure of IDEA and the inter-
nal modeling of different plan database technologies.
 In summary, the IDEA architecture provides an im-
plementation of a set of basic services for building agents
(goal registers and their input/output communication pro-
tocols, the plan runner, the plan service layer, the model)
that we believe will be applicable across a wide variety
of agents at multiple levels of abstraction in an autono-
mous control system. The proof of whether or not this
goal can be achieved depends both on theoretical analysis
and on experimental validations, such as the one reported
in this paper.

3 A rover controller using IDEA
As an initial step towards validating IDEA, we have de-
signed and implemented an IDEA controller for the K9
rover (Figure 1). The K9 rover is a six-wheeled, solar-
powered rover complete with a manipulator. K9’s mecha-
nisms are a clone of those of the "FIDO" (Field Inte-
grated Design and Operations) rover developed at
JPL[Schenker et al., 1998]. The rover's avionics, instru-
mentation, and its autonomy software were developed at
NASA Ames.
 The rover carries a variety of instruments on board,
including a compass, an inertial measurement unit and
three pairs of monochromatic cameras (WideEye and 2
pairs of HazCams) used for navigation and instrument
placement. Other instruments are mounted on an articu-

lated arm that allows their precise placement for contact
science. The WideEye stereo pair consists of a stereo pair
of CMOS cameras mounted on a 10.93 cm baseline. Like
the WideEye cameras, the front and rear HazCam stereo
pairs consist of stereo pairs of CMOS cameras mounted
on a 10.8 cm baseline. The rover also carries a pair of
high-resolution, color stereo cameras (HawkEye), which
consists of a stereo pair of high resolution multi-spectral
cameras spaced on a 27.9 cm baseline, and the CHAMP,
an arm-mounted, focusable microscopic camera devel-
oped at the University of Colorado, Boulder. The
WideEye and HawkEye camera pairs are fitted on a Pan-
Tilt unit. Our goal is to control this rover and its instru-
ments via an IDEA controller.
 In this section, we present the structure of the IDEA
controller and its mapping to low-level rover control soft-
ware. We then describe the test scenario and the models
used by each IDEA agent to support this application. The
scenario and the models have been tested in simulation
and on-board the rover. Results are discussed in the next
section.

3.1 Structure of the IDEA controller
Figure 3 depicts the mapping between the IDEA control-
ler and the K9 controllers. The K9 controllers provide a
functional layer of capabilities used by the IDEA control-
ler. These capabilities include low-level commands – for
instance the simple pan/tilt or camera commands – as
well as some more complex behavioral commands, such
as “drive to a position”.

Figure 3 Mapping the IDEA agents to K9

 Query functions can be used to obtain sensory infor-
mation such as the rover’s location, pitch/roll/yaw angles
and the internal bay’s temperature. The overall control
software is composed by three subsystems organized in a
three-layered hierarchy. The top layer of the hierarchy
includes two IDEA agents: the system level and mission
level agents. The bottom layer interacts with the system
level agent according to the IDEA inter-agent protocol,
although it is not implemented as an IDEA agent. The
mapping is obtained through the K9Relay which behaves
as a parser/decoder, translating the goals sent by the Sys-
tem level agent into the corresponding commands or in-
formation requests to the K9 controllers. We used
CORBA as the underlying messaging infrastructure used

40

to exchange goals and execution feedback between the
IDEA agents and to exchange messages between the K9
controllers and the K9Relay.

3.2 Scenario
The IDEA control system has been tested on the follow-
ing mission scenario. The rover must acquire images
from several specified locations. A set of goals is sent to
the rover, each consisting of a location and parameters
for the camera and the pan/tilt unit. The rover decides in
which order to accomplish these goals, monitors their
execution and recovers from dangerous states.
 Responsibilities have been assigned to the IDEA
agents as follows. The mission-level agent receives goals
(e.g. from the ground controllers) and decides on their
best ordering using a deliberative planner. Execution of
the plan at the mission-level sends one goal at a time to
the system-level agent that is responsible for expanding
lower-level activities, monitoring execution and planning
recovery actions if necessary.
 The system-level agent is responsible for monitoring
rover safety while executing its plan. In particular, if
safety limits for tilt and/or roll angles are exceeded, the
system-level agent immediately stops the nominal execu-
tion, orders the rover to move backwards for a fixed dis-
tance, executes a turn in place by a fixed angle, and re-
sumes execution of appropriate actions to achieve the
goal. All of this is achieved through local reactive plan-
ning and plan execution.

3.3 Model descript ion
The underlying planning technology used in both IDEA
controllers is the EUROPA planning technology [Jonsson
and Frank, 1999], a direct descendent of the Plan-
ner/Scheduler that was part of the Remote Agent [Jons-
son et al., 2000]. The modeling language used for the
agent models is the Domain Description Language
(DDL) supported by EUROPA. Thus, designing a model
is equivalent to defining a set of parallel timelines, sets
of procedure types that can appear on each timeline and a
set of constraints for each time interval over which a pro-
cedure can extend: temporal constraints between proce-
dure intervals (also called compatibilities), duration con-
straints and parametric constraints that tie together all
procedure variables (including the interval start time, end
time, duration and input and status arguments of the pro-
cedure). An example of constraints’ definition for the
procedure TempReadCompare is shown in Figure 5.
 Search control is implemented through heuristic rules
used both by the reactive and deliberative planners. The
rules prioritize subgoals that the planner should work on
at each step of the search and prioritize slots on the time-
lines into which subgoals could be inserted. For the K9
controller, however, only a few heuristics were needed.
They were used to prevent the Reactive Planner from
trying to bind specific parameters, mainly the parameters
corresponding to the return status, since their values are
determined by the subsystem. Note that in principle it

would be possible for the reactive planner to “guess” the
return values of procedures. This is particularly important
if the planner does look-ahead a few steps in the future or
needs to develop contingent plans. In this case, the plan-
ner value of the return arguments would be checked with
respect to the one actually obtained from the subsystem.
If they do not match, then the reactive planner needs to
modify the plan by accepting the true value returned by
the subsystem and appropriately restructuring procedures.
Our controller, however, is simple enough that the plan-
ner needs only to determine the next action without look-
ahead and therefore can afford to leave the value of the
return parameters unbound. This behavior is consistent
with current approaches to procedural execution.

Figure 4 System level: interactions between timelines

 Figure 4 depicts the interactions between the timelines
defined in the System-Level’s model. There are four
types of timelines:

• The Goal timelines contain the goal sent by the
Mission-Level and manage its completion.

• One timeline has been defined for each K9 com-
ponent controlled by the agent: Location, Cam-
era, Pan/Tilt unit, Fans. These Executable time-
lines contain procedures corresponding to the ac-
tual commands sent to the K9 controllers. For
each command, a completion status is returned
by the K9 controllers.

• To allow the monitoring of the rover safety, one
Data-Polling and Alarm Detection timeline is
defined for each monitored characteristic
(pitch/roll angles, temperature, power…). These
timelines contain procedures corresponding to
information requests to the rover.

• For instance, at each execution cycle, a Pitch-
Measure (→ ?alarm,?pitch,?pitch_rcvd) goal is
sent. The parameter ?pitch is a status value re-
turning the sensed pitch value, ?pitch-rcvd an
additional status parameter that determines
whether the procedure terminated because a
value was received for ?pitch or because the
procedure was pre-empted, and ?alarm is an-
other Boolean return status parameter. ?alarm

41

and ?pitch are linked by a constraint that sets
?alarm to True if ?pitch is greater than a prede-
fined threshold. Once the Plan Runner has re-
ceived and posted the value of ?pitch in the plan
database, the Reactive Planner applies the con-
straint, and a possible alarm is detected.

• For error recovery two other Monitoring time-
lines have been added to manage the different
alarms and recovery steps. These timelines are
especially useful with regard to the motion of the
rover, as different motion alarms can occur at the
same time and during the recovery actions. One
timeline (MotionHealth) gives the state of the
rover with an average frequency of 1/λ, where λ
is the execution latency of the system-level
agent. This is obtained by performing execution
cycles at the maximum possible frequency 1/λ.
If there is an alarm, the MotionHealth timeline
identifies what type of alarm it is. Moreover,
priorities can be defined between the different
alarms. Each alarm corresponds to a specific se-
quence of recovery steps. The other timeline
(MotionMonitor) is useful to manage the next
recovery step to execute, depending on the evo-
lution of the state of the rover. By means of
compatibilities, the Reactive Planner will then
insert the corresponding recovery procedures on
the Executable timelines.

Figure 5 Example of compatibility for the procedure
TempReadCompare

 Figure 5 gives an illustration of a simpler monitoring
with an example of compatibilities for the procedure
TempReadCompare(→ ?state_fan,?temp,?temp_rcvd) of
the timeline TempMeasure. The temperature alarm detec-
tion is similar to the pitch case. Once the value of the
temperature (status value ?temp) has been received and
posted by the plan runner (?temp_rcvd is set to True),
the reactive planner applies the following constraints :
the parameter-function new_fan_state() detects a possible
alarm and sets the boolean ?state_fan to True if neces-
sary, then the compatibility meets inserts a command
procedure DeviceSetFanState(?state_fan→) on the Ex-
ecutable timeline Fans. During the same control cycle a
goal is sent to the K9Relay that translates into a direct
command to the appropriate K9 low-level controller. This
command finally turns the fan on. Note that DeviceSet-

FanState has an empty status vector. This is because we
assume that the command will be executed in open loop
without direct sensory feedback.

The system-level model contains only forward chaining
compatibilities, since it is designed for a purely reactive
agent, planning over a horizon covering only one execu-
tion latency ahead in reaction to new sensory information
or new goals.
 As stated before, the mission level agent receives a set
of goals from the ground controllers. It uses deliberative
planning to find the best ordering of the goals and sends
one goal at a time to the System level agent for expansion
and execution. The mission level monitors the comple-
tion of each goal and can replan if necessary.
 The mission-level model contains three types of time-
lines. A set of Internal timelines is used by the delibera-
tive planner to find the ordering of the goals. Delibera-
tive planning is managed by means of a specific Planner
timeline that contains Planning procedures whose pa-
rameters specify, notably, the start and end times of the
planning horizon. The execution of such a procedure
triggers the corresponding planning process. Finally, the
plan resulting from deliberative planning (i.e. a sequence
of goals) is put on a Goal timeline. This timeline is
shared between the two agents. Its execution by the Reac-
tive Planner at the mission level communicates one goal
at a time to the System level and monitors the completion
status returned back.

4 Results
We successfully controlled the K9 rover, via the System
level agent such that the rover could detect successive
situations where it exceeded safe thresholds in pitch and
roll. The rover was able to use a fixed set of maneuvers
to retract from these situations and search for alternate
routes to accomplish the goal of arriving at a location
specified by the mission-level agent and acquiring an
image. Deliberative planning and interaction between the
System level and Mission level agents were tested in
simulation.
 The performance of the System level agent’s execution
was further evaluated by monitoring the evolution of the
elapsed time needed to complete a plan runner cycle and
that of the fraction of the CPU used by the IDEA agent.
Running an IDEA agent can require heavy use of the
CPU, especially during deliberative planning at the mis-
sion level. The elapsed time taken by the plan runner cy-
cle must not exceed the agent’s execution latency. It
mainly depends on the number of decisions made by the
reactive planner during a cycle.
 Both the mission and system-level agents were using
EUROPA, a sophisticated constraint-based planning
technology. In preliminary experiments on-board the
rover (on a 300MHs Pentium), we noticed that the execu-
tion cycle time of the system-level agent monotonically
increased during each test run. This was due to the fact
that new decisions posted in the plan database at each

 (Define_Compatibility
 (SINGLE((Rover_Class TempMeasure_SV))
 ((TempReadCompare(→?state_fan ?temp True))))
:duration_bounds [*temp_freq* *temp_freq*]
:parameter_functions
 (new_fan_state(*tempthreshold* ?temp ?state_fan))
:compatibility_spec
 (AND

 (meets (SINGLE ((Rover_Class Fans_SV))
 ((DeviceSetFanState (?state_fan→))))))))

42

reactive planner invocation made the constraint network
grow monotonically. Thus each new invocation of the
reactive planner required more and more time to propa-
gate constraints throughout the plan database.
 This problem was solved by noticing that system-level
execution did not require remembering any of the past
except for the currently executing procedure and the pre-
ceding one (to provide additional execution context).
This allowed the implementation of a “forgetful” reactive
planner, where a procedure is invoked before each appli-
cation of reactive planning that “wipes out” the past from
the plan database.
 Figure 6 and Figure 7 show results obtained in simula-
tion (on a 2,5GHz Pentium) using the forgetful reactive
planner. We observe that the CPU usage never exceeds
30 % (whereas other runs not reported here show that
90% of CPU usage can occur during deliberative plan-
ning). The duration of the cycle is stable, the few peaks
correspond to cycles where more decisions were made
(reception and expansion of a goal, reaction to an alarm).
The forgetful reactive planner has not been tested on-
board the rover yet. But the results obtained during the
previous experiments show that the duration of the cycle
exceeds 0,5s only after 150s of test. Thus we believe that
a control rate of 1-2Hz on a 300MHz Pentium is achiev-
able for the system-level agent.

Figure 6 System Level agent: evolution of CPU usage
(%) with time (s)

Figure 7 System Level agent: evolution of Plan Run-
ner cycle duration (s) with time (s)

5 Conclusions and Future Work
In this paper we reported on preliminary experiments
toward demonstrating the practical feasibility of a plan-
ner-based, multi-agent architecture for controlling mobil-
ity and remote sensing of a planetary rover. Much work

remains to be done. To be viable for the limited computa-
tional resources available in flight systems, IDEA agents
need to be as streamlined as possible. Any overhead in
interpreting the model and searching for a reactive plan
should be eliminated. We believe that much of this can
be achieved by appropriately tuning the planner and in-
creasing the efficiency of the planning technology used
in each IDEA agent. In some cases, however, a purely
search-based, “interpreted” approach may still be too
slow. Therefore we plan to explore the feasibility of
compilation schemes in which procedural executives sat-
isfying the IDEA protocol are automatically generated
from agent models. In this case the planner will still have
a central role during system validation and, we believe,
during the compilation phase. An interesting question
that we will explore is characterizing the space/time
tradeoff between a large but fast procedural expansion
versus a more compact model encoding that is more
slowly interpreted by a planner at run time.

Acknowledgments
This work was sponsored by the Automated Reasoning
thrust of the NASA Intelligent System Program. We are
grateful to the IDEA team members (Chuck Fry, Felix
Ingrand, Rich Levinson, Chris Plaunt, and Baskaran
Vijayakumar), the K9 team members (Maria Bualat, Rich
Washington, Thomas Willeke, and Anne Wright) and
Jeremy Frank of the EUROPA team for their support dur-
ing the implementation of this work.

References
[Bresina et al., 2001] J. L. Bresina, M. Bualat, M. Fair, R.
Washington, A. Wright, “The K9 on-board rover architec-
ture”, ESA Workshop on “On-board autonomy”, 17-19 Oc-
tober 2001.

[Brooks, 1986] R. A. Brooks, A robust layered control sys-
tem for a mobile robot, IEEE Journal of Robotics and
Automation, 2:14-23, 1986.

[Chien et al., 2002] S. Chien, R. Sherwood, G. Rabideau, R.
Castaño, A. Davies, M. C. Burl, R. Knight, T. Stough, J.
Roden, P. Zetocha, R. Wainwright, P. Klupar, J. Van Gaas-
beck, P. Cappelaere, D. Oswald, The Techsat-21 autono-
mous space science agent, International conferences on
Autonomous Agents and Multi-Agent Systems (AAMAS’ 02),
Bologna, Italy, 2002.

[Fikes et al., 1972] R. E. Fikes, P. E. Hart, N.J. Nilsson,
“Learning and executing generalized robot plans”, Artificial
Intelligence, 3(4):251-288, 1972.

[Havelund et al., 2001] K. Havelund, M. Lowry, J. Penix.
Formal Analysis of a Space Craft Controller using SPIN
IEEE Transactions on Software Engineering, Volume 27,
Number 8, August 2001.

[Jonsson and Frank, 1999] A. Jonsson, and J. Frank, A
Framework for Dynamic Constraint Reasoning using Proce-

0

10

20

30

40

0 75 150 225 300 375 450 525 600 675 750 825 900

0

0.2

0.4

0.6

0.8

1

0 60 120 180 240 300 360 420 480 540 600 660 720

43

dural Constraints, in Workshop on Constraints in Control,
part of the 5th International Conference on Principles and
Practices of Constraint Programming, (CP99), 1999.

[Jonsson et al., 2000] A.K. Jonsson, P. Morris, N. Muscet-
tola, K. Rajan, B. Smith, Planning in interplanetary space:
theory and practice, in Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS’00), Breckenridge, Colorado, 2000.

[Muscettola et al., 1998] N. Muscettola, P. P. Nayak, B.
Pell, and B. C. Williams. Remote Agent: To Boldly Go
Where No AI System Has Gone Before. Artificial Intelli-
gence, 103(1-2):5--48, 1998.

Muscettola et al., 2002] N. Muscettola, G. A. Dorais, C.
Fry, R. Levinson, C. Plaunt. IDEA: Planning at the Core of
Autonomous Reactive Agents, WS On-line Planning and
Scheduling, AIPS 2002, Toulouse, France, pp. 49-55, 2002.

[Nesnas et al., 2001] I.A.D. Nesnas, R. Volpe, T. Estlin, H.
Das, R. Petras D. Mutz, Toward Developing Reusable
Software Components for Robotic Applications. Proceed-
ings of the International Conference on Intelligent Robots
and Systems (IROS), Maui, Hawaii, 2001

[Schenker et al., 1998] P. S. Schenker, E. T. Baumgartner,
R. A. Lindemann, H. Aghazarian, A. J. Ganino, G. S.
Hickey, D. Q. Zhu, L. H. Matthies, Jet Propulsion Lab.; B.
H. Hoffman, T. L. Huntsberger. New Planetary Rovers for
Long-range Mars Science and Sample Return. Intelligent
Robots and Computer Vision XVI: Algorithms, Techniques,
Active Vision, and Materials Handling, SPIE Proc. Vol.
3522, pp. 215, Boston, MA, October 1998.

[Simmons and Apfelbaum, 1998] R. Simmons, D. Apfel-
baum. A Task Description Language for Robot Control.
Proceedings of the International Conference on Intelligent
Robotics and Systems (IROS), Vancouver, Canada, 1998.

44

Shared Activity Coordination

Bradley J. Clement and Anthony C. Barrett
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109-8099 USA
voice +1-818-393-4729, fax +1-818-393-5244�

bclement, barrett � @aig.jpl.nasa.gov
Keywords: multiagent systems, planning, scheduling, real-time, communication

Abstract

While multiagent planning research has largely
concentrated on distributing a planning problem
or resolving conflicts among collaborative agents’
plans, it has focused less on communication
constraints, real-time issues, and negotation of
self-interested agents. In domains where agents
that interleave planning and execution have varying
degrees of interaction and different constraints
on communication and computation, agents will
require different coordination protocols in order
to efficiently reach consensus in real time. We
briefly describe a largely unexplored class of
real-time, distributed planning problems (inspired
by interacting spacecraft missions), new challenges
they pose, and a general approach to solving the
problems. These problems involve self-interested
agents that have infrequent communication but co-
ordinate over joint activities and shared resources.
We describe a Shared Activity Coordination
(SHAC) framework that provides a decentralized
algorithm for negotiating the scheduling of shared
activities over the lifetimes of multiple agents,
a soft real-time approach to reaching consensus
during execution with limited communication,
and a foundation for customizing protocols for
negotiating planner interactions. We apply SHAC
to a realistic simulation of interacting Mars
spacecraft and illustrate the simplicity of protocol
development.

1 Introduction
Interacting agents that interleave planning and execution

must reach consensus on their commitments to each other be-
fore executing interdependent activities. When interleaving
planning and execution, an agent adjusts its planned activities
as it gathers information about the environment and encoun-
ters unexpected events. Interacting agents coordinate these
adjustments to manage commitments with each other, but in

The research described in this paper was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

the presence of communication constraints, reaching consen-
sus on these commitments must be planned to avoid incon-
sistent execution. Demand for this kind of autonomous agent
technology is growing for space applications. Autonomous
spacecraft promise new capabilities and cost improvements
in exploring the solar system. Spacecraft (and rovers) that
explore other planets have intermittent, delayed communica-
tion with Earth, requiring that they be able to manage their
resources and operate for long periods in isolation. The com-
mon approach to autonomous decision making is to place in-
tegrated data analysis, planning, and execution systems on-
board the spacecraft.

In addition, there is a growing trend toward multi-
spacecraft missions. Over forty multi-spacecraft missions
have been proposed, including formation flying teams and
over 16 planned missions to Mars in the next decade. These
spacecraft will coordinate measurements, share data, and
route data to and form Earth. Separate missions, such as
those to Mars have their own budgets, experiments, and oper-
ations teams. As such, the spacecraft represent self-interested
entities that benefit from collaborative interactions.

But, even a single spacecraft has multiple science instru-
ments for executing different goals of different scientists, and
different operations groups will have different areas of ex-
pertise over different subsystems for control. These differ-
ent groups negotiate over mission plans in the same way that
different Mars missions must collaborate over spacecraft in-
teractions. Whether this negotiation is done on-board or on
Earth, there is a distributed operations planning problem that
benefits from automation. Both also have real-time aspects.
On-board systems must plan safely over near- and long-term
horizons, and ground systems must also converge on planss
for daily, weekly, and lifelong mission operations. Ground
planning also suffers from communication constraints. Scien-
tists from different universities or opposite sides of the globe
will intermittently provide inputs and respond on an irregu-
lar basis. A collaboration/negotiation system must be built
around communication constraints to meet hard deadlines for
coming to consensus on consistent operations plans.

In this work, we will briefly characterize this general prob-
lem in terms of activity interaction types and communica-
tion constraints and discuss its challenges. The field of
multiagent planning has largely focused on fully coopera-
tive planning and execution [Decker, 1995; desJardins and

45

Wolverton, 1999; Tambe, 1997; Grosz and Kraus, 1996;
Clement and Durfee, 2000]. Market-based agent systems
address near-term resource negotiation but have rarely ad-
dressed how near-term decisions affect longer-term goals.
Multiagent systems built for Robocup Soccer competitions
mainly address collaborative multiagent execution in an ad-
versarial environment and have limited planning capabilities.
These approaches do not adequately address real-time plan-
ning for self-interested agents.

We also present a framework for Shared Activity Coordina-
tion (SHAC). SHAC consists of an algorithm for continually
coordinating agents and a foundation for rapidly designing
and implementing coordination protocols based on a model
of shared activities. In the same fashion that a real-time plan-
ning system must commit to actions to pass to an execution
system, a real-time coordination system must additionally es-
tablish consensus on shared activities before they are exe-
cuted based on communication constraints. Our ultimate goal
is to create interacting agents that autonomously adjust their
coordination protocols with respect to unexpected events and
changes in communication or computation constraints so that
the agents can most efficiently achieve their goals.

First we characterize a class of real-time, self-interested
multiagent planning problems. Then we describe the shared
activity model, the SHAC algorithm, and its interface to the
planner. We also specify some generic roles and protocols
using the SHAC framework that build on prior coordination
mechanisms. In addition, we present an algorithm for deter-
mining how long a protocol will reach consensus under par-
ticular communication restrictions. Then we describe how
our implementation of SHAC currently is used to coordinate
the communication of two rovers and three orbiters in a sim-
ulated Mars scenario. We follow with future research needs
revealed in this scenario and comparisons to related work.

2 Continual Coordination Problem
As mentioned before, agents that interleave planning and exe-
cution must commit near-term activities to the execution sys-
tem while receiving feedback in the form of state updates and
activity performance. One such continual planning system,
CASPER (Continuous Activity Scheduling Planning Execu-
tion and Replanning) identifies the period when the planner
commits activities to the execution system as a commit win-
dow [Chien et al., 2000]. While the planner must resolve
conflicts on activities before they are committed to execution,
distributed planning agents must additionally reach consen-
sus on team interactions before execution. As explored in
the team plan model given by TEAMCORE [Tambe, 1997;
Pynadath et al., 1999], formalizations of Shared Plans [Grosz
and Kraus, 1996], and coordination interactions of TAEMS
[Decker, 1995], these interactions could include� use and replenishment of shared resources,� joint actions for achieving a mutually beneficial subgoal,� choice of methods for achieving a team subgoal,� participation and role assignments in a joint plan, and� proposals and commitments of the above.

However, reaching consensus on these interactions is com-
plicated when the agents can only communicate intermit-

tently. Depending on the number of agents involved in a par-
ticular interaction, a consensus protocol may need to be ini-
tiated far in advance and negotiations settled far in advance
of execution. Thus, for any particular set of interactions, a
consensus window, within which the agents must limit nego-
tiation and establish agreement, should be defined. For exam-
ple, if three agents must negotiate a joint action in advance of
execution but can only communicate pairwise in disjoint time
windows, a consensus window must extend at least to cover
windows connecting all three agents. Inside the consensus
window, a simple protocol eliminating negotiation (such as
all agree or reject) must be employed to guarantee consensus.
Interactions beyond the consensus window can be negotiated
with more elaborate protocols.

We informally describe the continual coordination problem
because our approach is intended to be general to the capabil-
ities of the individual planning and execution systems. The
continual coordination problem can be specified generally as
a continual planning domain and problem instance for each
agent as well as communication constraints between agents.
Continual planning problems have an evolving set of goals
(as opposed to a single goal) and performance is measured
as a function of the goals successfully achieved (executed)
within a time horizon. The multiagent aspect of the problem
is that interactions (such as those listed previously) create de-
pendencies between the planning and execution systems, over
which the agents must coordinate. The communication con-
straints can be time windows within which subsets of agents
can communicate, the reliability of communication, the costs
of communication (e.g. privacy), the bandwidth of channels,
etc. These constraints determine how the agents can achieve
consensus for a particular communications protocol.

Thus, many decisions must be made in the design of an
efficient continual coordination system. What planning and
execution systems are appropriate? What protocols should
be used for negotiation and consensus? How should the con-
sensus window be specified? Instead of providing a general
solution to all of these questions, we describe an implemented
framework for designing and evaluating protocols to negoti-
ate interactions and establish consensus.

3 SHAC

Our approach, called Shared Activity Coordination (SHAC),
provides a general algorithm for interleaving planning and
the exchange of plan information based on shared activities.
Agents coordinate their plans by establishing consensus on
the parameters of shared activities. Figure 1 illustrates this
approach where three agents share one activity and two share
another. The constraints denote equality requirements be-
tween shared activity parameters in different agents. The left
vertical box over each planner’s schedule represents a com-
mit window that moves along with the current time. A con-
sensus window is shown to the right of the commit window,
within which consensus must be quickly established before
committing. Since consensus is hard to maintain when all
agents can modify a shared activity’s parameters at the same
time, agents must participate in different coordination roles
that specify which agent has control of the activity. As shown

46

ex ec u t io n ex ec u t io n ex ec u t io n

p la n n er p la n n er p la n n er

a g en t a g en t a g en t

S H A C S H A C S H A C

==
=

a c tiv ity
u p d a tes

a c t iv it y
u p d a tes

a c tiv ity &
c o n s t r a in t
u p d a tes

a c t iv it y
u p d a tes

a c t iv it y , c o n s t r a in t,
& r o le u p d a tes

a c t iv it y , c o n s t r a in t ,
& r o le u p d a tes

a c t iv it y &
c o n s t r a in t
u p d a tes

a c t iv it y &
c o n s t r a in t
u p d a tes

Figure 1: Shared activity coordination

in the figure, SHAC interacts with the planning and execu-
tion by propagating changes to the activities, including their
parameters and constraints on the values of those parameters.

SHAC continually coordinates by interfacing to a com-
bined planning/execution system that responds to failures
and state updates from the execution system. Our imple-
mentation interfaces with one such continual planning sys-
tem, CASPER, mentioned in the previous section. Instead of
batch-planning in episodes, CASPER continually adapts near
and long-term activities while re-projecting state and resource
profiles based on updates from sensors.

3.1 Shared Activities

The model of a shared activity is meant to capture the in-
formation that agents must share, including control mecha-
nisms for changing that information. A shared activity is a tu-
ple �����	�
���������
� , ������������
��
� , ���
�����
���
��� , �������!���"�$#%�&#&��� ,�����'�$�&�
�	#(���)��* . The parameters are the shared variables and
current values over which agents must reach consensus by
the time the activity executes. The agent roles determine the
local activity of each agent corresponding to the joint action.
To provide flexible coordination relationships, the role activ-
ities of the shared activity can have different conditions and
effects as specified by the local planning model. The shared
parameters map to local parameters in the role activity.

For example, as shown by the shared activity instance in
Figure 2, a data communication activity can map one agent
to a receive role activity and another to a send role activ-
ity. Shared parameters could specify the start time, duration,
transfer rate, and data size of the activity. The data size is
depleted from the sender’s memory resource but added to the
receiver’s memory. The agents could have separate power us-
ages for transmitting and receiving. In this case the resources
are not shared. Another shared activity could be the use of a
common transport resource. Although one agent in an active
transit role actually changes position, other agents in passive
roles have local activities that only reserve the transport re-
source.

Protocols are mechanisms assigned to each agent (or role)
that allow them to change constraints on a shared activity, the
set of agents assigned to the activity, and their roles. In Figure

2, both agents use an argumentation protocol to negotiate the
scheduling and attributes of the communication.

The shared decomposition enables agents to select differ-
ent team methods for accomplishing a higher level shared
goal. Specifically, the decomposition is a set of shared
subactivities. The agents can choose the decomposition from
a pre-specified set of subactivity lists. For example, a joint
observation among orbiters could decompose into either
(measure, process image, downlink) or (measure,
downlink).

3.2 Constraints
Constraints are created by agents’ protocols to restrict sets
of values for parameters (parameter constraints) and permis-
sions for manipulating the parameters, changing constraints
on the parameters, and scheduling shared activities (permis-
sion constraints). These constraints restrict the privileges (or
responsibilities) of agents in making coordinated planning de-
cisions. By communicating constraints, protocols can come
to agreement on the scheduling of an activity without sharing
all details of their local plans.

A parameter constraint is a tuple �+���,���� , �-�	���	�����$� ,. �	�+/-0�$��)* . The �������� denotes who created the constraint.
Some protocols differentiate their treatment of constraints
based on the agent that created them. For example, the
asynchronous weak commitment algorithm prioritizes agents
so that lower-priority agents only conform to higher-priority
agent constraints [Yokoo and Hirayama, 1998]. Agents can
add to their constraints on a parameter, replace constraints, or
cancel them. A string parameter constraint, for example, can
restrict a parameter to a specific set of strings. An integer or
floating point variable constraint is a set of disjoint ranges of
numbers. Scheduling constraints can be represented as con-
straints on a start time integer parameter. This is shown in
Figure 2 where the rover restricts the start time of the com-
munication between two eight minute intervals.

Permission constraints determine how an agent’s planner
is allowed to manipulate shared activities. The following per-
missions are currently defined for SHAC:� parameters - change parameter values� move - set start time

47

shared_activity communicate comm_id_12 {
time start_time = 2004-302:09:30:00; // date
int duration = 200; // seconds
int data_size = 25600; // 25.6 Mbits
real xmit_rate = 128.0; // Kbps
int priority = 1; // critical
roles =

receive by orbiter,
send by rover;

protocols =
receive argumentation,
send argumentation;

permissions =
receive (move, delete, xmit_rate),
send (delete, data_size, priority);

parameter_constraints =
rover start_time = ([2004-302:09:30:00, 2004-302:09:38:00],

[2004-302:18:30:00, 2004-302:18:38:00]);
}

Figure 2: An instance of a shared communication activity between a rover and orbiter

� duration - change duration of task� delete - remove from plan� choose decomposition - select shared subactivity of an��� activity� add - add to plan1� constrain - send constraints to other agents

In the communication example in Figure 2, the receiver is
allowed to reschedule (move) the activity, delete it, or change
the transmission rate. The sender cannot move the activity,
but can delete it and change the requested size and priority.

3.3 Coordination Algorithm

The SHAC algorithm negotiates the scheduling and parame-
ter values of shared activities until consensus is reached. Fig-
ure 3 gives a general specification of the algorithm. SHAC is
implemented independently of the planner. Steps 1 through
3 are handled by the planner through an interface to SHAC.
Step 4 invokes the protocols that potentially make changes
to refocus coordination on resolving shared activity conflicts
and improving plan utility. SHAC sends modifications of
shared activities and constraints to sharing agents in step 5.
In step 6, shared activities and constraints are updated based
on changes received from other agents.

Ignoring coordination, a continuous planner must deter-
mine when it is appropriate to release activities to the exe-
cution system. In some cases, an activity involved in a con-
flict may either be released (requiring the planner to recover
from potential failures) or postponed (to allow the planner to
recover before a failure occurs). CASPER keeps a commit
window (an interval between the current time and some point
in the near future) within which activities cannot be modified
and passes these activities to the execution system.

1This permission applies to a class of shared activities (i.e. an
agent may be permitted to instantiate a shared activity of a particular
class).

This interaction with the executive becomes more compli-
cated when agents share tasks. SHAC must ensure that, when
a shared activity is released, all agents release it while in con-
sensus on the start time and other parameters of the task. Ide-
ally the agents should establish consensus before the commit
window. SHAC avoids changes in the commit window by
keeping a consensus window that extends from the commit
window forward by some period specific for the activity. As
time moves forward, the windows extend forward. When a
shared activity moves into the consensus window, the agents
switch to the simple consensus protocol to try and reach con-
sensus before the activity moves into the commit window.

4 Protocols
In general, protocols determine when to communicate, what
to communicate, and how to process received communica-
tion. During each iteration of the loop of the coordination
algorithm (Figure 3), the protocol determines what to com-
municate and how to process communication. A protocol is
defined by how it implements the following procedures to be
called during step 4 of the SHAC coordination algorithm for
the shared activity to which it is assigned:

1. modify permissions of the sharing agents
2. modify locally generated parameter constraints
3. add/delete agents sharing the activity
4. change roles of sharing agents

The default protocol, representing a base class from which
other protocols inherit, does nothing for these methods. How-
ever, even with this passive protocol, the SHAC algorithm
still provides several capabilities:

joint intention A shared activity by itself represents a joint
intention among the agents that share it.

mutual belief Parameters or state assertions of shared activ-
ities can be updated by sharing agents to establish con-
sensus over shared information.

48

Given: a ������� with multiple activities including a set of ��1��	�
� �,�2�&# . #%�&#&
� with �����'�$�&�
�	#%���)� and a ���
��3	��2�&#&��� of���+�	� into the future.

1. Revise ������3	��2�&#&��� using the currently perceived state and any newly added goal activities.
2. Alter ���+�	� and ���
��3	��2�&#&��� while honoring �4���'�4�&�
�	#%���)� .
3. Release relevant near-term activities of ���+�	� to the real-time execution system.
4. For each shared activity in ��1��	�
� �,�2�&# . #%�&#%
� ,� if outside consensus window,

– apply each associated protocol to modify the shared activity;� else
– apply simple consensus protocol.

5. Communicate changes in ��1��	��� �,�2�&# . #%�&#&
� .
6. Update ��1����
� �	���&# . #%�&#&�� based on received communications.
7. Go to 1.

Figure 3: Shared activity coordination algorithm

resource sharing Sharing agents can have identical con-
straints on shared states or resources.

active/passive roles Some sharing agents can have active
roles with execution primitives while others have pas-
sive roles without execution primitives.

master/slave roles A master agent can have permission to
schedule/modify an activity that a slave (which has no
permissions) must plan around.

The following sections describe some subclasses of this ab-
stract protocol, demonstrating capabilities that each protocol
method can provide.

4.1 Argumentation
Argumentation is a technique for negotiating joint beliefs or
intentions [Kraus et al., 1998]. Commonly, one agent makes a
proposal to others with justifications. The others evaluate the
argument and either accept it or counter-propose with added
justifications. This technique has been applied to teamwork
negotiation to form teams, reorganize teams, and resolve con-
flicts over members’ beliefs [Tambe and Jung, 1999]. It can
also be used to establish consensus on shared activities.

A shared activity and associated parameter values are the
proposal or counterproposal. Justifications are given as pa-
rameter constraints. A proposal is a change to a shared activ-
ity that does not violate any parameter constraints. A coun-
terproposal may violate constraints. Protocol method 2 must
be implemented to provide the parameter constraint justifica-
tions for proposals and counter-proposals. In order to avoid
race conditions, protocol method 1 regulates permissions.

Argumentation method 1� if this agent sent the most recent proposal/counterproposal
– if planner modified shared activity5 remove self’s modification permissions� else
– give self modification permissions (e.g. move and

delete)

Argumentation method 2� if planner modified shared activity

– generate parameter constraints describing locally
consistent values

For example, one agent can propose an activity with a par-
ticular start time and add justifications in the form of all in-
tervals within which the shared activity can be locally sched-
uled. Other agents can replan to accommodate the proposal
and counter-propose with their own interval restrictions if
replanning cannot accommodate others’ constraints. If the
agents cannot establish consensus before the consensus win-
dow, a higher ranking agent can mandate a time that ben-
efits most of the agents. Of course, there are many varia-
tions on this example. Agents may be restricted because they
are slaves or do not have constraint permissions to counter-
propose.

4.2 Delegation
Delegation is a mechanism where an agent in a passive dele-
gator role assigns and reassigns activities to different subsets
of agents in active subordinate roles. The delegator and sub-
ordinate protocols only need to implement protocol method 3
to choose the subordinates sharing the activity.

Delegator method 3� if ��������6���
��
� empty
– choose an ���,���� to whom to delegate the activity
– add (���,���� , subordinate) to ������������
��
�

Subordinate method 3� if cannot resolve conflicts/threats involving activity
– remove self from ����������
�
�+
�

5 Defining Consensus Windows
Here we describe an algorithm for determining the shortest
consensus window given a consensus protocol under partic-
ular communication constraints. Suppose agents have prede-
termined communication opportunity windows, such as or-
biters having regular patterns of visibility to each other, a
planetary surface, or Earth. We assume that communication
is reliable with delivery time guarantees, that bandwidth is
sufficient for coordination protocol communications, and that

49

time

ex
ec

ut
e

de
ci

si
on

consensus window

Agent A

a)

Agent C

time

Agent B

b)

ex
ec

ut
e

de
ci

si
on

Agent C

Agent B

Agent A

ex
ec

ut
e

de
ci

si
on

c)

Agent B

Agent C

Agent A

vo
te

s
co

lle
ct

ed

consensus window vo
te

s
co

lle
ct

ed

co
ns

en
su

s
w

in
do

w

Figure 5: State-time diagrams of agent communication. a) no communication constraints; b) communication restricted to
windows of opportunity; c) directed acyclic graph of information flow

Agent A Agent B Agent C

a)

1
Agent A Agent B Agent C

1

b)
2 2

11

Figure 4: Information flow for consensus protocols: a) high-
est rank decides and b) voting or auction

the planner has worked out contention for power and memory
resources required for communication.

Consensus protocols can be classified according to the flow
of data and the computation time required to respond. Figure
4 shows examples for highest-rank-wins, voting, and auction
protocols.2 The voting protocol requires each participating
agent to send a vote to a central agent, who (once all votes
are received) can instantaneously determine the outcome that
it must send to all participating agents. The space-time dia-
gram in Figure 5a shows how voting reaches consensus for a
decision when triggered upon entering the consensus window.
However, this diagram assumes that agents can communicate
at any time. Figure 5b shows the same protocol when pairs
of agents can only communicate during specified periods (in-
dicated by shaded regions). By walking through this diagram
from left to right, the steps of the information flow diagram
of Figure 4 are realized. In order to minimize the time to
consensus, Agent C sends its vote/bid to B through A, and B
sends the vote/auction outcome to A through C.

In order to determine how long the consensus window
should be, we expand backwards through the state-time di-
agram according to the information flow diagram. To do this,
we first construct a directed graph (708) as shown in Figure 5c
from the execution time backwards, where each node is la-
beled by an estimated time value and an agent identifier. We
also construct another directed graph (7:9) for the protocol’s
information flow, labeling edges according the state ordering
(as done in Figure 4). Using these two graphs, the following
algorithm determines the time to begin the consensus win-
dow by expanding a frontier of vertices backwards for each
step (state) of the information flow diagram.

2We assume that the decision being voted or auctioned is priorly
known by the agents.

Function Determine start time of consensus window
Input directed acyclic graph of communication opportunities;=<$>+?	<�@�AB<DC

, information flow diagram
;FE�>+?,E%@�AGE+C

Output HJILKNM
O$H=P-Q%R"S4QT HGILKNM
O4HUP-Q%R"S�Q = execution time (i.e. max V�W
X�Y (Z,[Q%IL\^])))T`_ Q%R
Q&] = max a W�b,c (]�[_ Q%R
Q&])T repeat
– d,efO$H = g4]ih A E�j]
[_ Q%R
Q%]=k _ Q%R
Q&]$l
– _2m KNnpo�qGIL\!] = HGILKNM
O$H=P-Q%R"S�Q
– for each] E hrd,efO4Hs d	S4O$K�Q%I+]2S = g�Zth ?	< j Z,[R
u�]2K�Q'k`] E [M"] _ Q�vZ,[Q%IL\^]Gk _pm KNnwo�qJI+\!]$ls repeatx A = g4]Fh ?	< j]�[M"] _ Qyhzd	S4O4KNQ(I+]�S{v]
[_ O4|,S$nw]t}h^d	S4O$K�Q%I+]2S�lx] < = argmin a W�b (]
[_ O4|,S$nw]�[Q(IL\^])x d	S$O4K�Q%I+]2S = d	S4O4KNQ(I+]�S + g4] < [_ O4|,S4np]$ls until] < [_ O$|	S$nw]
[R
u�]2K�Q =] E [M"] _ Qs HJI+KNM
O4HUP-Q(R�S�Q = min(HJILKNM
O$H=P-Q%R"S4Q ,] < [_ O$|	S$nw]
[Q(I+\!])
– _ Q(R
Q&] = _ Q%R
Q%] - 1T until _ Q(R
Q&] = 0T return HGILKNM
O$H=P-Q%R"S�Q

The algorithm begins by setting ~i#%�� ���~������	��� to the time
of execution. It works backwards through the states of the
information flow diagram, so �$���	�� is initially set to 2 for the
voting protocol. The �6�+��~ set contains all of the edges in
the flow diagram labeled 2. �$�,���41N��#(�� is the time point
between states and is used to populate �-�������&#&�� with a ver-
tice for each destination agent (agents A and C for the vot-
ing protocol) in the communication opportunity graph (7!8)
at �$�	���$1N�i#%�� . After working back to state 1, �-�
�����&#%�� only
contains the vertice for Agent B just after the time that all
votes are collected. The �-�
�����&#%�� is greedily expanded back-
wards in the fashion of a tree spanning algorithm, iteratively
adding vertices at time points closest to the frontier. Once
the source agent of the information flow edge is reached,~i#%�� 	��~������	��� records that latest time the source agent can
send out information. This is done for each edge of the �6�+��~
for the same state since it can take longer for information to
travel from different agents. Once all edges of one state are
simulated, ~�#(�� 	��~������	��� contains the minimum time, repre-
senting the synchronization point (�4�,���41��i#%��) for the prior

50

no pending
request

odyssey
received

request
no pending

request
wait for
uplink

cr itical
pancam

comm
earth

comm
odyssey

M ER activities
Odyssey activities

no pending
request

request
no pending

request
wait for
uplink

comm
earth

comm
odyssey

cr itical
pancam

comm
earth

comm
earth

through
Odyssey

direct

must-be wait

must-be wait

wait for
uplink

wait for
uplink

downlink cr itical data uplink from Ear th

Figure 6: Downlink/uplink states for a rover

state to be simulated. Figure 5c shows thicker edges used
to expand the frontiers of each state to find the latest possi-
ble consensus window start for the voting protocol. This is
the actual flow of information for reaching consensus. Notice
that the optimal start time is later than the example in Figure
5b.

The algorithm assumes that communication constraints
are windows of communication and bounded delays on data
transfer. The algorithm also assumes a simplified version of
the information flow diagram that models the protocols. A
possible expansion could include probabilistic information
for unreliable transfer of data, and the algorithm could be
adapted to give consensus windows with a probability of
reaching consenus. Communications costs could also be
included so that the algorithm could return optional con-
sensus windows with different overall costs. While parallel
information flow is modeled, the algorithm does not handle
multiple hops within a single state. While somewhat limited,
this approach can serve as a starting point for incorporating
these extended capabilities.

6 Application to Mars Scenario
Now we describe how SHAC is applied to a simulated
three-day scenario involving two Mars Exploration Rovers
(MERs), the Mars Odyssey orbiter, Mars Global Surveyor,
and the Mars Express orbiter. The delegation protocol
described previously was subclassed for the rovers to assign
and reassign the routing of images to the orbiters based on
how quickly they can deliver the data to Earth. Different
master/slave and active/passive roles are defined using
permission constraints for the shared activities to implement
a basic protocol for coordinating communication to and from
Earth. Interactions over communication (once delegated) are
between two agents, so the consensus window is defined to
cover communication activities spanning two communication

opportunities into the future. Once in the consensus window,
the rover cannot redelegate activities unless the orbiter
cannot resolve conflicts and must decommit. We intend
to experiment with other protocols and consensus window
definitions in this domain in our future work.

The MERs (MER A and MER B) and the orbiters can com-
municate with Earth directly, but the MERs can optionally
route data through the orbiters, which talk with Earth at a
higher bandwidth. The rovers need daily communication with
ground operations to receive new goals. The rovers will often
fail to traverse to a new target location and cannot proceed
until new instructions come from ground operations. In this
scenario both MERs must negotiate with the assigned orbiter
to determine how to most quickly get a response from Earth
after sending an image of their surroundings.

Each MER has a communication state shared with each or-
biter that tracks when the image is generated, when it gets
to Earth, and when the response from ground operations ar-
rives to the rover. Shared activities for changing the state are
shown for different routing options in Figure 6. The rover’s
activity for generating an image from its panoramic camera
changes the state to request to communicate its need to
downlink and receive an uplink. Activities for sending the
image to Earth (either directly or through Odyssey) change
the state to wait for uplink to indicate that the rover
will then be waiting for the uplink. Ground operations needs
a period of time to generate new commands for the uplink,
so if the uplink is received by Odyssey, the state changes to
received to indicate that now the rover can get the uplink
from Odyssey. Once the rover receives the uplink, the state
changes back to the normal no pending request state.
Rover tasks (such as a traverse) need the uplinked data be-
fore executing, so it places a local constraint that shared state
be no pending request during its scheduled interval.
There are no shared resources although communication re-

51

no pending
request

Odyssey

M ER A

must wait

comm earth

M ER activities Odyssey activities

cr itical
pancam

comm
earth

comm
earth

comm odyssey

traverse
comm
earth

no pending
request

request no pending
request

wait for
uplink

cr itical
pancam

comm
earth

comm
earth

C
oo

rd
in

at
ed

must wait

comm odyssey

traverse

no pending
request

odyssey
receivedrequest

no pending
request

wait for
uplink

comm earth

comm
earth

Figure 7: Downlink/uplink shared state for MER A. From top to bottom, Odyssey’s initial view, MER A’s initial view, and the
common view after coordination.

quests from a MER have effects on many local resources of
both the MER and the orbiter. All of the shared activities have
active master and passive slave roles. The MERs and obiters
both take the master role for activities labeled for them in
Figure 6.

CASPER planners for each of the MERs and orbiters first
build their three-day plans separately to optimize the timely
delivery of priority weighted science data, resolving any lo-
cal constraints on memory, power, battery energy, etc. The
three-day schedules constitute over 900 tasks for each MER
and over 1300 for each of the orbiters with 30 state/resource
variables for each MER and 22 for the orbiters. Planning is
slowed by a factor of 440 to account for differences between
a desktop workstation and a radiation-hardened flight proces-
sor. Communication for coordination is restricted to times
when the orbiters pass overhead. With the exception of Mars
Express, the orbiters pass overhead once every eight hours.
Because of its irregular orbit, Mars Express sees the rovers
only once every 96 hours. Because of this, we actually used
no consensus window for communication with Mars Express,
thus, forcing the planners to resolve conflicts during image
transmission.

When coordination begins, the planners send their commu-
nication requests to the other planners while optimizing their
plans. Before these updates are received, the initial views of
the shared uplink status are shown in Figure 7. The MERs be-
gin with conflicts with their traverse tasks because the uplink
has not yet been received from Earth. The coordination algo-
rithm commands the planners to repetitively process shared
task updates, replan to resolve conflicts by recomputing the
shared state and modifying scientific measurement operations
to adjust for the increased power and memory needs, and send

task updates. After a minute and a half, MER A, B, and
Odyssey agree on routing the downlink and uplink through
Odyssey to get the uplinked commands in time for the traver-
sal on different days. he resulting shared state is shown at the
bottom of Figure 7. The planners reach consensus that coor-
dination is complete and sleep while waiting for task updates.

Among other failed communication attempts, we triggered
an anomaly in MER A’s plan causing it to cancel its first day’s
tasks and shift the entire schedule forward a day. Before send-
ing the updated shared tasks, replanning was issued to resolve
local constraints to avoid propagating inconsistent state infor-
mation to Odyssey. All conflicts were resolved in a few sec-
onds except the traverse conflicts with a wait state. Then
MER A sends a task update to restart coordination. Coordi-
nation completes in less than a minute with data again being
routed through Odyssey.

While we have only experimented with simple protocols,
this application of SHAC to the Mars scenario shows how
planners can coordinate during execution while making min-
imal concessions to ideal plans and responding to unexpected
events. In the next section, we discuss how SHAC builds on
related work and discuss new research challenges for decen-
tralized, coordinated planning.

7 Discussion and Related Work
Conflicts among a group of agents can be avoided by reduc-
ing or eliminating interactions by localizing plan effects to
particular agents [Lansky, 1990], and by merging the indi-
vidual plans of agents by introducing synchronization actions
[Georgeff, 1983]. In fact, planning and merging can be inter-
leaved [Ephrati and Rosenschein, 1994]. Earlier work stud-
ied interleaved planning and merging and decomposition in

52

a distributed version of the NOAH planner [Corkill, 1979]
that focused on distributed problem solving. More recent re-
search builds on these techniques by formalizing and reason-
ing about the plans of multiple agents at multiple levels of ab-
straction to localize interactions and prune unfruitful spaces
during the search for coordinated global plans [Clement and
Durfee, 2000].

DSIPE [desJardins and Wolverton, 1999] employs a cen-
tralized plan merging strategy for distributed planners for
collaborative problem solving using human decision support.
Like our approach, local and global views of planning prob-
lem help the planners coordinate the elaboration and repair of
their plans. DSIPE provides insight into human involvement
in the planning process as well as automatic information fil-
tering for isolating necessary information to share. While our
approach relies on the domain modeler to specify up front
what information will be shared, SHAC supports a fully de-
centralized framework and focuses on interleaved coordina-
tion and execution.

In many ways this work is following the Generalized Par-
tial Global Planning approach to using a mix of coordination
protocols tailored for the domain [Decker, 1995]. SHAC of-
fers an alternative framework for separating implementation
of these mechanisms from the planning algorithms employed
by specific agents. Unlike GPGP, SHAC provides a modular
framework for combining lower-level mechanisms to create
higher-level roles and protocols. Our future work will build
on GPGP’s evaluations of mechanism variations to better un-
derstand how agents should coordinate for domains varying
in agent interaction, communication constraints, and compu-
tation limitations.

Finally, TEAMCORE provides a robust framework for de-
veloping and executing team plans [Tambe, 1997; Pynadath
et al., 1999]. This work also offers a decision-theoretic
approach to reducing communication within a collaborative
framework. Research is needed to investigate the integration
of coordinated planning with robust coordinated execution.

An assumption commonly made in multiagent research is
that agents will be able to communicate at all times reliably.
In the Mars scenario, the spacecraft communicate with each
other in varying time windows and frequencies, and the two
MERs can never directly talk to each other. Establishing con-
sensus on beliefs and intentions is impossible without certain
communication guarantees [Mullender, 1995]. Understand-
ing the communication properties that make consensus possi-
ble and the overhead for establishing consensus is critical for
multiagent research.

8 Conclusion
We informally described a continual coordination problem
and its challenges. SHAC addresses the problem as a general
planner-independent continual coordination algorithm and a
framework for designing and evaluating role-based coordina-
tion mechanisms. We described its capabilities and gave ex-
amples of higher-level mechanisms built on these capabilities.
In addition, we have presented an algorithm for determining
the time to reach consensus given a protocol and communica-
tions constraints. While our future work is aimed at evaluat-

ing the benefits of different protocols for different classes of
multiagent domains, we validate our approach in coordinat-
ing five simulated spacecraft experiencing unexpected events.

References
[Chien et al., 2000] S. Chien, R. Knight, A. Stechert,

R. Sherwood, and G. Rabideau. Using iterative repair to
improve the responsiveness of planning and scheduling. In
Proc. ECP, pages 300–307, 2000.

[Clement and Durfee, 2000] B. Clement and E. Durfee. Per-
formance of coordinating concurrent hierarchical planning
agents using summary information. In Proc. ATAL, pages
213–227, 2000.

[Corkill, 1979] D. Corkill. Hierarchical planning in a dis-
tributed environment. In Proc. IJCAI, pages 168–175,
1979.

[Decker, 1995] K. Decker. Environment centered analysis
and design of coordination mechanisms. PhD thesis, Uni-
versity of Massachusetts, 1995.

[desJardins and Wolverton, 1999] M. desJardins and
M. Wolverton. Coordinating a distributed planning
system. AI Magazine, 20(4):45–53, 1999.

[Ephrati and Rosenschein, 1994] E. Ephrati and J. Rosen-
schein. Divide and conquer in multi-agent planning. In
Proc. AAAI, pages 375–380, July 1994.

[Georgeff, 1983] M. P. Georgeff. Communication and inter-
action in multiagent planning. In Proc. AAAI, pages 125–
129, 1983.

[Grosz and Kraus, 1996] B. Grosz and S. Kraus. Collabora-
tive plans for complex group action. Artificial Intelligence,
86:269–358, 1996.

[Kraus et al., 1998] S. Kraus, K. Sycara, and A. Evanchik.
Reaching agreements through argumentation: a logical
model and implementation. Artificial Intelligence, 104:1–
70, 1998.

[Lansky, 1990] A. Lansky. Localized search for controlling
automated reasoning. In Proc. DARPA Workshop on Innov.
Approaches to Planning, Scheduling and Control, pages
115–125, November 1990.

[Mullender, 1995] S. Mullender. Distributed Systems.
Addison-Wesley New York, 1995.

[Pynadath et al., 1999] D. Pynadath, M. Tambe, N. Cauvat,
and L. Cavedon. Toward team-oriented programming. In
Proc. ATAL, 1999.

[Tambe and Jung, 1999] M. Tambe and H. Jung. The bene-
fits of arguing in a team. AI Magazine, 20(4), 1999.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Jour-
nal of Artificial Intelligence Research, 7:83–124, 1997.

[Yokoo and Hirayama, 1998] M. Yokoo and K. Hirayama.
The distributed constraint satisfaction problem: Formal-
ization and algorithms. IEEE Trans. on KDE, 10(5):673–
685, 1998.

53

.

54

Plays as Team Plans for Coordination and Adaptation∗

Michael Bowling, Brett Browning, Allen Chang and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh PA, 15213-3891

Abstract

Coordinated action for a team of robots is a chal-
lenging problem, especially in dynamic, unpre-
dictable environments. We examine this problem
in the context of robot soccer, a complex domain
with multiple teams of robots in an adversarial set-
ting. The adversarial nature creates a great deal
of uncertainty, in both the opponent’s behavior
and capabilities. Traditional approaches focus on
building reactive systems that use simple or even
complex evaluation procedures for selecting team
and individual robot actions given the state of the
world. We introduce the concept of aplay as a
team plan, combining both reactive and delibera-
tive principles. We introduce the concept of aplay-
bookas a method for seamlessly combining many
different team plans. The playbook provides a set
of alternative team behaviors, and is the basis for
our third contribution ofplay adaptation. We de-
scribe how these concepts were concretely imple-
mented in the CMDragons robot soccer team, the
first RoboCup robot team to adapt to its opponent
during the game. We also show empirical results of
the importance of adaptation in adversarial or other
unpredictable environments.

1 Introduction
Coordination and adaptation are two of the most critical chal-
lenges for deploying teams of robots to perform useful tasks.
These challenges become especially difficult in environments
involving other agents, particularly adversarial ones, not un-
der the team’s control. In this paper, we examine these chal-
lenges within the context of robot soccer[6], a multi-robot
goal-driven task in an adversarial environment. The robot
soccer task is goal-driven and highly dynamic. The presence
of adversaries creates significant uncertainty for predicting
the outcome of interactions. This is particularly true if the
opponent’s behavior and capabilities are unknown a priori, as

∗This research was sponsored by Grants Nos. DABT63-99-1-
0013, F30602-98-2-013 and F30602-97-2-020. The information in
this publication does not necessarily reflect the position of the fund-
ing agencies and no official endorsement should be inferred.

is the case in a robot soccer competition. As such, this task
encapsulates many of the issues found in realistic multi-robot
settings.

Despite this unpredictability, most robot soccer approaches
involve single, static, monolithic team strategies (e.g., see
robot team descriptions in[1].) Although these strategies
entail complex combinations of reactive and deliberative ap-
proaches, they can still perform poorly against unknown op-
ponents or in unexpected situations. With the uncertainty
present in the task, such situations are common.

An alternative approach uses models of opponent behavior,
constructed either before or during the competition[5], and
then determine the best team response. The model may be
used in a reactive fashion to trigger a pre-coded static strategy,
or in a deliberative fashion through the use of a planner[7].
Although these techniques have had success, they have limi-
tations such as the requirement for an adequate representation
of opponent behavior. For a completely unknown opponent
team, a prior model of their strategy is impractical.

Here, we take a novel approach based on observing our
own team’s effectiveness rather than observing the opponent.
We replace a single monolithic team strategy, with multiple
team plans that are appropriate for different opponents and
situations, which we callplays. Each play defines a coordi-
nated sequence of team behavior, and is explicit enough to
facilitate evaluation of that play’s execution. Aplaybooken-
capsulates the plays that a team can use. Each execution of a
play from the playbook can then be evaluated and this infor-
mation collected for future play selection. Successful plays,
which may be due to weaknesses in the opponent or particular
strengths of our team, are selected more often, while unsuc-
cessful plays are ignored.

In Section 2, we overview our CMDragons’02 robot soccer
team and the role of plays in the team’s decision making. We
then, in Section 3, describe plays and the play execution sys-
tem in detail. In Section 4 we describe play adaptation with
empirical results demonstrating its importance and effective-
ness, and then conclude.

2 Overview
In this section, we briefly describe our CMDragons’02 robot
soccer team, the basis for the work explored in this paper.
This overview focuses on how the strategy system, described
in Section 3, interacts with the system as a whole.

55

CMVision

Tracking

High-Level Vision C
am

er
a

Play Execution

Play Selection

Play

Library

Motion Control

Navigation

Robot Control

Tactics

Servo Loop

Radio Server
Radio

soccer

rserver

rserver

soccer

robotPlay Evaluation

Figure 1: Overview of the CMDragons’02 team architecture.

The CMDragons are a team of small-size league (SSL) soc-
cer robots that participated at RoboCup 2002. SSL robot soc-
cer, part of the RoboCup initiative[6], consists of two teams
of five robots that play soccer with an orange golf-ball on
a 2.8m by 2.3m field surrounded by short, sloped walls us-
ing FIFA-like rules enforced by a human referee. Robots
must conform to size and shape specifications, but no stan-
dard platforms exist. SSL is characterized by the allowance of
cameras mounted above the field for shared global perception
and additional off-field computation resources making a team
as a whole autonomous rather than individual robots. SSL
robots are typically fast, cruising at speeds of 1–2m/s while
the ball moves at over 2m/s, and occasionally much faster.
This makes SSL an environment that requires fast response,
good long-term strategy, strong individual robot skills and ca-
pable multi-robot coordination, for a team to be successful.

Figure 1 shows the major components of the CMDragons
system. The control loop, synchronized with image frames
at 30Hz, consists of taking an image from the camera via the
frame grabber and processing it, determining the control for
each robot on the team, and sending these velocity commands
using radio communication to the robots. Each robot operates
local servo loops to enact its commands. Due to space limita-
tions, we refer the reader to our earlier works[3] and[4], to
describe the system in more detail. Instead, we focus on the
tactics and strategy layers of the control software.

The tactics and strategy layers, the shaded regions in Fig-
ure 1, make up the bulk of the system. The tactics layer, en-
compasses individual robot skills. Here the notion of atactic
is synonymous with the termBehaviorsoften used in the lit-
erature. We use the terms tactics and strategy to reflect the
differentiation between determining what the team members
will do, and how each team member will do it. In practice,
each robot executes a single tactic independently of the others
each and every frame. The strategy layer provides the coor-
dination mechanism and executes one instance for the entire
team. Thus, the strategy layer must meld individual robot
skills into powerful and adaptable team behavior. Here we
focus on tactics, leaving discussion of strategy to the remain-
der of the paper.

Tactics are defined to be any behavior executable by a sin-

gle robot. Table 1 shows the list of implemented tactics . Each
tactic is highly parameterized and performs a complex, single
robot task that itself may consist of many sub-components.
Each tactic makes use of the robot control layer that main-
tains robot specific information persistent even after a robot’s
tactic changes. The layer transforms tactic commands into
target points for navigation. The navigation layer produces
short term, obstacle free, way-points for the motion control
system using a fast randomized planner. These way-points
are used by the motion control module to generate the actual
velocity commands sent to the robot.

A tactic, therefore, is a complex interaction between
low-levels of navigation and motion control and higher-
level skill-based code. For example, consider the
position for deflection tactic. The tactic itself de-
termines the best location within a region for deflecting
passes into the goal. This requires sampling points over the
region and evaluating the deflection angles using a deflection
heuristic. The best evaluated point is then fed into the naviga-
tion layer and in turn to the motion control layer to generate
the actual commands necessary to drive the robot to the cal-
culated position.

3 Play-Based Strategy
The main question addressed in this work is: “Given a set
of effective and parameterized individual robot behaviors,
how do we select each robot’s behavior to achieve the team’s
goals?” This is the problem addressed by our strategy com-
ponent, which is diagrammed by the left-most shaded com-
ponents of Figure 1. Our team strategy utilizes the concept
of a play as a team plan with multiple plays collected into a
playbook.

3.1 Goals
The main criterion for team strategy is performance. A single,
static, monolithic team strategy that maximizes performance,
though, is impractical. Indeed, in an adversarial domain with
an unknown opponent, a single optimal strategy is unlikely to
exist. Therefore we have broken down the performance crite-
rion into easier to achieve subgoals. The goals of a strategy
system are:

1. Coordinates team behavior,
2. Executes temporally extended sequences of action,
3. Allows for special behavior for certain circumstances,
4. Allows ease of human design and augmentation,
5. Enables exploitation of short-lived opportunities, and
6. Allows on-line adaptation to the specific opponent.

The first four goals require plays to be able to express
complex, coordinated, and sequenced behavior among team-
mates. In addition, plays must be human readable to make
strategy design and modification simple. These goals also re-
quires a powerful system capable of executing the complex
behaviors the play describes. The fifth goal requires the exe-
cution system to also recognize and exploit opportunities that
are not explicitly described by the current play. Finally, the
sixth goal requires the system to alter its behavior over time.

56

Active Tactics Non-active Tactics
shoot (A im | N oaim | D eflect 〈role 〉)
steal [〈coordinate 〉]
clear
active def [〈coordinate 〉]
pass 〈role 〉
dribble to shoot 〈region 〉
dribble to region 〈region 〉
spin to region 〈region 〉
receive pass
receive deflection
dribble to position 〈coordinate 〉 〈theta 〉
position for start 〈coordinate 〉 〈theta 〉
position for kick
position for penalty
charge ball

position for loose ball 〈region 〉
position for rebound 〈region 〉
position for pass 〈region 〉
position for deflection 〈region 〉
defend line 〈p1〉 〈p2〉 〈min-dist 〉 〈max-dist 〉
defend point 〈p1〉 〈min-dist 〉 〈max-dist 〉
defend lane 〈p1〉 〈p2〉
block 〈min-dist 〉 〈max-dist 〉 〈side-pref 〉
mark 〈orole 〉 (ball | our goal | their goal | shot)
goalie
stop
velocity 〈vx 〉 〈vy 〉 〈vtheta 〉
position 〈coordinate 〉 〈theta 〉

Table 1: List of tactics along with their parameters.

Notice that these goals, although critical to the robot soc-
cer task, are also of general importance for the coordination
of agent teams in other unpredictable or adversarial environ-
ments. We have developed a play-based team strategy, using
a specialized play language, to meet these goals. In the fol-
lowing sections, we will describe the three major components
of the play-based strategy engine: play specification using the
play language, the play execution system, and the playbook
adaptation mechanism used to autonomously alter team strat-
egy to a specific opponent during a competition.

3.2 Play Specification
Plays are specified using the play language, which is in an
easy-to-read text format (e.g., Tables 2 and 4). Plays use key-
words, denoted by all capital letters, to mark different pieces
of information. Each play has two components:basic infor-
mationandrole information. The basic information describes
when a play can be executed (“APPLICABLE”), when exe-
cution of the play should stop (“DONE”), and some execution
details (e.g., “FIXEDROLES”, “ TIMEOUT”, and “OROLE”).
The role information (“ROLE”) describes how the play is ex-
ecuted, making use of the tactics described above (see Sec-
tion 2). We describe these keywords below.

Applicability. The APPLICABLE keyword denotes when
a play can be executed. What follows the keyword is a con-
junction of high-level predicates that all must be true for the
play to be considered executable. MultipleAPPLICABLE
keywords can be used to denote different disjunctive condi-
tions for when the play may be executed. This allows plays
to effectively specify when they can be executed as a logical
DNF of high-level predicates. In the example play in Table 2,
the play can only be executed when theoffense predicate
is true. Theoffense predicate is a complex combination of
the present and past possession of the ball and its field posi-
tion. Predicates are easily added and Table 3 lists the predi-
cates in use in our system.

A play’s applicability condition is very similar to an opera-
tor’s preconditions in classical planning. By constraining the
applicability of a play we can design special purpose plays for
very specific circumstances. Table 4 shows an example play
that uses thein their corner predicate to constrain the

PLAY Two Attackers, Pass

APPLICABLE offense
DONE aborted !offense

OROLE 0 closest_to_ball

ROLE 1
pass 3
mark 0 from_shot
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R { B 1000 0 } ...
receive_pass
shoot A
none

ROLE 4
defend_line { -1400 1150 } ...
none

Table 2: A complex play involving sequencing of behaviors.

play to execute only when the ball is in one of the opponent’s
corners. The play explicitly involves dribbling the ball out of
the corner to get a better angle for a shot on goal.

Termination. Unlike classical planning, the level of uncer-
tainty in this task makes it difficult to predict the outcome
of a particular plan. Although, a play does not have ef-
fects, it does have termination conditions. Termination condi-
tions are specified by the keywordDONEfollowed by a result
(e.g.,aborted) and a conjunctive list of high-level predi-
cates similar to the applicability conditions. Plays may have
multiple DONEconditions, each with a different result, and
a different conjunct of predicates. Whenever one of these
DONEconditions are satisfied the play is terminated, and a
new play must be selected. In the example play in Table 2,
the only terminating condition is if the team is no longer on
offense. In this case the play’s result is considered to have
beenaborted .

The results for plays are:succeeded , completed ,
aborted , and failed . These results are used to evalu-

57

offense
defense
their ball
our ball
loose ball
their side
our side
midfield
in our corner
in their corner
nopponents our side 〈N〉

our kickoff
their kickoff
our freekick
their freekick
our penalty
their penalty
ball x gt 〈X〉
ball x lt 〈Y〉
ball absy gt 〈Y〉
ball absy lt 〈Y〉

Table 3: List of high-level predicates.

ate the success of the play for the purposes of reselecting the
play later. This is the major input to the play adaptation sys-
tem which we describe in the next section.

There are two other ways in which plays can be terminated.
The first is when the sequence of behaviors defined by the
play arecompleted , which is described with the play ex-
ecution system below. The second occurs when a play runs
for too long without terminating. The timeout causes the play
to terminate with anaborted result and a new play is se-
lected. Thus, the team commits to a course of action, but if
no progress is made due to unforeseen circumstances, another
approach will be tried. The timeout period has a team config-
urable default value, however, a play may use theTIMEOUT
keyword to override this default timeout limit (e.g. Table 4).

Roles. Roles are the active component of each play, and
each play has four roles corresponding to the non-goalie
robots on the field. Each role contains a list of tactics (also
called behaviors) with associated parameters for the robot to
perform in sequence. As tactics are heavily parameterized,
the range of tactics can be combined into nearly an infinite
number of play possibilities. Table 4 shows an example play
where the first role executes two sequenced tactics. First the
robot dribbles the ball out of the corner and then switches to
the shooting behavior. Meanwhile the other roles execute a
single behavior for the play’s duration.

Sequencing implies an enforced synchronization, or coor-
dination between roles. Once a tactic completes, all roles
move to their next behavior in their sequence (if one is de-
fined). Thus, in the example in Table 2, when the player as-
signed to pass the ball completes the pass, then it will switch
to the mark behavior. The receiver of the pass will simulta-
neously switch to receive the pass, after which it will try to
execute the shooting tactic.

Opponent Roles. Some behaviors are dependent on the po-
sitions of specific opponents on the field. Opponent roles are
used to identify a specific opponent based on an evaluation
method for the tactic to use. The example in Table 2, shows
an opponent role defined using theOROLEkeyword and the
closest to ball method. Thus, the first role will try to
mark the opponent closest to the ball away from the ensuing
shot, after executing the pass.

Coordinate Systems. Parameters for tactics are also very
general by allowing for a variety of coordinate systems in

specifying points and regions on the field. Coordinates may
be specified as absolute field positions or ball relative field
positions. In addition, a coordinate system’s positivey-axis
can be oriented to point towards the side of the field that the
ball is on, the side of field the majority of the opponents are
on, or even a careful combination of these two factors. This
allows tremendous flexibility in the specification of the be-
haviors used in plays and prevents unnecessary duplication
of plays for symmetric field situations.

PLAY Two Attackers, Corner Dribble 1

APPLICABLE offense in_their_corner
DONE aborted !offense
TIMEOUT 15

ROLE 1
dribble_to_shoot { R { B 1100 800 } ...
shoot A
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R { B 1000 0 } ...
none

ROLE 4
defend_line { -1400 1150 } ...
none

Table 4: A special purpose play that is only executed when
the ball is in an offensive corner of the field.

3.3 Play Execution
The play execution module is responsible for instantiating the
active play into actual robot behavior. Instantiation consists
of many key decisions: role assignment, role switching, se-
quencing tactics, opportunistic behavior, and termination.

Role assignment is dynamic, rather than being fixed, and is
determined by uses tactic-specific methods. To prevent con-
flicts, assignment is prioritized by the order in which roles
appear. Thus, the first role, which usually involves ball ma-
nipulation, is assigned first and considers all four field robots.
The next role is assigned to one of the remaining robots, and
so on. The prioritization provides the execution system the
knowledge to select the best robots to perform each role and
also provides the basis for role switching. Role switching is
a very effective technique for exploiting changes in the envi-
ronment that alter the effectiveness of robots fulfilling roles.
The executor continuously reexamines the role assignment
for possible opportunities to improve it as the environment
changes. Although, it has a strong bias toward maintaining
the current assignment to avoid oscillation.

Sequencing is needed to move the entire team through the
list of tactics in sequence. When the tactic executed by theac-
tive player, the robot whose role specifies a tactic related to
the ball (see Table 1), succeeds then the play transitionseach
role to the next tactic in their relative sequence. Finally, op-
portunistic behavior accounts for unexpected situations where
a very basic action would have a valuable outcome. For ex-
ample, the play executor evaluates the duration of time and

58

potential success of each robot shooting immediately. If a
robot can shoot quickly enough and with a high likelihood
of success, it will immediately switch its behavior to take ad-
vantage of the situation. Thus, opportunistic behavior enables
plays to have behavior beyond that specified explicitly. As a
result, a play can encode a long sequence of complex behav-
ior without encumbering its ability to respond to unexpected
short-lived opportunities.

Finally, the play executor checks the play’s termination cri-
teria, the completion status of the tactics, and the incoming
information from the referee. If the final active tactic in the
play’s sequence of tactics completes then the play terminates
as completed. If the game is stopped by the referee for a goal,
penalty, or free kick, the play terminates. The outcome of
the play depends upon the condition. Foals and penalty kicks
result in a success or failure as appropriate. A free kick is
results in a completion or an abortion as appropriate.

3.4 Play Selection

The final detail of the playbook strategy system is the mech-
anism to select plays, and adapt that selection given experi-
ence. Our basic selection scheme uses the applicability con-
ditions for each play to form a candidate list from which
one play is selected at random. To adapt play selection, we
modify the probability of selecting a play using a weighting
scheme. In the next section, we describe this scheme and
present experimental results showing the usefulness of a play-
book approach and the effectiveness of adaptation.

3.5 Implementation

Here we briefly, due to space considerations, describe our im-
plementation of the play system. Firstly, let us consider the
larger issues of how plays fit in within the larger framework.
Within the system architecture there are two main control
paths (see figure 1). The primary control path flows from
vision, through tactics, and to the robots. This path must
handle information in a high bandwidth, low latency man-
ner. The second control path flows from vision, through the
playbook engine, then through tactics to the robot. In short,
the playbook engine controls the robots through the tactics
layer. Since the plays generate team behavior through the in-
stantiation of tactics, which have a response time of seconds
to tens of seconds, it is not strictly necessary for the playbook
engine to operate with high bandwidth, which in CPU lim-
ited implementations can be useful. However, in practice, the
playbook executor operates at frame rate to ensure that its la-
tency, or response time, when reacting to changing situations
is kept as small as possible. This is a critical issue to ensur-
ing real-time team response. Moreover, great effort is exerted
to ensure that all algorithms process within a single frame
time (33ms). Hence, once accounting for the unavoidable
latency incurred through using vision, the tactics and plays
work in harmony to produce a new robot response within a
single frame. Overall this produces a total system latency of
100ms when responding to events. Of course, the robot re-
sponse times (e.g. driving to intercept a moving ball) then
form an additional latency which is on the order of seconds
usually.

The playbook engine consists of a number of interacting
C++ classes. At the base are thePlayRole, Play, andPlay-
Book classes which encapsulate the data and methods for
roles, plays and the playbook, respectively. A specialized
class, calledPlayAscii supports the reading of ASCII play
files. The key part in the chain though, is thePlayExecutor
class. This class is responsible for selecting plays, control-
ling the flow of play execution, and then modifying the play’s
weights based upon its performance.

The operations of the executor are as described in this sec-
tion. There are two important aspects to help understand its
implementation. Firstly, tactics are sub-classed from a base
Tacticsclass. Tactics parameterization, as has been described,
occurs through the constructor mechanisms. Thus, the play
engine operates by creating with appropriate parameters and
destroying tactics, which then in turn take generate robot ac-
tions. In addition each tactic comes armed with a range of
evaluation functions, which the play executor makes use of in
order to assign robots to roles. It is important to note here that
tactics themselves are complex mechanisms involving predic-
tive calculations, navigation planning, motion control and in
some cases manipulation.

The second aspect to understanding the play executor is
that its operation is greatly simplified by the use of predi-
cates which are in turn derived from the output of the track-
ing system. The latter is encapsulated in the precociously
namedWorld class. Through Kalman filtering, and higher
level processing of the output of the visual stream, the world
model provides some fairly high level primitives for form-
ing the predicates described in this paper. Furthermore, these
predicates are reasonably, although not totally, free of noise
thereby allowing reasonable encoding of plays using these
symbolic predicates. As explained, these predicates form the
basis for determining when a play is applicable, and also for
detecting the success or failure of a play. The case where
success or failure is determined by a goal being scored is de-
tectable through the use of a referee box. This is essentially
a laptop, which was introduced in 2002, which sends com-
mands to each team computer translating the referee signals
(’goal’, ’free kick’ etc.) into computer readable signals.

4 Playbook Adaptation
Playbook adaptation is the problem of adapting play selection
based on past execution to find the dominant play or plays for
the given opponent. We perform this adaptation using the
execution outcomes of past selected plays. In order to facili-
tate the compiling of past outcomes into the selection process
we associate with each play a weight,wpi

∈ [0,∞). These
weights are then normalized over all the set of all applicable
plays,A, to define a probability distribution,

Pr(selectingpi) =
wpi∑

pj∈A wpj

.

Playbook adaptation involves adjusting the selection weights
given the outcome of a play’s execution. An adaptation rule
is a mapping,W (w, pi, o)→ [0,∞), from a weight vector, a
selected play, and its outcome, to a new weight for that play.
These new weights are then used to select the next play.

59

There are a number of obvious properties for an adaptation
rule. All things being equal, more successes or completions
should increase the play’s weight. Similarly, aborts and fail-
ures should decrease the weight. In order for adaptation to
have any effect, it also must change weights drastically to
make an impact within the short time span of a single game.

The basic rule that we implemented for the RoboCup 2002
competition uses a weight multiplication rule, where each
outcome multiplies the play’s previous weight by a constant.
Specifically, the rule is,

W (w, pi, o) = Cowpi
,

whereCo is the constant associated with the particular out-
come. We nominally set these to,

Csucceeded = 4 Ccompleted = 4/3
Caborted = 3/4 Cfailed = 1/4.

These weight values capture the basic properties described in
the above paragraphs. Little work has gone into optimizing
these weight selections. Since the opponent is unknown a pri-
ori, it seems difficult to know in advance what weight values
are best. Rather, our approach has been to select reasonable
values, that ensure changes in play selection within the short
durations that make up a game ie. two 10 minute halves. In
practice, we have found that these weight values are sufficient
to ensure modified behavior within a half against a range of
opponents of widely varying capabilities and strategies.

4.1 Evaluation
Our strategy system was used effectively during RoboCup
2002 against a wide range of opponents with vastly differ-
ent strategies and capabilities. Although effective, the nature
of robot competitions prevent them from being a systematic
evaluation in a controlled, scientific, or statistically signifi-
cant way. Therefore, we have constructed a number of sim-
plified scenarios to evaluate our play system. These scenarios
first compare whether multiple plays are actually necessary,
and also examine the usefulness of playbook adaptation.

The scenarios compare the effectiveness of four different
offensive plays paired against three different defensive be-
haviors. To simplify evaluation, only two offensive robots
were used against one defensive robot. The robots start in
the usual “kick off” position in the center of the field. For
each scenario 750 trials were performed in our UberSim SSL
simulator[2]. A trial was considered a success if the offense
scored a goal within a 20 second time limit, and a failure oth-
erwise. Table 5 lists the specifics of the offensive plays and
defensive behaviors. The first two defensive behaviors, and
first three offensive plays, formed the core of the playbook
used for RoboCup 2002.

Table 6 shows the play comparison results. Each trial is
independent, hence the maximum likelihood estimate of the
play’s success probability is the ratio of successes to trials.
Note that there is no static strategy that is optimal. The best
strategy depends upon the defensive behavior even in this
simplified scenario. In fact, each of the offensive plays is
actually the optimal response for some distribution over de-
fense behaviors. These differences are statistically significant
with 95% confidence using binomial difference tests.

Offensive Plays
Name Attacker 1 Attacker 2
Shoot 1 shoot Aim position for rebound
Shoot 2 shoot NoAim position for rebound
Screen 1 shoot Aim mark 0 from shot
Screen 2 shoot NoAim mark 0 from shot

Defensive Behaviors
block Positions to block incoming shots
active def Actively tries to steal ball
brick Defender does not move

Table 5: List of offensive and defensive behaviors tested.

Play block active def brick
Shoot 1 72.3% 49.7% 99.5%
Shoot 2 66.7% 57.3% 43.1%
Screen 1 40.8% 59.0% 92.4%
Screen 2 49.2% 66.0% 72.0%

Table 6: Play comparison results. For each scenario, the per-
centage of successes for the 750 trials is shown. The bold-
faced number corresponds to the play with the highest per-
centage of success for each defensive behavior.

Our results support the notion that play-based strategies are
capable of exhibiting many different behaviors with varying
degrees of effectiveness. For instance, against a “conserva-
tive” blocking defense, the play where a robot takes the time
to align itself for a good shot performs the best. On the other
hand, against more “aggressive” defenses, the above play per-
forms poorly in comparison. Instead, the play where the
robots take less time to aim while the assisting robot attempts
to set a screen for the shooter, is more successful.

To explore the effectiveness of playbook adaptation we use
an offensive playbook for two robots with all four offensive
plays described above against a fixed defender running either
block or active def . We initially used the algorithm
above, but discovered an imperfection in the approach. Due
to the strength of the reinforcement for a completed play, it is
possible for a moderately successful but non-dominant play
to quickly dominate, and remain dominant, in weight. This
phenomenon did not occur in competition due to the larger
disparity in plays against a given opponent and lower success
probabilities. The problem is that there is no normalization in
the weight adjustment for plays that have a higher selection
probability, which are updated more often. Therefore, we in-
cluded a normalization factor in the weight updates. Specifi-
cally, we used the following rule,

W (w, pi, o) =
{

wpi2/Pr(pi) if o = Succeeded
wpiPr(pi)/2 if o = Failed

,

where Pr(pi) is the probability assigned topi according tow.
To evaluate the performance, we compare the expected

success rate (ESR) of using this adaptation rule against a fixed
defensive behavior. We used the results in Table 6 to simu-
late the outcomes of the various play combinations. All the
weights are initialized to 1. Figure 2(a) and (b) show the ESR
for play adaptation over 100 trials, which is comparable to
a length of a competition (approximately 20 minutes). The

60

0.57

0.72

1 100
0.58

0.67

1 100

(a) Success Rate v. Block (b) Success Rate v. Active

(c) Expected Play Probabilities v. Block

Figure 2: (a), (b) show ESR against block and activedef,
(c) shows expected play success probabilities against block.
These results have all been averaged over 50000 runs of 100
trials.

lower bound on the y-axis corresponds to the ESR of ran-
domly selecting plays and the upper bound corresponds to
the ESR of the playbook’s best play for the particular defense.
Figure 2(c) shows the probabilities of selecting each play over
time when running the adaptation algorithm. Clearly, the al-
gorithm very quickly favors the more successful plays.

These results, combined with the RoboCup performances,
demonstrate that adaptation can be a powerful tool for iden-
tifying successful plays against unknown opponents. Note
the contrast here between the use of adaptation to more com-
mon machine learning approaches. We are not interested in
convergence to an optimal control policy. Rather, given the
short time limit of a game, we desire adaptation that achieves
good results quickly enough to impact the game. Hence a
fast, but non-optimal response is desired over a more optimal
but longer acting approach.

Finally, it is worth noting that play adaptation has a differ-
ent role to tradition machine learning approaches. With the
formulation described here, play adaptation does not allow
for a team to perform better than the capabilities inherent in
the underlying single robot skills (tactics in this case). Rather,
it provides a team with an adaptation mechanism that ensures
that its performance will be as good as possible, within the
limits of the available tactics and the plays encoded in its
playbook.

5 Conclusion
In conclusion, we have introduced a novel team strategy en-
gine based on the concept of a play as a team plan, which
can be easily defined by a play language. Multiple, distinct
plays can be collected into a playbook where mechanisms for
adapting play selection can enable the system to improve the
team response to an opponent without prior knowledge of the
opponent’s strategy. The system was fully implemented for

our CMDragons robot soccer system and tested at RoboCup
2002, and in the controlled experiments reported here.

References
[1] Andreas Birk, Silvia Coradeschi, and Satoshi Tadokoro,

editors. RoboCup 2001: Robot Soccer World Cup V.
Springer Verlag, Berlin, 2002.

[2] Brett Browning and Erick Tryzelaar. Ubersim: A multi-
robot simulator for robot soccer. InProceedings of AA-
MAS, 2003.

[3] James Bruce, Michael Bolwing, Brett Browning, and
Manuela Veloso. Multi-robot team response to a multi-
robot opponent team. InICRA Workshop on Multi-Robot
Systems, 2002.

[4] James Bruce and Manuela Veloso. Real-time random-
ized path planning for robot navigation. InProceedings
of IROS-2002, pages 2383–2388, Switzerland, October
2002.

[5] S.S. Intille and A.F. Bobick. A framework for recogniz-
ing multi-agent action from visual evidence. InAAAI-99,
pages 518–525. AAAI Press, 1999.

[6] Itsuki Noda, Sh́oji Suzuki, Hitoshi Matsubara, Minoru
Asada, and Hiroaki Kitano. RoboCup-97: The first robot
world cup soccer games and conferences.AI Magazine,
19(3):49–59, Fall 1998.

[7] Patrick Riley and Manuela Veloso. Planning for dis-
tributed execution through use of probabilistic opponent
models. In ICAPS-02, Best Paper Award, Toulouse,
France, April 2002.

61

.

62

Goal-Converging Behavior Networks and Self-Solving Planning Domains

Bernhard Nebel
Institut für Informatik

Albert-Ludwigs-Universiẗat Freiburg
nebel@informatik.uni-freiburg.de

Yuliya Babovich
University of Texas

yuliya@cs.utexas.edu

Abstract
Agents operating in the real world have to deal
with a constantly changing and only partially
predictable environment and are nevertheless ex-
pected to choose reasonable actions quickly. One
way to address this problem is to use behavior
networks as proposed by Maes, which support
real-time decision making. Robotic soccer ap-
pears to be one domain where behavior networks
have been proven to be particularly successful.
In this paper, we analyze the reason for the suc-
cess by identifying conditions that make behav-
ior networksgoal converging, i.e., allow them
to reach the goals regardless of which particu-
lar action selection scheme is used. In terms of
STRIPS domains one could talk ofself-solving
planning domains. We finally show that the be-
havior networks used for different robotic soccer
teams have this property.

1 Introduction
Agents operating in the real world have to deal with a
constantly changing and only partially predictable environ-
ment; and the expectation is that the agents can figure out
the best suitable actions in real-time. Thebehavior net-
work approach[Maes, 1990] addresses this problem through
activation spreading inside a network of competence mod-
ules. This approach is intended to address, as Maes[1990]
states, the problems of “brittleness, inflexibility, and slow re-
sponse” of classical planning approaches on one hand, and
the problem of “the lack of explicit goals” in reactive ap-
proaches on the other hand. It proved to be useful and be-
came popular during the last decade. For instance, it has
been used in the implementation of an intelligent e-mail agent
[Zhanget al., 1998] and as the underlying mechanism for
generating behavior of autonomous characters in interactive
story systems[Rhodes, 1996]. Most notably, the approach
has been employed in the simulated robotic soccer team
magmaFreiburg[Dorer, 2000a] and in the real robotic soc-
cer (F2000 league) teamCS Freiburg[Weigel et al., 2001;
2002]. In both cases, the teams were highly successful. The
simulation teammagmaFreiburgwas runner-up in 1999 and
CS Freiburgwon theRoboCupworld championship in 2000

and 2001. Although there is a wide range of components,
both hard- and software, that contribute to such a success,
the behavior networks, as reported by Weigelet al. [2001;
2002] and Dorer[2000a], played a significant role.

It must be said, however, that the particular action selec-
tion mechanism employed in the robotic soccer teams dif-
fers significantly from Maes’[1990] original proposal. The
so-calledextended behavior networks[Dorer, 1999], which
are used in the robotic soccer domain, can deal with con-
tinuous propositions, use a technique calledgoal-tracking
in order to address some of Tyrrell’s[1994] criticisms con-
cerning Maes’[1990] proposal, and employ a goal manage-
ment mechanism that allows for changing goals. In fact, with
all the extensions, the behavior networks have now the fla-
vor of decision-theoretic planning, without implementing this
framework, though. Furthermore, as shown in a number of
experiments[Dorer, 1999], these changes lead to a signifi-
cantly higher number of scored goals.

Although Maes’ behavior networks and variations have
been analyzed from several perspectives, there are neverthe-
less many issues that have not been resolved. For example, it
is not clear under which conditions we can be sure that a be-
havior network converges to its goal, i.e., generates an action
sequence that eventually satisfies the goal. Dorer[2000b] de-
scribes some experiments where he used the original behav-
ior networks by Maes[1990] in order to solveblocks-world
planningproblems. As it turns out, for some five-block prob-
lems, the behavior network goes into an infinite loop and does
not come up with a solution, regardless of the parameter set-
ting. Clearly, such a performance would be unacceptable in
a soccer context. Just imagine a soccer player who dribbles
the ball in an endless circle. However, this does not happen
in this domain. One could explain this difference by the fact
that the blocks world is an artificial domain with a puzzle-
like character while soccer has a real-world character much
more suited for behavior networks. However, it would be, of
course, more interesting to find some formal conditions that
explain why behavior networks work so well for robotic soc-
cer.

More generally, we are interested to find a condition that
guarantees that the behavior network will generate a success-
ful sequence of actions provided there exists one and no ex-
ogenous events intervene. Furthermore, we want this guaran-
tee regardless of which particular action selection scheme and

63

parameter setting is employed. Behavior networks with this
property will be calledgoal converging. If we view the be-
havior network as a STRIPS planning domain specification,
then the corresponding domain specification could be termed
self-solving, since all sequences of executable actions lead to
the goal.1

If a behavior network is goal converging, then we know
that it will always act goal-oriented and parameter tuning is
only necessary to generate better, shorter action sequences.
Of course, it is also clear that goal convergence will require
severe restrictions on the structure of behavior networks.
However, as we show in this paper, there exists a non-trivial
restriction on the topology of the behavior network that guar-
antees that the network is goal converging. In addition, all
the networks that have been designed for robotic soccer are
of this type (or are very close to this form), which explains
to some degree why the approach works so well for robotic
soccer.

The rest of the paper is structured as follows. In the next
section we sketch the behavior network approach. In Sec-
tion 3, we identify two conditions for a behavior network be-
ing goal converging. Based on that, we analyze in Section 4
the networks that have been used in the Freiburg RoboCup
teams and show that they satisfy one of the conditions identi-
fied. Finally, in Section 5, we conclude and give an outlook.

2 Behavior Networks
In the following, we describe the behavior network formal-
ism. Since we do not need the full details for our purposes,
the description will be sketchy at some points.

2.1 Specifying Behavior Networks

Let P be a set of propositional atoms. Astate is a truth as-
signment to all atoms inP (often also represented as the set of
true atoms). For extended behavior networks[Dorer, 1999],
the state is an assignment of fuzzy values.Behavior net-
works are tuples(P,G,M,Π), where

• G ⊆ P is thegoal specification;

• M is a finite set ofcompetence modulesor actions,
wherem ∈ M is a tuple〈pre, eff+, eff−, beh〉 with
pre ⊆ P denoting thepreconditions,2 eff+, eff− ⊆ P
denoting the positive and negative effects, respectively,
with eff+ ∩ eff− = ∅ and beh being the name of an
executablebehavior, which is started once the module
is selected for execution. If we want to refer to one of
the components of a competence modulem we use the
notationpre(m), eff+(m), etc.

1This condition corresponds to what is called theall-policies-
propercondition in the MDP community. However, in this context
one usually assumes the condition and does not try to identify crite-
ria which guarantee the condition.

2Note that we allow only for positive goals and preconditions.
This, however, does not restrict the expressivity since (for STRIPS-
like planning) this is equivalent to formalisms with negative precon-
ditions and goals under various formal notions of expressive equiv-
alence[Bäckstr̈om, 1995; Nebel, 2000].

• Π is a set ofglobal parametersused to control the ac-
tion selection process, among them the threshold for the
activationθ. There are more parameters, but we do not
need them for our purposes and ignore them for this
reason.

Depending on the type of behavior networks, some varia-
tions are possible. For example, in Dorer’s[1999] extended
behavior networks, the goals can have an importance measure
and an additional relevance condition. Further, effects have
an expectation value describing how likely it is that the ef-
fect proposition becomes true after executing the competence
module. These details will not be important for us, though.

2.2 Activation Spreading
Competence modules are connected in a network so that they
can send and receive activation energy. Apositive effect link
connects a positive effectp of a competence module to the
preconditionp of another competence module. Anegative ef-
fect linkconnects a negative effectp of one competence mod-
ule to the preconditionp of another competence module.3 An
example of a small behavior network is given in Figure 1.

Soccer Goal

Shoot

GetBall

haveNoBall closeToBall

GotoBall

haveNoBall

ballKickable

Figure 1: Example of a behavior network: Solid arrows de-
note positive effect links and dashed arrows denote negative
effect links.

In this example, the competence moduleGotoBallhas the
preconditionhaveNoBalland the effectcloseToBallenabling
the competence moduleGetBall. This, in turn, has the neg-
ative effect of deletinghaveNoBalland the positive effect of
makingballKickabletrue. The latter enables theShootmod-
ule, which then (hopefully) leads to scoring a goal, the ulti-
mate goal of this behavior network.

Unsatisfied goals send some activation energy to compe-
tence modules that could make the goals true and, in turn,
each activated module sends some of its activation through its
unsatisfied preconditions to modules which can make the pre-
condition true. In the original version of behavior networks,
there is also a “forward spreading” of activation energy. This
means that activation energy flows from propositions true in a

3Although negative self-links are usually not considered, we will
draw them in depictions of behavior networks in order to describe
the actions completely.

64

situation towards competence modules that have these propo-
sitions as preconditions, and from executable competence
modules to competence modules which have unsatisfied pre-
conditions identical to the effects of the executable modules.
However, this forward spreading of activation does not seem
to increase the quality of the action selection[Dorer, 1999;
Goetz and Walters, 1997] and for this reason this kind of ac-
tivation is not present in Dorer’s[1999] extended behavior
networks. While positive effect links are used for spreading
activation, negative links are used to inhibit the activation of
other modules. Modules that have the negative effectp ∈ eff−

are inhibited by modules that havep as a satisfied precondi-
tion.

2.3 Action Selection
Action selection is done in a cycle containing four steps
[Maes, 1990; Dorer, 1999]:

1. The current activation of each module is calculated us-
ing the methods described above, i.e., each modules
receives some activation and inhibition from modules
connected to it.

2. Activation and executability of a module are combined
by a non-decreasing function into the utility of a mod-
ule, whereby non-executable competence modules al-
ways get the value zero.

3. The module with the highest utility value is chosen,4

provided it passes a certain thresholdθ (one of the
global parameters). The action associated with the
competence module is then executed.

4. If none of the modules reached the activation threshold,
the threshold is reduced by a certain percentage (an-
other global parameter) and the cycle is started again
with the currently computed activation values for each
module.

Since we usually want an agent to execute a sequence of
actions leading to the goal, the above cycle will be called in-
finitely or until the agent has reached the goal.

From the description above it follows that there are only a
few things one can be sure of when using a behavior network
for action selection. First of all, only executable actions are
chosen. Second, if an action selection scheme is employed
that does not use forward activation spreading, for instance
Dorer’s[1999] scheme, then it follows that if an action is cho-
sen, it “contributes” to one of the goals, since the competence
module can receive activation only from the goal through a
chain of unsatisfied preconditions.

2.4 Ideal Abstract Behavior Networks
If we want to guarantee properties of a network under dif-
ferent action selection schemes and parameter settings, we
have to make a number of simplifying assumptions. We will
assume that the state is always correctly observable (with
Boolean state variables), that the competence modules de-
scribe all relevant effects correctly, that the execution of the
behavior of a competence module is always successful, and

4Ties are broken randomly.

that no exogenous event will intervene. Based on these as-
sumptions, we define an abstract version of behavior net-
works, which from a formal point of view are identical to
STRIPS domain descriptions.

An ideal, abstract behavior network is a tupleB =
(P,G,M), whereP,G andM are defined as in Section 2.1.
In the stateS ⊆ P, the network can choose any competence
modulem for execution such that the preconditionspre(m)
are satisfied inS, i.e., pre(m) ⊆ S, and not all positive ef-
fects are satisfied, i.e.,eff+(m)−S 6= ∅. Whenm is executed
in stateS, the resulting stateResult(S, m) is given by

Result(S, m) = S − eff−(m) ∪ eff+(m).

We say that the networkB cangeneratea (finite or infinite)
sequence of actionsm1,m2, . . . ,mi, . . . in a stateS1 if

Si+1 = Result(Si,mi).

We sayB can reach the goalsG from a stateS if it can
generate a finite sequence of actions inS such that the last
stateSn satisfies the goals, i.e.,Sn ⊇ G.

3 Goal-Converging Behavior Networks
If we want to guarantee that a behavior network is successful
regardless of the action selection scheme and parameter set-
ting,5 we have to consider all action sequences the network
can generate. Although this appears to be a fairly strong re-
quirement, there are indeed realistic networks for which we
can show that they are always successful—if the goal is reach-
able at all.

3.1 Terminating and Dead-End Free Networks
We call a behavior networkterminating if for all states and
under all possibilities to choose actions, it is impossible to
generate infinite action sequences—provided the goal was
reachable initially.6 Figure 2 gives a simple example of a
non-terminating network.

Goal

p1 p2

q1

C

B1

A1 A2

q2
B2

Figure 2: Anon-terminatingbehavior network

Provided thatp1, p2, q1, q2 and theGoal are false ini-
tially, then it is possible that the sequenceA1, A2, A1, A2, . . .
is chosen. Hence, the network is not terminating.
Note that there is a successful sequence consisting of

5The only restriction is that we never consider actions such that
all their positive effects are already satisfied (see Section 2.4).

6If the goal is unreachable, we do not care about the behavior of
the network.

65

A1, B1, A2, B2, C. However, the action selection mecha-
nism might not necessarily find it. An example for a termi-
nating network is the one in Figure 1, as is easy to verify.

We say that a network is in ablocked statewhen no ac-
tion is executable and the goal is not satisfied. Such a blocked
state may occur because there was no way to reach the goal
in the first place. However, it may be possible that the goal
was reachable in the beginning. We call a networkdead-end
free if it never leads to a blocked state when it is possible to
reach the goal. Consider, for example, the network in Fig-
ure 3. This network contains a dead end. Provided one starts
with p1, p2, q2 andGoalas false andq1 as true, the execution
of A2, B2 leads to a blocked state. However, obviously, the
sequenceB1, A2, B2, C would have led to the goal. In other
words, this network is not dead-end free. An example of a
dead-end free network is again the one in Figure 1. Although
in this network one can make propositions false, this can only
happen in the course of satisfying the goal and it will never
prohibit reaching the goal.

Goal

p1 p2

q1

C

B1

A2

q2
B2

Figure 3: A behavior network with adead end

Finally, we call a behavior networkgoal convergingwhen
it will generate a finite action sequence leading to the goal re-
gardless of the action selection scheme and parameter setting,
provided the goal is reachable at all. When viewing the be-
havior networks as specifications of STRIPS planning prob-
lems, we would talk ofself-solving planning domains, be-
cause regardless of which order we would choose for the ex-
ecutable actions, one would always reach the goal—provided
the goal was initially reachable at all.

Proposition 1 A behavior network isgoal convergingif and
only if it is dead-end freeandterminating.

Proof: The “only if” direction is obvious since networks with
dead ends and networks which are non-terminating cannot be
goal converging. There are possible states and action selec-
tions such that either a loop or a dead end, respectively, are
chosen although there is the possibility of reaching the goal.
For the “if” direction observe that a non-goal-converging net-
work must either produce an infinite sequence or end up in a
dead end although there is a action sequence leading to a goal
state.

3.2 Monotone Networks
One particularly simple type of goal-converging networks are
networks with only positive effects, which we will callmono-
tone networks. Since a propositional atom can never be
made false in a monotone network, one can reach any desired
goal after any initial sequence of actions, provided the goal

was initially reachable. This implies that it is impossible to
run into a dead end. Since each action can be executed at most
once, there is additionally an upper bound to the length of any
action sequence generated by a monotone behavior network,
implying that the network is also terminating.

Proposition 2 Monotone behavior networks are goal con-
verging.

Monotone behavior networks are hardly interesting, be-
cause they almost never appear in practice.For our purposes,
they are equivalent to STRIPS planning problems that have
only positive preconditions and effects. While such planning
problems appear to be trivial, it is well known that generating
a shortest plan is still an NP-hard problem[Bylander, 1994].
Furthermore, such planning problems have become popular
as the basis for computing heuristic estimates in action plan-
ning [Hoffmann and Nebel, 2001; Bonet and Geffner, 2001].
For our purposes, however, the restriction to purely positive
effects is not possible.For instance, in our example network
in Figure 1, the actionGetBalldestroys thehaveNoBallcon-
dition.

3.3 Acyclic Networks with Restricted Negative
Links

In order to specify a more interesting class of goal-convergent
networks, let us view these networks from a slightly differ-
ent angle. Let us consider directed graphs with two kinds of
nodes,action nodesandfact nodesand two kinds of directed
edges,positiveandnegativeones, such that

• there is a positive (precondition) edge from fact nodep
to action nodea if p is a precondition of actiona;

• there is a positive (effect) edge from action nodea to
fact nodep if p is apositiveeffect ofa;

• there is a negative (effect) edge from action nodea to
fact nodep if p is anegativeeffect ofa.

The resulting graph is calledaction-fact graph.7 The nor-
malized action-fact graph is the directed graph where the
direction of the negative edges has been reversed. The in-
teresting point is that acyclicity of the normalized action-fact
graph implies that the behavior network is terminating.

Theorem 3 A behavior network which corresponds to an
acyclic normalized action-fact graph is terminating.

Proof: In order to show that a behavior network satisfying the
condition of the theorem is terminating, we assign as a first
step values to the atoms in the action-fact graph. For each
atomp the value ofp should be1 plus the sum of values of
the fact nodes that are incident via a negative edge to an action
havingp as a positive effect. Since the normalized action-fact
graph is acyclic, this value assignment is well-defined.8

With this value assignment to atoms, each action applica-
tion will strictly increase the overall value of the state (as the

7Such graphs correspond to what has been calledbi-level plan-
ning graph[Long and Fox, 1999] or connectivity graph[Hoffmann
and Nebel, 2001] in the planning literature.

8In fact, as is obvious from this argument, it suffices when the
sub-graph consisting of effect edges only is acyclic.

66

sum over the values of all true propositions), because an ac-
tion is only executed when one of its positive effects is not
true. This implies, however, that it is impossible to generate
infinite action sequences.

While it was easy to find a condition for termination, it
appears to be much more difficult to find a criterion that guar-
antees that the network is dead-end free. Let us consider even
further restricted action-fact graphs. If the sub-graph formed
from the positive links is acyclic and if for all negative edges
from actiona to factp there exists a positive path fromp to
a, then we call the graphacyclic, negative-feedback action-
fact graphs. This is obviously a special-case of anacyclic
normalized action-fact graph. However, it is still not a crite-
rion for guaranteeing the absence of dead ends. In fact, plan-
ning is still non-trivial as the plan existence problem is still
NP-hard.

3.4 Modular Action-Fact Graphs
One way to guarantee that there are no dead ends is to make
sure that it is always possible to make falsifiable proposi-
tions true without affecting other propositions, which has to
be guaranteed independently of the initial state[Hoffmann,
2002]. While this condition is often true in classical plan-
ning tasks, it seems very unlikely that we can guarantee this
in our case. Hoffmann[2002] gives a number of other suffi-
cient conditions, but none appears to be applicable here. For
this reason, we will look into an alternative condition. We
will try to make sure that any proposition that can be falsified
needs never to be used again after it has been falsified. For
example, this condition is satisfied in Figure 1. One way to
guarantee this is to require the followingmodularitycondi-
tion. For all atomsq that can be falsified by an actiona in
an acyclic, negative-feedback action-fact graph, each positive
path fromq to a goal atom must go through an actiona′ such
thateff+(a) ⊇ eff+(a′) 6= ∅. This condition is, for example,
satisfied by the action-fact graph in Figure 4 and the action-
fact graph derivable from the network in Figure 1. We call
acyclic, negative-feedback action-fact graphs satisfying this
conditionmodular action-fact graphs.

A1 A2

r2q r3

A3

r1

Goal

p1 p2

Figure 4: An action-fact graph satisfying themodularitycon-
dition

Theorem 4 Modular action-fact graphs are goal converg-
ing.

Proof: Termination follows from Theorem 3. The proof that
the action-fact graphs are dead-end free is by induction on the
number of negative links. Fork = 0 negative links, the claim
follows from Proposition 2. Assume now that the claim is

true for modular action-fact graphs withk or fewer negative
links. Consider a graph withk+1 negative links. Now choose
one action nodea that is the source of a negative link and
which has no positive path to any other action node with such
a property. Because of the acyclicity of the graph formed
from positive links, such a node must exist. Assume thatq is
amongst the negative effects ofa and that the positive effects
arep1, . . . , pk. If we remove the negative link froma to q,
we can apply the induction hypothesis fork negative links
and know that the graph is dead-end free.

Assume now for contradiction that the original network is
not dead-end free. This must be connected with the possibil-
ity of falsifying q by a. However, once all the positive effects
of a have been made true by executinga, the truth value ofq
is not of any concern since all positive paths fromq to a goal
go througha and actions with a subset ofeff+(a) as their
positive effects. Hence, the negative link froma to q cannot
create a dead end, which completes the induction step.

4 RoboCup Behavior Network
As mentioned in the Introduction, the analysis of behavior
networks was motivated by the observation that the behavior
networks of themagmaFreiburgandCS Freiburgrobotic soc-
cer players work so robustly. When one now analyzes the net-
works with the tools developed in this paper, it turns out that
they indeed satisfy the condition of beingmodular—modulo
some qualifications. Before we talk about qualifications, we
should, however, have a look at some real behavior networks.
In Figure 5 the main part of theCS Freiburg[Müller, 2000]
behavior network is displayed as an action-fact graph. Ob-
viously, the few negative links satisfy themodularitycondi-
tion. However, one may wonder, why there are no negative
links from the actions havingHaveBallas a precondition to
HaveBall? Although these negative links should have been
there in order to describe the action effects correctly, their ab-
sence is not problematic, since we assumed that all actions
are successful—and the positive effect of all the actions is the
ultimate goal. In any case, when adding the negative effects,
we still would have amodularaction-fact graph.9

A similar comment applies to the missing positive links
back toNegHaveBall. Again, it is not interesting because we
achieve the goal anyway. Furthermore, we can ignore these
positive links without losing anything, i.e., they never help us
to achieve the goal.

Often it is necessary to take more than one goal into ac-
count. The extended behavior network may contain multiple
goals which can be selected based on the current situation.
So, for example, aCS Freiburgplayer either tries to score a
goal (if it fills the role of anactive player) or it has the over-
all goal tocooperate. In the latter case, we would have to
consider a different network, which also satisfies the struc-
tural condition of beingmodular, though. In the case of the
magmaFreiburgplayers, things are even more complicated
because it is possible to pursue more than one goal at once. If
we break the networks down to one goal at a time, however,
the resulting networks are again modular.

9Indeed, themagmaFreiburgnetworks contain these negative ef-
fects.

67

MoveShoot

TurnAwayBall

TurnBall

DribbleBall

ShootGoal

FlipperPass

WaitAndBlock

 GotoBall

SearchBall

BallPresent

HaveBall

NegShootLastAct

GoodFlipperPos

GoodShootAngle

TurnBallAngle

FrontClear

BallnearOwnGoal

BallNearOwnGoal

GoodgetBallDist

EnemyHasBall

DribbleFrontClear

GoodShootDist

NegHaveBall

NegBallPresent

GetBallClose

NegMoveShLastAct

NegBallClose

 GetBall1 GetBall2

soccergoal

Figure 5: Part of the Action-Fact Graph of theCS Freiburg
behavior network[Müller, 2000]

Finally, it should be noted that there are levels in the de-
cision making that influence the behavior networks, e.g., the
role assignment and placement of players on the field[Weigel
et al., 2001], which are, however, not taken into account when
analyzing the network.

Summarizing, if we assume that no exogenous actions in-
tervene and if there occurs no change in the goals (in par-
ticular there is no influence from the strategic component),
then all the behavior networks of theCS Freiburg[Müller,
2000] and themagmaFreiburg[Dorer, 2000b] players satisfy
the modularity condition and are therefore goal converging,
which goes somewhere in explaining why they have been suc-
cessful. At least, when players are alone on the field, they will
eventually score. Although this is a rather weak guarantee, it
is much better than the statement that the player might score
a goal only when the parameters of the network are well ad-
justed.

Of course, all this seems to imply that the domain as
modelled in the described RoboCup teams has a quite sim-
ple structure. However, thinking a while about the problem,
one will come to the conlusion that even in the face of more

complex modelling and decision making by, e.g., integrat-
ing opponent modelling and adversary planning, we neverthe-
less would like to guarantee the conditions mentioned above.
However, it may be the case that it is not possible to verify
the conditions using simple syntactic tests any longer.

5 Conclusions and Outlook
We have identified a structural property of behavior net-
works, calledmodularity, that guarantees that the networks
will reach their goals in a static environment under all
circumstances—if the goals are reachable at all. Interest-
ingly, there exists a significant application of behavior net-
works where this restriction is met, namely, the networks of
the Freiburg simulation and real robot (F2000) soccer players.

Having shown that a network has this property means that
we never have to fear that the network leads to infinite action
sequences or blocked states. In addition, it means that tuning
network parameters[Maes, 1992] will not modify the princi-
pal property of reaching the goal, but only the efficiency.

In the future, we will pursue three directions of research.
First of all, there is the question whether there exist other rel-
evant restrictions on network structures that lead to goal con-
vergence. Second, in most cases, it is enough if the network
is goal converging for a subset of all possible states. Now, the
interesting question is in how far this would result in a more
liberal condition for goal convergence. Third, we will analyze
the feasibility of testing the property of goal convergence on
a semantic level. In this context, it will probably be helpful to
take the syntactic restrictions identified in this paper into ac-
count, because it is probably prohibitive to inspect the entire
state space.

Acknowledgments
We acknowledge the comments and suggestions by Jörg
Hoffmann, Wolfram Burgard, and Malte Helmert on an ear-
lier version of this paper.

The first author has been partially supported by the Uni-
versity of Newcastle, NSW, Australia, during his sabbatical.
The second author has been partially supported by the DAAD
as part of the International Quality Network on Spatial Cog-
nition during a visit at the University of Freiburg.

References
[Bäckstr̈om, 1995] Christer B̈ackstr̈om. Expressive equiv-

alence of planning formalisms.Artificial Intelligence,
76(1–2):17–34, 1995.

[Bonet and Geffner, 2001] Blai Bonet and H́ector Geffner.
Planning as heuristic search.Artificial Intelligence, 129(1-
2):5–33, 2001.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning.Artificial In-
telligence, 69(1–2):165–204, 1994.

[Dorer, 1999] Klaus Dorer. Behavior networks for contin-
uous domains using situation-dependent motivations. In
Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 1233–1238,
Stockholm, Sweden, August 1999. Morgan Kaufmann.

68

[Dorer, 2000a] Klaus Dorer. The magmaFreiburg soccer
team. In M. Veloso, E. Pagello, and H. Kitano, edi-
tors, RoboCup-99: Robot Soccer World Cup III, pages
600–603. Springer-Verlag, Berlin, Heidelberg, New York,
2000.

[Dorer, 2000b] Klaus Dorer. Motivation, Handlungskon-
trolle und Zielmanagement in autonomen Agenten.
PhD thesis, Albert-Ludwigs-Universität, Freiburg, Ger-
many, 2000. Published on FreiDok server under
http://www.freidok.uni-freiburg.de/volltexte/57.

[Goetz and Walters, 1997] Philip Goetz and Deborah Wal-
ters. The dynamics of recurrent behavior networks.Adap-
tive Behavior, 6(2):247–283, 1997.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search.Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[Hoffmann, 2002] Jörg Hoffmann. Local search topology in
planning benchmarks: A theoretical analysis,. InProceed-
ings of the 6th International Conference on Artificial Intel-
ligence Planning Systems (AIPS-02). AAAI Press, Menlo
Park, 2002.

[Long and Fox, 1999] Derek Long and Maria Fox. Efficient
implementation of the plan graph in STAN.Journal of
Artificial Intelligence Research, 10:87–115, 1999.

[Maes, 1990] Pattie Maes. Situated agents can have goals. In
Pattie Maes, editor,Designing Autonomous Agents: The-
ory and Practice from Biology to Engineering and Back,
pages 49–70. MIT Press, Cambridge, MA, 1990.

[Maes, 1992] Pattie Maes. Learning behavior networks from
experience. InProceedings of the First European Confer-
ence on Artificial Life, pages 48–57, 1992.

[Müller, 2000] Klaus Müller. Roboterfußball: Multiagen-
tensystem CS Freiburg. Diplomarbeit, Albert-Ludwigs-
Universiẗat, Freiburg, Germany, 2000.

[Nebel, 2000] Bernhard Nebel. On the compilability and
expressive power of propositional planning formalisms.
Journal of Artificial Intelligence Research, 12:271–315,
2000.

[Rhodes, 1996] Bradley Rhodes. PHISH-nets: Planning
heuristically in situated hybrid networks. Master’s thesis,
MIT, Cambridge, MA, 1996.

[Tyrrell, 1994] Toby Tyrrell. An evaluation of Maes’ bottom-
up mechanism for behavior selection.Adaptive Behavior,
2(4):307–348, 1994.

[Weigelet al., 2001] Thilo Weigel, Willi Auerbach, Markus
Dietl, Burkhard D̈umler, Jens-Steffen Gutmann, Kor-
nel Marko, Klaus M̈uller, Bernhard Nebel, Boris Szer-
bakowski, and Maximilian Thiel. CS Freiburg: Doing
the right thing in a group. In P. Stone, T. Balch, and
G. Kraetzschmar, editors,RoboCup-2000: Robot Soccer
World Cup IV, pages 52–63. Springer-Verlag, Berlin, Hei-
delberg, New York, 2001.

[Weigelet al., 2002] Thilo Weigel, Alexander Kleiner, Flo-
rian Diesch, Markus Dietl, Jens-Steffen Gutmann, Bern-
hard Nebel, Patrick Stiegeler, and Boris Szerbakowski.
Cs freiburg 2001. In A. Birk, S. Coradeschi, and S. Ta-
dokoro, editors,RoboCup-2001: Robot Soccer World Cup
V. Springer-Verlag, Berlin, Heidelberg, New York, 2002.

[Zhanget al., 1998] Zhaohua Zhang, Stan Franklin, Brent
Olde, Yun Wan, and Art Graesser. Natural language sens-
ing for autonomous agents. InProceedings of the IEEE
Joint Symposia on Intelligence and Systems, pages 374–
381, Rockville, Maryland, 1998.

69

.

70

Abstract
For an autonomous vehicle to navigate in real-
time within a dynamic environment, it must be
able to respond to moving objects. In particular,
it must be able to predict, with appropriate levels
of confidence, where those objects are expected
to be at times in the future. It must then capture
this information internally in its world model in
a format amenable for planners that intend to use
it.

In this paper, we provide an overview of a
framework to address the challenges involved in
predicting and representing the future location of
moving objects. This framework uses a multi-
representational approach to model information
about moving objects, thus allowing for planners
that require different forms of knowledge
representation. We then describe a probabilistic,
logic-based algorithm to predict the future
location of vehicles in an on-road environment.
Included in this discussion are the factors that
affect the probabilities associated with various
actions that the moving object may take.

1 Introduction and Related Research
For an autonomous vehicle to navigate in real-time
within a dynamic environment, it must be able to respond
to moving objects. In particular, it must be able to
predict, with appropriate levels of confidence, where
those objects are expected to be at times in the future. It
must then capture this information internally in its world
model in a format amenable for planners that intend to
use it.

In this paper, we introduce a framework to address the
challenges involved in predicting and representing the
future location of moving objects. This framework uses a
multi-representational approach to model information

about moving objects, thus allowing for planners that
require different forms of knowledge representation. In
addition, this framework accounts for different factors
that would influence the future location of moving
objects, including the environment it is in, a priori maps,
mobility characteristics, the object’s intention and
indicators, environmental conditions, etc.

This framework is applicable to both on-road and off-
road driving. However, for the remainder of this paper,
we will be focusing on the more interesting problem of
on-road navigation where road networks provide a
constrained environment in which to navigate, and as
such, introduce a number of additional factors that could
influence the probability of other moving objects
behaving in certain ways. These factors and their
corresponding influences are the focus of this paper.

We are not aware of any efforts in the literature that have
addressed the development of a framework for combined
moving objects representation and prediction. However,
there have been efforts focusing on individual
components of this framework that could be leveraged,
specifically in moving object representation. Very limited
work exists in the representation of moving objects. Firby
[4] uses NaTs (navigation templates) as a symbolic
representation of static and dynamic sensed obstacles to
drive a robot’s motors to respond quickly to moving
objects. Gueting [5] extends database structures to allow
for the representation of dynamic attributes (i.e., ones
that change over time) and also extends the database’s
query language to allow for simplified querying of the
values of dynamic attributes. Singhal [10] introduces the
concept of dynamic occupancy grids which allow each
cell to have a state vector which contains information
such as a probabilistic estimate of the entity’s identity,
location, and characteristics (such as velocity,
acceleration) along with global probability distribution
functions.

An Approach to Predicting the Location of Moving Objects During On-Road
Navigation

Craig Schlenoff, Raj Madhavan, Stephen Balakirsky
Intelligent Systems Division

National Institute of Standards and Technology
100 Bureau Drive, Stop 8230

Gaithersburg, MD 20899
Phone: 301-975-3456 F: 301-990-9688

craig.schlenoff@nist.gov, raj.madhavan@nist.gov, stephen.balakirsky@nist.gov

71

In the literature, it is common to find methodologies that
predict where an object will be in the next one or two
sensor images. This form of predicting the future location
of moving objects for a relatively small number of time
steps into the future (short-term prediction) is useful in
determining where the object will be in the next sensor
image so as to perform object tracking. This has been a
well-researched area in which approaches including
Kalman filters [3] and Bayesian-based methods [11] have
shown good results. In this paper, we concentrate on
long-term prediction of sensor images, i.e., predicting the
position of objects 10’s or 100’s of sensor images in the
future. For autonomous navigation, planners plan over
time horizons anywhere from milliseconds to tens of
seconds for path planning and obstacle avoidance. As
such, prediction algorithms need to be able to generate
both short and long term predictions to accommodate the
needs of planners.

In this paper, we introduce an approach to predicting the
future location of moving objects with the following
characteristics:

o The recipient of the predictions is the planner
and are used for path planning and obstacle
avoidance

o Predictions are made at longer time horizons, on
the order of 10’s or 100’s of sensor images into
the future

o Constraints on the environment are explicitly
taken into account, such that only legal and
possible actions are considered during prediction

o A logic-based approach is used to associate
probabilities with various actions the moving
object may take.

 In Section 2, we provide an overview of the moving
object framework. In Section 3, we describe the
prediction algorithms and apply them to on-road driving.
In Section 4, we discuss the influencing factors and
constraints on motion that affect the probabilities
associated with actions used in the prediction algorithms.
In Section 5, we discuss the implications of applying this
approach to an existing planner. In Section 6, we
conclude the paper and discuss future work.

2 Moving Object Framework
The moving object framework provides a mechanism to
apply appropriate prediction algorithms and
representational approaches in order to fully capture the
information needed to navigate in the presence of moving
objects. This framework is shown in Figure 1.

We are assuming that the processed sensor data will be
provided as input to the framework (as shown in the left-
most box). Specifically, the information that we are
assuming will be provided at pre-defined time intervals
includes:

o The perceived dimensions of objects in the
environment, along with associated uncertainty

o The location of objects in the environment
o The object’s velocity and direction
o The color of the object

Processed
Sensor
Data

Prediction Algorithms
Kinematic, Probabilistic, Bounded Constraint
Models, ….

World Model

Symbolic

Equation-based

Grid-based
…

Planner

Motion CapabilitiesObject Class

Intention Personality

Formations

Traffic ControlOther Traffic

Weather and Environmental
Conditions

Planner

Planner

A Priori Maps

Figure 1: Moving Object Framework

72

We are also assuming knowledge about the environment
in which the vehicle is navigating. This could take the
form of a priori maps containing road networks and
terrain characteristics, or could be dynamically generated
based upon sensory input and processing.

In the framework, we attempt to classify the moving
object based upon the processed sensor data. In the case
of on-road driving, simply classifying the objects as
vehicles (cars, motorcycles, trucks, buses, emergency
vehicles), pedestrians, animals, or debris is enough for
the purpose of motion prediction. We introduce a fairly
simplistic object classification algorithm in [8] to provide
the level of classification necessary to allow for informed
moving object prediction.

Based upon the environment we are in, we employ
different types of prediction algorithms. For off-road
navigation, we have employed a bank of Kalman filters
to predict the future location of the moving objects in the
environment [6]. For on-road navigation, we are
developing logic-based prediction algorithms that are
intended to function in constrained environments. This
logic-based approach is discussed in Section 3 of this
paper.

Information about the moving object and its possible
future locations are stored in the vehicle’s world model
in a multi-representational format. Information about the
instances of object classes encountered in the
environment (e.g., vehicle, animal, pedestrian, debris) is
stored in a symbolic knowledge base with links to a

priori detailed information about the corresponding
object class. Based on the object class and the
environment in which it is in, prediction algorithms, as
discussed in the previous paragraph, are linked to the
symbolic representations of the object. The results from
these prediction algorithms are instantiated and
represented in a time-based grid representation and
provided to lower-level planners. A detailed discussion
of these representation formalisms and their interactions
can be found in [9].

One of the major advantages the proposed moving object
framework provides is the ability to represent
information about the moving object in many different,
inter-related representations. It is expected that this
moving object framework will provide information to
planners that require fundamentally different kinds of
underlying representations. For example, a planner that is
planning for short time horizons (on the order of a few
seconds) may require a grid-based representation
describing occupancy probabilities of locations in space
while a planner that plans at a longer time horizon may
require a symbolic representation that describes
characteristics of objects and equations governing their
motion as opposed to locations in space. By using an
interconnected multi-representational approach, we are
able to provide information to the planner that is at a
level of abstraction appropriate to its planning
requirements. More information on planning in the
presence of moving objects can be found in Section 5.

Rapid deceleration
(0.1)

Slow deceleration
(0.225)

Change to right lane
(0.05)

Constant velocity
(0.5)

Slow acceleration
(0.05)

Rapid acceleration
(0.025)

Change to left lane
(0.05)

Vehicle is moving in lane
at 3 units/sec

 Figure 2: Driving Scenario

73

3 Logic-Based Motion Predictions in
Constrained Environments

We are developing logic-based prediction algorithms for
use in constrained environments. The purpose of these
algorithms is to predict the probability that an object will
occupy a given location in space at a given time by
taking into account: 1) the constraints that are placed on
the object’s motion and 2) the influencing factors that
would cause it to take a given action over another at
specific times. These constraints and influencing factors
are discussed in Section 4 of this paper.

In the case of on-road driving, vehicles must stay on the
road and as such, the road network provides the
constraints dictating the bounds in which a vehicle may
travel. A database structure has been developed to
capture detailed information about the road network,
which includes information about the curvature of lanes,
road interconnectivity, signage and traffic control, lane
marking, etc. Equations representing the path of the roads
can be inferred from the information in the database, and
these equations serve as the basis for representing the
possible paths the vehicle may take along the road
network. Details about the database will be the topic of a
future paper.

3.1. Discretizing Actions

The rule-based prediction approach requires that you
discretize the possible actions that a moving object may
take. In the case of a vehicle driving on-road, we limit
the actions of the vehicle to be:

o Remain at a constant velocity in the current lane
o Slowly accelerate in the current lane
o Rapidly accelerate in the current lane
o Slowly decelerate in the current lane
o Rapidly decelerate in the current lane
o Change to a lane on the left
o Change to a lane on the right
o Turn to a lane on the left (at an intersection)
o Turn to a lane on the right (at an intersection)
o Make a U-Turn (at an intersection)

Figure 2 shows an example of a vehicle on a three-lane,
one-way road. Each possible discretized action that the
vehicle can take in this scenario is shown, along with the
probability that the vehicle will take this action
(represented by a value between zero and one in
parenthesis). The point on the road that is referenced by
each action shows the position the vehicle will be at if
that action is performed. So, if we assume that the
vehicle is at (0,0) to start and moving along its lane at 3
m/s, then the vehicle will be at (1,0) if a rapid
deceleration action is performed, at (2,0) if a slow
deceleration action is performed, etc.

Figure 3 shows how we can project these actions into the
future to predict the position of the vehicle at longer time
horizons. At time = t, the vehicle is at location (0,0). To
get to time t+1, the vehicle may perform any of the
discretized actions. The results of any of these actions
will result in the vehicle occupying a location in the
environment at one time step in the future (t+1). This
location is shown as (x,y) coordinates next to each
possible action. The probability that the vehicle will take
any one of these actions over another is determined by
the influencing factors described in Section 4.

(0,0)

(1,0)

(3,-1)

(3,1)

(5,0)

(4,0)

(3,0)

(2,0)

Rapid deceleration
(0.28)

Slow deceleration
(0.4)

Constant velocity
(0.1)

Slow acceleration
(0.01)

Rapid acceleration
(0.01)

Change to left lane
(0.1)

Change to right lane
(0.1)

Rapid deceleration
(0.4)

Slow deceleration
(0.15)

Constant velocity
(0.03)

Slow acceleration
(0.01)

Rapid acceleration
(0.01)

Change to left lane
(0.2)

Change to right lane
(0.2)

Figure 3: Probabilistic Prediction Over Multiple Time Steps

(t+1) (t+2)

(4,0)

(6,-1)

(6,1)

(8,0)

(7,0)

(6,0)

(5,0)

74

To get to the next time step (t+2), each of the possible
actions that vehicle may take is again determined, and the
probabilities are associated based upon the action it took
at the previous time step. We continue this into the future
as long as our planning horizon requires. Then to
determine the probability of the vehicle occupying a
given point in space at a given time, we determine if any
of the paths result in the vehicle being in that location,
and multiply together all of the probabilities along that
tree branch to determine the overall probability.

In this case, we are assuming that the vehicle is driving
on a straight, horizontal road and as such, the vehicle’s
location is simply moving in the x-direction. In reality,
the location that the vehicle occupies will be derived
from the information stored in an a priori road network
database being developed at NIST.

3.2. Reducing Computation Time

One issue that arises with this approach is the possibility
of a large amount of information that needs to be
captured. If we have ten possible actions and we are
projecting out 20 time steps into the future, we have 1020
values that need to be computed. This is an unrealistic
expectation for any system that is expected to run in real-
limiting the actions a vehicle may take at a given
location, and then by limiting the time horizon of the
prediction.

First, it is often the case that only a subset of the actions
that the vehicle may take is possible at a given location
on the road. For example, if the vehicle is not at an
intersection, turning right, turning left, and making a U-
turn is not possible. If the vehicle is driving in the right
lane of a road, it is not possible for it to change to the
right lane. If the vehicle is stopped, it may not perform
either of the two deceleration actions. These limitations
greatly limit the number of actions that need to be
represented at any given time. In Figure 2, since the
vehicle is not at an intersection, the turn right, turn left,
and make a U-turn activities are not listed. It is expected
that there will be between 5 and 7 possible actions, on
average, at a typical position on the map.

Second, we will initially be implementing these
algorithms in the 4D/RCS architecture [1]. 4D/RCS is a
hierarchical architecture and limits the planning time
horizon at each level of the architecture. Plans at each
level typically have 5 to 10 steps between the anticipated
starting state and a planned goal state at the planning
horizon [1].

Third, we may wish to prune the tree from the onset to
eliminate actions that have a very low probability of
occurring. For example, if we assume that the probability
that a vehicle will rapidly accelerate at time = t+1 is less
than a certain percentage (say, 3 percent) then we may

decide to ignore that action in the tree. By doing this, we
would also ignore all branches of this tree that would
follow from this action taking place, thus greatly
reducing the size of the tree.

Considering these three factors, the number of values that
need to be computed is greatly reduced (from 1020 to as
little as 55) and as such, we believe that this approach
should lend itself to real-time environments.

4 Constraints on Motion and Influencing
Factors

This section discusses the factors that affect the
probabilities associated with the possible actions that a
vehicle may take while driving on-road. There are two
classes of factors that we must consider. The first are
factors that limit the possibilities of where the vehicle is
able to reach. In other words, by considering these
factors, we can eliminate certain portions on the maps
that are not reachable by the vehicle. We call these
‘constraints on motion’. The second are factors that
influence which of the possible actions the vehicle is
likely to perform out of those that are available to it. We
call these influencing factors. These two categories of
information are discussed below.

4.1 Constraints on Motion
As mentioned above, the constraints on motion limit the
possibilities of the locations that the vehicle is able to
reach. Below we discuss two constraints on motion:

o A Priori Road Network Information:
Assuming that the vehicle is driving on-road and
will remain on-road, the road network limits the
possible locations that the vehicle can possibly
attain.

o Vehicle’s Motion Capabilities: Motion

capabilities of a vehicle limit the possibilities of
where it can possibly be in the future. For
example, the vehicle’s acceleration capabilities
restricts the range of locations that are accessible
by the vehicle in a given timeframe. Similarly,
knowing a vehicle’s minimum turning diameter
as a function of its current velocity provides a
limitation on how quickly it can change lanes
and its ability to perform turns at an intersection.
One of the ways this information may be used is
to limit the possibility of a vehicle turning at an
intersection as a function of its velocity
approaching the intersection. That is, if a vehicle
is approaching an intersection at a relatively
high rate of speed, one may eliminate the
possibility that the vehicle is turning at the
intersection.

75

4.2 Influencing Factors
Influencing factors affect the probability that a vehicle
will perform one action over another. Seven influencing
factors are discussed below:

o Weather and Environmental Conditions:
Weather and environmental conditions include
rain, sleet, snow, fog, darkness, etc. and their
effects on visibility and slickness of the road
surfaces. As the weather and environmental
conditions worsen, the probability often
increases that the vehicle’s velocity will
decrease. Also in these conditions, vehicles often
prefer to remain in their lane as opposed to
switching lanes or performing passing
maneuvers.

o Vehicle’s Intention and Indicators: One of the

strongest factors that play a role in human’s
ability to predict the future location of another
vehicle is the vehicle’s perceived intentions.
Intention could be known a priori, such as
knowing a vehicle is driving to the bank, and
this knowledge could be used to determine the
most probable path it will take to achieve that
goal. More commonly, intentions could be
derived from perception, such an indication that
a vehicle is making a left turn based upon the
vehicle moving into a turn lane or having its
blinker on. As more information becomes
available from the vehicle, this information can
be used to either strengthen or weaken the
perceived intentions, which in turn would
increase/decrease the probabilities associated
with the possible actions the vehicle may take in
the future.

o Class of the Vehicle: Object classification

provides information about the class of object
that is being perceived. If we limit our scope to
vehicles on the road, the class of vehicle could
indicate the course the vehicle is expected to
travel, or how it is expected to behave in certain
situations. For example, if the vehicle was
identified as being a city bus, we would most
likely expect it to stop at a bus stop signs, and
traverse primarily in the right most lane.
Similarly, if the vehicle was identified as an
emergency vehicle, we would expect it to travel
at high rates of speed and not to necessarily stop
at stop signs and traffic lights. If the vehicle was
a motorcycle, we may not eliminate the
possibility of it navigating in between vehicles
stopped in a traffic jam.

o Vehicle’s Personality: When humans drive on-

road, they implicitly assign a personality to other
vehicles. For example, if one sees another

vehicle swerving in and out of traffic, and
making unsafe lane maneuvers, one may assign a
very aggressive personality to the vehicle.
Conversely, if a vehicle is observed driving at or
below the speed limit, keeping an extraordinarily
far following distance, and rarely changing
lanes, a low level of aggressiveness would be
assigned. Based on these personality measures,
one would expect different actions from that
vehicle in the future. For example, an aggressive
vehicle would be more prone to make lane
changes, and as such, the probability assigned to
the action of changing lanes would be greater for
that type of vehicle.

o Traffic Control Indicators / Rules of the

Road: The ‘rules of the road’ play a large role in
predicting how a vehicle is expected to behave
under certain situations. For example, if a
vehicle is approaching a stop sign, one would
expect that the vehicle would gradually decrease
its speed until it reaches the stop sign, comes to
a complete stop, and then proceeds when the
intersection is safe to traverse. However, based
on the perceived personality of the vehicle, we
may expect that the vehicle only slows down but
does not come to a complete stop, or traverses
the intersection before most would consider it
safe.

Efforts at NIST have focused on encoding the
rules of the road using finite state machines
leveraging a driver’s manual published by the
Department of Transportation [7]. The document
contains a comprehensive inventory of the
behaviors involved in operating an automobile,
along with the rated criticalities of these
behaviors. The task descriptions are organized in
terms of the situations giving rise to the
behaviors; behaviors involved in controlling
movement of the car without regard to specific
situations; behaviors that must be performed
continually or periodically while driving, rather
then in response to a specific situation; and off-
road behaviors that are performed before
driving, to maintain the car in sound operating
condition, and in compliance with legal
regulations. The document organizes the task
descriptions into the following categories:

o basic control (situation-independent driving

behaviors to control the movement of the
vehicle),

o general driving (continuously-performed
driving behaviors in response to any
specific situation),

o situational behaviors (behaviors that are
required in response to specific situations),

76

o pre-driving behaviors (behaviors taken
prior to driving to assure safe and efficient
operation),

o maintenance (behaviors directed toward the
vehicle to assure safe and efficient
operation), and

o legal responsibilities (legally imposed
behaviors required to assure that drivers are
responsible for the consequences of their
actions).

o Other Traffic: In the same way that our vehicle

is predicting the future locations of other
vehicles in its vicinity, other vehicles are doing
the same with vehicles in their vicinity. Hence,
our vehicle needs to not only be cognizant of
vehicles that run a risk of interfering with our
path, but also of vehicles that could interfere
with those vehicles’ paths. This is analogous to a
driver looking two cars ahead to try to predict
what the car in front is going to do.

Each vehicle on the road has a range of influence
associated with it. The size of this range is a
function of the vehicle’s velocity and the
presence of intersections, among other factors.
Any vehicle within a defined range could be
impacted by actions in which that vehicle
performs. This, in turn, could cause a ripple
effect. As shown in figure 4, Vehicle B is in
Vehicle A’s range of influence (denoted by the
right-most oval). Similarly, Vehicle C is in
Vehicle B’s range of influence (denoted by the

left-most oval). Even though Vehicle C is not in
Vehicle A’s range, Vehicle C still needs to be
aware of Vehicle A’s motions since these
motions will affect vehicle B which in turn will
affect Vehicle C.

Information about the position and motion of
other traffic will affect the probability of other
vehicles taking certain actions. Constraints, such
as maintaining safe following distance, play a
strong factor in how a vehicle reacts to certain
situations.

o Formations: Formations aren’t as important for

on-road driving as they are for off-road driving,
but they are still worth mentioning here. If it can
be determined that a vehicle is driving as a part
of a larger formation, the rules that govern the
formation play a large role in dictating where
that vehicle will be in the future. In the case of a
battlefield environment, the military has devised
a number of formations that vehicles in a group
follow (e.g., bounding overwatch, V-formation,
etc.). Similarly, in Robocup competition, teams
often implement different strategies that rely on
different formations. Knowing the other team’s
strategy can help to predict the players’ moves.
Even in on-road environments, vehicles
sometimes move in formations, such as funeral
processions. Identifying a presidential
procession can provide additional information
about the future moves of the vehicles in the
procession. For example, the vehicles in the

A B

C
A’s range of influence

B’s range of influence

Figure 4: Vehicle’s Range of Influence

77

procession will most likely change lanes when
the vehicle in front of them changes lanes. Also,
the vehicles will likely run red lights to keep up
with the vehicle in front of them.

The factors mentioned above provide much of the input
necessary to determine and refine the probabilities that
predict the future location of moving objects in the
environment. This information is then fed to the planners
in the form of space/time probability distribution (in the
planner’s formalism of choice) to develop appropriate
plans in the presence of moving objects.

5 Planning in a Dynamic Environment
As described in [2], the NIST planner utilizes
incrementally created planning graphs to formulate
potential vehicle trajectories. As part of the graph
expansion/evaluation phase, a cost/benefit number must
be assigned to each potential path segment. The dynamic
obstacle layer of the planner’s world model system
determines a portion of this cost/benefit number.

If the trajectory of the moving object is known explicitly,
the moving object prediction subsystem would produce a
curve through space and time that represents the path of
the moving object. The dynamic obstacle layer would
then match this curve against the plan segment being
evaluated to determine if an intersection exists. This
collision information is passed onto a value judgment
module that examines the predicted nature of the obstacle
(e.g. is it a soda can or a tank) and the intent of the
commander (e.g. allowed to run over soda cans, but not
tanks) in order to formulate the dynamic obstacle portion
of the overall cost/benefit number for the plan segment.

In the real world, moving obstacles seldom broadcast
their exact trajectory ahead of time and predictive
algorithms are necessary to compute a potential
trajectory. This potential trajectory is made available to
the dynamic obstacle layer in the form of equations that
represent a volume in space/time for the expected
location of the object. The volume is often a very tight
circle at the current time (where the location of the
vehicle is known with small uncertainty), and the size of
the volume per unit time will gradually increase as one
moves forward in time. This increase in volume
represents the uncertainty in the location prediction. For
a ground-based object, this bounding area may be viewed
as a three-dimensional volume with axes of northing,
easting, and time. The dynamic obstacle layer must now
examine if a potential path segment lies inside the
volume that represents any value over a pre-defined
probability threshold. This information is sent to the
value judgment module for use in the formulation of the
final cost/benefit number. Through the use of this system,
minimal collision or collision free paths may be planned.

6 Conclusion
In this paper, we have presented an overview of a
framework for representing and planning the future location
of moving objects. In our research, we quickly found that
there was a clear void in the literature in areas focusing on
long-range prediction of moving objects in a constrained
environment. As such, we have developed an approach to
predict the future location of objects in a constrained
environment.

The approach explores applying probabilistic, logic-based
algorithms to predict the future location of vehicles in an
on-road environment. To apply this approach, the possible
motions of the object are discretized and each action is
assigned a probability based upon a series of ‘constraints on
motion’ and influencing factors that are described at a high-
level in this paper. Although these factors may not be
exhaustive, we believe that they provide a good
representative sample of the types of factors that would need
to be applied.

The concepts in this approach are very new and a number of
issues still need to be explored. We need to work out the
details on how the influencing factors will contribute to the
probabilities associated with the discretized actions. This
paper discussed the contributions at a coarse level.

We also need to ensure that this approach can be performed
in a real-time environment. Although we have proposed
pruning mechanisms to curtail the unbounded growth of the
probability trees, we still need to ensure that the pruned tree
can still be developed and processed in the time constraints
imposed on the planners.

Before we use this approach, we need to decide which
moving objects to apply it to. In the case of on-road driving,
there are many moving objects in the environment, but not
all of them need to have a detailed level of prediction
associated with them. Only the vehicles that have the
highest probability to affecting our path would be of
concern. For other vehicles, we may employ a less accurate
and a less computationally expensive approach.

Although this approach was only applied to on-road
driving in this paper, it would be equally applicable to
any other type of moving object provided that the actions
of the object can be discretized. Future work will apply
this technique to pedestrians and military vehicles.

78

References

 1. Albus, J. and et.al., "4D/RCS Version 2.0: A
Reference Model Architecture for Unmanned
Vehicle Systems," NISTIR 6910, National Institute
of Standards and Technology, Gaithersburg, MD,
2002.

 2. Balakirsky, S. and Herzog, O., "Planning with
Incrementally Created Graphs," NIST, 6895,
Gaithersburg, MD, 2002.

 3. Bar-Shalom, Y. and Fortmann, T. E., Tracking and
Data Association, Academic Press 1988.

 4. Firby, J., "Architecture, Representation, and
Integration: An Example from Robot Navigation,"
Proceedings of the 1994 AAAI Fall Symposium
Series Workshop on the Control of the Physical
World by Intelligent Agents, New Orleans, LA,
1994.

 5. Gueting, R. H., "A Foundation for Representing
and Querying Moving Objects," ACM
Transactions on Database Systems (TODS), Vol.
25, No. 1, 2000, pp. 1-42.

 6. Madhavan, R. and Schlenoff, C., "Moving Object
Prediction and Tracking for Off-road Autonomous
Navigation," Proceedings of the SPIE Aerosense
2003 Conference, Orlando, FL, 2003.

 7. McKnight, J. and Adams, B., Driver Education
Task Analysis. Volume 1. Task Descriptions,
Human Resource Research Organization,
Department of Transportation, National Highway
Safety Bureau 1970.

 8. Schlenoff, C., "Linking Sensed Images to an
Ontology of Obstacles to Aid in Autonomous
Driving," Proceedings of the 18th National
Conference on Artificial Intelligence: Workshop on
Ontologies for the Semantic Web, 2002.

 9. Schlenoff, C., Madhavan, R., and Balakirsky, S.,
"Representing Dynamic Environments for
Autonomouos Ground Vehicle Navigation,"
Submitted to the IEEE/RSJ IROS 2003 Conference,
Las Vegas, NV, 2003.

 10. Singhal, A., Issues in Autonomous Mobile Robot
Navigation, Computer Science Dept, U. of
Rochester 1997.

 11. Stone, L., Barlow, C. A., and Corwin, T. L.,
Bayesian Multiple Target Tracking, Artech House
1999.

79

.

80

On Planning for Multi-Agent Opportunistic Execution

Carmel Domshlak
Dept. of Computer Science

Cornell University
Ithaca, NY 14850, USA

dcarmel@cs.cornell.edu

James H. Lawton
Information Directorate

US Air Force Research Laboratory
Rome, NY 13441, USA

lawton@ai.rl.af.mil

Abstract

We examine multi-agent systems of planning
agents, where the resource consumption of the
agents’ actions is uncertain. For such systems we
introduce a model of planning and execution that
treats differently the qualitative (in our case, cer-
tain), and quantitative (partly uncertain) effects of
the agent actions. The planning stage mostly ad-
dresses the qualitative part of the problem, while
the execution takes a form of an approximate
decision-theoretic approach. During the execution,
our model allows the agent to respond opportunis-
tically to the changes in its environment, even if
no re-planning is possible. In particular, our model
provides a flexible platform for multi-agent oppor-
tunistic assistance, such that the latter can be even
more efficient for the agent than adjusting its own
behavior.

1 Introduction
During the last decade, research in classical AI planning has
mostly concentrated on problems involving cascading levels
of action selection with complicated logical interactions be-
tween actions, while making strong assumptions about time,
resources, and the objective guiding the planning[Smith et
al., 2000]. While this effort has lead to enormous suc-
cess[Geffner, 2002], the increasing emphasis on real-world
applications has led AI planning researchers to develop algo-
rithms and systems that more closely match realistic environ-
ments. In such real-world environments, the planning activity
is often distributed and continual (i.e. planning and execution
are interleaved)[desJardinset al., 1999], problem specifica-
tion often involves uncertainty about action duration and re-
source consumption[Bresinaet al., 2002], and the objective
is specified using a non-trivial preference model.

In such complex environments, the planning and execu-
tion context might change in ways that suggest a change in
plans. Unexpected changes in the world might provideop-
portunitiesto either accomplish goals more effectively or to
reconsider the choice of goals that the agent is attempting to
achieve. Alternatively, the agent’s goals and/or abilities might
change, so that although the current plan could still be carried

out to some degree, the motivation for doing so may have de-
creased, while some secondary courses of action may have
become more attractive than they were before. Finally, in
a multi-agent environment, each agent should adapt itself to
the activities of other agents. Thus, when various aspects of
the world can evolve continuously throughout a pre-planned
episode of execution, an agent should continuously evaluate
and revise its plans.

One of the main computational concerns with such sys-
tems is the complexity of planning. Planning is known to
be intractable even for models with extremely severe for-
malism limitations[Bylander, 1994], and extending the for-
malism to capture more realistic scenarios makes it even
harder. In addition, in certain planning domains, such as
groups of autonomous Mars rovers[Washingtonet al., 1999]
or controllers for complicated hardware systems[Williams
and Nayak, 1997], many actions are potentially risky and re-
quire pre-approval by mission operations personnel. In such
domains, online re-planning by an agent as a way to revise
its current plan to adapt to opportunities and/or failures in
its multi-agent group can be too costly, too difficult, and too
risky. Following this observation, the first question that we at-
tempt to address in this paper is:To what extent can planning
agents opportunistically improve their own behavior, and as-
sist other agents, in systems where little or no re-planning
is possible? In other words, how far can we take the plan-
ning stage of the system such that plan execution will be op-
portunistic at both single- and multi-agent levels without the
need for re-planning?

An additional aspect of the problem that we address in
this paper is the practical complexity of extending single-
agent opportunism to multi-agent opportunism. Whilesingle-
agent opportunismrefers to the ability of an agent to al-
ter a pre-planned course of action to pursue a different set
of goals, based upon a change in the environment or in
the agent’s internal state (an opportunity)[Hammond, 1993;
Lawton, 1999], multi-agent opportunismis the ability of
agents in a multi-agent system to assist one another by rec-
ognizing and responding to potential opportunities for each
other’s goals. Our intention is to provide a system of multi-
ple planning agents with a multi-agent opportunistic behavior
via the same mechanismsused to provide it with a single-
agent opportunistic behavior. In this paper we show that such
mechanisms can be constructed even for systems where re-

81

planning is undesirable, and provide an example of such a
mechanism for a concrete planning and execution model. In
addition, and somewhat surprisingly, we show thatassistance
to another agent can be even more efficient than reconsider-
ing one’s own course of action. Therefore, in some cases,
supporting multi-agent opportunism can be even more cost-
effective than supporting single-agent opportunism.

2 Abstract Model of Multi-Agent Planning
and Execution

The abstract model we are using for representing a multi-
agent system is very similar to models used in[Shehory
and Kraus, 1996] and [Ogston and Vassiliadis, 2001], but
is extended to express opportunistic behavior. We model
a multi-agent system as a collection of benevolent agents
{A1, · · · , An}, where each agentAi is associated with a
set of capabilitiesCi = {ci1 , · · · , cil

}, and a set of re-
sourcesRi = {r1i

, · · · , rmi
}. For 1 ≤ j ≤ m, we have

rji
∈ Dom(rj), whererj is a certain type of resource (e.g.,

time, energy, etc.), andDom(rj) is the corresponding, possi-
bly continuous domain of the resource type. Note that in the
related models mentioned above, the difference between the
capabilities and the resources is not very clear. To clarify this
point, in our modelthe capabilities of an agentAi correspond
to the goals that in general can be assigned toAi. For exam-
ple, consider a team of three planetary roversA1, A2 andA3,
where bothA1 andA2 are equipped with cameras, whileA3

is not. In this group, the goal “have picture of locationL1” is
in both capabilities setsC1 andC2, but not inC3.

In addition to the acting agents{A1, · · · , An}, we assume
there is an abstract agentB acting as atask broker[Klusch
and Sycara, 2001]. We useB to simplify the description of
the information flow in the system: The primary job ofB
is simply to dispatch the goals of the system to the various
agents. The decision process behindB, as well as its actual
implementation, are not within the scope of this work. The
only thing we assume aboutB is that if B assigns goalg to
agentAi, then we haveg ∈ Ci.

Traditionally, given a set of goalsGi = {gi1 , · · · , gik
} ⊆

Ci, agentAi plans for this set of goals, and begins the ex-
ecution of the generated planP. To support better realistic
domains, we assume that each goalg is annotated with its
valueVg (which may be parameterized by various parameters
such as deadlines, energy consumed, etc.), and that the plan-
ning process takes these value functions into account. Like-
wise, each action is associated with its resource consumption,
which in most practical domains will not be certain, and thus
will be represented using a resource consumption distribu-
tion.

During the execution of a planP by some agentAi, sev-
eral aspects of the world could change, impacting the relative
attractiveness ofP. For instance, any of the following may
occur:

(a) Ai is assigned an additional goalgik+1 by B.

(b) Some other agentAj in the group fails to accomplish one
of its assigned goalsg ∈ Gj .

(c) The valueVg for someg ∈ Gi has been changed (posi-
tively or negatively).

(d) Some of the goals inGi becomes unreachable with re-
spect toP.

(e) Resource consumption by the part ofP executed so far
has been significantly different (positively or negatively)
from what it was expected during planning.

In such cases,Ai should revisit its current course of action,
possibly updating its set of active goals, andsuspendinggoals
it determines are no longer feasible. Normally, these sus-
pended goals are returned to the broker for redistribution to
other agents in the multi-agent system. In our model, though,
Ai may attempt to satisfy these goals opportunistically by fit-
ting them into its current plan, or into the current plan of an-
other agent in the multi-agent system, without re-planning.

Our aim has been to come up with a concrete model of plan
execution that will support flexible, opportunistic behavior at
both the single- and multi-agent levels, while requiring no re-
planning of the qualitative part of the plan, i.e. the part of the
plan that encodes the interactions between various actions of
the plan. In some sense, we would like our re-planning to
take a form ofreasoning about the plan, rather than actual
re-planning. To what degree and how this mission can be
accomplished is discussed in the rest of the paper.

3 Basic Model for Planning and Execution
In the area of AI planning, problems containing actions with
uncertain effects have mostly been modeled using the stan-
dard decision-theoretic tools, such as Markov decision pro-
cesses[Blythe, 1998; Boutilieret al., 1999]. However, in
cases where there is uncertainty about quantitative conse-
quences of the actions (such as consumption of various re-
sources), these tools require covering the space of the avail-
ability of all possible resources. Thus, it is very unlikely that
a standard decision-theoretic planning approach that repre-
sents and reasons about all possible decision points would be
practical.

Therefore, while modeling a concrete scheme for planning
and multi-agent execution, our intention has been to trade
optimality at the planning stage for efficiency and a signifi-
cant degree of flexibility during the actual execution. The ba-
sic formalism for specifying the planning problems for each
agent has been significantly inspired by the work on contin-
gency planning for planetary rovers[Deardenet al., 2002].
Our main motivation for adopting this formalism for problem
specification was to stay as close to real-world domains as
possible.

3.1 Planning
Following [Deardenet al., 2002], we assume that the qualita-
tive part of the problem is described using the propositional
STRIPS formalism in which both positive and negative pre-
conditions are allowed1 [Bylander, 1994]. Each agent is as-
sociated with a description of its initial state (represented as
a conjunct of valid propositions), a set of goal propositions

1This is exactly the formalism used for the first level of planning
competition[Fox and Long, 2002b].

82

SampleRock(L1)
hs(L1)

''''PPPPPPPP

Start

At(L1)

55

At(L1) //

At(L1)
MMMMMMM

&&MMMMMM

Navigate(L1, L2) At(L2) // SampleRock(L2) hs(L2) // Goal

TakePicture(L1)
hp(L1)

7777nnnnnnnn

Figure 1: Partial order plan for the running example.

to be achieved, and set of possible actions, each of which is
characterized by its preconditions and effects. In what fol-
lows, we denote the preconditions and effects of actionA by
prec(A) andeffects(A), respectively.

The quantitative part of the problem is described by the re-
source consumptions of the actions and the values associated
with each goal. Resource consumption is modeled using con-
sumption distributions associated with each action. Goal val-
ues are modeled as functions of the resources available after
achieving these goals. For example, ifr is the only resource
used by the agent, and the value functionVg(r) of goalg is:

Vg(r) =
{

0, r ≤ 0
10, r > 0

then the value ofg is 10 if we can achieveg with some re-
source remaining, and 0, otherwise.

As with [Deardenet al., 2002], in the planning stage we ig-
nore the quantitative part of the problem, solving the STRIPS-
based problem as if there is no resource consumption or dif-
ference in the importance of the goals whatsoever. How-
ever, the difference between our model of planning and that
in [Deardenet al., 2002] is that the latter corresponds to the
first stage of the Graphplan algorithm[Blum and Furst, 1997],
resulting in aplan graph, while we are interested in a struc-
ture that has properties of both a plan graph and apartial or-
der plan[McAllester and Rosenblitt, 1991]. Later we justify
why plan graphs alone will not serve us properly.

First, we specify the notions of partial order plans and its
slight extension we are using in our work. A partial order
plan is a tuple〈A,O,L〉, whereA is a set of actions,O is a
set ofordering constraintsoverA, andL is a set ofcausal
links. For example, ifA = {A1, A2, A3} thenO might be
the set{A1 < A3, A2 < A3}. These constraints specify
a plan in whichA3 is necessarily the last operator, but do
not commit to a particular order onA1 andA2. Naturally,
the set of ordering constraints must be consistent, i.e. there
must exist some total order satisfying them. A causal link
has the formAi

q→ Aj , whereAi andAj are actions andq
is a proposition. Such a causal link denotes the fact thatAi

produces (i.e. has the effect)q which is consumed byAj (i.e.
used to satisfy a precondition ofAj). Ordering constraints
are imposed among the actions to ensure that other actions do
not threaten the causal links.

For example, consider a simple problem that is based on
the Rovers domain used in the recent planning competi-
tion [Fox and Long, 2002b]. Three operators available to the
agent are:

SampleRock(p)
PRECONDITIONS:
location(p) ∧ At(p)

EFFECTS:
hs(p)

TakePicture(p)
PRECONDITIONS:
location(p) ∧ At(p)

EFFECTS:
hp(p)

Navigate(p, q)
PRECONDITIONS:
location(p) ∧ location(q) ∧ At(p)

EFFECTS:
¬At(p) ∧ At(q)

where the propositionshs(p) and hp(p) stand for “have
rock sample” and “have picture” from locationp, respec-
tively. The (relevant part of the) initial state of the agent is
At(L1) ∧ ¬hs(L1) ∧ ¬hp(L1) ∧ ¬hs(L2), while the goals
arehs(L1), hp(L1), andhs(L2). Figure 1 presents (the rel-
evant part of) a possible partial order plan for this problem,
where the solid edges represent the causal links (labeled with
the corresponding propositions), and the dashed edges rep-
resent the ordering constraints that are not trivially entailed
by the causal links2. It is easy to see that there are two to-
tally ordered plans consistent with this partial order plan, and
the only difference between them is the relative positions of
SampleRock(L1) andTakePicture(L1).

After constructing a partial order plan for the problem, we
slightly change its structure, making it reminiscent of the plan
graphs generated by the Graphplan-based algorithms. We re-
fer to this structure as apartial order plan graph(POPG, for
short). The POPG for the running example is depicted in Fig-

2Start andGoals nodes are dummy actions acting as a pro-
ducer of the initially valid propositions and the consumer of the goal
propositions, respectively.

83

SampleRock(L1) //

''NNNNNN
ONMLHIJKhs(L1)

ONMLHIJKAt(L1) //

99ssssssssss

%%KKKKKKKKKK Navigate(L1, L2) // ONMLHIJKAt(L2) // SampleRock(L2) // ONMLHIJKhs(L2)

TakePicture(L1)

77pppppp
// ONMLHIJKhp(L1)

Figure 2: Partial order plan graph (POPG) for the running example.

ure 2. As with a plan graph, a POPG contains two types of
nodes: proposition nodes and action nodes. The action nodes
are exactly the nodes of the original partial order plan (ex-
cluding the dummy start and goal nodes), while each propo-
sition node is created by contracting the causal links corre-
sponding to effectively the same proposition. However, in
contrast to plan graphs, a POPG is not a leveled graph, and
the alternative schedules of the plan are captured by the or-
dering constraints of the original partial order plan.

After constructing the “skeleton” plan for the qualitative
part of the problem in the form of a POPG, we add the re-
source consumption distributions and the value functions into
this structure: The actions are annotated with their resource
consumption distributions and the goal nodes are annotated
with their value functions. The resulting structure is ready to
be used in the execution stage.

3.2 Execution

Given an initial state, a set of resources, and a POPG struc-
ture of the plan enriched by the quantitative information about
resource consumption and values of the different goals, the
agent starts to execute its plan. At each intermediate states
during the execution, the agent should make a decision about
the next action to perform. As the agent is provided with a
partial order plan, there may be more than one action appli-
cable in the states, given the current set of resources. For in-
stance, in the initial state of the running example, both actions
SampleRock(L1) andTakePicture(L2) are consistent with
the partial order plan represented by the POPG in Figure 2. In
addition, however, observe that the actionNavigate(L1, L2)
can be performed in the initial state as well. Clearly, if re-
sources are not an effective limitation, performing this action
will be irrational, as the agent will loose its ability to achieve
the goalshs(L1) andhp(L1). On the other hand, if the re-
sources are limited and the goalhs(L2) is very important, it
might be the case that the right thing to do is to forget about
hs(L1) andhp(L1), and to performNavigate(L1, L2), try-
ing to achievehs(L2) with as little risk as possible. Having
an ability to easily access and reason aboutall the applicable
actions available in the plan has motivated us to adopt par-
tial order plans, and not, for instance, Graphplan-based plan
graphs in which for the same purpose we will have to perform
a less straightforward analysis of the graph’s levels.

In general, for an agent to decide which action among a set
of alternative actions should be performed, requires an esti-
mate of how much value could be gained by performing each

of these action. Computing these values exactly is intractable,
as it requires taking into account not only the probability of
certain resource consumption by each action to be executed in
the future, but also capturing in the model all possible results
of potential future failures. However, adopting the way the re-
source consumption distributions are abstracted in[Dearden
et al., 2002], we outline an approximation method for such a
value estimation.

For ease of presentation, in what follows we assume, with-
out loss of generality, that there is only one resource, andρ
stands for the amount of this resource available at the decision
point. When estimating the value of performing a given ac-
tion, instead of taking into account the precise resource con-
sumption distributions, each actionA is annotated with (i)
its expected consumptionµ(A) and (ii) the minimal resource
level min(A) required to allowA to be executed. This way,
if ρ ≥ min(A), thenA can be executed, its execution is as-
sumed to be successful, and its resource consumption is ex-
pected to beµ(A). Otherwise, ifρ < min(A), then the action
is not executable, due to the risk associated with its failure.
Note that, whileµ(A) is defined purely by the resource con-
sumption distribution ofA, min(A) is specified explicitly and
is part of problem modeling.

Let actions(P, s, ρ) (specified by Eq. 1) be the set of ac-
tions in P that are executable in states with ρ amount of
resource available.

actions(P, s, ρ) = {A ∈ P | prec(A) ∈ s ∧ ρ ≥ min(A)} (1)

The valueU(P, s, ρ) represents our estimate of how much
value could be gained by executing planP with ρ amount
of resource, starting at the states. This value is specified by
Eq. 3 via (i) the value of the plans that the agent will have after
performing one of the actionsA ∈ actions(P, s, ρ), and (ii)
the value of the goals achieved directly by the actionA; these
quantities are specified in Eq. 2 byα(P, A, s, ρ) andβ(A, ρ),
respectively. The part of the planP (= subgraph of POPGP)
remaining after performing actionA in states is constructed
by the procedureRefine(P, A, s), which appears in Figure 3.
The value of each such “sub-plan” generated by theRefine
procedure is evaluated with the initial stateσ(s,A), which re-
sults from executing actionA in states, and with the amount
of resource that is expected to remain after executingA.

α(P, A, s, ρ) = U (Refine(P, A, s), σ(s, A), ρ− µ(A))

β(A, ρ) =
X

g∈effects(A)

Vg(ρ− µ(A)) (2)

84

Refine(P, A, s)

1. RemoveA from P , together with all its outgoing
edges.

2. Iteratively remove:

• All the proposition nodesp (together with their
outgoing edges), such thatp 6∈ σ(s, A), and the
nodep has no incoming edges, and

• All the action nodesA′, such that for at least one
of the preconditionsq ∈ prec(A′) there is no
proposition node associated withq and having an
outgoing edge toA′.

Figure 3: Procedure for updating POPGP after performing
actionA.

U(∅, s, ρ) = 0

U(P, s, ρ) = max
A∈actions(P,s,ρ)

[α(P, A, s, ρ) + β(A, ρ)] (3)

Returning to the execution, at every decision points the
agent:

1. Eliminates from its current planP all the actionsA′ that
are not executable with the current amount of resource
ρ, i.e. min(A) > ρ. For each such action, the agent
iteratively refinesP usingRefine(P, A′, s).

2. Estimates the value ofP using the value iteration pro-
cess described by Eq. 3.

3. Chooses one of the actionsA ∈ actions(P, s, ρ) that
actually providesU(P, s, ρ).

4. PerformsA (resulting in the stateσ(s,A), and some re-
maining amount of resourceρ′ ≤ ρ).

5. Updates its planP to the result ofRefine(P, A, s).

To illustrate the process, consider the POPG of the running
example (Figure 2), and suppose that the resource consump-
tions of the actions as abstracted as follows:

A µ(A) min(A)
SampleRock(L1) 3 3
TakePicture(L1) 2 2
Navigate(L1, L2) 10 15
SampleRock(L2) 5 7

Likewise, let the value functions of the goals to be constant,
but different: Vhs(L1) = 2, Vhp(L1) = 2, andVhs(L2) = 10.
If we haveρ = 19, thenU(P, s, ρ) = 12 and the action
to be executed isTakePicture(L1), as the estimated best
course of action is to perform firstTakePicture(L1), then
Navigate(L1, L2), and finallySampleRock(L2). However,
if ρ = 18, thenU(P, s, ρ) = 10 and the action to be exe-
cuted isNavigate(L1, L2), as we estimate that performing
any other action will prevent us from achievinghs(L2).

Now, let us examine the flexibility of our plan-
ning/execution model with respect to the various possible
changes in the environment that we listed in Section 2. First,
sudden unreachability of goals, as well as uncertainty in re-
source consumption by the agent’s actions, is captured by the

model implicitly. Second, if the value of some of the (still
reachable) goals that the agent had planned to achieve have
changed, the only thing that the agent should do is to update
the value functions associated in its plan with the correspond-
ing goals. All the subsequent decisions will implicitly take
into account this change in the agent’s objectives. In particu-
lar, if one of the agent’s goals,g, becomes completely irrele-
vant (i.e.Vg = 0), the agent could easily update its POPG by
removing the nodeg, along with exactly those action nodes
that are used to “produce” this nodeg and are not used to pro-
duce any other goal. However, in the next section we show
that the latter is not necessarily the best way to handle such
situations.

The only part of dynamics that still seems to be problem-
atic is assigning a new goal to an agent (i.e. a goal that is not
captured by the current planP). Such a goal can be either
completely new to the multi-agent group, or one of the goals
that has been suspended by some other agent in the group.
Clearly, a complete re-planning for the extended set of goals
will solve the problem, and in many domains such a painful
solution might be unavoidable. However, in the next section
we argue that, at least for some practical domains, we can
slightly extend the above model of planning and execution in
a way that re-planning can often be avoided.

4 Planning for Capabilities
Considering the above scheme for planning and execution,
our first observation is that nothing prevents us from planning
for goals that have no value assigned to them. Similarly, if
one of the goals that the agent has planned for becomes irrel-
evant, instead of removing this goal from the plan, we could
simply zero its value function. Since the decision mechanism
behind the execution takes into account not only the value
of the goals to be achieved, but also the risk behind this or
another course of action (expressed via cumulative resource
consumption), achieving a goal with a zero value will auto-
matically be postponed.

Recall that in our abstract model of multi-agent systems,
each agent is characterized by a set of capabilities that repre-
sent the goals that the agent can possibly be assigned. There-
fore, instead of planning for the set of goals that the agent has
been actually assigned to, one can considerto plan for the
whole set of capabilitiesand to reason about the best course
of action during the execution, when the value of different
capabilities is known better than during the off-line planning.
Clearly, the reader may rightfully say that the whole set of ca-
pabilities may be huge, and even its explicit description may
be intractable. Although we agree that in general nothing pre-
vents the set of capabilities from being orders of magnitude
larger than an average set of goals the agent is actually as-
signed, at least in some domains this does not seem to be the
case. For instance, consider a group of planetary rovers that
are constructed for fulfill some tasks on Mars[Multi-Rovers,
2002]. At least at this stage of planetary rovers development,
the superset of goals that each rover can be assigned does not
seem to be too large, yet this domain poses a lot of challeng-
ing research and development issues.

Observe that, if planning for capabilities is considered to be

85

ONMLHIJKAt(L1) // Navigate(L1, L2) // ONMLHIJKAt(L2) // Navigate(L2, L3) // ONMLHIJKAt(L3)

(a)

ONMLHIJKAt(L1) //

++WWWWWWWWWWWWWWWWWWWWW Navigate(L1, L2) // ONMLHIJKAt(L2) // Navigate(L2, L3) // ONMLHIJKAt(L3)

Navigate(L1, L3)

33ggggggggggggggggggggg

(b)

ONMLHIJKAt(L2) // Navigate(L2, L3) // ONMLHIJKAt(L3) ONMLHIJKAt(L3)

(c) (d)

Figure 4: Extending the “seed” POPG: (a) The initially constructed POPGP; (b) EPOPGPe, resulting from extendingP
by an alternative course of actionNavigate(L1, L3); (c-d) The result ofRefine onPe and the actionsNavigate(L1, L2) and
Navigate(L2, L3), respectively.

as feasible as planning for the actual goals, technically noth-
ing should be changed in the above scheme of planning and
execution. However, the plan generated for the whole set of
capabilities can be far from efficient with respect to only the
actual goals that the agent is assigned to. For instance, sup-
pose that a rover located at locationL1 has been assigned to a
single goal of sampling a rock in locationL1000. If this par-
ticular rover is capable of sampling rocks at any of the thou-
sand locationsL1, L2, . . . , L1000, the constructed plan may
take the rover fromL1 to L1000 through all the locations in
between, as if preparing this rover to perform the other rock
samples as well.

At first view, the above observation seems to point to a
serious drawback of planning for capabilities instead of for
goals. However, recall that in our scheme the execution is not
a blind process: the agent already deliberates between dif-
ferent courses of actions, possibly suspending these or other
goals. Therefore, by putting more effort in the planning phase
this drawback can be overcome.

4.1 Extended Partial Order Plan Graphs
First, observe that nothing prevents us from enriching the
constructed POPGP of an agent with some actions that might
beinconsistent (cannot be merged together) with each and all
possible complete execution ofP. For example, consider a
(partial) POPGP depicted in Figure 4(a). In Figure 4(b) this
valid “seed” planP is extended to a new structurePe ⊃ P
by adding an actionNavigate(L1, L3). In general, such an
extensionΥ can be any valid POPG such that the root nodes
(i.e. nodes with no incoming edges) ofΥ are a subset of the
proposition nodes ofP (i.e.Υ is grounded inP).

Such a plan extension process can be performed iteratively,
until the resulting structure is considered to be sufficiently ro-
bust to support flexible plan execution. The extended struc-
turePe, resulting from such an iterative extension of the orig-
inal partial order planP, bares similarity to both contingency

plans[Warren, 1976; Peot and Smith, 1992] and probabilistic
partial plans constructed by theBURIDAN planner[Kushm-
erick et al., 1995]: On the one hand, as with contingency
plans,Pe simultaneously captures alternative courses of ac-
tions. However,Pe has no schematic tree-like structure, with
the tree nodes standing for the explicitly predefined branching
points. On the other hand, as with probabilistic partial plans, a
given precondition of an action inPe can be supported (= po-
tentially provided) by more than a single other action. How-
ever, the semantics of such an “extended support” inPe is
very different than in probabilistic planners such asBURI-
DAN. In what follows, we refer to such an extended structure
as EPOPG.

Clearly, the constructed EPOPGPe may not be a valid par-
tial order plan, and this is actually the case with the EPOPG
depicted in Figure 4(b). However:

1. It does contain at least one non-trivial, valid partial order
plan, and

2. At every execution states, the agent will still choose an
action providing it with the maximal expected reward.

The first claim seems to be obvious, since any single action
by itself is a valid partial order plan. However, the fact that
(i) we start our planning process by constructing a valid plan
for a set of capabilities, and (ii) nothing from this plan is ever
removed during the “seed” extension, makes this statement
more valuable.

The second claim is both less straightforward and very im-
portant, as maximizing expectation is the core part of our ex-
ecution model. The soundness of this claim follows from the
fact that, using theRefine procedure, the process of calculat-
ing U(Pe, s, ρ) via Eq. 3 exploits only valid total order se-
quences of actions fromPe, even ifPe is not a valid partial
order plan. The completeness follows from the fact that the
first parameter ofU(P, s, ρ) in Eq. 3 decreases monotonically
with the nesting depth. We observe, therefore, that complete-

86

ness is preserved even if the constructed EPOPGPe contains
cyclic dependencies3.

4.2 Discussion

Our work leaves open a number of important issues for future
research, and below we discuss some of them. Of particular
importance is improving robustness of the planning stage and
efficiency of the execution stage.

First, observe that the ability of an agent to adapt to new
goals during the execution dramatically depends on the struc-
ture of the constructed EPOPGPe. More precisely, the ac-
tual contribution of extending the “seed” partial order plan
depends directly on the strategy for choosing the plan exten-
sionsΥ. Clearly, various domain-dependent strategies can
be developed, and their potential contribution is apparent.
However, providing general, domain-independent principles
that will rank the expected contribution of various extension
strategies seems to be an important and interesting topic for
the future research. In particular, results in this direction will
contribute to the area of contingency planning. This is one
of the issues we are currently examining, and here we infor-
mally discuss a general intuition that could be found helpful
in pursuing this research direction.

Suppose that, after constructing the “seed” partial order
planP for capabilities, the agent is provided with the infor-
mation that the value of one of its capabilitiesg is likely to
be high during execution. (This covers both the initially as-
signed goals, and the initially irrelevant capabilities). In this
case, it seems reasonable that the agent will strive to backup
its planP by inserting alternativeshortcutsto the nodeg in
the EPOPG being constructed. For instance, given the partial
order plan in Figure 4(a), the actionNavigate(L2, L3) added
in EPOPG in Figure 4(b) can be seen as such a shortcut to the
goalAt(L3). Likewise, as we would like to control the size
of the constructed EPOPG, the intention should be to use ex-
tensionsΥ that provide shortcuts to as many such valuable
goals as possible. However, as this seems to be reasonable at
the level of intuition, in the future we would like to provide a
clear formalization of this task in a domain-independent man-
ner.

Second, consider the value estimation process that an agent
performs at every decision point. We have already discussed
that computing a precise value estimation is intractable for
most, if not all, practically interesting domains. Therefore,
we correctly began our discussion with an approximate es-
timation provided by Eq. 3, as this approximation proce-
dure dramatically reduces the branching factor of the value
iteration process. However, the complexity of calculating
U(Pe, s, ρ) is still on the order of the number of alterna-
tive valid sequences of actions consistent withPe, s, andρ,
which in worst case is obviously exponential in the number
of actions inPe. Therefore, to obtain truly practical execu-
tion schemes one will probably have to examine various tech-

3We omit the formal proof of this claim, as it can be easily de-
rived from Eq. 3 and theRefine procedure. (Figures 4(c) and 4(d)
provide an informal intuition behind the proof as they correspond to
the result ofRefine on EPOPG from Figures 4(b) and the actions
Navigate(L1, L2) andNavigate(L2, L3), respectively.)

Loop forever:

1. Check for and process new goal assignmentsG ⊆ C,
whereC is the set of the agent’s capabilities.

2. Given the current state, generate a POPGP for the
planning problem having all the capabilitiesC of the
agent as the goalsG′ to achieve.

3. Iteratively extendP to a EPOPGPe.

4. For each capabilityg ∈ G′, annotate the corresponding
nodes inPe with Vg. In particular, if g 6∈ G, then
Vg = 0.

5. Loop until (all g ∈ G are satisfied) ∨
(actions(P, s, ρ) = ∅)

(a) Estimate the valueU(Pe, s, ρ) of the current ex-
tended planPe using the value iteration process
in Eq. 3.

(b) Choose an actionA ∈ actions(P, s, ρ) that actu-
ally providesU(Pe, s, ρ).

(c) PerformA, resulting in the new stateσ(s, A) and
some remaining amount of resourceρ′ ≤ ρ.

(d) SetPe = Refine(Pe, A, s).
(e) Suspend all the goalsg that are no longer reach-

able inPe.
(f) Check for and process new goal assignmentsG.

Figure 5: Planning and execution cycle of a single agent.

niques to limit the depth of value iteration with as little loss
of decision accuracy as possible.

We believe that there are several ways to provide a good
estimate ofU(Pe, s, ρ), which in turn could be used instead
of Eq. 3 starting from a certain depth of the value iteration
process. Currently we are examining the method introduced
by [Deardenet al., 2002] for off-line backpropagation of the
goal values to the internal nodes of a Graphplan-based plan
graph, and in particular the applicability of this method to the
non-leveled graphical structures such as POPG and EPOPG.
Generally speaking, using this method, each action nodeA is
associated with a value functionVA(ρ, s) that provides an ap-
proximation of the combination ofα(P, A, s, ρ) andβ(A, ρ)
from Eq. 2. This optional extension is not covered in this
paper as it is still a topic of ongoing analysis.

5 Model of Opportunistic Execution
The model for plan generation and execution described in the
previous sections provides an agent with enormous flexibility
in selecting its course of action. This flexibility would in turn
allow agents operating in real-world domains to better adapt
to dynamic environments, especially in terms of the oppor-
tunistic satisfaction of suspended goals. Here we discuss the
way our model supports opportunistic behavior of the agents.

Figure 5 summarizes our model for an agent’s planning and
execution cycle. Focusing on step 5e, we note that by taking
a particular actionA from the EPOPGPe, the agent may sus-
pend one or more of its actual goals, namely those that are
not achievable along all courses of action beginning withA.
Normally, suspended goals will either be re-planned for in

87

the next planning-execution cycle, returned to the task bro-
ker agentB for re-allocation to another agent, or abandoned
completely.

During execution, however, conditions may change such
that a suspended goal may indeed become achievable. An
agent is said to exhibitsingle-agent opportunismif it can de-
tect and respond to events and situations that may allow one
of its suspended goals to be satisfied. The notion of single-
agent opportunism has been widely discussed in the litera-
ture (e.g. see[Hammond, 1993; Pryor, 1996; Francis, 1995;
Simina and Kolodner, 1991]). In our model, single-agent op-
portunism uses a form ofpredictive encoding[Patalanoet al.,
1993], in which the agent examines the current plan to find
other places where the suspended goal may be achieved.

In general, adapting a given plan to achieve additional
goals can be computationally hard[Yanget al., 1992]. How-
ever, in our model, an agent can examine and try to extend
an EPOPGPe, the structure that is not required to represent
a single valid plan. Thus, a predictive encoding of suspended
goals for possible opportunistic execution can be performed
much more efficiently than updating a plan that should remain
consistent. More specifically, suppose that after performing
an actionA, the procedureRefine removes from the current
EPOPGPe an actionA′ because one (or more) ofA′s precon-
dition nodes have also been removed fromPe. Let us denote
byP ′

e the EPOPG resulting from the above refinement ofPe.
If A was necessary for achieving some assigned goalg, then
g will have to be suspended. However, if there exists a POPG
P ⊂ Pe that achievesg, the agent could try to predictively
re-encode such a sub-planP into the refined EPOPGP ′

e (us-
ing the EPOPG extension approach from Section 4.1), and to
treatP as the chosen extensionΥ.

For example, consider the EPOPG presented in Fig-
ure 2. Suppose that the agent performs the action
Navigate(L1, L2) before executingTakePicture(L1). The
goalhp(L1) would be suspended, because the sub-planP ′ =
{TakePicture(L1)} has been pruned by theRefine proce-
dure. The remaining plan could be extended by re-grounding
P ′ at any other appearance of a nodeAt(L1) in the EPOPG.
The plan execution procedure would automatically reconsider
opportunistically achievinghp(L1) if and when it encounters
TakePicture(L1) again in the future. Unfortunately, in this
particular example, there are no such places in our EPOPG,
thus predictive encoding will be infeasible, and we need to
seek alternative ways to achievehp(L1).

As with single-agent opportunism, when the agents in a
multi-agent system are capable of recognizing and respond-
ing to opportunities for each other’s goals, we say the sys-
tem exhibitsmulti-agent opportunism. In our model, when
an agent suspends a goalg, it can notify the other agents in
the multi-agent system that it cannot satisfyg. The agents re-
ceiving this notification can treatg as they would a newly as-
signed goal. That is, an agentA receiving a request to achieve
g would first attempt to do so by opportunistically fittingg
into its current plan. Unlike a newly assigned goal, however,
if A cannot opportunistically satisfyg, it would not plan for
it in the next planning cycle.

Suppose thatA is currently acting according to an EPOPG
Pe, andg is reachable inPe (i.e. A has not itself suspended

and abandonedg). To opportunistically adopt a new goalg,
A needs only to properly increase the value ofg, Vg, in Pe.
While considering actions in the future, the execution module
will implicitly adjust its intention with respect to this update.
Note that even ifA has not abandonedg, but has suspended it
using predictive encoding for possible opportunistic achieve-
ment in the future, the nodeg will still be reachable inPe.
Perhaps even more interesting, even ifA is not itself capable
of single-agent opportunism, it may still be able to provide
opportunistic support for other agents, as long as the goals
g suspended by these other agents are still reachable in the
EPOPG ofA: The only thing thatA has to do is update the
corresponding value functionsVg in its EPOPG.

Finally, if g is not reachable inPe, and the agentA is ca-
pable of minimal re-planning, thenA could create a new sub-
planP ′ just for achievingg starting from the current state.
The EPOPGPe could then be extended to includeP ′, again
allowing the plan execution procedure from Section 4.1 to
decide upon the course of action to take.

6 Summary and Future Work
We have introduced a simple yet flexible model for planning
and execution under uncertainty about resource consump-
tion of the agent actions. This model is based on separating
the qualitative and quantitative parts of the problem, and we
see it as especially suitable for the systems where online re-
planning by the agent as a way to revise its current plan to
adapt to opportunities and/or failures in its multi-agent group
cannot or should not considered. We have argued and illus-
trated that using this model in systems where little or no re-
planning is possible, the agents can improve their own be-
havior, and assist other agents in the system. An additional
aspect of the problem that we have studied in this paper is the
practical complexity of extending single-agent opportunism
to multi-agent opportunism. We have shown that our model
arguably scales well and naturally supports multi-agent op-
portunistic behavior. In addition, and somewhat surprisingly,
we have shown that as our model is devoted to minimal re-
planning, assistance with the goals suspended by other agents
can be more efficient than trying to find a way to still achieve
the agent’s own suspended goals.

Currently, we are implementing this model, planning to ac-
complish the implementation by August, 2003. Our intention
is to test the approach on the problems extended from the
standard benchmark domains used in the International Plan-
ning Competition (such asRovers domain which we men-
tioned in the paper)[Fox and Long, 2002b]. Generating the
“seed” POPG, as well as extending sub-plans for the con-
structed EPOPG, is based on an external off-the-shelf planner.
Currently we are using theLPG planner[Gerevini and Serina,
2002], however any planner capable of producing plans for
the domains described in the standard PDDL language[Fox
and Long, 2002a] should be applicable.

We intend to conduct experiments in this environment to
examine the performance impact of our plan execution model,
especially when opportunities are being exploited by the
agents. For these experiments, the broker agentB will ran-
domly generate new goals and assign these goals to agents

88

with the appropriate capabilities. Instead of assigning all
of the goals at the beginning of a simulation run, however,
the broker will generate batches of goals at regular intervals
throughout the simulation, representing daily assignments for
the various agents. Our experiments will evaluate the value
obtained and computational costs incurred by the agents us-
ing a traditional sequential plan execution mechanism and our
dynamic plan execution (both with and without opportunism).

Acknowledgments
The authors would like to acknowledge Prof Elise Turner and
Prof Roy Turner at the University of Maine for their support
of Mr. Lawton’s contributions to this work.

References
[Blum and Furst, 1997] A. Blum and M. Furst. Fast planning

through planning graph analysis.Artificial Intelligence,
90:281–300, 1997.

[Blythe, 1998] J. Blythe.Planning under Uncertainty in Dy-
namic Domains. PhD thesis, Carnegie Mellon University,
1998.

[Boutilier et al., 1999] Craig Boutilier, Thomas Dean, and
Steve Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage.Journal of Artifi-
cial Intelligence Research, 11:1–94, 1999.

[Bresinaet al., 2002] J. Bresina, R. Dearden, N. Meuleau,
S. Ramakrishnan, D. Smith, and R. Washington. Plan-
ning under continuous time and resource uncertainty: A
challenge for AI. InProceedings of the Eighteenth Con-
ference on Uncertainty in Artificial Intelligence, pages 77–
84, 2002.

[Bylander, 1994] T. Bylander. The computational complex-
ity of propositional STRIPS planning.Artificial Intelli-
gence, 69(1-2):165–204, 1994.

[Deardenet al., 2002] R. Dearden, N. Meuleau, S. Ramakr-
ishnan, D. Smith, and R. Washington. Contingency plan-
ning for planetary rovers. InThird International NASA
Workshop on Planning & Scheduling for Space, Houston,
Texas, October 2002.

[desJardinset al., 1999] M. desJardins, E. Durfee, C. Ortiz,
and M. Wolverton. A survey of research in distributed,
continual planning.AI Magazine, 4:13–22, 1999.

[Fox and Long, 2002a] M. Fox and D. Long. PDDL2.1: An
extension to PDDL for expressing temporal planning do-
mains, 2002.www.dur.ac.uk/d.p.long/pddl2.ps.gz .

[Fox and Long, 2002b] M. Fox and D. Long. The third inter-
national planning competition: Temporal and metric plan-
ning. InProceeding of the Sixth International Conference
on AI Planning and Scheduling, pages 333–335, 2002.

[Francis, 1995] A. Francis. Memory-Based Opportunistic
Reasoning. Ph.d. thesis proposal, College of Computing,
Georgia Institute of Technology, 1995.
ftp.cc.gatech.edu/pub/ai/students/centaur/proposal.ps.Z .

[Geffner, 2002] H. Geffner. Perspectives on artificial intel-
ligence planning. InProceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence, pages 1013–
1023, 2002.

[Gerevini and Serina, 2002] A. Gerevini and I. Serina. LPG:
A planner based on local search for planning graphs with
action costs. InProceedings of the Sixth International
Conference on AI Planning and Scheduling, pages 13–22,
2002.

[Hammond, 1993] K. Hammond. Opportunistic memory.
The Journal of Machine Learning, 10(3), March 1993.

[Klusch and Sycara, 2001] M. Klusch and K Sycara. Broker-
ing and matchmaking for coordination of agent societies:
A survey. In A.Omicini et al., editor,Coordination of In-
ternet Agents. Springer Verlag, 2001.

[Kushmericket al., 1995] N. Kushmerick, S. Hanks, and
D. S. Weld. An algorithm for probabilistic planning.Arti-
ficial Intelligence, 76(1-2):239–286, 1995.

[Lawton, 1999] J. Lawton. Opportunism in planning sys-
tems: A critical review.
http://cdps.umcs.maine.edu/˜jhlawton/opp-survey.ps.gz ,
1999.

[McAllester and Rosenblitt, 1991] D. McAllester and
D. Rosenblitt. Systematic nonlinear planning. InPro-
ceedings of the Ninth National Conference on Artificial
Intelligence, pages 634–639, 1991.

[Multi-Rovers, 2002] Distributed Rovers Project, Planning
and Scheduling Artificial Intelligence Group, JPL.
www-aig.jpl.nasa.gov/public/planning/dist-rovers/ ,
2002.

[Ogston and Vassiliadis, 2001] V. Ogston and S. Vassiliadis.
Matchmaking among minimal agents without a facilitator.
In Proceedings of the Fifth International Conference on
Autonomous Agents, pages 608–615, Montreal, Quebec,
2001.

[Patalanoet al., 1993] A. Patalano, C. Seifert, and K. Ham-
mond. Predictive encodings: Planning for opportunities.
In Proceedings of the Fifteenth Conference of the Cogni-
tive Science Society, pages 800–805, 1993.

[Peot and Smith, 1992] M. A. Peot and D. E Smith. Con-
ditional nonlinear planning. InProceedings of the First
International Conference on AI Planning Systems, pages
189–197, 1992.

[Pryor, 1996] L. Pryor. Opportunity recognition in complex
environments. InProceedings of the Fourteenth National
Conference on Artificial Intelligence, pages 1147–1152,
1996.

[Shehory and Kraus, 1996] O. Shehory and S. Kraus. For-
mation of overlapping coalitions for precedence-ordered
task execution among autonomous agents. InProceedings
of the Second International Conference on Multi-Agent
Systems, pages 330–337, 1996.

[Simina and Kolodner, 1991] M. Simina and J. Kolodner.
Opportunistic reasoning: A design perspective. InPro-

89

ceedings of the Seventeenth Conference of the Cognitive
Science Society, pages 78–83, 1991.

[Smithet al., 2000] D. Smith, J. Frank, and A. Jónsson.
Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15(1), 2000.

[Warren, 1976] D. Warren. Generating conditional plans and
programs. InProceedings of AISB Summer Conference,
pages 344–354, University of Edinburg, 1976.

[Washingtonet al., 1999] R. Washington, K. Golden,
J. Bresina, D. Smith, C. Anderson, and T. Smith. Au-
tonomous rovers for Mars exploration. InIn Proceedings
of the 1999 IEEE Aerospace Conference, 1999.

[Williams and Nayak, 1997] B. Williams and P. Nayak. A
reactive planner for a model-based executive. InProceed-
ings of the Fifteenth International Joint Conference on Ar-
tificial Intelligence, pages 1178–1185, Nagoya, Japan, Au-
gust 1997.

[Yanget al., 1992] Q. Yang, D.S. Nau, and J. Hendler. Merg-
ing separately generated plans with restricted interactions.
Computational Intelligence, 8(2):648–676, 1992.

90

A Dynamic Environment Modelling Framework for Selective Attention

Thorsten Buchheim, Georg Kindermann, Reinhard Lafrenz, and Paul Levi
Institute of Parallel and Distributed Systems,

University of Stuttgart, Universit®atsstr. 38, Dñ70569 Stuttgart
Phone: +49-711-7816-229, Fax: +49-711-7816-250

�buchheim,kindermann,lafrenz,levi�@informatik.uni-stuttgart.de

Keywords: Selective Attention, World Modeling, Communication, Multi-Agent-Systems

Abstract

Sensor data evaluation and environment modeling
represent a central part in the design of robotic
systems. The environment modeling process usu-
ally is done by several data processing modules by
means of sensor data fusion, combination of a pri-
ori knowledge with currently sensed data, etc. De-
pending on the application scenario there is usually
a trade-off between accuracy and time consumption
of the environment modeling process. Some do-
mains require a quite accurate environment model
and processing time plays a secondary role. More
reactive domains, however, demand for rather short
cycle times, even if this results in a less accurate
model. For some applications the required degree
of accuracy may vary depending on the current sit-
uation or task to perform and some parts of the
sensed information may be more important than
others. Several architectures were proposed to ad-
dress this problem by special mechanisms which
schedule the available resources according to the
needs of the current tasks which is usually denom-
inated by the term ìselectiveî or ìfocusedî atten-
tion. In our work we will show how these con-
cepts can be put into practice by a Ðexible and
open software design which is applied for our CoPs
RoboCup midsize team.

1 Introduction
Sensor data evaluation and environment modeling represent a
central part in the design of robotic systems. To act and react
properly on different situations an autonomous robot usually
is equipped with various sensors to gather information about
its surrounding which it uses to generate a model of its envi-
ronment.

The environment modeling process usually is done by sev-
eral data processing modules by means of sensor data fusion,
combination of a priori knowledge with currently sensed data,
etc. Most of the environment modeling approaches are struc-
tured in a hierarchical manner. While the lower evaluation
levels usually extract simple features from the sensor raw
data, like color blob detection in a 2D camera image or line
extraction from a distance scan of a laser range Ýnder, the

higher levels use these data to construct a more or less de-
tailed map of the environment.

Most times the environment modeling framework is de-
signed once for the application domain and the underlying
sensor and actuator setup of the robotic system. However,
there are application scenarios that require a high degree of
Ðexibility within the environment modeling process regard-
ing sensor equipment as well as the evaluation algorithms.
Prior experiences with multi agent based software architec-
tures have shown the usefulness of a high Ðexibility of multi
sensor systems like for a multi agent based system for optical
inspection [Buchheim et al., 2000]. Here, different sensors
and evaluation mechanisms were designed as separate agents
which cooperatively solved the task of quality inspection of
workpieces. A similar approach was also used for our Ýrst
RoboCup team software design [Lafrenz et al., 2000].

Another important aspect for autonomous systems is the
time efÝciency of the environment modeling process. De-
pending on the application scenario, there is usually a trade
off between accuracy and time consumption. While some do-
mains require a quite accurate environment model and pro-
cessing time plays a secondary role, e.g. in case of a robotic
museum tour guide [Thrun, 1997], more reactive domains de-
mand for rather time efÝcient algorithms.

According to the current situation or task to perform the
required degree of accuracy may vary and some parts of
the sensed information may be more important than others.
Several architectures [Langley et al., 1991; Tsotsos, 1997;
Gat, 1991; Hayes-Roth, 1991] were already proposed to ad-
dress this problem by special mechanisms which schedule
the available resources according to the needs of the current
tasks. These mechanisms are usually denominated by the
term ìselectiveî or ìfocusedî attention.

Works like [Gat, 1991] and [Tsotsos, 1997] proposed
extensions to Brookís subsumption architecture for atten-
tive processing [Brooks, 1991]. In [Tsotsos, 1997] this is
achieved by allowing behaviors not only to act in the phys-
ical world but also to manipulate its internal representation.
A behavior is deÝned as a process which takes input in one
or more representations and creates or manipulates other in-
ternal or external representations for subsequent processing.
Gatís ATLANTIS architecture [Gat, 1991] deÝnes three lay-
ers for control, sequencing, and deliberation where the se-
quencing layer selects the stimulus-response mapping by ac-

91

tivating and deactivating speciÝc modules in the control layer.
The THEO architecture [Mitchell et al., 1991] provides a
means of selective attention by introducing the concept of
eager and lazy sensing. While eagerly sensed features are
updated constantly with each ìsense-decide-executeî control
loop, lazily sensed features are deleted after the evaluation
step and only re-sensed when explicitly needed.

All of these works motivate clearly the necessity for such
mechanisms and present concepts for them. In our work we
will focus on how to put these concepts into practice by a
Ðexible and open software design which allows for an easy
integration of all these methodologies.

We will introduce a Ðexible and modular framework for
environment modeling which neither imposes restrictions on
the type or amount of data to be stored nor the data processing
or data generating elements (like sensors) and furthermore
provides functionality to control the time cycles for data gen-
eration or processing depending on the current task or action
of a robot. We then present a successful application of this
framework for the RoboCup domain.

The paper is structured as follows: Section 2 presents the
data management concept of the framework. Section 3 intro-
duces the data acquisition and processing elements as well as
the time cycle control mechanisms used for selective atten-
tion. The integration of this framework within the communi-
cation framework of the CoPs robotic soccer team [Lafrenz
et al., 2002] of the University of Stuttgart will be shown in
Section 4. Section 5 then illustrates an application scenario
of the complete framework within the CoPs -team. Section 6
concludes and gives an outlook to future applications and im-
provements of the framework.

2 Data Management
One of the central issues of the world modeling process is the
representation of the data supplied by the various sensors and
data processing modules of the system.

The focus of our world modeling design was to achieve
a maximum degree of scalability and extendibility which al-
lows for an easy integration of new sensory devices and eval-
uation algorithms. Secondly our work concentrated on per-
formance issues like minimal memory consumption and least
possible data volatility due to frequent memory allocation
during run time. All of this is accomplished by a Ðexible data
container concept which handles generic data objects of any
arbitrary type via a common interface which will be described
in the following.

2.1 Data Representation - Containers and Data
Objects

In our concept Data Containers represent the key elements
of data storage. They aggregate a number of so called Data
Objects which hold generic (environment) data elements and
provide administration functionality like adding, locating and
accessing stored Data Objects.

The concept of data containers was Ýrst applied for
a RoboCup simulation environment for the F2000 league
[Kleiner and Buchheim, 2003] to facilitate the storage of
generic data objects in a plug-in based architecture. Here it

was also proposed as a uniform way of data representation for
the development of generic sensor evaluation algorithms for
RoboCup.

A Data Container stores all environment information of
one robot which is represented by a set of different environ-
ment features. Each feature is stored within a separate Data
Object and can vary in its degree of abstraction (e.g. sensory
raw data like a simple camera image or top level information
like an absolute localization in the environment).

The data objects are identiÝed by the following two at-
tributes

1. the data source, the data stems from, e.g. a speciÝc sen-
sor or a data processing module and

2. the data feature the object represents, e.g. a red color
blob or a relative ball position.

The data representation itself is done by so called Data
Units (DU) which form the core of the Data Object. A Data
Unit stores the data itself in any arbitrary format along with
its time stamp. Each Data Object maintains a history list of
the � past Data Units over time (where � is a conÝgurable
parameter). This data history can be essential for data eval-
uation purposes when e.g. data observations are made over
time.

Data
Unit

Data
Unit

Data
Unit

...

Processed Data
Sensory Data
Config Data

Factorycreate

Data Object Container

History List

Data Object

timestamp

internal data representation

Data Unit

Data Object

Figure 1: Data Container Concept

The creation of Data Objects is done according to the fac-
tory pattern [Gamma et al., 1995]. Each new Data Object
has to be registered with the factory by giving the two above
mentioned data object identiÝers along with a data descriptor
deÝning the data representation used for the Data Unit part
of the Data Objects. Within the data descriptor the underly-
ing basic data type and further information like the number of
entries, data Ýelds per entry and history length are provided.
After registration, the Data Object can easily be added to a
Data Container just by providing its unique identiÝers.

Since most software approaches for autonomous robots use
multiple threads to simultaneously process incoming data,
much attention must be paid to mutual exclusion for shared
data objects. These necessary data locking mechanisms

92

sometimes bear negative side effects on the overall perfor-
mance of a system, when e.g. a data processing algorithm
locks data for an extended period of time while modules of
another thread try to access it for reading.

For this reason Data Objects provide read and write slots
to update or access their data and automatically implement
the necessary data locking functionality. To simultaneously
read and write data objects each Data Object contains be-
sides its history list of Data Units one additional Data Unit
as ìspare elementî. When requesting a write slot a pointer
to this spare element is provided and this Data Unit is ex-
clusively locked for the update process, while all other Data
Units remain readable. When the update process is Ýnished
the data slot is released and the spare element is inserted at
the front of the history list, while the last element is extracted
and becomes the new spare element.

Data
Unit

Data
Unit

Data
Unit

Data
Unit

Data
Unit

Data Object

...

write accress

read access

Figure 2: History Mechanism

In the CoPs team player architecture one Data Container
is used to store the locally sensed and interpreted data of
one robot which we call the robotís egocentric environment
model. Currently data of the following categories are stored

� sensory (raw) data

� results of sensor data processing (sensor fusion and
merging)

� control input, for RoboCup e.g. referee decisions

� control and conÝguration parameters affecting the be-
havior of some modules or the robot.

Usually, in a multi robot domain like RoboCup the robots
partially share their data to either improve their view on
the environment or to synchronize their actions. In our ar-
chitecture we use a separate Data Container for each ac-
tive robot transmitting data to store the communicated data.
These communication Data Containers and the egocentric
environment model form the complete world model of one
robot of the CoPs-Team. Further details on the inter-robot-
communication will be given in section 4.

3 Data Acquisition and Processing
The prerequisite for modeling the environment is the ability
to sense it. Most robotic systems use multiple sensors to mu-
tually compensate drawbacks of single sensors. The sensor
data usually is processed in some way or fused with other

data e.g. stemming from other sensors to obtain an accu-
rate model of the environment. Both, sensors and process-
ing algorithms should be easily integrateable into the system
and should impose least possible restrictions for the devel-
oper. Within our framework Sensors and Data Processors
are deÝned as so called Information Sources which manipu-
late Data Objects of the world model. Data Processors addi-
tionally require some input data to process which is retrieved
from other Data Objects.

In the following, we will describe the sensor classes and the
data processing units in detail and show the interplay with the
world model.

3.1 Information Sources
Sensors and Data Processors represent the Information
Sources of the framework which manipulate dedicated Data
Objects.

Both, sensing and data processing are often parallelized by
using multiple threads to avoid busy waiting for a sensor or
an algorithm to provide new data. However, there may be
situations where a Ýxed order of the incoming data is desired.

t

delay

cycle time

Sensor
start

data available

Figure 3: Sensor Cycle Time

t

all data available
start of
processing

writing
results

delay

cycle time

Processor

Input n

Input 2

Input 1

start of
processing

writing
results

Figure 4: Data Processor Cycle Time

Our approach accounts for both requirements. For Sensors
and Data Processors it is conÝgurable whether they are run
in an individual thread or in a so-called ìcommon threadî,
where they are processed sequentially according to a Ýxed
order.

Since some of the components are very fast and others re-
quire a longer time to produce new data, we can conÝgure
a cycle time for each thread. In opposite to cycle times in

93

real-time operating systems, we donít have a maximal time
consumption for each cycle but a minimal one, so we can
avoid unnecessary checks, e.g. for a new video frame. If the
frame rate is known, we are able to conÝgure an image analy-
sis component with a cycle time of the frame rate. The cycle
time mechanism is shown in Ýgures 3 and 4.

Attention Selection
By dynamically conÝguring the cycle times, it is possible to
concentrate on speciÝc perceptions. This means for example
that a driving robot can be conÝgured for short update cycles
of the self-localization, whereas for a standing robot there is
no need to constantly update its position once a reliable and
accurate estimate has been found. The main advantage of this
mechanism is that it can be used for attention selection. It is
a very powerful tool for concentrating the available resources
depending on the current situation.

Sensors
Sensors possess a pure data generation functionality. Sensor
objects must automatically register their individual Data Ob-
ject Type with the factory when they are created. During the
registration process, additional parameters like the size of a
single data element, the number of elements in a data set and
the length of the history to store is given. With this informa-
tion, the world model creates the required dedicated Data Ob-
ject for the sensor which is then added to the Data Container.
The Data Object can then be accessed via the Data Container
by the name of the sensor and the feature type. The feature
types themselves are independent of the underlying physical
sensor, so that several sensors can provide similar features,
e.g. lines relative to the robot in a Cartesian coordinate frame
can either be provided by a camera or by a laser range Ýnder.

Data Processors
Data Processors can be integrated into the world model in
the same way as Sensors. Each processor is connected in two
ways to the world model: for reading and writing. It can read
Data Objects of Sensors or other Data Processors. Then it
writes the result of its own calculations into its own dedicated
Data Object of the world model like the Sensors. That means,
that data from other sensors are fused or transformed into in-
formation on a higher level of abstraction.

One example of a Data Processor could be a virtual line
detection sensor, which yields the geometrical description of
boundary lines in the environment. These objects can be e.g.
lines drawn on the Ðoor, or walls. To detect these types of
lines, one needs different physical principles of measurement.
The lines on the Ðoor are reasonably detected by a vision sys-
tem, whereas the walls are detected by a laser range Ýnder.
Both information can be merged by a Data Processor imple-
menting a so called ìvirtual line sensorî.

Another area of application is e.g. plausibility checking. In
this case, the information of several different sensors can be
used to Ýlter out wrong information. Often, complementary
information is useful. A laser, for example, is not suitable
to detect glass walls, whereas an ultrasonic sensor is. The
combined information of both gives a more reliable model of
the environment.

3.2 Data Driven Execution Cycles
The sensing mechanism follows a publisher-subscriber model
[Gamma et al., 1995]. In this context Data Objects act as pub-
lishers which Data Processors or in some cases Sensors can
subscribe to. In case of an update of a Data Object all ob-
serving elements are automatically informed. Usually Data
Processors subscribe to the Data Objects they need for their
data processing. This is useful if data processing shall only
be done when all input data is available or when the data Ðow
of data processing mechanisms is to be monitored. Sensors
usually only register for Data Objects containing conÝgura-
tion information to facilitate changes of the conÝguration at
runtime.

Figure 5 shows an exemplary collaboration of Sensors,
Data Objects and Data Processors. The publisher subscriber
relation is marked by the dot ended lines. The Ýlled and
empty dots show the notiÝcation state of each Data Processor
for the corresponding Data Object. In this example it is as-
sumed that each Data Processor only initiates its processing
step when all Data Objects are updated, thus yielding a data
driven execution cycle.

Data
Processor

Data
Object

Data
Object

Data
Object

Data
Processor

Data
Object

Sensor Sensor

Data
Object

unset Data Input
Notification

set Data Input
Notification

Figure 5: Data driven execution

One example application is the self-localization by Markov
or Monte Carlo methods. Here, different types of sensor fea-
tures are used and the likelihood of being at a speciÝc place
is calculated dependent on the sensory information. A Monte
Carlo Data Processor thus registers with all relevant Data
Objects and uses this information to update its dedicated Data
Object containing the absolute position.

3.3 Configuration
Each Data Processor and Data Container possesses an indi-
vidual ConÝguration-Data Object which it is automatically
subscribed to. As one essential part this conÝguration con-
tains the already mentioned conÝgurable minimal cycle time.

With this mechanism it is possible to tune the system so
that the sensors are evaluated at a time where the new data is

94

available. In case of a camera sensor, the minimal cycle time
should be at least the video frame rate. In an ideal case, each
sensor runs in a separate thread at approximately its hard-
ware cycle time. In this case, this does not only assure the
most recent available information but also a constant update
rate (ìheart-beatî) for each sensor. This is especially useful
for time-dependent calculations, for instance Kalman Ýltering
for optimal state estimation. For the attention selection we
can conÝgure this heart-beat dynamically depending of the
current role that is currently assigned to the robot [Lafrenz et
al., 2000].

4 Communication
For team communication in our CoPs architecture we use
a publish/subscribe event channel approach [Buschmann,
1996]. The advantage of this concept is that the supplier
and the consumer of information do not need to know each
other (decoupling) and only the used channels have to be
known. The communication framework allows to connect to
one or more event channel(s) as supplier (publisher) and/or
consumer (subscriber). This allows to implement different
levels of communication like differently prioritized or the-
matically separated channels.

4.1 Communication Levels
Our implementation uses a CORBA event channel [OMG,
1995] using the push model which means that a supplier
pushes its information to a channel. The channel is realized
by a server process which runs on one of the robots or on an
external computer which broadcasts the provided information
to the subscribers.

The modules pushing the data to the channels can be im-
plemented within an own conÝgurable thread or a common
thread which is the same mechanism we already described in
section 3.1. The common thread is normally used for trigger-
ing the transmission of Data Objects whenever they change,
while individual threads are normally used to provide a con-
stant ìstreamî of information with a conÝgurable cycle time.

At the moment we use three communication levels, accord-
ing to the known reactive, tactical, strategic level approach:

1. Information acquired from the local sensors

2. Derived data from local view and the received data from
level one

3. Data processed by observing the local view and the in-
formation of level 1 and 2 over an extended period of
time.

This enumeration also reÐects the frequency of data ex-
change. In our application each robot provides a snapshot
of its local view approximately every ����� and is imple-
mented by an own thread (level 1). Pushing the data of the
other levels is implemented within the common thread and so
dependent on how often the information is updated. Infor-
mation of level 2 usually is exchanged about every � � ���
while information of level 3 is normally transmitted about ev-
ery half a minute or more.

Level one data is intended to be used to extend the local
view derived from the information of the own sensors. Each

robot makes its own decision about what action he should ex-
ecute next, based upon its knowledge of the real world. Re-
stricted to the local view of a robot cooperative playing is a
difÝcult task which can be considerably reduced in its com-
plexity by the use of communication. For example a decision
which robot of a team should approach the ball would require
that each player performs a complete analysis of the current
situation concerning the positions of all team mates as well
as the ball to determine the player next to the ball. With each
robot exchanging its own current distance to the ball with its
team mates a solution can easily be found.

Level two data should be information which changes less
frequently, e.g. the role of a robot (defender, attacker) or an
estimation of the situation. Another point is providing addi-
tional information for other robots. For example a defender is
often off duty while the ball is near the opponent goal. So our
concept allows to change its attention by reducing the pro-
cessing time for normal situation analysis and investing it for
other purposes. So more sophisticated, time consuming anal-
ysis on its own sensor and/or the communicated information
can be done. For example the robot can provide a (rough)
estimation about the absolute position of the attacking robot,
which is normally crowded by opponent robots and so not
able to localize itself. This can be done for example by con-
sidering the communicated relative ball position of that robot
and the own detected absolute ball position.

Level three could for example be used for negotiations and
conÐict resolutions. Considering the defender scenario men-
tioned above, this defender could detect some inconsistency,
for example an incorrect localization of the attacker due to a
sensor malfunction. At the moment this level is mostly used
to signal possible problems to the human coach.

4.2 Communication Data Handling
Information received from other robots is stored in one Data
Container for each robot. If a new robot enters the game, it
registers itself at the different channels. So if a robot pushes
its information to a channel for the Ýrst time the registered
consumers receive this information. For storing the infor-
mation of the new robot the others create a new instance
of a Data Container and add the name of the new robot to
their list of active robots which is stored in a Data Object
within their local Data Container. This local Data Container
builds the egocentric environment model of a robot (see sec-
tion 2.1). It stores the information acquired from the local
sensors and data processing results from communicated or
sensory data. The information received from other robots is
separately stored in so called Communication Data Contain-
ers. The Data Objects within this container are only updated
by the communication module and read by Data Processors
to compute information which is stored within the local, ego-
centric Data Container (see Ýgure 6).

The software design allows for an easy implementation
and integration of new Data Processors for the communi-
cated information. The features of the implemented pub-
lisher/subscriber model we described for the Data Objects in
section 3.2, are also provided for the Communication Data
Objects. By using these mechanisms it is easily possible to
implement Data Processors which are initiated each time a

95

sepp
communication

loddar
communication

Sensors

write

Data Processors
Communication

Data Processors

read Communication
Module

Module
Communication

configuration read/write access

Data Object Container

Data Object Container

communication
rudi

egocentric
franz

Figure 6: Communication Containers

robot sends a speciÝc information or just when this informa-
tion item is received from all active robots.

For administrative reasons, e.g. to detect that a robot
dropped off, a Data Processor, the active robot observer
(ARO) is started to observe the list of active robots and the
containers holding the appropriate communication data. It
is expected, that information of each robot is received regu-
larly. So if no information is received from a robot for some
time period, this robot is viewed as not active anymore and
removed from the local list of active robots. Additionally an-
other datum is updated, which is registered to be transmitted
(normally level 3), to inform the other robots and the human
coach about the possible drop off. Normally all Data Proces-
sors for communicated data are registered with the Data Ob-
ject holding the list of active robots. So if the ARO removes
the robot from the list, they are informed and can initiate an
appropriate reaction.

4.3 Selective Attention for Communication

Selective attention can be achieved on the supplier as well as
on the receiver side. For the supplier it is possible to conÝg-
ure the Data Processors producing the data to be transmitted
and the communication modules (e.g. thread cycle times) re-
sponsible for sending it. This way it is possible to adjust the
amount, quality and focus of information it provides depend-
ing on the current situation.

On the receiver side, it is possible to selectively choose
which data from which robot or group of robots should be ex-
amined or ignored, by appropriately conÝguring the respon-
sible Data Processors. So it is possible to control how much
attention the receiver pays to which information provided by
different robots.

For example the attacking robot can normally ignore infor-
mation from other robots, which is of low plausibility and im-
portance, while a defending robot, can do additional plausi-
bility checks on the provided information, try to detect prob-
lems and initiate a conÐict resolution procedure if necessary.

5 Selective Attention in the CoPs robotic
soccer midsize team

Robotic soccer is a domain which usually requires both, fast
algorithms for quick reactive behavior like dribbling or inter-
cepting a ball and a high accuracy which is needed for strate-
gic team behaviors, like e.g. defending the own goal area
or for strategic positioning. Fortunately, most situations do
not require both qualities at the same time which is the point
where selective attention comes into play.

In our current approach of selective attention in the CoPs-
Team we control the activity of the Data Processors of the
environment model in two ways. Firstly by manipulating in-
dividual cycle times as described in section 3 and secondly
by deÝning a special data input for explicitly triggering the
execution of a particular Data Processor. This special ìtrig-
ger inputî is used like any other regular data input and has
to be set to initiate an execution cycle. This allows to trigger
special data processing routines ìon demandî.

Currently we use a role based control of selective attention
for our team. In our team architecture there are three top level
roles a player can be in:

� The active player is the one who usually goes for the
ball or currently possesses it and tries to mark a goal.

� The supporter assists the active player by following him
to catch the ball if the active player fails in executing his
current action (e.g. rebound shot).

� The defender defends the goal the best way possible ac-
cording to the current situation.

Here, the active player requires the highest reactivity to get
or control the ball while the defender usually can use its re-
sources to obtain a more accurate model of the environment.
The roles are switched dynamically which means that when
an attack of the opponent team occurs the defender automat-
ically becomes the active player when the ball gets into the
vicinity of the own goal.

Each robot player of the CoPs team is currently equipped
with the following sensors:

� SICK laser range Ýnder (LRF) providing distance data in
a ���Æ angular Ýeld of view with a �Æ resolution which
is directly fed to a line and obstacle detection algorithm

� 2D camera detecting color blobs of the ball and goal col-
ors

� a ring of 16 sonar sensor modules each providing one
single distance measurement within their sensing range

� an odometry sensor of the Nomadic Scout robot plat-
form, providing a position ��� �� �� within an absolute
odometry coordinate frame which, however, is biased by
slippage of the wheels during the motion of the robot.
Additionally the current wheel speeds are measured by
taking the momentarily applied motor currents.

96

The LRF and the camera are designed each as Sensor
threads with controllable cycle times. The odometry data and
the ultrasonic sensors are updated each time the scout hard-
ware platform is accessed when e.g. setting the wheel speeds
of the robot.

Several data processing units process the incoming data
and provide some meta level information on the environment
or auxiliary information to support the decision making pro-
cess for player actions which is done within a separate action
execution layer which will not be described any further for
the sake of simplicity. Some important sensor data process-
ing elements are:

� Transformation of relative data into the odometry coor-
dinate frame

� Kalman Ýltering of ball data

� Object tracking of laser detected objects

� Estimation of an outer bound of action

� Path Planning for obstacle avoidance

� Monte Carlo Localization.

A central problem within the midsize league is to deter-
mine the absolute position within the Ýeld. Besides the ob-
vious advantage of absolute positioning for strategic team
play, there is a further important aspect of a Ýxed coordi-
nate frame which allows a motion-invariant representation of
sensed data. Many algorithms like object tracking rely on the
fact that the data is provided in a stable coordinate frame as
given by a static observer. This data is then used to derive
some motion information by matching successive measure-
ments over time.

Since a reliable and fault tolerant localization mechanism
cannot be assured at all times, we recurred to the absolute
coordinate frame of the odometry sensor. Although this co-
ordinate frame slightly shifts and rotates over time due to the
slippage of the wheels, it turned out to be sufÝciently sta-
ble for the limited time frame in which the object tracking in
RoboCup usually is done.

One processing element is thus concerned with the trans-
formation of incoming sensor data from the camera and the
LRF to the odometry coordinate frame. One Data Processor
applies Kalman Ýltering on these data to stabilize the ball po-
sition estimate and calculate its motion vector, while another
processor does the same for obstacles detected by the laser.

Path Planning is used when a direct way to an intended tar-
get position is obstructed by obstacles. In the absence of an
absolute localization, it is useful to deÝne an outer bound for
the path planning process, to avoid planning outside the Ýeld
borders. To achieve this a Data Processor buffers detected
lines from the laser within the odometry coordinate frame
over a dedicated time frame which is then used for a guess
of an outer bound where planning should take place.

We chose to implement the path planning as a separate
Data Processor instead of integrating it in the action execu-
tion layer. The path planner is triggered on demand by the
action execution layer, when needed to navigate around ob-
stacles to reach a given target position. After having planned
an appropriate path, the path planning Data Processor con-
stantly checks whether the current path is still valid or if a

replanning has to be done due to the motion of certain obsta-
cles.

Although all these approaches work nicely, effective team
play demands for an absolute localization. With an absolute
position within the Ýeld the robots can share this information
to organize their behavior by e.g. choosing appropriate po-
sitions within the Ýeld or assigning non-conÐicting roles to
each player. For the absolute localization we use a Monte
Carlo approach which uses the detected lines of the laser and
the color blob data of the camera to estimate an absolute po-
sition in the Ýeld. This algorithm, however, has the drawback
to be rather time consuming depending on the number of fea-
tures used for localization and the intended accuracy of the
position estimate. Hence, localization is done as seldom as
possible. For the rest of the time a reliable estimate is propa-
gated forth by the odometry updates and Kalman Ýltering.

Camera

Laser

MCL

Orientation Level

Figure 7: Sensor and processing activity for active
player role

In our approach we partially renounce on a good absolute
positioning for the active player in favor of a higher reactiv-
ity while the defender and supporter focus on determining an
exact position within the Ýeld. However, there are situations
when the degree of information for a current action falls be-
low a critical limit and leads to a state of disorientation, like
the occlusion of the opponent goal when dribbling the ball
and a missing absolute localization within the Ýeld.

In these cases some resources have to be spent for the lo-
calization at the expense of a temporary lower reactivity. For
the more passive roles, on the contrary, once a good position
estimate has been found the activity of other Data Processors
can be intensiÝed like ball or opponent tracking.

To account for this we deÝne a quality measure for the
current state of the self localization (orientation level) which
is used for determining the cycle times of the various Data
Processors. This quality measure is derived from the Monte
Carlo localization by the given probability of the best posi-
tion estimate, its variance, and by a distance measure to other
concurrent position hypotheses. Each role deÝnes a minimum
value for this localization measure which should be main-
tained during its execution time. The selective attention con-
trol mechanism then tries to appropriately control the cycle

97

times of the various Data Processors to assure the needed
level of orientation.

Figure 7 shows the activity of the camera and laser sen-
sor together with the Monte Carlo Localization (MCL) Data
Processor and the current level of orientation while the robot
dribbles the ball. Each Data Processor in the diagram has
three states, inactive (zero level), waiting (0.5 level) and busy
(1 level). The diagram clearly shows a lower activity of the
MCL Data Processor while the level of orientation remains
above a certain level. This activity increases when the state
of orientation gets critical by shortening the waiting period.
On the other hand the laser and camera update cycles are rel-
atively short to achieve a high reactivity.

6 Conclusion and Outlook

In this work we presented a Ðexible and generic software
framework for world modeling which enables an easy realiza-
tion of selective attention mechanisms. Until now we merely
focused on the software realization to facilitate these mech-
anisms and applied them for our RoboCup midsize team ar-
chitecture. Currently the selective attention modeling is done
manually based on the current action and situation of a par-
ticular robot. For the future we intend to integrate learning
mechanisms for attention control which automatically deter-
mine which features of the world model are most relevant in
certain situation. In this context we will especially focus on
cooperative sensing to cooperatively build a consistent and
accurate world model by means of communication and load
balancing among team mates.

References
[Brooks, 1991] R. A. Brooks. Intelligence without represen-

tation. Artificial Intelligence Journal (47), pages 139ñ159,
1991.

[Buchheim et al., 2000] T. Buchheim, G. Hetzel, G. Kinder-
mann, and P. Levi. A multi-agent approach for optical
inspection technology. In The Sixth Pacific Rim Inter-
national Conference on Artificial Intelligence (PRICAI),
2000.

[Buschmann, 1996] Frank Buschmann. Pattern-Oriented
Software Architecture. A System of Patterns. John Wiley
& Sons, 1996.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design Patterns. Addison
Wesley, 1995.

[Gat, 1991] E. Gat. Integrating planning and reacting in
a heterogeneous asynchronous architecture for mobile
robots. In SIGART Bulletin 2, pages 70ñ71, 1991.

[Hayes-Roth, 1991] B. Hayes-Roth. Architectures for intel-
ligence. In SIGART Bulletin 2, pages 301ñ321, 1991.

[Kleiner and Buchheim, 2003] A. Kleiner and T. Buchheim.
A plugin based architecture for simulation in the f2000
league. submitted to RoboCup Intl. Symposium, Padua,
2003.

[Lafrenz et al., 2000] R. Lafrenz, N. Oswald, M. Schule, and
P. Levi. A cooperative architecture to control multi-agent
based robots. In The Sixth Pacific Rim International Con-
ference on Artificial Intelligence (PRICAI), 2000.

[Lafrenz et al., 2002] R. Lafrenz, M. Becht, T. Buchheim,
P. Burger, G. Hetzel, G. Kindermann, M. Schanz,
M. Schul¥e, and P. Levi. Cops-team description. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors, RoboCup-01:
Robot Soccer World Cup V, pages S. 616 ñ 619. Springer
Verlag, 2002.

[Langley et al., 1991] P. Langley, K.B. McKusick, J.A.
Allen, W.F. Iba, and K. Thompson. A design for the icarus
architecture. In SIGART Bulletin 2, pages 104ñ109, 1991.

[Mitchell et al., 1991] T.M. Mitchell, J. Allen, Chalasani P.,
J. Cheng, O. Etzioni, M. Ringuette, and J.C. Schlimmer.
Theo: A framework for self-improving systems. In Archi-
tectures for Intelligence, pages 325ñ355, 1991.

[OMG, 1995] Object Management Group OMG. CORBA
services: Common Object Services SpeciÝcataion. OMG
Document Number 95-3-31, 1995.

[Thrun, 1997] S. Thrun. The museum tourguide project: Ex-
periences with a deployed service robot. In Proceedings
of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 1997.

[Tsotsos, 1997] J.K. Tsotsos. Intelligent control for percep-
tually attentive agents: The s* proposal. In Robotics and
Autonomous Systems, pages 5ñ21, 1997.

98

Intelligent Execution Monitoring in Dynamic Environments

Matthias Fichtner Axel Großmann Michael Thielscher

Department of Computer Science
Technische Universität Dresden

Dresden, Germany

Abstract

We present a robot control system for known struc-
tured environments that integrates robust reactive
control with reasoning-based execution monitor-
ing, allowing for action failures due to the interac-
tion with humans and dynamic changes in the en-
vironment. On the reactive level, the robot is con-
trolled using a hierarchy of low-level behaviours.
On the high level, a logical representation of the
world enables the robot to plan action sequences
and to reason about the state of the world. If
the execution of an action fails, high-level reason-
ing allows to infer possible explanations and to re-
cover from the failure situation. The logic-based
world model takes into account temporal informa-
tion about changes in the environment. It is updated
both using information from the sensory processing
modules as well as by executing sensing actions.
The proposed system is evaluated in several realis-
tic office-delivery scenarios.

1 Introduction
In recent years, robotics has been subject to promising ad-
vances in sensor and actuator hardware, sensory processing
techniques, and low-level control methods. Yet, if we want a
mobile robot to perform complex tasks in real-world environ-
ments, we still face a number of problems. The information
the robot has about its operating environment might be out
of date, incomplete, and uncertain. The execution of actions
might fail due to a multitude of reasons. Ideally, we want the
robot to reason about unexpected situations and to infer possi-
ble explanations in order to recover from the failure situation.

The capabilities described above require the robot to main-
tain information on its own state, usually obtained by pro-
cessing the sensory data, as well as knowledge about the
operating environment and the task at hand, commonly re-
ferred to as world model. To deal with the uncertainty in
the robot’s observations, it is common practise to represent
state information such as the robot’s location in the environ-
ment or the position of objects of interest using state enu-
meration and probabilities. Popular approaches include po-
sition probability grids[Fox et al., 1999] and particle sets
[Thrunet al., 2000]. On the other hand, as the robotic tasks

become more complex, we would like to use reasoning and
planning techniques. These require a logical representation
instead. There is still a large gap between state-of-the-art re-
active control mechanisms using probabilistic representations
and symbolic reasoning and action planning methods for mo-
bile robots. This is partly due to unrealistic assumptions in
cognitive robotics approaches.

In order to make efficient use of high-level control for task
planning and error recovery in dynamic real-time environ-
ments, temporal information about changes in the environ-
ment need to be incorporated into the world model. There-
fore, we decided to investigate the following two kinds of data
acquisition. The robot may obtain information about the en-
vironment using its sensory processing system concurrently
while executing a sequence of actions or it may choose to
execute specific sensory actions.

The aim of our work is to enable a mobile robot to perform
action planning and reasoning-based execution monitoring in
known structured environments, allowing for action failures
due to the interaction with humans and dynamic changes in
the environment. We present a hierarchical, modular con-
trol architecture that integrates low-level behaviours with a
high-level controller, thus combining the robustness of reac-
tive control with the power of intelligent reasoning. We have
developed a layered scheme of execution monitoring. It al-
lows the robot to find explanations for action failure using the
logic-based world model and the history of the task execution.
The capabilities of this novel kind of execution monitoring
are evaluated using realistic scenarios for an office-delivery
robot.

The paper is organised as follows. In Section 2, we dis-
cuss related work on logic-based representations of dynamic
information and on execution monitoring. In Section 3, we
describe the main components of the proposed architecture
and the representations and techniques used at the reactive
and the abstract level. In Section 4, we describe the concepts
and techniques for representing dynamic information, the ac-
quisition of information while executing a plan, and active
sensing. In Section 5, we demonstrate the functionality of the
system using example scenarios. We conclude in Section 6.

2 Related Work
There is a vast literature on the integration of planning and re-
activity in autonomous mobile robots, e.g., on the traditional

99

sense-plan-act architectures as well as behaviour-based con-
trol and variations thereof[Gat, 1992; Saffiotti, 1993]. Sev-
eral of the issues related to that are discussed in the following
sections. However, a detailed discussion of the previous work
on this topic goes beyond the scope of this paper. In this sec-
tion, we focus on literature on the realisation of reasoning-
based execution monitoring and on logic-based representa-
tions of dynamic worlds instead.

2.1 Execution Monitoring

The problem of execution monitoring can be addressed in var-
ious ways. The individual solutions usually depend on the
control architectures and the tasks they are used with. For
example, there are efficient methods for handling errors in
navigation tasks, e.g.,[Stentz, 1995]. Moreover, there is a
large body of related work in the fields of fault detection and
isolation (FDI) and industrial control. Since we want our so-
lution to be applicable to complex delivery tasks, we address
the problem of execution monitoring in a logical framework,
going far beyond the requirements of pure navigation tasks.

There is no generally accepted definition of execution mon-
itoring. [Giacomoet al., 1998] defined execution monitoring
as ‘the robot’s process of observing the world for discrepan-
cies between the actual world and the robot’s internal repre-
sentation of it, and recovering from such discrepancies’. In
this work, we extend this notion in the way that the robot
should come up with explanations for the detected discrepan-
cies as well. Consequently, we can divide the overall process
of execution monitoring into three steps: detecting discrepan-
cies, explaining the situation, and launching a recovery pro-
cedure. They are discussed in the remainder of this section.

Detecting Discrepancies

The execution of complex actions generally requires the robot
to have a representation of its current state – such as the
robot’s position in the environment, the distance to obsta-
cles, and the state of the gripper – as well as a model of the
environment and a description of the task to be solved. By
comparing the current state with the model of the world and
the task, it should be possible to detect erroneous situations.
However, we do not expect such a comparison to be straight-
forward as the models and representations are likely to be
complex and incompatible. In general, the representation of
the robot’s state will be layered and distributed. The control
architectures usually include specialised modules for sensor
data processing. At the low levels of control, we mostly use
probabilistic representations. At the highest level of control,
in contrast, we prefer symbolic, logic-based representations.

Suppose the robot is to execute a sequence of actions. At
the beginning, we usually have an expectation of the intended
effects, i.e., the change of state caused by each action. These
expectations are going to be layered and distributed as well.
The anticipated effect of a go-to action at the low level, for
example, is a change of the robot’s position within a cer-
tain amount of time while maintaining a minimum distance
to obstacles. At the highest level of control, expectations can
be inferred using a knowledge base and an underlying action
theory.

Providing Explanations
Once an action had not the intended effect, we would like to
know the reason, i.e., find an explanation for the encountered
discrepancy between state information and expectation. In
general, this will require reasoning. This goes beyond the
capabilities of reactive control and has to be performed at the
highest level of control.

The robot can generally only observe symptoms of the cur-
rent situation. For instance, a robot getting stuck could have
been caused by a variety of reasons: a localisation failure,
a visible obstacle (a person), an invisible obstacle (a chair
leg), an unexpected change of the environment (a door being
closed), etc. On the other hand, the more relevant features of
the environment are included in the state information and the
smaller the granularity of the world model and task descrip-
tion, the easier it is to make conjectures about the possible
reasons of failure.

Hierarchical planning meets the requirements mentioned
above. If, for example, a complex navigation task is broken
down into smaller actions like door passings, corridor and
room traverses, then failures can be substantiated with higher
reliability. By using default logic[Reiter, 1980], the planning
and reasoning module can abstract away from the sheer non-
exhausting, but increasingly unlikely, set of preconditions,
thus solving the qualification problem. In case of unexpected
situations though, these default assumptions must be double
checked according to an ordered preference list[Martin and
Thielscher, 2001], thus providing the most likely explanation
for action failure.

Recovering
Once an explanation of the current situation is found and the
state information and world model are corrected, some recov-
ery strategy is expected to remedy the failure. In approaches
such as[Ferńandez and Simmons, 1998], it is suggested to
launch a predefined recovery plan. For example, when the
robot notices that it ran into a dead end, it computes a path
that brings it back on the original track and continues with
the initial plan. Given a strong planning tool, instead of just
correcting the mistake, we are able to find an optimal plan for
the current situation (provided that the state and world model
are correct). Suppose the robot did not run into a dead end,
but found a shortcut. Now, the planner can provide a better
solution if returning to the old track proves to be more costly.

2.2 Logic-based Representations of Dynamic
Worlds

Previous logic-based representations of dynamic worlds are
rooted in the general framework developed in[Sandewall,
1989], in which dynamic information is modelled by au-
tonomous processes that run in parallel and that may even-
tually trigger further changes in the environment. This tech-
nique has been integrated, for example, into situation calculus
[Reiter, 1996], event calculus[Shanahan, 1990], or fluent cal-
culus [Thielscher, 2001a]. Implementing these approaches,
the agent programming and planning languages ConGolog
[Giacomo and Levesque, 2000] or FLUX [Martin, 2003] sup-
port the specification of concurrent processes and their ef-
fects.

100

path info

camera image

path request

position

exogenous events

position estimates of

Vision System

Cognitive−Level
Controller

Controller
Reactive−Level

Robot Hardware

Interface
User

detected objects estimates

Path Planner

sensor data actuator settings

path request path node list

parameter

Map Module

odometry
distance and

sensor readings

Position Tracking

Door Detection

behaviour

state info

state
info

Figure 1: Control architecture of the robot.

A disadvantage of these methods is that all changes need to
be explicitly inferred as effects of endogenous events, whose
occurrence in turn needs to be derived from the ongoing pro-
cesses. Robots which follow this approach in highly dynamic
environments would be overwhelmed with constantly calcu-
lating all changes that happen around them. Instead, we rep-
resent temporal knowledge about a dynamic property by at-
taching the time of its observation to the corresponding prop-
erty. Decay of information will then be simulated by automat-
ically forgetting about outdated fluents after a certain amount
of time so that only recent knowledge is considered when de-
vising plans.

3 Building the System

To put the functionality described above into practise, we
added a high-level planning and reasoning component to a
fairly standard hierarchical robot control system. In the fol-
lowing, we describe the parts of the system that are relevant
specifically to execution monitoring.

3.1 System Architecture

The control architecture of the robot, as depicted in Figure 1,
consists of several modules. The hardware controller talk-
ing directly to the robot’s sensors (odometry, sonars, laser)
and actuators (drive motors, gripper) is considered the low-
est level of control. The basic perceptual and behavioural
functions of the robot are implemented by the reactive-level
controller. We have used a behaviour-based approach. That
is, the reactive controller includes several interacting, task-
specific programs that are referred to as low-level behaviours.
Each behaviour program takes the current sensor readings
and the state information and computes target values of the
robot’s actuators. Individual behaviours can overwrite the
output of other behaviours. There are specialised sensor-
processing modules for visual object detection, laser-based
position tracking, and door detection. These components
maintain a probabilistic representation of the detected ob-
jects, robot poses, and door angles, respectively.

The robot’s goal-oriented behaviour is directed by the
cognitive-level controller. This is done by setting task specific
parameters of the low-level behaviours such as the activation
context and target coordinates. To navigate in the office envi-
ronment, both the reactive and the cognitive controller obtains
information from the map and path planning module.

3.2 At the Lower Levels

Independent of the task to be performed, the safety of the
robot has to be maintained at all times. Therefore, the reac-
tive controller includes a set of low-level safety behaviours,
e.g., for obstacle avoidance and velocity control, that can-
not be switched off by higher levels of control. The other
low-level behaviours are designed to achieve specific (param-
eterised) goals such as to travel to a target position or to pick
up an object. Suppose the robot is to execute a sequence of
high-level actions. Then for each action, there is a designated
process that supervises the execution of that action. This ex-
ecution monitoring process invokes the appropriate low-level
behaviours and deals with exceptional situations. In the fol-
lowing, we illustrate this concept for the action of travelling
to a given office.

The monitoring processes are implemented as finite state
machines. Some states are common to all actions, others are
specific to the task. In the example, we have used the follow-
ing states:

Init Initialise the process
Deactivated Wait for activation

WaitForGoal Wait for target from cognitive controller

RequestPlan Query the path planner
ReceivePlan Receive path node list
PlanReceived Activate low-level behaviourGoToPos

ExecutePlan Set new intermediate target position and
react on state info fromGoToPos

For each monitoring process, there is a predefined set of
exceptions, represented by state information. There are ex-
ceptions that are passed on by the low-level behaviours and
there are exceptions that were detected by the sensor process-
ing systems. The low-level behaviourGoToPoswas imple-
mented as finite state machine, too. The common interface
to low-level behaviours consists of three states:Init, Deacti-
vated, andRunning. The state information used in the exam-
ple above are:

InProgress Execution in progress
Success Execution terminated successfully
FailureStalled Drive motors stalled
FailureObstacle Path blocked by obstacle
FailureDoor Path blocked by door
Timeout Execution timeout
Interrupt Execution interrupted

The monitoring process passes this state information on to the
cognitive controller.

101

3.3 At the Highest Level

The high-level controller maintains a symbolic world model.
Reasoning about actions is used at this level to plan complex
tasks and to generate expectations as to the effects of actions.
When a discrepancy arises between the expectations and the
actual situation, the high-level control uses its reasoning fa-
cilities to come up with suitable explanations and a recovery
plan. As the underlying action theory we use the fluent calcu-
lus with its solution to the classical frame, ramification, and
qualification problems. Our system builds on the inference
engine FLUX for the fluent calculus[Thielscher, 2002].

Specifying Actions
The cognitive controller requires precondition and effect
specifications of each high-level action. To account for un-
expected action failure, we make the distinction between nor-
mal and abnormal preconditions. The former need to be as-
certained before an action can be planned while the latter are
assumed away by default but serve as possible explanations in
case the action surprisingly fails. For example, the following
axiom specifies the preconditions of the actionDeliver(o, p)
of delivering objecto to personp:

Poss(Deliver(o, p), s) ≡
Holds(Carries(o, p), s)∧
∃r Holds(InRoom(r), s) ∧Office(r, p)∧
¬Ab(Traceable(p), s) ∧ ¬Ab(NotLost(o), s)

(1)

Here, the standard predicatesPoss(a, s) andHolds(f, s) de-
note that in situations, actiona is possible and propertyf
is known to hold, respectively. An instance ofAb(f, s) in-
dicates the presence of abnormal conditionf in situations.
Hence, the precondition axiom says that normally a delivery
is possible if the robot carries the object in question and hap-
pens to be in the office of the recipient. However, the action
fails under the unusual circumstances that the respective per-
son is not traceable or the object has been lost.

Effects of high-level actions are specified by state update
axioms, which provide a solution to the frame problem. For
example, the actionReceive(o, p) of receiving objecto from
personp is specified by:

Poss(Receive(o, p), s) ⊃
∃p′Holds(Request(p, o, p′), s) ⊃

State(Do(Receive(o, p), s)) =

State(s)− Request(p, o, p′) + Carries(o, p′)

Here, the standard functionsState(s) and Do(a, s) denote,
respectively, the state in situations and the situation reached
after performing actiona in situations. Hence, the axiom
describes the subsequent state in terms of an update of the
current state by the negative effectRequest(p, o, p′) and the
positive effectCarries(o, p′). That is, upon receivingo from
p addressed to personp′, the robot carries the object and the
corresponding delivery request is cancelled. The effects of
sensing actions are specified by so-called knowledge update
axioms, an example of which will be given in Section 4.2.

Actions sometimes fail to produce the intended effect. For
example, in exceptional cases a delivery may leave the recip-
ient with the wrong item:

Poss(Deliver(o, p), s) ⊃
¬∃o′Ab(Deliver(o′, p), s)∧

State(Do(Deliver(o, p), s)) =
State(s)− Carries(o, p)

∨
∃o′, p′Ab(Deliver(o′, p), s)∧

Holds(Carries(o′, p′), s) ∧ o 6= o′ ∧ p 6= p′ ∧
State(Do(Deliver(o, p), s)) = State(s)

−Carries(o′, p′) + Request(p, o′, p′)

(2)

The conditionAb(Deliver(o′, p), s) represents the abnormal
case of delivering the wrong itemo′ to personp in situation
s. In this case, initiatingRequest(p, o′, p′) will remedy the
confusion. Abnormal conditions in state update axioms, too,
are assumed away by default but may serve as explanation for
observed discrepancies between the expected and the actual
outcome.

Possible indirect effects of actions are specified by causal
relationships, which solves the ramification problem. For ex-
ample, suppose the robot searches for an objecto among the
group of people in some roomr. WheneverHas(p′, o) be-
comes true, stating that personp′ is in possession of the ob-
ject, then all other previously considered possibilities of peo-
ple havingo are ruled out:

Holds(MightHave(p, o, r), s) ⊃
Causes(Has(p′, o),¬MightHave(p, o, r), s)

Here, the standard macro definitionCauses(e, r, s) means
that effecte causes indirect effectr in situations.

Explaining Action Failures
Action failure is explained on the basis of the various ab-
normalities that have been specified for each action. Fol-
lowing the solution to the qualification problem developed
in [Thielscher, 2001b], abnormal conditionsAb(f, s) are as-
sumed away by default unless there is evidence to the con-
trary. We use non-monotonic default theory to this end.
Whenever the observations suggest a discrepancy between
the default expectations and the actual world, the default the-
ory entails that one or more default assumptions no longer
hold.

Suppose, for example, a delivery action cannot be per-
formed although the robot carries the right object and is in
the right office. Precondition axiom (1) then offers two ex-
planations by means of the respective positive instances of
Ab. In addition, if the failed action occurs after other de-
liveries, then update axiom (2) offers a further explanation,
namely, that the object was previously accidentally delivered
to the wrong person. If so, the update axiom implies that the
regular preconditionHolds(Carries(o, p), s) in (1) does actu-
ally not hold. In this way, the high-level controller uses its
reasoning facilities to generate suitable explanations for the
encountered failure[Martin and Thielscher, 2001]. By ap-
pealing to prioritised default logic[Brewka, 1994], one can

102

specify qualitative knowledge of the relative likelihood of the
various explanations for abnormal qualifications. The accom-
panying concept of preferred extensions then helps selecting
the most likely explanation. In cases where it is impossible to
provide an exhaustive specification of the reasons for a par-
ticular action to fail, a specialAb instance can be added to
the precondition axiom indicating an inexplicable failure. If
this abnormality is specified as being least preferred, then the
controller falls back upon it only if all other explanations fail.

Planning
A controlling mechanism that monitors action execution in-
evitably requires a high amount of reactivity. On the low
level, a set of interacting behaviours seem to meet this re-
quirement. In an analogous manner, an abstract task planner
should be able to react on events that might affect the current
agenda. Action failures and general world changes require re-
planning for both successful accomplishment and efficiency
reasons.

The maintenance of a stateS and a set of abstract state
evaluation functionsE : S → A that are consulted during
every action-execution cycle, are the base for the planning
loop. Once a critical world change is realised, the current
agenda is dropped and the planner is invoked again. The plan-
ner investigates the current state according to various criteria
of decreasing priority:
loop(S,Z):-

(/* Stationary */
notify_reach(Z, URL) -> As = URL;
call_help(P,Z) -> As = [call_help(P)];
search_fail(O,P,Z) -> As = [email(O,P)];
delivery(O, P, Z) -> As = [deliver(O,P)];
receipt(O, P, Z) -> As = [receive(O,P)];
/* Knowledge Acquisition */
search(SearchDialog,Z) -> As = SearchDialog;
/* Navigation */
continue(GoAct, Z) -> As = [walk_on|GoAct];
/* Otherwise */ As = [idle]

),
execute(As, S, Z).

The predicates on the left hand side of the arrows can be un-
derstood as diagnostic functions of the current state. Pred-
icate NotifyReachholds if people became out of reach re-
cently. The second argumentURL is an action sequence
of notifications about the unreachable persons. Predicate
CallHelp succeeds if it is necessary in the current state to
call for help. SearchFaillaunches an email notification to
the originator of a search request if none of the possible can-
didates has the desired item. If delivery or receipt is possible,
the according actions are performed. If no stationary action
is launched, that is, if all the previous state diagnostic predi-
cates failed, then predicateContinueis invoked. Depending
on the current state (e.g. the position), a rather complex path
planning procedure is invoked and returns, if possible, a nav-
igation action sequence (consisting ofGoto, or severalEnter
andGotoDooractions). If all else fails, the robot goesIdle. If
stationary actions are possible, then these are executed. The
plan can either be a single action or an action sequence.

PredicateContinuecomputes an optimal path plan given
the current tasks and situation. In the examples below, we
illustrate the use of temporal information by means of knowl-
edge about changing doors. Keeping track of multiple re-
quests, our delivery robot has to serve a number of people in

general. For finding an optimal plan, one usually has to con-
sider a number of aspects. While there are general aspects
like high efficiency and low risk, domain dependent criteria
like guarantee of service also constrain planning. Regarding
navigation, we impose a ranking among the destination loca-
tions.

The planning strategy behind predicateContinue is
amended to exploit temporal knowledge about changing door
states and blocked doors in the following way: First, for all
possible routes to a destination, the planner prefers a path that
involves doors currently known to be open and reachable. Al-
ternatively, a valid route is found if it does not contain doors
that are known to be closed or blocked as the second choice.
In the remaining case, no door is excluded from the route
plan. Of course, a sensing action executed in front of a door
will provide the knowledge of the state of this door at exe-
cution time just before entering the corresponding room. In
other words, we prefer routes the robot recently found to work
out. Please note, that no option is ruled out, but rather the best
one is scheduled first.

4 Extensions for Modelling a Dynamic World
To consider also the dynamic properties of the world in ac-
tion planning and reasoning, this information must be part of
the robot’s state description. Consequently, we have to distin-
guish between recent and outdated information, because oth-
erwise invalid knowledge may mislead the robot or prevent
it from finding a plan at all since some predicates form part
of the action preconditions. In the following, we show how
temporal knowledge about dynamic properties of the world
can be represented in FLUX, together with a mechanism for
its maintenance.

4.1 Representing Temporal Information
In general, information about a certain property,P , of the
world is represented in the FLUX state description,Z, in
three ways: IfP or ¬P is present inZ, then this is known to
hold; otherwise nothing is known about the truth ofP in Z.
We represent temporal knowledge about a dynamic property
by attaching the time of its observation to the corresponding
fluent in Z, such that temporal as well as time-independent
fluents comprise the world model.

Decay of information is simulated by forgetting about out-
dated fluents after a certain amount of time. By retracting
such fluents that are considered to be out of date regularly,
we make sure that the current state description only contains
recent knowledge. Hence, no additional checks for recency of
fluents are required for reasoning. Nevertheless, any observa-
tion made in the past is crucial for explaining action failures
as they directly influence the planner’s computation, and must
be kept in the situation history.

In general, the sensory processing modules operate in two
modes: autonomous broadcasting of relevant information
(concurrently to the execution of actions) and a direct query
of the current belief – both will be described next.

4.2 Gathering Information while Executing a Plan
Suppose a dynamic world in which doors might be open or
closed and unknown obstacles might block the way. A possi-

103

ble knowledge update axiom (KUA) for such a domain is:

Poss(SenseDoor(d), s)⊃
Ab(SenseDoor(d), s)⊃

KState(Do(SenseDoor(d), s), z′)≡KState(s, z′)∨
¬Ab(SenseDoor(d), s)⊃

∃z
(

KState(s, z) ∧ (∃z′′, t1 ∀t2, t3, t4)
(
Time(t1)∧

z′′ = z −Op(d, t2)◦Cl(d, t3)◦Ab(Rea(d, t4))∧[
Holds(Op(d, t2), s) ∧ z′=z′′+Op(d, t2)∨

Holds(Cl(d, t3), s) ∧ z′=z′′+Cl(d, t3)
]))

whereOp, Cl, ReaabbreviateDoorOpen, DoorClosedand
Reachable, respectively.KState(s, z) denotes that the robot
considersz a possible state in situations. PredicateTime(t)
simply returns the current timet. This KUA defines
SenseDoorto yield a nondeterministic effect with respect to
amendments of the current state, but positively discards pre-
vious knowledge about the door at hand.

Once a sensory processing module gained sufficient con-
fidence about a certain property of the environment by inte-
grating observations over time, the new belief is announced to
all listening modules including the FLUX controller. FLUX
in turn interrupts the current action and incorporates the new
observations in the manner of the KUA above. Since new ob-
servations may render the current plan obsolete, a new plan is
computed to accommodate to the new situation. Hence, the
robot always follows an optimal plan according to its goals
and current observations.

4.3 Active Sensing
Besides the concurrent, autonomous broadcast of detection
results, the sensory processing modules provide information
on demand. The FLUX controller may request the execution
of a sensing action. Subsequently, the corresponding sensing
module can be queried about its current belief.

Revisiting the example above, the actionSenseDoorasks
the door sensing module about the current state of the door
at hand. The result is then incorporated into the FLUX
state description by means of the KUA above for changing
doors. Before the robot can pass through a door, it has to ob-
tain the current state of this door for safety reasons. While
DoorOpen(d, t) is part of the preconditions for the enter-
door action, the KUA exhibits a nondeterministic definition
with unknown result at the time of planning, but is resolved
by SenseDoorat the time of execution. Only if the queried
property turned out to hold, the preconditions of subsequent
actions are fulfilled and the robot can continue; otherwise
FLUX tries to find an alternative plan based on the new situ-
ation.

5 Example Scenarios
The proposed system for intelligent execution monitoring has
been used on a Pioneer 2 mobile robot performing delivery
tasks in a cluttered office environment. The robot is given a
geometrical map of the operating environment. In fact, this

Figure 2: Office environment used in the experiments con-
sisting of five rooms and a hallway.

assumption is imposed by the position tracking system used
for navigation. Given the geometrical map, the map module
extracts topological information that are subsequently incor-
porated into the world description in FLUX.

The aim of the experiments is to evaluate the given sys-
tem with respect to its ability to deal with dynamic changes
of the world and the use of intelligent execution monitoring
for complex delivery tasks. As the experiments are to be per-
formed on the real robot, the possible test scenarios are re-
stricted by the perceptual capabilities of the robot. Unfortu-
nately, no system for on-line tracking of persons was avail-
able to us at the time of the experiments. Therefore, we mod-
elled the dynamic properties of the world using dynamic ob-
stacles blocking the way of the robot, as it may be caused by
people or moved pieces of furniture, using doors that open
and close during the robot’s operation, and using recipients
that change their location unexpectedly.

In the following, we present execution traces from two se-
lected delivery tasks. Solely for the purpose of visualisation,
the examples were recorded in a simulator. However, the sys-
tem’s functionality has been tested in very similar situations
on the real robot as well. With respect to the scenarios pre-
sented below, we noticed no fundamental differences between
the performances in simulation and on the real robot.

5.1 Dealing with Temporal Knowledge
In the following, we exemplify our statement that maintain-
ing knowledge about the dynamic properties of the operat-
ing environment is necessary in practise. The example also
demonstrates how an agent can exploit the notion of recency
of information.

Consider the situation depicted in the left-hand side of Fig-
ure 2. In this example, the robot is initially situated in room
r412 , at Axel’s place, and it knows that doord2 is closed.
Upon receiving a request to bring a cup of coffee from Horst
to Sylvia, the high-level planner is invoked. The lack of (re-

104

cent) knowledge on door states prevents finding a valid path
considering only doors that are known to be open. Follow-
ing the second heuristic, the planner computes a valid plan
excluding doors that are known to be closed:
State: [request(horst,coffee,sylvia),door_open(d2,24),

in_room(r421),at(axel)|Zp]
Agenda: [walk_on,gotodoor(d4),sense_door(d4),enter(corr),

gotodoor(d0),sense_door(d0),enter(r423),r_goto(horst)]

Hereof, the second argument of predicatedoor open de-
notes the time of the observation in seconds. While the robot
travels, the low-level behaviours bypass obstacles on its way
autonomously. The interaction within the system architecture
is described in more detail in the second example.

Active sensing.Having arrived at doord4 , a sensing ac-
tion explicitly determines the state of this door by querying
the door sensing module. If it gained enough confidence on
the door state, this observation is returned to the cognitive
level, which in turn updates its state description,Z. Since
there was no previous knowledge about the state of the door at
hand,Z is enriched by this observation with a time stamp at-
tached. Now knowing that the door ahead is open, the precon-
ditions for actionenter(corr) are satisfied and the robot
continues executing the current plan.

Concurrent sensing. At door d3 , the door sensing mod-
ule autonomously signals thatd3 is open upon which FLUX
computes a new plan since any observation may influence the
current plan. Here, the new plan equals the continuation of
the previous one due to independence of the state of doord3 ,
yielding:
State: [door_open(d3,106),door_open(d4,79),in_room(corr),

request(horst,coffee,sylvia),door_open(d2,24)|Zp]
Agenda: [walk_on,gotodoor(d0),sense_door(d0),enter(r423),

r_goto(horst)]

Planning with multiple requests. While on its way to
r423 , the robot receives a request by Steffen, where he re-
quires a book which should be on Andreas’ desk. Since both
possible providers, Horst and Andreas, can be reached (by de-
fault) according to the agent’s knowledge, the planner sched-
ules Andreas, being the nearest person, as its first destina-
tion while keeping track of remaining requests. Next, sensing
the state of doord0 provides the prerequisites to enter room
r423 . Having arrived at Andreas’ desk and subsequently
received the book for Steffen, the robot derives a new plan
and determines to pick up thecoffee from Horst next. On
the way to Horst, the door sensing module signals that door
d1 appears to be closed. While the new observation does
not interfere with the current plan, the robot could derive that
it cannot enter roomr422 given its current knowledge on
door states. After the robot successfully received thecof-
fee from Horst, two deliveries are due, from which the plan-
ner selects Steffen’s desk according to the strategy of serving
the nearest person that is reachable. While passing by door
d1 , the door sensing module detectsd1 to still be closed. By
means of the knowledge update axiom forsense door (cf.
Section 4.2), previous knowledge aboutd1 is discarded and
the new observation is asserted. On its way to Steffen, the
robot observes thatd3 is now closed.

Exploiting temporal knowledge. As Sylvia is still waiting
for hercoffee , the robot successfully delivered the book to
Steffen. Then, the FLUX planner computes a path to Sylvia

and succeeds considering only such doors that are known to
be open due to recently entering throughd7 , while d2 was
known to be open in the initial situation. Although directly
entering roomr419 would be to the shortest path, the plan-
ner prefers paths through doors that were open recently. In
the current implementation, the lifetime of temporal informa-
tion is an interval of a fixed size which is sufficient for the
robot to travel to the remote end of the hallway and back.

After our diligent robot delivered thecoffee to Sylvia,
Pascal requests the stapler from Axel. The planner selects a
path through the corridor instead of risking the encounter of
a closed door on the shortcut to Axel via Steffen’s office. The
corresponding figure illustrates the current situation. Mean-
while FLUX forgets about the open doord0 and also about
the closed doorsd1 andd3 . This immediately enables the
robot to start the delivery of the journal to Pascal as the state
description shows:
State: [carries(axel,journal,pascal),at(axel),

door_open(d4,699),in_room(r421),door_open(d2,637),
door_open(d7,468)|Zp]

Agenda: [walk_on,gotodoor(d4),sense_door(d4),enter(corr),
gotodoor(d3),sense_door(d3),enter(r422),r_goto(pascal)]

Without a mechanism for forgetting, outdated knowledge
may result in invalid world descriptions that can mislead plan-
ning or even prevent the agent to find a plan. This is the case
because fluents representing dynamic properties contribute
to action preconditions. In the given solution for changing
doors, the reachability of rooms is checked again after some
time.

5.2 Explaining Unexpected Situations
In the following, we want to exemplify the application of
the reasoning capabilities of FLUX together with the layered
scheme of execution monitoring to finding possible explana-
tions for action failure and an appropriate recovery strategy
thereafter.

Starting at Axel’s place and knowing nothing about dy-
namic properties of the world, the robot receives requests
from Axel to bringbook1 to Steffen andbook2 to Sylvia.
The right-hand part of Figure 2 depicts the example. The
FLUX planner chooses to visit Steffen first according to the
built-in strategy, taking the shortcut route through doord6 .
Steffen being delighted about the book, the robot plans to
proceed to Sylvia carrying the remaining book by taking the
shortcut through doord5 .

Computing an explanation. Since an unexpected ob-
stacle blocks the way to doord5 , the GoToPosbehaviour
fails to reach the desired door node. Upon this crucial in-
cident, the reactive controller informs FLUX about the fail-
ure together with lists of nodes that have been reached so
far and remaining nodes of the topological path. By that,
FLUX determines the high-level action that failed and in-
troduces an uninstantiated abnormality fluent. Unification
of the abnormality with the appropriate state update axiom
for this action yields the specific abnormality that has oc-
curred,ab(reachable(d5,r420),51) telling thatd5
could not be reached from within roomr420 at time 51 sec-
onds. Given the explanation for action failure, re-planning
determines a recovery strategy automatically by chosing the
most preferred action from among the applicable ones – in

105

particular, it computes an alternative path plan via the corri-
dor.

Both doorsd7 andd2 turn out to be open so that our busy
robot can reach Sylvia. This situation is depicted in the right-
hand part of Figure 2 and comprises:

State: [at(sylvia),door_open(d2,208),in_room(r419),
door_open(d7,152),door_open(d6,112),
carries(axel,book2,sylvia),ab(reachable(d5,r420),51)|Zp]

Agenda: [deliver(book2,sylvia)]

Please note that abnormality fluents are considered as dy-
namic properties of the world that may change, which is why
a time stamp is attached in order to take exogenous world
changes into account.

Reasoning about action failure.Subsequently, the robot
arrives at Sylvia’s desk. Surprisingly, she rejects the deliv-
ery of the book. Searching for an explanation for the fail-
ure ofdeliver(book2,sylvia) , an ordered preference
list of abnormalities is consulted. In our example, the do-
main axiomatisation contains the abnormalitiesDeliver, Not-
Lost, Traceable, andMobility. The applicability of the indi-
vidual abnormalities is checked by analysing the history of
previous action executions. This search is performed back-
wards in time as we consider short-term consequences of ac-
tions to be more likely than long-term consequences. The
search is stopped as soon as a suitable combination is found.
Axiom (2) yields the explanation that a person could have
accidentially mixed up similar items. Steffen having taken
book2 instead ofbook1 in the given example serves as a
possible explanation here as it denies the executability of ac-
tion deliver(book2,sylvia) . In accordance to the ex-
planation found and the sub-goal at hand, a recovery strategy
is selected. In particular, the robot decides to deliverbook1
– that is now supposed to be in the tray – to Steffen and to
pick upbook2 for Sylvia there. The corresponding state de-
scription is:

State: [request(steffen,book2,sylvia),at(sylvia),
door_open(d2,208),in_room(r419),door_open(d7,152),
ab(reachable(d5,r420),51),door_open(d6,112),
carries(axel,book1,steffen)|Zp]

Agenda: [walk_on,gotodoor(d2),sense_door(d2),enter(corr),
gotodoor(d7),sense_door(d7),enter(r420),r_goto(steffen)]

Avoiding the blocked path and using the doors that were re-
cently open, the robot carriesbook1 to Steffen which he re-
grets to have mixed up. By that, the explanation proves to
be correct. Otherwise,book2 being lost would serve as an
alternative explanation. Eventually,book2 is successfully
delivered to Sylvia.

It is important to note that we demonstrated both aspects,
dealing with temporal information and explaining action fail-
ures, in separate examples for the purpose of understanding
only, while they are employed simultaneously in practise.

5.3 Applicability

Given a suitable set of low-level behaviours and sensory pro-
cessing modules, the cognitive controller needs to be adapted
to the tasks at hand. Please note, for the sake of general ap-
plicability, the domain axiomatisation solely resides within
FLUX, the cognitive controller. Therefore, the solution can
be easily extended or adapted for different scenarios.

6 Conclusions and Future Work
We have presented a layered scheme of execution monitor-
ing for mobile robots operating in known structured environ-
ments, allowing for action failures due to the interaction with
humans and dynamic changes in the environment. It allows
the robot to find explanations for action failure using a logic-
based world model and the history of the task execution. In
the experiments, we were able to illustrate the advantages of
reasoning-based execution monitoring over reactive control
methods. The implementation is based on the fluent calculus
along with its augmentations.

Our approach is similar to the systems by[Shanahan, 1996;
Haigh and Veloso, 1997; Ḧahnelet al., 1998] in the sense that
all use high-level planning on real robots. Shanahan’s Khep-
era robot based on the event calculus makes heavy use of ab-
ductive planning and explanations of failures. However, these
failures are mainly due to the sensor limitations of this fairly
simple robot. In contrast to our work, the high-level planner is
not embedded in a complex modular architecture with clearly
defined low-level behaviours such as obstacle avoidance and
sophisticated localisation techniques.

The control architecture used in our work is more com-
parable to the ones proposed in[Haigh and Veloso, 1997]
and[Hähnelet al., 1998]. These, in turn, provide only hand-
coded recovery procedures for failures of the current action.
Undetected failures of earlier actions are not considered. Fur-
thermore, the use of the fluent calculus allows us to model
side effects of actions.

Preference lists for action failures involve a great deal of
speculation and need to be specified in advance. An alterna-
tive method would be a form of hypothesis testing: being left
with a set of possible explanations for some action failure,
each of them could be double checked by additional sens-
ing/state verification. This topic is closely related to central
questions in the field of active perception, for example, active
vision. The application of a cognitive planner for sensing ac-
tions in the fashion outlined above could help in minimising
action effort and maximising knowledge gain. Thus, it seems
promising to formalise active vision domains within the flu-
ent calculus. Furthermore, the static nature of the preference
list could be overcome by learning from experiences.

References
[Brewka, 1994] G. Brewka. Adding priorities and specificity

to default logic. InProc. of the European Workshop on
Logics in AI (JELIA-94), volume 838 ofLNAI, pages 247–
260. Springer, 1994.

[Ferńandez and Simmons, 1998] J. L. Ferńandez and R. G.
Simmons. Robust execution monitoring for navigation
plans. InProc. of the Conf. on Intelligent Robots and Sys-
tems (IROS-98), 1998.

[Fox et al., 1999] D. Fox, W. Burgard, and S. Thrun. Markov
localization for mobile robots in dynamic environments.
Artificial Intelligence Research, 11:391–427, 1999.

[Gat, 1992] E. Gat. Integrating planning and reacting in
a heterogenous asynchronous architecture for controlling
real-world mobile robots. InProc. of the 10th National

106

Conf. on Artificial Intelligence (AAAI-92), pages 809–815,
1992.

[Giacomo and Levesque, 2000] G. De Giacomo and
H. Levesque. ConGolog, a concurrent programming
language based on the situation calculus.Artificial
Intelligence, 121(1–2):109–169, 2000.

[Giacomoet al., 1998] G. De Giacomo, R. Reiter, and
M. Soutchanski. Execution monitoring of high-level robot
programs. InProc. of the Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR-98), pages
453–465, 1998.

[Hähnelet al., 1998] D. Hähnel, W. Burgard, and G. Lake-
meyer. GOLEX - Bridging the gap between logic
(GOLOG) and a real robot. InProc. of the 22nd German
Conf. on Artificial Intelligence (KI-98), 1998.

[Haigh and Veloso, 1997] K. Z. Haigh and M. M. Veloso.
High-level planning and low-level execution: Towards a
complete robotic agent. InProc. of First Int. Conf. on Au-
tonomous Agents, pages 363–370, 1997.

[Martin and Thielscher, 2001] Y. Martin and M. Thielscher.
Addressing the qualification problem in FLUX. InProc.
of the German Annual Conf. on Artificial Intelligence (KI-
2001), pages 290–304, 2001.

[Martin, 2003] Y. Martin. The concurrent, continuous
FLUX. In Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI-2003). Morgan Kaufmann, 2003.

[Reiter, 1980] R. Reiter. A logic for default reasoning.Arti-
ficial Intelligence, 13(1-2):81–132, 1980.

[Reiter, 1996] R. Reiter. Natural actions, concurrency and
continuous time in the situation calculus. InProc. of the
Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR-96), pages 2–13, 1996.

[Saffiotti, 1993] A. Saffiotti. Some notes on the integration
of planning and reactivity in autonomous mobile robots.
In Proc. of the AAAI Spring Symposium on Foundations of
Planning, pages 122–126, Stanford, CA, US, 1993.

[Sandewall, 1989] E. Sandewall. Combining logic and dif-
ferential equations for describing real-world systems. In
Proc. of the Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR-89), pages 412–420, 1989.

[Shanahan, 1990] M. Shanahan. Representing continuous
change in the event calculus. InProc. of the European
Conf. on Artificial Intelligence (ECAI-90), pages 598–603,
1990.

[Shanahan, 1996] M. Shanahan. Robotics and the common
sense informatics situation. InPlanning with Incomplete
Information for Robot Problems: Papers from the 1996
AAAI Spring Symposium, pages 95–106, 1996.

[Stentz, 1995] A. Stentz. The focussed D* algorithm for
real-time replanning. InProc. of the 14th Int. Joint Conf.
on Artificial Intelligence (IJCAI-95), pages 1652–1659,
1995.

[Thielscher, 2001a] M. Thielscher. The concurrent, continu-
ous fluent calculus.Studia Logica, 67(3):315–331, 2001.

[Thielscher, 2001b] M. Thielscher. The qualification prob-
lem: A solution to the problem of anomalous models.Ar-
tificial Intelligence, 131(1-2):1–37, 2001.

[Thielscher, 2002] M. Thielscher. Programming of reason-
ing and planning agents with FLUX. InProc. of the
Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR-2002), pages 435–446, 2002.

[Thrunet al., 2000] S. Thrun, D. Fox, W. Burgard, and
F. Dellart. Robust Monte Carlo localization for mobile
robots.Artificial Intelligence, 128(1-2):99–141, 2000.

107

.

108

An Extended Panorama: Efficient Qualitative Spatial Knowledge Representation
for Highly Dynamic Environments

Thomas Wagner
Center for

Computing Technologies
University of Bremen

twagner@tzi.de

Christoph Schlieder
University of Bamberg

christoph.schlieder@wiai.
uni-bamberg.de

Ubbo Visser
Center for

Computing Technologies
University of Bremen

visser@tzi.de

Abstract

Qualitative spatial knowledge representation has
gained much attention in recent research and has
resulted in several successful applications focused
on static environments. In this paper, we argue that
dynamic environments with physical robots impose
different requirements on spatial representations.
We introduce a novel approach based on order-
ing information and metric representations: anex-
tended panorama. We show how this representa-
tion can be used in order to describe behavior in
a flexible dynamic manner and how updating and
maintaining a world model can be done efficiently.
We demonstrate the performance of the approach in
the RoboCup domain and discuss further issues.

1 Introduction
One of the major difficulties for planning and coordinat-
ing (realtime) robotic behavior in physical, dynamic environ-
ments is spatial reasoning. We claim that qualitative spatial
reasoning can be used to reduce many of these problems.

Qualitative spatial knowledge representation has gained
strong interest in the last decade and has been used success-
fully in a wide range of applications (i.e., traffic monitor-
ing, geographical-information systems[Cohn et al., 2000],
[Cohn and Hazarika, 2001]). To date, however, approaches to
qualitative knowledge representation, when used in robotics,
often have focused on qualitative representation of more or
less static environments (e.g., rooms, buildings). It has been
shown that these environments can be adequately described
in terms of qualitative spatial knowledge i.e., topological de-
scriptions and metrical information[Kuipers, 2000], [Yeap
and Jefferies, 1999]. For both types of qualitative knowl-
edge, as well as for ordinal knowledge, expressive represen-
tations with powerful inference mechanisms have been de-
veloped. But the requirements for dynamic and realtime en-
vironments however differ significantly from those in static
environments. We propose therefore a qualitative spatial rep-
resentation, anextended panorama, based on ordering infor-
mation optionally extended with metric descriptions. We ar-
gue that anextended panoramais expressive enough to rep-
resent a large set of relevant spatial descriptions which are re-
quired to describe complex, coordinated behavior indynamic

and real-time environments, and motivate that anextended
panoramacan be maintained and updated efficiently.

2 Motivation
Several difficulties in planning and coordinating robotic be-
havior in dynamic, realtime environments are concerned with
spatial representations and reasoning. While qualitative spa-
tial knowledge in static environments provides a stable basis
and can be used in different courses of actions at different
points of time, the use of spatial knowledge in dynamic envi-
ronments is often restricted to temporary, immediate use. As
a result, qualitative spatial knowledge representation in dy-
namic environments have a different focus.

In the following we describe some of the most relevant
problems and the resulting requirements for qualitative spa-
tial knowledge representations/-reasoning.

Flexible spatial representations
Modeling individual behavior of a single agent, especially for
highly dynamic situations, is very often done from an ego-
centric point of view. Since the world model is based on indi-
vidual perception, an egocentric representation of the world
can be maintained and updated more easily than a global,
allo-centric view. This is covered by many texts of didactic
literature on learning tactical and strategic behavior[Lucch-
esi, 2001]. In driving lessons, for instance, spatial descrip-
tions are very often described in terms likeleft, right, front,
behind. The same evidence can be found in articles on sport
training like soccer. Furthermore, these descriptions are not
only ego-centric but often they are also quite abstract and do
not depend on a specific orientation or even a defined posi-
tion. This means that spatial descriptions, especially from an
egocentric point of view, are often invariant with regard to
translation and rotation. A big advantage is that these levels
offer a great flexibility in reusing behavior patterns in very
different situations. This abstraction is also reasonable for
robotic agents on heterogeneous platforms and for robots op-
erating in different domains as it allows the reuse of already
described and established behavior patterns.

Considering multiagent-behavior, an at leastpseudo-allo-
centric representation is required in order to coordinate tac-
tical and strategic group behavior. Furthermore, individual
ego-centric views have to be mapped efficiently into an allo-
centric view.

109

Another important requirement is imposed by the fact that
perceived spatial data is subject to different sources of error
and imprecision depending on factors like vision processes,
lightning conditions, and sensory hardware. Thus qualita-
tive spatial knowledge representation should support repre-
sentations on different levels of granularity, i.e., depending
on the source of information (and therefore the quality,) a
fine grained measurement should be chosen for precise and
certain information and a coarse one for less precise data1.

Interoperability and reusability of behavior models
The development of behavior models is a complex, time-
consuming task and therefore reusability is an important re-
quirement. A typical example for complex behavior patterns
is the RoboCup domain. Modeling behavior based on real
world soccer tactics and strategies is a tedious and timecon-
suming task and requires in-depth expert knowledge. Al-
though most of the basic tactical behaviors are not only simi-
lar within a specific league but also between different leagues
the behavior usually has to be re-modelled for each team.
This strongly relies on quantitative information, starting with
primitive skills moving to complex strategic behavior. The
same applies when changing the application domain and the
sensory hardware. Each change often demands alternations
on each level of the behavior model.

Applying spatial least commitment strategies
Planning cooperative behavior is usually directly coupled
with the application of least commitment strategies (least
commitment means that decisions during the planning pro-
cess should be made as late as possible, usually by incremen-
tally evaluating time-/ordering constraints.). This is done in
at least two aspects:

• least commitment during planning process and

• in the representation of the result of the planning pro-
cess.

In both scenarios, time constraints are resolved as late as
possible. This strategy helps to avoid early conflicts during
the planning process and a more flexible use of the calcu-
lated plan due to partial ordering (in comparison to total-
order plans). Especially in dynamic multi-agent-systems
(MAS) (based on execution and monitoring) least commit-
ment strategies play a crucial role. Particularly in physical
domains least commitment strategies should also be applied
on spatial constraints. In soccer-domain, for example, we
should be able to decide as late as possible whether we in-
tend to play a left or right wing attack. This requires spatial
representations to be invariant, e.g., according to translation
and rotation depending on the intended behavior.

The remainder of the paper is organized as follows: in sec-
tion 3 we describe the concept of a panorama introduced by
Schlieder[Schlieder, 1996]. In the following section 4 we
show different ways how to extend the panorama and how
they can be used at different levels of granularity in different
environments (e.g., on robots with different perceptions). In
section 5 we show how aextended panoramacan be used as

1Furthermore, a mapping between fine-grained and coarse-
grained measurement is required.

a qualitative monitor. Finally in section 6 we show how the
panorama can be applied in the RoboCup domain and give a
short discussion of our first experiences and the future steps.

3 Panorama
A lot of approaches to spatial reasoning focus on the rep-
resentation of large scale space. Large scale space can for
instance be defined as,,space (that) is a significantly larger
scale than the observations available at an instant”[Kuipers
and Levitt, 1988]. Based on these complex representations
different powerful inference methods have been developed
which allow reasoning on cardinal directions[Frank, 1996],
distance representations (e.g.,[Clementiniet al., 1997]) and
topological representations (e.g.,[Cohnet al., 1997]) on qual-
itative spatial representations. Most of these approaches,
however, are based on rather static environments.

Figure 1: Highly dynamic environments: traffic, sports (e.g.,
RoboCup)

As a result, knowledge-based systems with spatial reason-
ing focus on domains like geographical information systems
(GIS). When addressing domains with highly dynamic agent
behavior ranging from sports (e.g., soccer, football) to traffic
qualitative spatial knowledge is required for modeling com-
plex behavior. This implies different levels of granularity in
order to be able to plan complex coordinated behavior on
different levels of abstractions (playing a pass vs. playing
offside). Furthermore, the representation has to be updated
efficiently allowing us to recognize relevant changes in the
environment and adopt our model of behavior.

The panorama approach
The concept of panorama representation has been studied ex-
tensively due to to specialized sensors (e.g. ommnivision)
(see e.g. [Bourque and Dudek, 1998], [Zheng and Tsuji,
1992]). In this paper we present a different approach.

A complete, circular panorama can be described as a3600

view from a specific, observer-dependent point of view. Let
P in figure 2(a) denote a person, than the panorama can then
be defined as the strict ordering of all seen objects:house,
woods, mall, lake. This ordering, however, does not con-
tain all ordering information as described by the scenario
2(a). Themall is not only directly between thewoodsand
the lake, but more specifically between the opposite side of
the houseand thelake (the tails of the arrows). In order to
represent the spatial knowledge described in a panorama sce-
nario, Schlieder[Schlieder, 1996] introduced a formal model
of a panorama.

110

(a) Concrete panorama (b) Abstract panorama

Figure 2: Panorama-views

Definition 3.1 (Panorama) LetΘ= {θ1, . . . , θ2} be a set of
pointsθ ∈ Θ andΦ = {φ1, . . . , φn} the arrangement of n-1
directed lines connectingθi with another point ofΘ, then the
clockwise oriented cyclical order ofΦ is called the panorama
of θi.

As a compact shorthand notation we can de-
scribe the panorama in figure 2(b) as the string
< A, C, D, Bo, Ao, Co,Do,B >. Standard letters (e.g., A)
describe reference points and letters with a followingo (e.g.,
Ao) the opposite side (the tail side). Since the panorama is a
cyclic structure the complete panorama has to be described
by n strings with n letters, withn the number of reference
points on the panorama. In our example, the panorama has to
be described by eight strings. Furthermore, the panorama can
be described as a set of simple constraintsdl(vp, lm1, lm2)2.
Based on this representation, Schlieder[Schlieder, 1993]
also developed an efficient qualitative navigation algorithm.

Applying the panorama representation to competitive and
cooperative scenarios, we can furthermore infer groups of
competitive and/or cooperative agents, given we are able to
distinguish them physically, i.e the basic panorama has to be
differentiated slightly toPbasic =< Opponent, Own, OCdl >,
with Opponent ∈ P andOwn ∈ OP the set of observed points
andOCdl a set ofdirect-left-ordering constraints.

One of the major difficulties in planning complex coordi-
nated behavior in dynamic, physical environments is to iden-
tify stable situations. This means we want to describe be-
havior on different levels of granularity and we want to iden-
tify situations that are similar enough to apply planned be-
havior. As a consequence, spatial representations should ab-
stract from irrelevant details. One way to achieve this is to
use a representation, like a panorama specified above, which
is invariant according to rotation and translation. Applied to
the RoboCup domain such a representation would allow us
to describe behavior that is on the one hand independent of
the (exact) location of an agent on the field and that is on the
other hand invariant to the orientation of the agent. Figure
4.1shows a situation with a concrete attack of the white team.
Describing behavior for this situation relies in the orienta-
tion of the configuration of observed points but does not rely
on the specific position according to the length of the field,
i.e., even if the same configuration is found 10 meters behind

2Short fordirect−left(viewpoint, landmark1, landmark2).

the current position, the same models of behavior can be ap-
plied. A more appropriate representation for this scenario is
described in figure 3(b)3.

But evidently, not every behavior can be described in such
an abstract manner. In order to model complex, coordinated
behavior direction information is usually involved. Addi-
tionally in some situations different metric information is re-
quired. In the following section we show how the panorama
can be extended so that more detailed ordinal and metric in-
formation can be introduced.

4 Extended Panorama
Modeling complex behavior in physical environments re-
quires different degrees of absolute and relativ qualitative
spatial representations. While modeling individual behavior
is usually based on ego-centric representations, for ordinal
as well as for metric information, coordinated behavior has
either to be modelled in allo-centric terms or requires a map-
ping between different ego-centric representations. Further-
more, abstract, relative (invariant) representations should sup-
port a mapping into more concrete representation according
to the level of detail in the planning process. Furthermore,
we show how a basic panorama can be extended with ordinal
and metric information so that it can build the foundation for
modeling intuitive domain-dependent spatial descriptions.

4.1 Towards Ordinal Panorama Representations
Introducing ordinal information can be done in at least two
ways. Based on an ego-centric view, we can simply in-
troduce a heading of the robot into the panorama (assum-
ing that the robot at least knows his relative orientation ac-
cording to his individual sensors). Defining the heading as
front, we can easily introduce theback/behindside as the
opposite direction and furthermore left and right as a900

distance from the heading. Figure 3(b) shows an example
leading us to the followingextended panoramafor player
7: < 4, 5o, L, 6, 8o, 3o,B, 4o, 5, R, 6o, 8, 3, F >. Although
this representation does not provide exact ordinal informa-
tion it allows to infer an ordinal interval for a given land-
markθ1 according to its ego-centric orientationOrdEgo4 =
{left, right, front, behind}4. In our example we know that
player5 and the opposite of player4 are between the back-
and right side. Therefore an ego-centric (pseudo-) ordinal
panorama can be defined asPEPO = {DLM,Refego, OC}
(EPO) withDLM as a set of possibly dynamic landmarks,
an ordinal ego-centric reference systemRefego and a set of
ordering constraintsOC. Since this representation integrates
only ego-centric ordinal information, it is still invariant ac-
cording to translation and rotation and hence is still an ab-
stract representation which can be applied for numerous dif-
ferent situations.

Although an ego-centric view is often an intuitive way
to model individuell behavior, an allo-centric view is nec-
essary to describe coordinated multi-agent behavior. Multi-

3As a consequence, in section 4, we argue that this representation
should be extended with direction information.

4Different ego-centric reference systems may be used at different
granularities according to the requirements of the domain.

111

(a) Allo-centric view (b) Ego-centric, invariant
View

Figure 3: Pseudo-ordinal information

agent behavior can be described directly (e.g. shared plan
approach[Grosz and Kraus, 1996] or has to be communi-
cated in order to achieve commitment[Smith et al., 1998].
As a consequence it is required that spatial knowledge can
be described and communicated in an allo-centric way based
on ego-centric representations. This can be achieved in two
ways.

The simplest solution is to communicate landmarks ac-
cording to the ordinal intervals. Based on this information,
the other agent can try to map his panorama into his ego-
centric panorama based on commonly observed landmarks. A
problem of this approach is that it can lead to very imprecise
representations since a defined landmark does not necessarily
appear in the same order in a panorama from different refer-
ence points (points of view) although the observed landmarks
are the same.

In order to preserve ordering constraints of a given
panorama a fixed reference point is introduced. Fixed refer-
ence points have to be defined domain-dependently. In the
soccer domain we may use the own or the opposite goal
or the left or right intersection point of the mid line with
the outer line5. In ego-centric views the reference-systems
can be easily defined in terms of physical properties of the
agent itself. Since the reference system is not based on per-
ceptional input, it can be defined in any way as long as it
preserves a900 distance between the basic four directions.
For an allo-centric representation the reference systems is
based on perceptional input and therefore should be chosen
carefully with respect to the quality and simplicity in or-
der to perceive at least one of the reference points. Refer-
ring to the example in figure 3(a), we describe the pseudo-
allo-centric, pseudo-ordinal panorama (PAPO) for player 7
as< 4o,N, 3o, 8o, 6, E, 4, S, 8,W, 6o, 5 >.

Although a PAPO-panorama does not provide a real allo-
centric view it provides the foundation for coordinated be-
havior. In our example, player 7 cannot communicate his
panorama to other players even though an allo-centric ref-
erence system with fixed landmarks is used since a panorama
can appear completely different from different point of views.

5In the physical RoboCup leagues: SSL, F500 andSony Four
Legged Leaguethere exists a fixed set of labeled landmarks.

Nevertheless, on the basis of a PAPO-panorama, player 7 can
tell e.g. another player where he wants to pass a ball or where
he expects a player to move. This means that a player cannot
carry out inferences which are directly based on a panorama
from a different point of view.

4.2 An Ordinal Panorama with Metric
Information

Based on ordering information which is extended with land
marks, fixed ones for PAPO and dynamic, ego-centric ones
with EPO, the panorama representation provides a wide range
of qualitative information with different levels of abstraction.
However, the precision of ordinal information is restricted to
intervals which define the lower and upper bounds. In more
concrete planning phases more precise ordinal information
may be required. At least two different approaches can help
to increase ordinal precision.

Since EPO- and PAPO-panoramas describeordinal inter-
vals (e.g. player 4 is between east and south), increasing the
numbers of reference points minimizes theordinal intervals
and therefore increase ordinal precision. This approach is
somehow limited because all fixed reference points have to
be defined domain-dependently, i.e., depending on the spatial
structure of the static environment of the domain it is more
or less difficult to define appropriate fixed reference points.
Also different requirements have to be fulfilled. Firstly, refer-
ence points should be easy to perceive from different location
for all agents that participate in coordinated behavior. Sec-
ondly they should have a similar distance between each other
in order to provide a uniform granularity.

Given the case that fixed reference points cannot be de-
fined, absolute angle distance between two possibly dynamic
points (i.e., agents) can be used to increase ordinal precision
instead (see figure 4.2). Angle distance should be mapped
on an absolute qualitative scale with equal distance. Given a
fixed angle distance of300 we are able to distinguish the lo-
cation of an object, e.g.,north/west(NW)andwest/north(WN)
instead of somewhere betweennorthandwest. If we are able
to distinguish between300 angle distance, we can even clas-
sify, e.g., betweenW, WNW, NW, NNW, N. The choice be-
tween the first and the latter approach depends on the char-
acteristics of domains and on the quality of the perceptional
input. Since both approaches result in the same panorama
representation it is even possible to use both approaches si-
multaneously depending on the specific situation.

4.3 Additional extentions and variants
In order to describe complex coordinated behavior dis-
tance information between the observing agent and an ob-
served landmark (agents or fixed landmarks) is often re-
quired. Although distance information cannot be inferred
from ordering- and ordinal information, the panorama can be
easily extended with distance information. Different qualita-
tive distance representations with powerful inference mecha-
nisms have been developed[Clementiniet al., 1997].

Depending on the specific domain and the specific situa-
tion different variations can be built. Anextended panorama
is not restricted to PAPO- and EPO-panorama. In different
domains various combinations of PAPO- and EPO-panorama

112

(a) Distances in a panorama (b) A hybrid approach

Figure 4: Different combinations of EPO- and PAPO-
panoramas

can be build. While the ego-centric EPO-panorama requires
a heading which is directly associated with the reference sys-
tem, a PAPO-panorama does not depend on a special heading
and is therefore (perhaps) more appropriate, e.g., for robots
based on omnivision. Nevertheless a PAPO-panorama can
easily be extended to a EPAPO-panorama with headings if
a translation- and rotation independent representation is not
desired (see figure 4.2) (e.g., immediate communication is re-
quired).

Another way to adapt anextended panoramato specific sit-
uations can be achieved by using different reference systems
on different levels of granularity. For more abstract planning
phases, e.g., in HTN-planning or in situations with imprecise
information, more coarse information can be handled with re-
stricted reference systems likeOrdEgo4 (s. above). On the
other hand, in detailed planning phases or in situations where
more detailed information is required a more finely grained
reference system can be chosen.

5 Application of the extended panorama
approach

The described panorama approach is designed to be em-
ployed in various applications. One of the requirements is
that the method is fast and accurate enough to serve programs
running in both real-time and dynamic environments. In the
following we discuss a first application of our approach in the
RoboCup domain.

In order to demonstrate the various options of our ap-
proach, a panorama test environment has been developed.
Figure 5 shows what we call a ”monitor” of an actual sit-
uation in a possible soccer game. Figure 6 shows a Sony-
Legged-League soccer field. Overall, the field is marked with
15 landmarks which are placed at important positions on the
field (e.g., the corners, the goal area, etc.). Please note that
the approach is applicable in all available leagues.

5.1 Simple situation
First, we would like to demonstrate the performance of our
approach with a simple example. Figure 6 shows a part of
the soccer field with two objects, the object with the angle is
the soccer agent(me)and the other object(Z) is the ball. The
soccer agent aims at the goal on the right hand side. If we
compute this simple panorama, the method results in

Figure 6: Simple situation with the current agent (me) and a
ball

Z(MEDIUM,VERY CLOSE), z(MEDIUM,VERY FAR).

The first argument is the qualitative length distance. The
second argument in the brackets is the qualitative angle dis-
tance between the soccer agent’s straight view and the posi-
tion of the objectZ. This means that the objectZ has a very
close angle distance and is medium far away with regard to
the length distance. The angle to the opposite angle distance
(z), however, is very far, which is obvious in this case. If we
translate this onto an abstract level, we get the following:

The BALL is MEDIUM FRONT.

Please note that this is the most simple case, only consid-
ering the perception of the current agent without landmarks,
requirements, and avoidance information.

If we also consider landmarks, the following panorama is
computed:

(Z(MEDIUM,VERY CLOSE),
O(FAR,VERY FAR),N(FAR,MEDIUM), m(FAR,MEDIUM),

z(MEDIUM,FAR),o(FAR,FAR), m(FAR,FAR),
M(FAR,FAR))

or in short

(Z O N m z o n M)

This additional information can be important in complex
situations.

5.2 Complex situation
Figure 5 describes a more complex situation. We are dealing
with the current player(me), two own team mates denoted as
X, two opponent players denoted asY, and the ball(Z). Us-
ing landmark as an additional instrument to collect and derive
better information, the following panorama is computed:

(N O Z Y i j B C k D l E A F m x G H n o z y
I J b c K d L e a f M X g h)

The computed panorama can now be used to fulfil addi-
tional queries the current agent might generate while planning
the next steps. Suppose he wants to shoot at the goal and he
needs the ball position between the two posts. A simple query
can answer this requirement. Figure 5 shows this situation.
On the right hand side the requirementOZB is given. This
ordering information denotes that the ballZ should be right
of the left postlandmark Oand left of the right postlandmark
Z. Since this is not a strict requirement, which means that the
player might also shoot when the situation is slightly differ-
ent, we give the additional information ”loose”. We can see
that this requirement is fulfilled in this situation.

113

Figure 5: Complex situation with the current agent (me), a ball, two opponents, and two team mates

Another complex situation can be seen in figure 7. This
situation consists of eight objects, i.e., the current player and
three team mates, tree opponent players, and the ball.

Figure 7: Complex situation with the current agent (me),
three own team mates, three opponent players, and a ball

Collecting the panorama information including the land-
marks results in the following:

(B C X y z n o y b c x Y Z N O Y)

Asking where the ball is and how far it is away the method
provides us with

The BALL is MEDIUM FRONT.

In addition, we are able to get apseudo-allocentricview.
This means that the player is able to infer an allocentric view
from his information. In the current situation, for instance,
we can infer that the

The BALL is EAST of MY SELF in MEDIUM
DISTANCE.

Please note that north is the top border in the figure (see
also the windrose in the left corner of figure 5). Therefore,
the ball is east of the player.

5.3 Additional features
The extended panorama approach has additional features
which are discussed in the following. These features con-
cern thegranularity of the underlying reference system and

the ability tofocuson special parts or subsets of the calculated
panorama. Both features directly influence the efficiency of
the approach.

The granularity can be varied according to the desired out-
come. It makes sense, for instance, to have a rather coarse
distance level and angle distance level if the agent is planning
on a higher and abstract level. An example is a counter-attack
across the right wing. In the beginning, the agent might want
to know whether the right wing is free of opponents or how
many opponents are in that area. The area, however, can be
rather big. Therefore, a coarse distance level and a 4-step
angle distance level might be appropriate (please refer also to
figure 4.2 for the distance explanation). A typical one-two, on
the other hand, requires more precise knowledge in a smaller
area. Therefore, we would choose a fine distance and a 16-
step angle distance level. Our approach allows different levels
of granularity in a flexible manner. The distance level can be
set to fine or coarse where the distance angle level can be 4,
8, or 16 steps for the3600.

We are also able to focus on special parts of the panorama
which has been calculated earlier. As already discussed, the
PAPO-panorama gives us a3600 degree view. In special sit-
uations like a one-two situation we do not really need a3600

degree information for the next few updates (in real-time en-
vironments such as the simulation league in RoboCup the
next few cycles). Instead, we are interested inparts of the
existing panorama. Taking the panorama as calculated above:
there is a lot of ordering information and we only need to fo-
cus on a subset, e.g., subset 1 in figure 8). We can now take
this part and update our world model accordingly. Subset
2 in the same figure might also be worth considering, how-
ever, this could be a completely different intention. Here, the
player might not want to consider a one-two situation. He
might be checking out a free area to pass or to run to.

Again, this approach is flexible enough to allow these kind

114

Figure 8: Calculated panorama, focused on two areas

of foci in order to ”save” some costly CPU time. In addition,
we are able to apply the above-mentioned granularity options.
This means that we can focus on different subsets of the cal-
culated panorama with different granularities. This also sup-
ports efficiency in an impressive manner and we believe that
this is an important if not necessary feature in highly dynamic
and real-time environments.

6 Discussion

The use of qualitative spatial knowledge plays a crucial role
in modeling and maintaining complex team behavior. First,
modeling behavior knowledge in physical domains is a com-
plex and time-consuming task and strongly relies on spatial
knowledge. Theextended panorama-approach supports ab-
stract, rotation- und translation-invariant representations and,
thus simplifies the reuse of behavior models in different do-
mains and for robots with different hardware platforms. Sec-
ond, theextended panoramaprovides a wide range of vari-
ants: An ego-centric, translation- and rotation-invariant view
which can be extended in several ways in order to support or-
dinal information at different levels of granularity and from
different sensory sources. In the same way, it supports dif-
ferent (pseudo-) allo-centric views. Furthermore, we moti-
vated how theextended panoramaprovides the basis for effi-
cient planning on several levels. The extended panorama has
a compact representation, and changes can be updated simply
by exchanging ordering constraints (inextended panoramas
without metric information). Moreover, it supports least com-
mitment strategies on spatial information which can help to
minimize plan failure in dynamic planning environments. In
order to validate this approach, we are currently integrating a
qualitative spatial monitor based on theextended panorama
in our agent architecture which uses a spatial least commit-
ment strategy.

For future work we consider the following objectives. One
of the main tasks is to run intensively experiments in real-time
and dynamic environments. This means that we have to build
different interfaces to various teams in various RoboCup soc-
cer leagues. We will test this approach in the Simulation
League, the Sony-Legged-League, and in one of the other
physical robotic leagues.

Another task is the development of complex spatial predi-
cates at different levels of granularity such as ”a long pass in
space”. These predicates will support abstract and concrete
behavior modeling. They are supposed to cover the ”language
of the domain”. In addition, we have to evaluate which subset
can also be used domain-independently.

References
[Bourque and Dudek, 1998] E. Bourque and G. Dudek. Au-

tomated imagebased mapping, 1998.

[Clementiniet al., 1997] Eliseo Clementini, Paolino Di Fe-
lice, and Daniel Hernandez. Qualitative representation of
positional information.Artificial Intelligence, 95(2):317–
356, 1997.

[Cohn and Hazarika, 2001] A G Cohn and S M Hazarika.
Qualitative spatial representation and reasoning: An
overview.Fundamenta Informaticae, 46(1-2):1–29, 2001.

[Cohnet al., 1997] Anthony G. Cohn, Brandon Bennett,
John Gooday, and Nicholas Mark Gotts. Qualitative spa-
tial representation and reasoning with the region connec-
tion calculus.GeoInformatica, 1(3):275–316, 1997.

[Cohnet al., 2000] A.G. Cohn, J. Fernyhough, and D. Hogg.
Constructing qualitative event models automatically from
video input. Image and Vision Computing, 18:81–103,
2000.

[Frank, 1996] Andrew U. Frank. Qualitative spatial reason-
ing: Cardinal directions as an example.International Jour-
nal of Geographical Information Science, 10(3):269–290,
1996.

[Grosz and Kraus, 1996] Barbara J. Grosz and Sarit Kraus.
Collaborative plans for complex group action.Artificial
Intelligence, 86(2):269–357, 1996.

[Kuipers, 2000] Benjamin Kuipers. The spatial semantic hi-
erarchy.Artificial Intelligence, 119(1-2):191–233, 2000.

[Kuipers and Levitt, 1988] B. J. Kuipers and T. Levitt. Nav-
igation and mapping in large scale space.AI Magazine,
9(2):25–43, 1988.

[Lucchesi, 2001] Massimo Lucchesi.Choaching the 3-4-1-2
and 4-2-3-1. Reedswain Publishing, edizioni nuova prho-
mos edition, 2001.

[Schlieder, 1993] C. Schlieder. Representing visible loca-
tions for qualitative navigation. pages 523–532. 1993.

[Schlieder, 1996] C. Schlieder. Ordering information and
symbolic projection, 1996.

[Smithet al., 1998] I. Smith, P. Cohen, J. Bradshaw,
M. Greaves, and H. Holmback. Designing conversation
policies using joint intention theory, 1998.

[Yeap and Jefferies, 1999] Wai K. Yeap and Margaret E. Jef-
feries. Computing a representation of the local environ-
ment.Artificial Intelligence, 107(2), 1999.

[Zheng and Tsuji, 1992] Jiang Yu Zheng and Saburo Tsuji.
Panoramic representation for route recognition by a mo-
bile robot. nternational Journal of Computer Vision,
9(1):55–76, 1992.

115

.

116

A Humanoid Listens to three simultaneous talkers by Integrating Active Audition
and Face Recognition

Kazuhiro Nakadaiy, Daisuke Matsuura{ Hiroshi G. Okunox, and Hiroaki Kitano z

y Honda Research Institute Japan Co., Ltd.

8-1 Honcho, Wako-shi, Saitama, 351-0114, Japan

{ Graduate School of Science and Engineering, Tokyo Institute of Technology,

x Graduate School of Informatics, Kyoto University,

z Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corp.

nakadai@jp.honda-ri.com, matsuurd@mep.titech.ac.jp, okuno@nue.org, kitano@symbio.jst.go.jp

Content Areas: robotics, human computer interaction, speech processing, perception

Abstract
Humanoid robots may encounter situations where
the number of simultaneous talkers exceeds that of
its microphones. This paper addresses listening to
three simultaneous talkers by a humanoid with two
microphones. This task is difficult for human ac-
cording to psychophysical observations. It is also
difficult for automatic speech recognition systems
(ASR), because the signal-to-noise ratio is quite
low (around -3 dB) and noise is not stable due to
interfering voices. Humanoid audition system con-
sists of sound source separation, face recognition
and ASR. Sound source separation is realized by
an active direction-pass filter (ADPF), which ex-
tracts a sound source from a specified direction in
real-time. Since features of sounds separated by
ADPF vary according to the sound source direc-
tion, ASR uses multiple direction-dependent and
speaker-dependent acoustic models. Among re-
sults of ASR with each acoustic model, the best
one is selected by integrating the directional in-
formation by ADPF and speaker information by
face recognition as well as a confidence measure
of ASR results. The resulting system reduces error
rates of ASR and thus is superior to human listen-
ers in recognition of three simultaneous utterances,
where three talkers were located 1 meter from the
humanoid and apart from each other by 20 to 90
degrees at 10-degree intervals.

1 Introduction
Fifty years ago, Cherry [1953] discovered cocktail party ef-
fect which means that at a crowded party one can attend one
conversation and then switch to another one. The essence of
cocktail party effect resides in selective attention to one sound
stream from an input mixture of sounds. By elaborating upon
the cocktail party effect, one may expect that people or robots
may listen to several utterances simultaneously. This is a

dream for human, although a Japanese legendary says that
Prince Shotoku who lived about 1,300 years ago could lis-
ten to ten people’s petitions and give appropriate decisions at
the same time. Psychophysical study showed that people can
listen to at most two things at the same time [Kashino and
Hirahara, 1996].

Research on computational auditory scene analysis
(CASA) focuses on the computer modeling and implementa-
tion for the understanding of acoustic events [Rosenthal and
Okuno, 1998]. One common way for CASA is sound source
separation by using auditory cues such as common onset,
offset, harmonic structure, amplitude modulation, frequency
modulation, formants, and sound source localization. Other
approaches to sound source separation are based on signal
processing and information theory; microphone arrays with
beam-forming techniques [Saruwatari et al., 1999], and inde-
pendent component analysis or blind source separation [Mu-
rata and Ikeda, 1998]. The problem of latter approaches is the
theoretical limitation that the number of sound sources should
be equal to or less than that of microphones.

Nakadai et al. [2001; 2002] developed an active direction-
pass filter (ADPF) that separates sound source originating
from a specified direction. The ADPF is installed in a hu-
manoid robot called SIG, which can track multiple talkers in
real-time. In this paper, we present the extension of the ADPF
to separate sound sources and interfacing of the ADPF with
automatic speech recognition (ASR) systems. The paper is
organized as follows: In Section 2, related work is discussed.
Section 3 proposes a system for ASR by integration of active
audition and face recognition. Section 4 evaluates the system.
Last two sections give future work and conclusion.

2 Related work

Some works reported that an application of sound source sep-
aration to front-end processing improved ASR under noisy
environments [Park et al., 1999; Yen and Zhao, 1996]. Naka-
gawa et al. [1999] reported on a challenging topic of separa-
tion and recognition of three simultaneous speeches with two

117

Separated Speeches

Speaker A

Speaker B

Speaker C

-90o

0o

90o

80o

-80o

Acoustic
Models(HMM) ASR

(Julian)

Face
Recognition speaker names and

their berief factors

Stream
Direction

Real-Time Human
Tracking System

Tracking

Dialog

? !

Pass Range
Function

HRTF

Input
Spectrum

Sound Source Separation
by active direction-pass filter

IFFT
filtering

Stereo vision

Face
localization

Sound Source
localization

Auditory info.
(binaural,
mixture

 of sounds) visual info.

AV Integrator

Speech Recognition by AV Integration

Humanoid

Figure 1: Speech Recognition System by Audio-Visual Integration

microphones by integrating visual and auditory information.
They all use the binaural-based harmonic stream separation
system (Bi-HBSS) that separates speech streams by using in-
teraural phase difference (IPD) and interaural intensity differ-
ence (IID) obtained from a pair of microphones embedded in
a dummy head in an anechoic room. The sound direction ex-
tracted by image processing is used to improve sound source
separation, because the direction by vision is more accurate.
This work, however, has studied with synthesized voices un-
der simulated and off-line environment, and neither micro-
phones nor sound sources are movable. Such assumptions are
too strong to apply real-world systems such as mobile robots.

The difficulties in sound source separation and speech
recognition under real world environments are discussed in
robotic fields. Most robots that interact with people by ASR
and gestures lack sound source separation function [Takanishi
et al., 1995; Breazeal and Scassellati, 1999; Matsusaka et al.,
1999]. Therefore, they have a microphone attached near the
mouth of each speaker to avoid motor noise in motion and
other sounds. Otherwise, they adopt the “stop-hear-act” prin-
ciple; that is, a robot stops to hear. Asano et al. [2001] devel-
oped a robot which separates and recognizes sound sources
by using a 8 ch circle microphone array in an ordinary office
room. However, their system requires a lot of measurement
for separation and localization in advance, and has difficulty
in sound source separation during motion, while human can
hear during motion. It is not enough for robot audition to be
deployed in the real world yet.

From the viewpoint of improving ASR, various integration
based approaches have been studied. An effective approach
of such integration is the use of multiple results obtained from
same or different ASRs. For example, ROVER that integrates
different ASRs by a weighted voting method [Fiscus, 1997]
and integration of ASRs based on confidence measure [Ut-
suro et al., 2002] have been reported. Our approach improves
ASR by integration of recognition results obtained from 51
ASRs processed in parallel corresponding to 51 direction-
and speaker-dependent acoustic models. On the use of a large
number of acoustic models, the integration of simple voting
or majority rule often fails because a lot of missclassified re-

sults affect the system badly. Then, we integrate the results
based on belief factor of word recognition. Another approach
of improving ASR is audio-visual integration. It is efficient
in ASR as well as in various fields such as sound source sepa-
ration [Sodoyer et al., 2002] and speaker recognition [Senior
et al., 1999]. Most of audio-visual integration in ASR use
visual speech, that is, lip-reading [Luettin and Dupont, 1998;
Silsbee and Bovik, 1996; Verma et al., 1999]. In a robot, how-
ever, lip-reading is not always available because, when a per-
son is away from the robot, resolution of images from robot’s
camera is insufficient for detecting his lips. His face is gen-
erally detected easier than the lips due to its size. Therefore,
face recognition is more convenient for robots than lipread-
ing. In this paper, improvement of ASR by integration of
speech and face recognition is reported.

3 Simultaneous Speech Recognition by
Audio-Visual Integration

The robot audition system for simultaneous talker recognition
consists of a humanoid and three sub-systems – real-time hu-
man tracking, sound source separation by ADPF and speech
recognition by audio-visual integration. The architecture of
the system is shown in Fig. 1.

As a testbed of this work, the upper torso humanoid SIG
is used. SIG has a cover by FRP (fiber reinforced plastic). It
is designed to separate the SIG inner world from the external
one acoustically. A pair of CCD cameras (Sony EVI-G20) is
used for stereo vision. Two pairs of microphones are used for
auditory processing. One pair is located in the left and right
ear position for sound source localization. The other is in-
stalled inside the cover mainly for canceling self-motor noise
in motion. SIG has 4 DC motors (4 DOFs) with functions of
position and velocity control by using potentio-meters.

Sounds and images captured by SIG’s microphones and
cameras are sent to the real-time human tracking subsystem.
The subsystem extracts directions of multiple sound sources
from auditory and visual streams formed by fusing informa-
tion obtained by sound source localization, multiple face lo-
calization and object localization by stereo vision [Nakadai et

118

al., 2001]. It also tracks one of the extracted sound sources
according to focus-of-attention. The subsystem works in real
time with a small latency of 200 ms by distributed processing
with 5 PCs, networked through gigabit ether net.

The sound source directions are sent to the sound source
separation by the ADPF. It separates sounds originating from
the direction by using a pair of microphones [Nakadai et al.,
2002]. The filtering process is implemented by hypothesis
matching for each sub-band of interaural intensity difference
and interaural phase difference which are calculated from in-
put spectra of left and right channels. The performance of the
ADPF shows the difference of resolution in sound localiza-
tion and separation. The resolution of localization and sep-
aration of the center of the humanoid is much higher than
that of peripherals, indicating similar property of visual fovea
(high resolution in the center of human eye). Therefore, we
termed this phenomenon auditory fovea. To exploit this audi-
tory fovea, the ADPF controls the pass range of the filter ac-
cording to the sound direction and the direction of a head by
motor movement. The improvement of about 9 dB in noise re-
duction is reported in separation of three simultaneous speech
with the same loudness.

The speech recognition subsystem recognizes the extracted
speech by multiple acoustic models and speaker name by face
recognition.

3.1 Speech Recognition by AV Integration
The speech recognition subsystem consists of three pro-
cesses. The first process is ASR by using multiple acous-
tic models. The acoustic models are direction- and speaker-
dependent (DS-dependent). ASRs of which the number is the
same as that of the acoustic models are processed in parallel.
The second one is face detection and recognition, 3-best name
list of a detected face and their belief factors are estimated.
The last one is integration of speech and face recognition.

Speech Recognition by Multiple Acoustic Models
In the speech recognition subsystem, Hidden Markov Model
(HMM) based acoustic models are used. The acoustic models
are DS-dependent. The Japanese ASR software “Julian” is
used for ASR. Multiple ASRs are processed in parallel, and
all results are integrated in the integrator with results of the
face recognition module.

To make DS-dependent acoustic models, 150 words in-
cluding numbers, colors and fruits by two men (Mr. A and
Mr. C) and a woman (Ms. B) are used. Every word is played
by loudspeakers of B&W Nautilus 805, and recorded by a
pair of microphones installed in SIG. The loudspeakers and
SIG are installed in a 3 m�3 m room, the distance between
each loudspeaker and SIG is 1 m shown in Fig. 3.

Three kinds of utterances are recorded as follows:

1. single: A loudspeaker is used for recording. The direc-
tion of the loudspeaker varies from -90Æ to 90Æ by 10Æ

steps.

2. double: Two loudspeakers are used for recording simul-
taneously. The direction �2 of one loudspeaker is among
20Æ, 30Æ, � � �, 80Æ and 90Æ. The direction of the other
loudspeaker is 0Æ or ��2.

0

20

40

60

80

100

-90 -60 -30 0 30 60 90
Direction of acoustic model (deg)

W
or

d
re

co
gn

iti
on

 ra
te

 (%
) Mr. A

Ms. B
Mr. C
All

a) Mr. A, -60Æ

0

20

40

60

80

100

-90 -60 -30 0 30 60 90
Direction of acoustic model (deg)

W
or

d
re

co
gn

iti
on

 ra
te

 (%
)

Mr. A
Ms. B
Mr. C
All

b) Mr. A, -30Æ

0

20

40

60

80

100

-90 -60 -30 0 30 60 90
Direction of acoustic model (deg)

W
or

d
re

co
gn

iti
on

 ra
te

 (%
) Mr. A

Ms. B
Mr. C
All

c) Mr. A, 0Æ

0

20

40

60

80

100

-90 -60 -30 0 30 60 90
Direction of acoustic model (deg)

W
or

d
re

co
gn

iti
on

 ra
te

 (%
) Mr. A

Ms. B
Mr. C
All

d) Mr. A, 30Æ

0

20

40

60

80

100

-90 -60 -30 0 30 60 90
Direction of acoustic model (deg)

W
or

d
re

co
gn

iti
on

 ra
te

 (%
) Mr. A

Ms. B
Mr. C
All

e) Mr. A, 60Æ

Figure 2: word recognition rates based on DS-dependent
acoustic models (closed test)

119

loudspeaker

SIG

1m

loudspeaker

loudspeaker

0 deg.

−θ deg.

θ deg.

θ : 20 - 90 deg.
(interval: 10 deg.)

Figure 3: Recording Situation

3. triple: Three loudspeakers are used for recording si-
multaneously. The direction of the first loudspeaker is
fixed to 0Æ. The direction �3 of the second loudspeaker
is among 20Æ, 30Æ, � � �, 80Æ and 90Æ. The direction of
the last loudspeaker is ��3.

To create training datasets for acoustic models, each speech
is separated from recorded data (single, double and triple)
by the ADPF under the condition that the directions of loud-
speakers are given. The separated speeches are clustered by
speaker and direction. As a result, 51 data sets (17 direc-
tions � 3 speakers) are obtained as training datasets. By us-
ing these training datasets, 51 acoustic models are trained. In
this paper, each acoustic model is a triphone model trained 10
times by using Hidden Markov Model Toolkit.

Julian generates a score which represents logarithmic like-
lihood of the result. Each score is transformed to a belief
factor Ps by using probability density function. Since the
subsystem creates 51 results per input, 51 recognition results
with belief factors are sent to the AV integrator.

Face Recognition
Since the visual processing detects several faces simultane-
ously, extracts, identifies and tracks each face, the size, di-
rection, and brightness of each face changes frequently. The
key idea is the combination of skin-color extraction, corre-
lation based matching, and multiple scale images genera-
tion [Hidai et al., 2000]. The face recognition module (see
Fig. 1) projects each extracted face into the discrimination
space, and calculates its distance to each registered face.
Since this distance depends on the degree (the number of
registered faces) of discrimination space, it is converted to
a parameter-independent belief factor Pv by using probabil-
ity density function. The discrimination matrix is created in
advance or on demand using a set of variation of the face with
a name. This analysis is done by Online Linear Discriminant
Analysis [Hiraoka et al., 2000].

Finally, the face recognition module sends 3-best face
name with its belief factor Pv to the AV integrator.

Integration of speech and face recognition
The AV integrator receives 51 speech recognition results with
belief factors and face name with a belief factor, and integrate
them to output the most reliable result.

We tried integration of speech and face recognition by
utilizing majority rule and voting such as ROVER [Fiscus,
1997]. Such integration method was effective only when the
number of sound directions is at most three, that is, the num-
ber of DS-dependent acoustic models is around ten. The num-
ber of missclassified results increase, as the number of sound
direction is large. Because a set of such wrong and same
results affect the integration badly, the effectiveness of the
integration based on majority rule or voting is weak in the
situation where 17 sound directions are assumed.

To define a suitable algorithm for the integration of a large
number of acoustic models, we measured word recognition
rate against DS-dependent acoustic models when speaker and
direction of input speech are fixed. Figures 2a) - e) are dis-
tributions of the results against Mr. A’s speech from -60Æ,
-30Æ, 0Æ, 30Æ and 60Æ, respectively. In these Figs, the x axis
is direction of acoustic model, and the y axis is word recog-
nition rates. The same speech data as a training dataset is
used for recognition. The lines labeled “Mr. A”, “Ms. B”,
“Mr. C” are the results by using acoustic models of “Mr.
A”, “Ms. B”, “Mr. C”. The line labeled “All” means the re-
sults by direction-dependent and speaker-independent acous-
tic model. These results show that the influence by direction
is less than by speaker. When both of the person and the
direction are correct, the word recognition rate is more than
90%, and better than that using speaker independent acous-
tic models. By taking the results in Fig. 2 into account, the
AV integrator uses a cost function by Eq. 1 to integrate the
results.

V (pe) =

 X
d

r(pe; d) � v(pe; d) � Ps(pe; d)

+
X
p

r(p; de) � v(p; de) � Ps(p; de)

� r(pe; de) � Ps(pe; de)

�
� Pv(pe): (1)

v(p; d) =

�
1 if Res(p; d) = Res(pe; de);
0 if Res(p; d) 6= Res(pe; de):

where r(p; d) and Res(p; d) are recognition rate shown in
Fig. 2 and recognition result against input speech when an
acoustic model of person p and sound direction d is used.
The de is the sound source direction estimated by the real-
time tracking system, and the pe is a person to be evaluated.
Pv(pe) is a probability in the face recognition module, and it
is set to 0.5 when face recognition is unavailable. Finally, the
AV integrator selects person pe and result Res(pe; de) with
the largest V (pe).

If the largest V (pe) is too small (less than 1) or close to the
second largest one, SIG turns to the sound source and asks
the person corresponding to the sound source again to make
sure what he/she said.

Thus, the system can recognize simultaneous speech and
who spoke each speech by using multiple acoustic models
and face recognition. The basic performance of the whole
system is shown in Fig.4.

120

a) SIG asks a question. b) Everyone replies
simultaneously.

c) SIG answers
what Mr. A said.

d) SIG answers
what Ms. B said.

e) SIG answers
what Mr. C said.

Figure 4: Snapshots of Three Simultaneous Speech Recogni-
tion

4 Evaluation
The system is evaluated through four kinds of “three” simul-
taneous speech recognition as follows:

Exp. 1: a scenario of a simple human-humanoid interaction,
Exp. 2: word recognition without using face recognition,
Exp. 3: word recognition by audio-visual integration, and
Exp. 4: three simultaneous speech recognition by human.

In every experiment, room conditions and locations of
loudspeaker and SIG are the same as those described in
Sec. 3.1. The three loud speakers are attached photographs
of speakers for face recognition instead of real humans. For
recording of three simultaneous speech, a three-word com-
bination is selected from a list of three-word combinations
in training datasets. Then, three loudspeakers play the three
words according to the combination. The mixture of sounds
is captured by SIG’s microphones and sent to the system.

The first experiment shows the basic performance of the
system. The scenario is as follows:

1. SIG asks three persons (Mr. A, Ms. B and Mr. C) about
the favorite number.

2. Each speaker selects any of 1 to 10, and they speak si-
multaneously.

3. SIG separates and recognizes the mixture of speeches.
SIG also identifies who spoke the number.

4. When SIG fails speech recognition or speaker identifica-
tion, it turns to the speaker and asks the question again.

5. Finally, SIG replies the numbers with person’s names.

In the initial situation of the scenario, the loudspeaker A
attached Mr. A’s photograph is located at the front direction
of SIG. The loudspeaker B attached Ms. B’s photograph and
the loudspeaker C attached Mr. C’s are located at the 60Æ and
-60Æ, respectively. A typical result is observed as follows:

1. SIG asks a question about the favorite number in
Fig. 4a).

2. The speakers play three words simultaneously in
Fig. 4b).

3. SIG localizes the speakers by using the real-time track-
ing subsystem. The speech from the obtained direction
is extracted by the sound source separation subsystem.
Each separated sound is recognized by using multiple
acoustic models. The integrator integrates the multiple
results of speech recognition with speaker names ob-
tained by face recognition, and decides the best result
of each separated sound.

4. SIG answers the numbers with the names of speakers in
Fig. 4c)-e).

In Exp. 2 - 4, the direction of first speaker is fixed to 0 Æ. The
second speaker direction � varies from 20Æ to 90Æ by 10Æ.
The direction of the last loudspeaker is ��. Figures 5 and
6 show word recognition rate without and with face recogni-
tion, respectively. In Exp. 2, Pv in Eq.1 is fixed to 0:5 because
face recognition is unavailable. The X and Y axes of figures
mean direction difference between loudspeakers � and word
recognition rate in percentage. The lines labeled “left”, “cen-
ter” and “right” are 1-best recognition rates of left, center and
right loudspeakers, respectively. The dotted lines are 3-best
recognition rates.

Figure 7 shows word recognition rate by a testee. During
the measurement, the direction of the testee’s head is fixed to
0Æ. The dotted lines labeled “left”, “center” and “right” are
recognition rates of left, center and right loudspeakers when
the testee listens to simultaneous speech once. The lines are
recognition rates when the testee listens to the same simulta-
neous speech three times.

Figures 5 and 6 prove the efficiency of the audio-visual
integration. The changes of word recognition rate against di-
rection difference between loudspeakers are smaller in Fig. 6.
This indicates that the audio-visual integration compensates
such changes. In Fig. 6, the recognition rates of 1-best and
3-best are close. This means that the Aaudio-visual integra-
tion encourages a belief factor of a correct answer properly.
In comparison with Fig. 7, the audio-visual integration pro-
vides better performance than human speech recognition in
one time listening (dotted lines). It may be unfair to compare
with one time listening, because multiple ASRs are processed
in parallel in Fig. 6. It can be said that the results of three time
listening in Fig. 7 correspond to the 1-best results in Fig. 6 be-
cause he can focus on a loudspeaker per a trial. The recogni-
tion rate difference between the audio-visual integration and
three time listening is about 10%.

121

0

20

40

60

80

100

20 30 40 50 60 70 80 90
direction between speakers (deg)

w
or

d
re

co
gn

iti
on

 ra
te

 (%
)

center (1-best)
left (1-best)

right (1-best)
center (3-best)
left (3-best)

right (3-best)

Figure 5: word recognition rate (baseline)

0

20

40

60

80

100

20 30 40 50 60 70 80 90
direction between speakers (deg)

w
or

d
re

co
gn

iti
on

 ra
te

 (%
)

center (1-best)
left (1-best)

right (1-best)
center (3-best)
left (3-best)

right (3-best)

Figure 6: improvement of word recognition by audio-visual
integration

0

20

40

60

80

100

20 30 40 50 60 70 80 90
Direction between speakers (deg)

W
or

d
re

co
gn

iti
on

 ra
te

 (%
)

Left spk. (one time)
Center spk. (one time)
Right spk. (one time)

Left spk. (3 times)
Center spk. (3 times)
Right spk. (3 times)

Figure 7: word recognition by human

In human, the word recognition rate improves more than
20% by listening three times in Fig. 7. Although he does not
move his head, this means that he can change the directivity
of his audition. This is a kind of active audition in human.

Figures 5 and 6 shows that the performance of the front
loudspeaker is worse than side ones. The same tendency is
found in Fig. 7. The reason of this phenomenon is that both
the left and the right loudspeakers affect sound from the front
one, while sound from left and right loudspeakers is distorted
by only the front one, because the recognition rate improves
as the direction difference between loudspeakers is larger. In
simulated environments, Nakagawa et al. [1999] reported the
similar tendency. The 3-best result in the audio-visual inte-
gration resolves the bad influence from side loudspeakers.

From the viewpoint of sound source separation by the
ADPF, sound from the front direction is extracted better than
that of side direction. Therefore, speech recognition rate of
the front direction is expected to be the best under the condi-
tion that influence from other sound sources is constant. This
evaluation by using 5 loud speakers is a future work.

In Figs. 5 and 6, ASR of the left and the right loud speak-
ers is getting worse as leaving the front direction. We con-
sider that this is caused by directivity of microphones in SIG.
The microphones are omni-directional, but the microphone
has directivity of the front direction by the cover of SIG. In
this case, active motion to turn to the sound source improves
ASR. In addition, when a face is detected by such turning, the
audio-visual integration improves ASR.

5 Future Work
The system uses a general HMM based ASR engine. How-
ever, we should consider characteristics of front-end process-
ing in ASR. The ADPF separates sound sources based on sub-
band selection in frequency domain. Therefore, some sub-
bands can be dropped by separation errors. In this case, ASR
engine should be modified to cope with such missing sub-
bands by introducing missing feature theory [Tibrewala and
Hermansky, 1997].

In the real world, a sudden and loud noise affects across
wide frequency ranges. In this case, signals at the time when
the noise happens cannot be used for ASR. To cope with
such missing data, missing data theory [Renevey et al., 2001;
Barker et al., 2001] should be introduced.

In this paper, we assume known speakers and isolated word
recognition. When an unknown speaker exists, speaker inde-
pendent acoustic models are necessary for unknown speakers.
Such a mechanism should be introduced to the system. The
word spotting techniques are effective for speech recognition
of longer sentences.

6 Conclusion
Three simultaneous speech recognition by two microphones
is described. The results show that various kinds of integra-
tion – use of multiple DS-dependent acoustic models, audio-
visual integration by combination of face recognition and DS-
dependent acoustic models, and active audition combining
audition with motion – is efficient and essential to improve
ASR. In the integration of a large number of results, simple

122

voting or majority rule are of less use. The system proves that
our integration based on belief factor is effective. The system
described in this paper mainly aims to realize user interface
for human-humanoid interaction. However, the techniques
introduced to the system can be applied to any system with
microphones and camera. Therefore, we can expect various
applications such as TV conference system, automatic short-
hand and super directional microphones by their deployment
to the real-world.

Acknowledgments
We thank Prof. Hiroshi Mizoguchi, Tokyo Univ. of Science
for his valuable discussions. We also thank Chihaya Okuno,
Yuusuke Tanemura, Kouji Kyoda and Michiru Arai for their
help.

References
[Asano et al., 2001] F. Asano, M. Goto, K. Itou, and

H. Asoh. Real-time sound source localization and separa-
tion system and its application to automatic speech recog-
nition. In Proceedings of International Conference on
Speech Processing (Eurospeech 2001), pages 1013–1016.
ESCA, 2001.

[Barker et al., 2001] J. Barker, M.Cooke, and P.Green. Ro-
bust asr based on clean speech models: An evaluation
of missing data techniques for connected digit recogni-
tion in noise. In Proc. of 7th European Conference on
Speech Communication Technology (EUROSPEECH-01),
volume 1, pages 213–216. ESCA, 2001.

[Breazeal and Scassellati, 1999] C. Breazeal and B. Scassel-
lati. A context-dependent attention system for a social
robot. In Proc. of the Sixteenth International Joint Con-
ference on Atificial Intelligence (IJCAI-99), pages 1146–
1151, 1999.

[Cherry, 1953] E. C. Cherry. Some experiments on the
recognition of speech, with one and with two ears. Journal
of Acoustic Society of America, 25:975–979, 1953.

[Fiscus, 1997] J.G. Fiscus. A post-processing systems to
yield reduced word error rates: Recognizer output vot-
ing error reduction (rover). In Proceedings of the Work-
shop on Automatic Speech Recognition and Understand-
ing (ASRU-97), pages 347–354. IEEE, 1997.

[Hidai et al., 2000] K. Hidai, H. Mizoguchi, K. Hiraoka,
M. Tanaka, T. Shigehara, and T. Mishima. Robust face
detection against brightness fluctuation and size variation.
In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS-2000), pages 1397–1384. IEEE, 2000.

[Hiraoka et al., 2000] K. Hiraoka, M. Hamahira, K. Hidai,
H. Mizoguchi, T. Mishima, and S. Yoshizawa. Fast algo-
rithm for online linear discriminant analysis. In Proceed-
ings of ITC-2000, pages 274–277. IEEK/IEICE, 2000.

[Kashino and Hirahara, 1996] M. Kashino and T. Hirahara.
One, two, many – judging the number of concurrent talk-
ers. Journal of Acoustic Society of America, 99(4):Pt.2,
2596, 1996.

[Luettin and Dupont, 1998] J. Luettin and S. Dupont. Con-
tinuous audio-visual speech recognition. In Proceeding of
5th European Conference on Computer Vision (ECCV-98),
volume II of Lecture Notes in Computer Science, pages
657–673. Springer Verlag, 1998. IDIAP-RR 98-02.

[Matsusaka et al., 1999] Y. Matsusaka, T. Tojo, S. Kuota,
K. Furukawa, D. Tamiya, K. Hayata, Y. Nakano, and
T. Kobayashi. Multi-person conversation via multi-modal
interface — a robot who communicates with multi-user. In
Proc. of 6th European Conference on Speech Communica-
tion Technology (EUROSPEECH-99), pages 1723–1726.
ESCA, 1999.

[Murata and Ikeda, 1998] N. Murata and S. Ikeda. An on-
line algorithm for blind source separation on speech sig-
nals. In Proceedings of 1998 International Symposium
on Nonlinear Theory and its Applications, pages 923–927,
1998.

[Nakadai et al., 2001] K. Nakadai, K. Hidai, H. Mizoguchi,
H. G. Okuno, and H. Kitano. Real-time auditory and visual
multiple-object tracking for robots. In Proc. of the 17th
Int. Joint Conf. on Atificial Intelligence (IJCAI-01), pages
1424–1432. MIT Press, 2001.

[Nakadai et al., 2002] K. Nakadai, H. G. Okuno, and H. Ki-
tano. Exploiting auditory fovea in humanoid-human inter-
action. In Proceedings of 18th National Conference on Ar-
tificial Intelligence (AAAI-2002), pages 431–438. AAAI,
2002.

[Nakagawa et al., 1999] Y. Nakagawa, H. G. Okuno, and
H. Kitano. Using vision to improve sound source separa-
tion. In Proc. of the 16th National Conference on Artificial
Intelligence (AAAI-99), pages 768–775. AAAI, 1999.

[Park et al., 1999] H. M. Park, H. Y. Jung, T. W. Lee, and
S. Y. Lee. Subband-based blind signal separation for noisy
speech recognition. Electronics Letter, 35(23):2011–2012,
1999.

[Renevey et al., 2001] Philippe Renevey, Rolf Vetter, and
Jens Kraus. Robust speech recognition using missing fea-
ture theory and vector quantization. In Proc. of 7th Eu-
ropean Conference on Speech Communication Technology
(EUROSPEECH-01), volume 2, pages 1107–1110. ESCA,
2001.

[Rosenthal and Okuno, 1998] D. Rosenthal and H. G.
Okuno, editors. Computational Auditory Scene Analysis.
Lawrence Erlbaum Associates, Mahwah, New Jersey,
1998.

[Saruwatari et al., 1999] H. Saruwatari, S. Kajita, K. Takeda,
and F. Itakura. Speech enhancement using nonlinear mi-
crophone array based on complementary beamforming.
IEICE Trans. fundamentals, E82-A(8), 1999.

[Senior et al., 1999] A. Senior, C.V. Neti, and B. Maison. On
the use of visual information for improving audio-based
speaker recognition. In Proceeding of Audio-Visual Speech
Processing (AVSP-99). ESCA, 1999.

[Silsbee and Bovik, 1996] P.L. Silsbee and A.C. Bovik.
Computer lipreading for improved accuracy in automatic

123

speech recognition. IEEE Transactions on Speech and Au-
dio Processing, 4(5):337–351, 1996.

[Sodoyer et al., 2002] D. Sodoyer, L. Girin, C. Jutten, and
J. L. Schwartz. Audio-visual speech sources separation –
a new approach exploiting the audio-visual coherence of
speech stimuli –. In Proceeding of the Internationa l Con-
ference on Spoken Language Processing (ICSLP-2002),
pages 1953–1956. ISCA, 2002.

[Takanishi et al., 1995] A. Takanishi, S. Masukawa, Y. Mori,
and T. Ogawa. Development of an anthropomorphic audi-
tory robot that localizes a sound direction (in japanese).
Bulletin of the Centre for Informatics, 20:24–32, 1995.

[Tibrewala and Hermansky, 1997] S. Tibrewala and H. Her-
mansky. Sub-band based recognition of noisy speech. In
Proceeding of IEEE International Conference on Acous-
tic, Speech, and Signal Processing (ICASSP-1997), pages
1255–1258. IEEE, 1997.

[Utsuro et al., 2002] T. Utsuro, T. Harada, H. Nishizaki, and
S. Nakagawa. A confidence measure based on agreement
among multple lvcsr models -correlation between pair of
acoustic models and confederence-. In Proceeding of the
International Conference on Spoken Language Processing
(ICSLP-2002), volume 1, pages 701–704. ISCA, 2002.

[Verma et al., 1999] A. Verma, T. Faruquie, C. Neti, and
S. Basu. Late integration in audio-visual continuous
speech recognition. In Proceeding of the Workshop on Au-
tomatic Speech Recognition and Understanding (ASUR-
1999). IEEE, 1999.

[Yen and Zhao, 1996] K. C. Yen and Y. Zhao. Robust au-
tomatic speech recognition using a multi-channel signal
separation front-end. In Proceeding of the International
Conference on Spoken Language Processing (ICSLP-96),
volume 3, pages 1337–1340. ISCA, 1996.

124

.

125

