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Recent developments in multiagent systems (MAS) have been promising by achieving
autonomous, collaborative behavior between agents in various environments. However,
most of the agents, both software agents and physical agents, still have problems if the
environment is dynamic and the agents have to act in real time. Examples are obstacle
avoidance with moving obstacles or world models which are composed from egocentric
views of numerous agents. Another aspect is the need for quick responses. In an en-
vironment where a number of agents build a team and both single agent decisions and
team collaborative decisions have to be made methods have to be fast and precise. This
workshop addresses various problems that occur with respect to these issues.

The main focus of this workshop deals with methods from various areas such as world
modeling, planning, learning, and communicating with agents in real-time and dynamic
environments. Within this general theme we aim to bring together researchers to discuss
the following topics:

e World modeling (quantitative, qualitative)

e Coaching (one agent gives advice to a group of agents)

e Planning with resources (especially time)

e Learning (both offline and online)

e Cooperation between agents (robot and/or humans)

e Communication between agents (implicit, non-verbal, or verbal one)

e Real-time systems software issues (often ignored but important if serious about
real-time issues in robotics)

e Scalability and robotics interfacing issues (demands a great deal of support from
the initial design of the system)

In the last decade, a lot of effort has been invested to develop methods that can be
used with multi-agent systems. The language development in the area of communication
between agents (ACL) might act as the first example. Speech acts serve as the basic
principle and various protocols have been invented (e.g. auctions, contract-nets, etc.).
Can we transfer these results to environments where quick decisions have to be made?
Consider planning as another example: there are promising methods for path planning,
but do they still hold if the observed obstacles are moving? Learning is another example:
we need on-line learning in a real-time scenario to give agents the option to learn more
about their environment. Usually, learning takes a fair amount of time but sometimes
this time is not available. Can we find methods which will consider these restrictions?

This workshop addresses researchers from various areas in Al who want to discuss the
mentioned issues from their point of view. How can we develop new methods or adapt
existing methods to meet these demands?



13 contributions have been selected for oral presentation at the workshop. These
proceedings contain all papers, which can be roughly categorized with the help of the
following sketch of a general multiagent architecture. Please note that this is only a
rough categorization and that there are a number of papers that belong to more than one
component.
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Figure 1: A general multiagent systems architecture. The papers are roughly categorized

Two papers can be categorized into the world modeling component. Fichtner &
Thielscher discuss the importance of establishing and maintaining the correspondence of
high-level symbols or concepts and the actual sensor signals. Their approach is based on
the Fluent calculus and allows to anchor symbols to percepts using definite and indefinite
references. Among other advantages, it also supports reasoning over object properties
during planning. Anchoring is also the topic that is the focus of the contribution by
Williams et al.. They provide a framework for evaluating groundedness of representations
in systems. This framework provides means to measure how well a system is grounded,
i.e. how well the high-level symbol correspond to the entities they represent.

Two papers are closely related to sensor data and thus the sensor component. Utz
et al. state that a robot vision architecture needs to encapsulate the constraints of the
application domain in order to keep a vision application flexible. Their approach intro-
duces a video image processing (VIP) framework for multi threaded control flow modeling
in robot vision. The authors discuss the VIP design and implementation as well as an
experimental evaluation of its performance in parallel image processing tasks. Kornienko
et al. present research results in the field of perception for a real micro robotic swarm.
The proposed hardware and software solution uses IR-based reflective measurements for
individual perception and a Dampster-Shafer evidential reasoning method for hypothesis
refinement in collective perception. The authors focus their paper to a reliable identifi-
cation of encountered geometries and to a reduction of local communication. This paper
can also be categorized in the coordination/collaboration component.



Three papers can be categorized into the monitoring component. Zaki et al. demon-
strate an approach that diagnoses faults in an analogue electrical circuit. This kind of
circuit is an example for a dynamic continuous non-linear and time invariant system.
The paper shows how the type of system has an impact on the choice of the modeling
techniques. Gehrke et al. propose a vocabulary for a qualitative representation for a
traffic scenario. The authors present and evaluate a prototype that does the qualita-
tive abstraction for knowledge-based behavior control. Moratz et al. propose a relative
orientation algebra which features an adjustable granularity. The key idea behind this
approach is to find an appropriate granularity for an applied calculus in order to reason
about space for orientation. It turned out that their approach is feasible for robots in
real-time conditions as a reactive component when deploying constraint-based reasoning
methods. The granularity of the calculus allows to select only relevant feature changes in
dynamic environments. The paper also fits into the reactive component.

Four contributions touch the areas of behavior modeling. Behavior modeling (for a
single agent) is divided into reactive components and planning. Hoffmann et al.
discuss how negative information such as the absence of expected sensor signals and
proprioception (a quality measure for an actual odometry comparing target and current
robot joints) can be used to localize robots. They incorporate negative information into
a known Monte-Carlo-Localization method and do fine-tuning using the proprioceptive
information. The contribution of Hecht et al. focuses on a learning task that aims to
train robots in a team using static game situations in diagrams that has been drawn by
a human coach. The network learns to generalize and give advice for the best option
for a player. The authors claim that the method improved their control method for five
small size robots within the RoboCup domain significantly and that the method can be
adopted to various other domains. The outcome of this approach has been successfully
used in robot soccer games at the RoboCup German Open 2005. This paper also fits
into the coordination/collaboration component. Obst et al. propose an approach
that coordinates the behavior of a multiagent team using an HTN planning procedure.
They formalized domain knowledge (the RoboCup domain in the experiments) and used
this within the planning methods in order to subdivide the given tasks. The hierarchical
structure helps to speed up the planning task significantly. This paper also fits into the
coordination/collaboration component. The fourth paper is from Moratz et al. that
has already been discussed above.

Among the two mentioned papers that also deal with team behavior or coordina-
tion/collaboration, Reimann & Vachtesevanos propose a game-theoretic approach to
solve a differential pursuit-evasion game which involves multiple pursuers and a single
evader. Their idea consists of a computational algorithm which is developed to deter-
mine a suboptimal control strategy that a swarm of pursuers can use to intercept a single
evader. The authors use a solution that is based on simulated annealing to reduce the
complexity of the task and show in an experiment that their approach is feasible. The
contribution of Maldonado et al. focuses on using auctions for real-time scheduling. They
implemented their methods in the ARTIS (Architecture for Real-Time Intelligent Sys-
tems) agent architecture and conclude with promising results.

Two contributions can be categorized into the execution component. Stulp & Beetz
propose a novel computation model for the execution of abstract action chains. A robot
first learns situation-specific performance models of abstract actions and then uses these
models to automatically specialize the abstract actions for their execution in a given
action chain. The authors state that this specialization results in refined chains that are
optimized for performance. The central idea behind this approach is that actions can
be tailored to the task context by adapting action parameters. de Jonge et al. present
an approach that enables agents to control their plan execution health and to regain
health if necessary. The agents can utilize the model to predict consequences of occurring
disruptions and thus detect unhealthy situations. With the help of the models predictions,



agents can correct the execution of tasks within the plan in such a way that conflicts will
be avoided and health is regained. This paper can also be categorized in the prediction
component.
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Anchoring Symbols to Percepts in the Fluent Calculus

Matthias Fichtner

Michael Thielscher

Department of Computer Science
Technische Universit Dresden
Dresden, Germany

Abstract

For an autonomous agent operating in a real, dy-
namic environment it is crucial to assure that sym-
bols and signal-level models refer to the same phys-
ical object. The problem of establishing and main-
taining the correspondence between a high-level
symbol and sensor data is called the anchoring
problem. Here we present preliminary results on
an approach to the anchoring problem based on the
Fluent Calculus. While properties of objects are
used to distinguish between different objects, rea-
soning about knowledge supports to identify the
particular object in mind. An example shows how
the approach can deal with multiple hypotheses for
correspondences.

Introduction and Related Work

autonomous agents like mobile robots cannot cope with dy-
namic worlds in which objects may appear, move and disap-
pear. In such environments, the agent has to face uncertainty
in action execution and significant noise involved in recogni-
tion. The agent might know little about an object'’s properties,
too.

In our approach, both sources of valuable information are
used, top-level knowledge and signal-level recognition. Aim-
ing at robust anchoring, correspondences between symbols
and percepts are maintained in both directions, top-down and
bottom-up: On the one side, knowledge and constraints about
object properties are used in an expressive reasoning system;
on the other side, an object recognition and tracking system
extracts useful perceptive information describing real-world
objects.

In [Coradeschi and Saffiotti, 20pPOne of the first formal
approaches to the anchoring problem was described. There,
correspondences between symbols and percepts of objects are

Modern control architectures for autonomous robots ofterP@sed on the object's properties. Given a description of the
comprise a signal level and a symbolic level. Although prc,_deswed object symbol, a correspondence is considered possi-

viding a rich expressiveness, knowledge representation at tHd

e if each predicate of the description matches the perceived

symbolic level causes a severe problem: A symbol that referéalues. This basic principle is common to most formal ap-
to a real-world entity lacks direct, unmediated connectionProaches to anchoring including our’s.

and hence its reference may be wrorgnchoringof sym- N . Oz
bols to percepts aims at providing this link and is definedis to be able to use definite as well as indefinite references,
as “the process of creating and maintaining the correspor@2s has been suggested @oradeschi and Saffiotti, 20DDe-
dence between symbols and sensor data that refer to the safigdes others. Definite and indefinite references are integral
physical object§Coradeschi and Saffiotti, 2003 The an-
choring problem denotes how to perform anchoring in an au- In [Coradeschi and Saffiotti, 20DR has been recognised
tonomous artificial system. It is a special case of the symbolthat perceptive ambiguity requires to maintain multiple hy-
grounding problem: "How is symbol meaning to be groundedpotheses of anchoring symbols to percepts. As opposed to
in something other than just more meaningless synilbtas-
nad, 1990?"

As a matter of fact, any cognitive system facing the realtains multiple possible hypotheses.

world somehow has to solve the anchoring problem. Most [Saffiotti, 1994 proposed to use context-dependent infor-

systems implement an ad-hoc approach to the anchoringpation for anchoring objects like “the large one”.

An important aspect of the anchoring approach in general

aspects of our approach.

[Coradeschi and Saffiotti, 20p@nd [Chella et al, 2004

which lack this functionality, our anchoring approach main-

Being

problem which is hidden in the implementation. Only sincebased on the Fluent Calculus, our approach to anchoring sym-
recently explicit approaches arise.
We claim that object recognition alone is insufficient to knowledge. In this way, much more than context-dependent
solve the anchoring problem, because it only helpdistin-

guishbetween different (kinds of) objects. Besides discrim-

bols can make use of the expressivness of reasoning about

information alone can be exploited for anchoring.
The document is organised as follows. In Section 2 we will

inating, cognitive agents need to describe, manipulate anishtroduce the basic notions of the Fluent Calculus, which is
most importantly tadentify objects of interest in real envi- the underlying theory of this work. Next, Section 3 describes
ronments. Moreover, without anchoring symbols to percept®ur approach on anchoring in detail. The example in Sec-



tion 4 is meant to illustrate it. A comparison between ourRepresenting State Knowledge
and other’s approaches as well as future work can be found ifhe knowledge that an agent has of its environment can be

Section 5. We conclude in Section 6. represented in the Fluent Calculus via the notiorpossi-
o ble statedThielscher, 200D The predicateKState s, z) has
2 Preliminaries: The Fluent Calculus the intended meaning that, according to the knowledge of the

The Fluent Calculus is an axiomatic theory of actions thagent,z is a possible state in situation
provides the formal underpinnings for agents to reason about
their actions[Thielscher, 1990 Formally, it is a many- 3 Anchoring in the Fluent Calculus
sorted predicate logic language which includes the two stan-
dard sorts-LUENT (i.e., an atomic state property) asiaTe. ~ Our approach to the anchoring problem is based on percep-
States are built up from fluents (as atomic states) and thefive as well as symbolic descriptions of properties of objects
conjunction, using the binary function: STATE X STATE — in the world. Such a perceptive description can be obtained
STATE along with the constarit : STATE denoting the empty  from an object recognition and tracking system by extracting
state! a number of distinctive features from each percept.

A fundamental notion is that of a fluenf to hold in a High-level knowledge of an object’s properties as well as
state z. For notational convenience, the madrolds(f, z) certain conditions to be met by some of its properties form a
serves as an abbreviation for an equational formula whiclsymbolic description. Regarding object properties, a number

says thatz can be decomposed intp and some state’ : of perceptive features (attributes) is useful. To this end, the
g seta specifies essential attributes for a particular object cate-
Holds(f,z) = (32')z = fo 2 gory o by means of predicatdttributego, a). For instance,

This definition is accompanied by the following foundational ; ; ;
axioms of the Fluent Calculus, which ensure that a state can Attributeg Cup, {Colour, Location Width Height}) ~ (5)

be identified with the fluents that hold in it. denotes perceptive attributes of objects of the categurp.

Definition 1  Assume a signature which includes the sorts )
FLUENT and STATE such that FLUENT is a sub-sort of 3.1 Representation

STATE, along with the functions, ) of sorts as above. The \;merical estimates maintain the current knowledge about

foundational axiomssiae of the Fluent Calculus afe the object's properties. The more precise the estimate be-
1. Associativity and commutativity, comes, the better it allows to distinguish the object at hand

from other objects. For each attributec a, the estimate

(210 Z? 2 2‘3 — 21 Z 2’22 ©23) (1)  ~v=(a, (b1, b)) represents the possible range of values in the
1= 20 bounds| b, by ), while its extent shows uncertainty in this at-
2. Empty state axiom, tribute. By this, uncertainty in the sensor modegéiglicitly
represented, while its representation is still very concise.
~Holds(f,0) (2) Following previous formal approaches on symbol anchor-
3. Irreducibility and decomposition, ing, a structure callednchoris used to represent informa-
tion about a symbol-percept correspondel@aradeschi and
Holds(f1,f) D fi=f (3)  saffiotti, 2009. To this end, the Fluent Calculus signature is

Holds(f, 21 0 z2) D Holds(f, z1) V Holds(f, z2) (4)  extended by the fluenAnchor(z,T', o, 7). It comprises sym-

) _ ) _ bol x, estimateI’, object category, and percept IDr. We
Axioms (1)—(4) essentially characterize™as the union op-  yse “1” to denote the symbol argument of an anchor if the
eration with | as the empty set of fluents. Associativity al- anchor is not associated with an object symbol, and to de-
lows us to omit parentheses in nested applicationsof note the percept argument of an anchor if the anchor is not

The Fluent Calculus employs the standard sadsION  associated with a valid percept.
and SITUATION (i.e., sequence of actions) as in the Situa- a¢ any time, the meaning of fluernchor(z, T, 0, 7) wit.

tion Calculus[McCarthy, 1963 The initial situation is de- he correspondence between symbolnd perceptr takes
noted by the constant,, and Do(a, s) denotes the situation e of the following forms:

reached by performing action in situation s. As a deno- ] )
tation for the state in situatiors, the pre-defined function 1. If both = and = are defined, i.e.x# L A 7w#L, then

Statés) allows to define what it means for a fluent to hold in a complete correspondence between symbeaind per-
a situation thus: cept m has been established.
Holds(f, s) def Holds( f, Statés)) 2. If z isdefined butr is not, i.e.z# 1L Awr=_1, then no
- appropriate percept has been identified and assigned to
Throughout this paper, the function™is written in infix nota- symbol = yet?
tion. Free variables in formulas are assumed universally quantified. .
Variables of sortsFLUENT and STATE are denoted by the letterg 3. If z=1 and w# L, then the corresponding symbol for
and z, respectively. perceptm has not yet been found.
2The full axiomatic foundation of the Fluent Calculus contains
two further axiomgThielscher, 1990 3We use L to say that something is not defined.
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We define and maintain an anchor only for those symbols that Notice, that the direction of anchoring at this level of detail

denote objects of interest. can be considered bottom-up — given an object specification
The following constraints rule out states that are impossiblén terms of estimates of perceptive features, appropriate per-
regarding the fluenAnchor. cepts are retrieved. Because this results in multiple possible
instances in general, the strategy of anchoring will use knowl-
(Vs, z)(KStatés, z) D ¢1(2) A ¢2(2)) (6) edge and constraints in order to determine valid hypotheses in
¢1(2)E (Holds(Anchor(z, I'y, 01,71), 2) A top-down fashion.

Holds(Anchor(x, Ty, 09, 73),2) Az# L (7)

ST =T3 Aoy =05 ATy =) 3.3 Matching as Indefinite Reference

In contrast to the definite reference, an indefinite reference

02(2) Sy (Holds(Anchor(z1, 'y, 01,7), 2) A considers objects that meet certain conditions in terms of per-
Holds(Anchor(z2,T's, 00, ), 2) AT#L  (8)  ceptive properties. For instance, one might simply look for “a
Daxi=29 AT 1=T5A0; 202) white cup”. Anchoring an indefinite reference tries to estab-

Condition (7) for statez says that if an anchor for a valid lish a complete correspondence between symbol and percept,
symbol z exists, then it is the unique anchor of this symbol Poth representing an object that meets given conditions.

in this state. (Universal quantification of variables is assumed A Symbolic reasoning system appeals for intuitive symbols
in this article if not specified.) Note that a state repre- @S & convenient specification of object properties. We define

for anchoring, while multiple hypotheses are considered ir€S. For instance,
Section 3.4. y _ , _ , GroundedCup, Height Regular (8, 11)) (10)
The object recognition system is required to assign unique ]
percept IDs7 to each individual percept. We simply as- SPecifies a regular height of cups between 8 cm to 11 cm.
sign a running natural number for each new percept whicHogether with
is recognised. Accordingly, formula (8) conditions a state G dinaV def
to contain anchors with unique perceptsf the anchor forr roundingValo, a, p, v) =
exists andr is defined. (3b1, b2)(Groundedo, a, p, (b1, b2)) A (br < v < b))
Together, both conditions form the basic representational GroundingInto, a, p, (c1, ¢2)) = (3b1, by)
requirement for a state to be consistent: (Groundedo, a, p, (b1, b2)) A Intersect(cy, c2), (by, b2)))

Consistentz) £ ¢, (2) A ¢ (2) (9) these predicates allow to compare a symbolic description with
. an estimate comprising values or intervals of values.

The test of the correspondence relation is based on com- pragicateMatchindef provides the tool to check whether
paring the properties of the object pointed at and will be ex+he percept at hand meets a given object description. It de-
plained next. termines whether the symbolic descriptidhand the anchor
3.2 Matching as Definite Reference for symbol =z’ match, based on whether the estimate of at-

I~ . ) . . tribute a of this anchor coincides with the perceptive range
The term definite reference is used if a particular entity isjenoted by each predicaje of 3::

in question, e.g., “my cup”. Anchoring a definite reference

tries to associate a specific object symbol with appropriate Matchinde{ %, 2’, o, z) d:ef(ar',ﬁga) (Attributes(o, a)A

percepts by means of the object’s properties and knowledge Holds(Anchor(z’,T",0,7'), 2)A

about it. In general, this process may yield a number of hy-  (vo € ¥)(3y' € IV, a € a,p, )

potheses for possible correspondences according to the infor- [ — (a,p) 5 4/ = (a,#') A GroundingInto, a, p, i")] )

mation available at that time. Then, intelligent techniques ] ) ) ) )

should allow to determine the correct one sooner or later, as Notice the b_ottom-up dlrectlon of ar_lchorlng in

pointed out in Section 3.4. Ma;chlndef — given a p_artlcular percept (|_n terms of_
Anchoring a definite reference employs the predicat@tt“bUte values), appropriate symbols denoting objects in

MatchDef. Given a symbolz and a percept with proper- duestion are retrieved. _
ties T" in state z it checks for all required attributes whether ~ AS in the case of a definite reference, the anchoring strat-

def

the estimate ofr matches that ofI: egy will have further means for determining which ones of
def several possible instances are “appropriate” given high-level
MatchDef(z,I", z) = (3", 0, 7, &) knowledge and constraints. The formal account of the an-
(Holds(Anchox(z, T, 0, ), z) A Attributego, a)A choring strategy is part of our future work.
(Va €a)(Fyel,y €l iy,iz)
[v = (a,i1) Ay = (a,i2) A Intersectiy, iz)]) 3.4 Space of Hypotheses

As has been pointed out above, several correspondences be-
tween a symbol and a percept may be possible in general. All
of them have to be taken into consideration in order for the

where Intersect is true iff the intersection of the intervals
[c1,c2) and [by1,bs) is not empty:

Intersect(ci, ¢2), (b1, b2)) gef anchoring approach to be sound, i.e., not to neglect potential
lea — 1] > 0 A be — by| > OA solutions and thus yielding wrong correspondences eventu-
(b1 <e1 <b)) V(b <ca<b)V(cr <by <c)) ally. In our approach, multiple hypotheses are represented
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by a knowledge state in the Fluent Calculus (see Section 2)jhem match Mike’s description wrt. immediate object proper-
While a single state: specifies one hypothesis regarding cor-ties — the two white cups of regular size on talflg. Both
respondences for all considered objedtStatd s, z) asso- percepts render potential correspondences with synihgl
ciates several possible states with a certain situatiofror  and have to be considered as possible hypotheses.
example, starting in the initial situatiof, where the agent Next, action AnchoringDef tries to establish the corre-
knows of the cupC', the knowledge state of situatiofh, af-  spondence with the definite reference to symiatl; and
ter recognising two cups and anchorigg could be this: yields the knowledge state (15). Anchoring has determined
_ that either the anchor witlhr =1 corresponds to symbal’,,,
Tfi‘tiﬁéhz )r(z* (Falz o 07;51(’)2\26566:{21 Ty 0.m) 0 21V or the anchor withr =3 does so. In both cases, the other an-
— ‘Anchor J_, 1“’ 07 ) Anchor(C’ r 70,7T Yo ] A chor must not correspond t6',, too, which can be mf_erred
= CUbA Consi }[’ ’tZl 2SRz P A from (9). Formula (15) demonstrates that the anchoring strat-
o = CupA Consistertz) egy fuses two anchors referring to the same object, where
This formula describes that either the perceptis relatedto  the symbol is undefined in the one anchor and the percept is
symbol C' and perceptr, has no correspondence to a sym- undefined in the other one, if both match. Recall from Sec-
bol, or vice versa. Moreover, for both possible hypotheses théon 3.1 that a complete correspondence between a symbol

object categoryCup applies. and a percept is represented by a uniduehor fluent in the
state at hand. The resulting perceptive estimiat®f such
4 Example a fusion of two anchors is obtained from the intersection of

il h ional f K both attribute value ranges for each attribute, such that a more
Now we will illustrate the computational framework for an'hprecise estimatd is gained.

choring presented above in an example. Figure 1 depicts e pay of fhe knowledge of this example task was that the
evolution of knowledge states of a mobile delivery robot dur- i aq cupCy; can be found next to a green cup on its left

ing the course of action. hand side. The last two lines of (15) specify this hi
S O e . . . pecify this high-level
In the initial situation .Sy, Mike has requested the mobile knowledge. Given this constraint, the ambiguity regarding

robot to bring his cupC,; from the kitchen to his place. The orres ;
o : X pondences of symb6l,; with the correct percept can
robot has learned further that Mike’s cup is white and shoul e solved and knowledge state (16) can be derived.

Egrllgcgitgg % r;ttr;]ee)t(?tt)l)eén t?:eléltgﬂdh,Bﬁ#iﬂalsogr?%ﬁz _ Besides sensory information concerning the colour and
y 9 P P g eight of cup Cyy, its location is actually known as well.

lar size. Consider the corresponding knowledge state (11). L . . )
The robot starts at the location near Mike’s tablt(Ty ). rience, the preconditions of the action to grab the desired ob

In this knowledge state, constraints on the given propertieg:fCtShOUId be fulfilled and the robot can continue solving the
of cup C), are derived from the symbolic descriptidh of iven task.
the object’s propertie$.Notice the incomplete state specifi- ) .
cation by means of;, which allows other fluents to hold in 5  Discussion and Future Work
state z, except another fluenAnchor for symbol C,; due
to the domain constraint (9).

After moving to the table in the kitcheffi, in situation Sy,
model-based object recognition regarding cups is performe
The knowledge state of situatio§; is described in (13).

In the anchoring approach fEoradeschi and Saffiotti, 2000

predicates like “small” are related to ranges of values. The

(aork of[Chellaet al., 2004 extended and adapted this frame-
ork to so-called conceptual spaces. Apparently the concep-

. . tual space introduces an intermediate representational level
Three additional anchors have been added to the previoys \oferring to the underlying domain of values for attributes

"F‘O";"?d?ﬁ state rg[presentlng tthree Ctrj]ps Wh'Ch WEre recogy objects. While yielding modularity on the one side of this
nlset Ig‘ V(\e/r?r”'ﬁln Sif‘sotfy ata, _?ac etarmg atun'ﬁlae.p%'termediate level, it seems that domain-dependent defini-
cept 1D. lie the object recognition system extracted N~y g again have to refer to specific properties of attributes on

dividual values of attributes for each of them, no COIrespongy  oiher side. Our approach also requires domain-dependent
dences between symbols and the new percepts have been 88%initions: e g.in (5) or (10)

tablished yet, as indicated by for each symbol argument
in the anchor representation. For the sake of readability, thﬁ1
estimatesWhite, Green and on T} abbreviate perceived
(ranges of) attribute values like those fHeight.

Notice the formula in brackets in (13). Since the knowl-
edge state: is incomplete, as indicated by state variable
and since the list of current percepts of cups with# |

In [Coradeschi and Saffiotti, 20D2 context-dependent
eaning of predicates describing object properties wrt. per-
ceptive attributes was proposed. Our approach is designed for
this independency by always referring to a given object cate-
gory, e.g. inMatchDef and Matchindef Hence, predicates
like “small” become comparable wrt. this category. The ob-
ject category is used to restrict the object recognition system

listed in = is complete, the restriction in brackets conditions; i shiect model at the same time, gaining computational
statez; to contain no more anchors for percepts of this kmd'efficiency

Which one of the three recognised cups is the one that sym- Multiole hvootheses for possible correspondences of an-
bol Cy, refersto? According to knowledge state (13), two of Jitiple nyp P >pon .
choring symbols to percepts must be maintained in case of

“For the sake of readability, the locatidh, is specified in this ~Perceptive ambiguity, as was pointed OU{@DraquChi and
way, too. Considering a location in the world to be a vector, thisSaffiotti, 2002 for instance. The approach describefliang
mechanism could be easily extended to ranges in space. et al, 2003 allows to represent multiple hypotheses by as-
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KState{SO, Z) = (321, INYS Z]y])(z = AI’]ChOI(C']\/[7 T, Cup, J_) o At(TM) oz1 N\ Consister(tz)/\
Y u = {(Height Regulal, (Colour, White), (Location on T})} A Matchindef{3,,, Cys, Cup, z))

Sy = Do(SensingCup), Do(Goto(T}), Sop)) 12)

(11)

KStatd Ss, 2) = (321, s, Zar) (2 = Ancho{Cy, Ty, Cup, L) o At(T}) o
Anchor( L, {(Colour, White), (Height, (8.5,9.5)), (Location on T})},Cup, 1) o
Anchor( L, {(Colour, Green), (Height (9.0, 10.0)), (Location on T})}, Cup,2) o
Anchor( L, {(Colour, White), (Height (7.5, 8.5)), (Location on T%)},Cup 3) oz A (13)
Consistentz) A X3, = {(Height Regula), (Colour, White), (Location on T}) } A
MatchindefX s, Car, Cup 2) A = (32, TV, 7', 3) [Holds(Anchor(x’, I o,7),z1)A
7' # L A = {(Height Regulaj} A o = CupA Matchinde{Y', z’, 0, 21)])

S3 = Do(AnchoringDefC;), Ss) (14)

KStatd S5, 2) = (321, 21, T2, 3, lar, 0) (2 = At(Ty) o
Anchor(z1, {(Colour, White), (Height (8.5,9.5)), (Location L1)},0,1) o
Anchor(zs, {(Colour, Green), (Height (9.0, 10.0)), (Location L3)},0,2) o
Anchor(zs, {(Colour, White), (Height (7.5, 8.5)), (Location L3)},0,3) o z; A (15)
O:CUp/\$2 =1L A [Il :CA{/\ZZJ;g =1 Alpyy=L1 V 21 =1 Azx3 =Cu Ny :Lg}/\
(32,3, I",+ € I, I, x") [Holds(Anchor(z’, I, 0,7'), z) A £’ = {(Colour, Green), (Location on T})} A
z’ # Cy A Matchinde(Y', 2/, 0, z) A+ = (Location ') A LeftNextTél,,!’)] A Consistentz))

= KStatdSs, z) D (321) (2 = Anchor(C), {(Colour, White), (Height (8.5,9.5)), (Location L;)}, Cup, 1)o

AY(T},) o 21 A Consistenttz) ) (16)

Figure 1: Example: knowledge states of a delivery robot during the course of action.

signing scores to individual anchor components regarding-luent Calculus. Its powerful expressiveness lies in repre-
different sensory modalities. It seems that multiple hypothesenting multiple hypotheses for possible correspondences as
ses are only maintained temporarily until sensory informationwell as reasoning about knowledge and object properties. Our
is collected. Moreover, the scores are based on a single approach allows to anchor symbols to percepts using defi-
tribute only. In our approach, the more perceptive attributesiite and indefinite references. Besides other advantages, the
are used for anchoring, the better two objects can be told apaproposed anchoring technique supports reasoning over object
based on their perceptive properties. properties during planning on the one hand, and establish-

The tagged-behaviour approach describedHiorswill,  ing and maintaining correspondences during run-time on the
2001 achieves anchoring of symbols to percepts by meansther hand. Thus the robustness of an agent control system in
of a number of object trackers running at high frequency anderms of possible failures when performing in realistic envi-
specific programs associated with input rules. Since there exonments can be increased significantly.
ists virtually no symbolic representational level, its expres-
siveness is strictly limited in comparison to our approach.  Acknowledgments
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1

This paper addresses the issue of grounding representati
which is an important, fundamental and challenging proble
in Artificial Intelligence. Grounding involves building and
maintaining coherent representations that correspoean-
ingfully to the entities they represent. We develop an inno-
vative framework for evaluatingow well system represen-

A Framework for Evaluating Groundedness of Representations in Systems:
From Brains in Vats to Mobile Robots
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Abstract

In order for a system to achieve its objectives it
mustgroundits representations: a grounded repre-
sentation is one where the entities in the represen-
tation correspondneaningfullyto the entities they
represent.

In this paper we develop the first framework for
analysing grounding capabilities in systems. The
framework can be used at a theoretical level to anal-
yse grounding capabilities in systems, and it also
offers a practical guide to assist the design and con-
struction of systems with more effective grounding
capabilities.

Introduction

John McCarthy
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Peter G ardenfors
Lund University Cognitive Science
Sweden
peter.gardenfors@Iucs.lu.se

Christopher Stanton
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a way that corresponds to real flights and real passengers over
time. An autonomous mobile robot that navigates a physi-
cal space will be more effective in acheiving its objectives if
its internal representations of physical barriers correspond to
real physical barriers in its environment. A sound grounding
capability provides basic infrastructure for cognition and in-
telligence. Consequentlitow, andhow well internal states

and representations are grounded is of significant interest and
crucial importance in Al.

Grounding capabilities are system specific, domain spe-
cific, and context specific. Our framework strongly supports
the idea that when it comes to assessing grounding capabil-
ities there are few absolute measures. Typically grounded-
ness$ of a system is measured relative to the groundedness of
other systems, e.g. itis common to evaluate the grounding ca-
pabilities of systems relative to human grounding capabilities
often coupled with additional sensors and instruments. The

offamework we develop can be used to understand grounding

nfapabilities in existing systems and to support the design and

Implementation of intelligent systems whose representations
need to be grounded in order for them to achieve their respec-
tive design goals.

In section 2 we describe our broad notion of representa-

tations are grounded, and then demonstrate the frameworki9n- In section 3 we describe grounding capabilities of sys-
usefulness and impact. t

We build on a wide variety of pioneering and impor-
tant work on groundind2; 3; 5; 12; 13; 18; 19; 20; 21,
22] by developing a new understanding of grounding and th
first framework for analysing and evaluating grounding capa:

bilities.

ems and provide a set of principles that guide the grounded-
ness framework which is developed in section 4. The frame-
work is designed to measure the quality of grounding capa-

ilities. In section 5 we illustrate the power of the framework
by demonstrating its use in (i) analysing a specific system, (ii)
comparing the grounding capabilities of several systems, and

Systems from airline reservations to autonomous mobildiil) developing a quality ranking for the system development

robots rely ongroundedrepresentations. Grounded systems______
possess grounded representations. An airline reservation sys- 'Groundedness is a noun and it refers to the property possessed
tem must manage information about flights and passengers by grounded systems.
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lifecycle. Finally in the last section we highlight the major  Representations in our framework include low level senso-
benefits and applications of the framework. rimotor information such as YUV or RGB values of pixels
in a digital image through to information about entities that
2 Representations can no Ionger bg experie.n'ced'like dinqsaurs and melted ice
) _cubes and imaginary entities like hobBitdDetached repre-

The value of representations has been hotly debated in thesntations of objects exist as well as detached representations
literature, for example according to Brook3] “the world is  of relationships, actions, events, and processes.
its own best representatith Regardless of the debate sur-  Representations can be derived from information that has
rounding the need for representations the unassailable fact igeen gathered from a wide range of sources e.g. internal
that the better system representations are grounded, the ma§fid external sensors, internal and external effectors, exter-
effectively the system will acheive its goals. nal instruments, external systems, etc. In addition they can

_Representations for our purposes come in all shapes andsult from fusing sensorimotor information with high level
sizes. They range from low level sensorimotor representarepresentations such as perceptions, concepts and linguis-
tions all the way up to high level logic and linguistic expres- tic expressions. Consider a doctor who not only grounds
sions. A grounded representation does not require that evemis own sensorimotor information, but information from col-
entity in the representation tiekedto a corresponding phys- |eagues, books, lab tests, instruments such as thermometers,
ical manifestation, but a meaningful relationship should existand equipment used to visualise heart beat, and to measure
between the entities in the representation and the entities bgtood pressure and oxygen content of the blood.

ing represented. Maintaining a correspondence between rep-we jllustrate several kinds of representations in Figure 2
resentations of physical objects and the objects themselves g sed on a Robot Soccer Systéth which are constructed
important but so too are representations of object functionalifrom raw robot camera data. Figure 2(a) is a 2D visualisation
ties and relationships between objects, as well as descriptions the raw camera data, and Figure 2(b) is a processed ver-
of ways to interact with specific objects, etc. sion of Figure 2(a) where specific colours (YUV values) of
For the purpose of understanding grounding it is insightfulyixe|s are used to determine if theglongto specific objects
to classify representations using the hierarchy afd@nfors  of interest - a ball, a beacon and a goal are clearly identified.
[10], illustrated in Figure 1, which describes the crucial rela- 1,6 information represented in Figure 2(b) can be used
y find the distance, heading and elevation, from the robot's
mera, of the various objects of interest which in turn can be

A . ; used to calculate the pose of the robot in a global reference
resentationsare based on the perception of things that are ;e |nformation represented in Figure 2(b) can be com-

present, and detached representations focus on entities thaheq \ith a relational representation of robot location, i.e.
are not currently perceived. Cued and detached representa- ‘

tions may or may not be grounded. robot (id, x,y, $)*, to create a relational representation of the
Sensationsre immediate sensorimotor impressiopef-  location of objects, i.eobject(o, 7, ¢, 0)°. The set obbject
ceptionsare interpreted/processed sensorimotor impressionéelations can be visualised for ease of interpretation as soccer
and imaginationsare detached representations. Sensation@bjects such as goals, robots, ball in specific locations on a
provide systems with an awareness of the external world an@imple 2D representation of soccer field.
their internal world. They exist in the present, are localised in
the body/system, and are modality specific, e.g. visual, audi-
tory, not both. Perceptions encapsulate more information than
raw sensorimotor information. They can represent accumu-
lated sensorimotor information and sensorimotor information
reinforced with simulation$2]. Sensations involve signals
from sensors or from inside the system itself, but perceptions
require additional information derived from previous experi-
ences and/or outcomes of learning. In contrast to sensation,

perception is cross-modal, and perceptions can generate p%'ri'gure 2:(a) a digitial image derived from a robots camera,
manence, e.g. object permanence. ,
(b) a perceptual representation of the ball, a beacon and a

goal.

Detached representations are extremely powerful. They

can be manipulated independently of the external world, i.e.
can be conceived and do not need to be perceived. Some ex-
amples of detached representations are absent objects, past
and potential future world states, etc.

Sensory Information

[ cued | [ petached |

3Tolkien, J.R.R. The Hobbit, Ballantine Books, 1937.

4id is a robot’s identifierx: andy are coordinates of the robot
and¢ is the heading of the robot in a predefined world coordinate
system

50 can be one ofHall, beacon, goal, team-mate, opposition-

2Future world states in general, however, are not a feature of theobot, obstaclg r is the distance from the camera of the robot to
current world state consequently systems that need to plan effe¢he objectg is the heading to the object afids the elevation to the
tively and anticipate future world states require representations.  object relative to the robot’s camera system

Sensations

Figure 1:Cued and Detached Representation Hierarchy.
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3 Grounding Capabilities 3.2 Principles for Grounding and Groundedness

In this section we present the principles that will be used

Grounding plays an important role and provides critical in-to guide the development of our groundedness framework in
frastructure for cognition and intelligence. Groundedness igection 4.

intimately related to, but not the same as, cognition and intel-
ligence and as a result the framework we develop in the next
section does not make judgements about the quality of spe-
cific representations, e.g. whether one representation is better
than another, nor does it directly measure how well a system the boundaries of the system, e.g. rely on components

exploits its representations. . . beyond the system such as external sensors, resources,
Instead, the framework focuses on the grounding capabil- 50| instruments, other systems, etc.

ity, namely, the ability to maintain relationships between en- . . .
AT ’ ; o e Groundedness is a property of a grounding capabhility
tities in representations and the entities themselves where the and it should be measured relative to system goals.

entities can be physical, abstract, sensed, perceived, or fanci- ) 4 ; ,
ful. e Systems can ground their representations in a variety

: o : ; f different ways top-down via the process of design;
A grounding capability can capture information and man- 0 ; ; '
age information exchanges to and from the external world, it bottom-up via sensors, effectors, and interfaces, and

: VA through information obtained via external objects (e.g.
can also create, interpret, manage and maintain internal and .
external world representations. physical tools), external sensors (e.g. radar), and ex-

. - . ternal systems (e.g. medical monitoring system); or a
Grounding capabilities support system goals and objec-  complex combination
tives, and therefore measuring the quality of a grounding ca- ; ' L .
pability should be conducted with respect to the system goals ® %?luigdﬁ(ingfﬁ 'IS grr%%%c(ij sg%rmuur:t'?éTﬁggaon@rlﬁgfé are
and objectives. The purpose of a grounding capability is to degrees of gropu)rngedness Furthgrmore since ground-
construct and maintain coherent internal representations that edness should be measured relative to svstem goals the
correspond meaningfully to the things being representated so : ; . ; . y 9

salient dimensions will vary depending on what is deter-

that the system can achieve its aims and objectives. Clearly ; : :
the quality of a system’s grounding capability will have an ;nr:gleigi? Elaatehlgr:]%ortant for the purposes of the grounding

crucial impact on the success of the system, and on what it o .
can achieve. e Measures of groundedness can be qualitative or quanti-

tative, continuous or discreteA groundedness frame-
o » work should not impose restrictions on the form and
3.1 Grounding in Traditional System Development measure of assessment, only its capacity to support the
_ ~ systems goals.
The correspondence between representations and the entities, A groundedness framework should not place restrictions
represented in a wide range of artificial systems is often es- oy’ what could or should be groundednything can
tablished and maintained over the system’s life time by the e grounded: physical things, abstract things, nonexis-
human designers. As aresultitis fair to say that the systems  tentthings, and things that have never been experienced.
produced are (partially) grounded externally via the human  Things can include: objects, relationships, states, ac-
mind. In other words, the human mind plays a role in cre-  jons, processes, events, etc.
ating, subsequently interpreting, and maintaining the corre- A groundedness framework should cater for a wide
spondence between entities in representations and the actual® ranae of svstems from artificial to biolovical
entities themselves throughout a systems lifetime. 9 y 9
Systems are, typically, reviewed by (a team of) human re-
viewers during the various phases of the system developmeft Our Groundedness Framework
lifecycle and through those reviews the groundedness of th@ur framework is motivated by the need to understand and
system is evaluated. build sophisticated systems that do (some of) the grounding
Depending on the level of sophistication of the system unthemselves rather than systems that are completely grounded
der review once humans have established the correspondenwih the assistance of human grounding capabilities. It com-
between entities in the “external world’and the internal sys-prises five essential elements which can be as detailed as re-
tems representations such as a database conceptual schefiiired for the purpose of the analysis:
systems such as Database Management Systems can manl. System Objectives 3
age the correspondence relationship over time but only in re- 2. Architecture of Grounding Capability
stricted ways. For example, a DBMS can add, remove, mod- 3. Scope of the Analysis
ify and validate relational tuples via application programs 4. Nature of the Grounding Capability
without human intervention, but should database conceptual 5. Groundedness Qualities.
schema require modification due to changes in requiremen#ll five components are related, e.g. the objectives and the
then a human will likely determine how best to accommodatescope will often determine how the qualities of groundedness
the changes and ensure that the database remains groundai chosen, interpreted, and assessed.
i.e. in appropriate correspondence withdigernal world

Changes to grounding requirements due to changes in tfe1  System Objectives
environment and/or systems goals, for example, result ifThe first part of the framework involves developing a descrip-
changes to the system and those changes are typically det¢ion of the system(s) objective, goals, tasks and activities. The
mined by human designers, not the system itself for simpldevel of detail will be determined by the nature of the system
applications like database management systems. grounding analysis being undertaken.

e Grounding is a capabilityhich involves the creation,
management and maintenance of the associations be-
tween entities in representations and the entities them-
selves. It can involve a single system or extend beyond

19



4.2 Architecture of Grounding Capability Expressivenessis the breadth of objects, relationships, pro-
The second component of the framework is a description of€SSes, actions, events, states, etc that are representable in-
the underlying system architecture that supports or impleternally and require grounding. Expressiveness measures the
ments the grounding capability. richness of representations. .

An architecture defines the structure and organisation oRelevance determines the degree of relevance of the entities
the main system components and their channels of communibat are represented by a system. Relevance is related to, but
cation. There are a wide range of potential architectures e.glifferent from, expressiveness. It focuses on issues related
layered, embedded, cognitive, etc. Furthermore, a groundintp those aspects of the world that are important for a system
capability can be described in terms of a number of differ-l0 achieve its goals. For example, a robot soccer player may
ent architectures. The architecture should be described so 88t perceive the audience, or field lines painted on the field
to maximally expose the grounding capability. The descripPXecause they are not relevant to its tasks or it can achieve
tion of the underlying system architecture should focus oritS goals without specifically representing them. Changes in
the components and processes involved in systems’ grounéﬁSK goals and environment are considered elsewhere and so
ing activities. in the assessment of relevance we only consider current goals;

If systems are being compared then it is desirable to debot potential or future goals. Representations are selective in
scribe the architectures using similar concepts and compd€rms of what they can represent - a representation cannot
nents. Often representations are translated from one forig@pture every feature or aspect of the world. Choices have to
to another. Details about the relationships among the reprd2® made with regard to the entities that are important, rele-
sentations can also be given including details of elements ofant, and necessary for the system to complete its tasks and
representations that are perserved and those that are chandgédpieve its goals.

during such transformations. aithfulness is the relationship between entities in internal
representations and the entities themselves, e.g. the relation-
4.3 Scope of the Analysis ship between an internal world model and the world itself.

Faithfulness is a matter of degree and the pertinent question is

The third component of the framework is a detailed descrip owcloselydoes a system’s representations correspond to the

tion of the scope of the analysis. For example, the scope g

. ; Py ntities being represented. Determining the degree of faith-
the analysis might be restricted to a specific component of th ; ) ; : o
system, a specific set of interfaces or system activities, or spe- Iness is sometimes achieved by measuring the ability of the

cific grounding activities such as the creation of association ystem to model the world states and world state transitions

: " terms of prediction and explanation.
between representations and external entities. An example ; o ; )
given in section 5.1. orrectness is the ability of a system to represent informa

tion in accordance with its specification. For example, a robot
; i soccer player’s ability to determine the location of the ball on
4.4 Nature of the Groundmg Capability . the field would be an example of a task which has a well de-
The fourth component describes the nature of the groundingined specification and whose correctness could be measured.
capability under analysis. A useful approach to describing therhe correctness of the task could be context dependent. For
nature of the grounding capability is with respect to the un-example, a robot's ball location ability may be better when it
derlying architecture. Important charactistics of a groundings stationary than when it is in motion.
capability are described in the example given in section 5.1. Accuracy/Precision is related to faithfulness and correct-
. ness and involves the degree of fidelity of information being
4.5 Groundedness Qualities represented. For example, the robot soccer players percep-
The fifth component of the framework includes a descriptiontion of its position and the ball's position on the field might
of the pertinent groundedness qualities, and an assessmentl# required to be measured to different degrees of accuracy,
them relative to each architectural component of the grounde.g. to the nearest millimetre or meter.
ing capability where appropriate. The instruments for meaRobustness is the ability of a system’s representations to
suring the qualities should also be identified. Itis important tobehave appropriately to unexpected or abnormal conditions.
be able to compare and contrast grounding capabilities in difFor example, the ability of a robot soccer player to han-
ferent systems, consequently lower level features of grounddle changes in the environment such as changes in lighting,
edness need to be determined in order to evaluate groundimapanges in background noise, changes in playing surface tex-
capabilities in systems. ture. More dramatic environmental changes would include a
Grounding is multi-dimensional and graded. The compo-change of ball, e.g. different size, different colour, different
nents of a grounding capability, and the dimensions/qualitieslegree of hardness, and/or different density.
of groundedness need to be identified in order to better undeAdaptability : is the ability of representations to adapt to task
stand and ultimately evaluate groundedness. In order to evaénd goal changes. For example task changes might involve
uate groundedness we identified a set of important features robot’s ability to change soccer positions e.g. from De-
that can be used as key performance indicators for assessifender to Striker. More dramatic changes involve changes to
the quality of a grounding capability. the rules of robot soccer or a change in the number of robots
In what follows we describe some groundedness qualitieen a team. Adaptabilty can be measured by determining the
which are appropriate for assessing an intelligent agent. Farature/difficulty of the changes that the system can tolerate
any particular groundedness analysis we envisage that a ddf7]. To what extent the system can change itself, and when
of appropriate qualites will be identified based on the objecdoes it require human assistance if we introduce new objects,
tives of the system(s) under analysis, as well as the scope amgw relationships between objects, new actions, new events,
nature of grounding analysis. Some of the qualities in thestc.
example, below, are so fundamental to the grounding endeaWmeliness is the ability of representations to respond (ap-
our that they could be used as candidate qualities for almogiropriately) to the environment in a timely fashion. For ex-
all grounding analyses. ample, a robot soccer player’s ability to dive for a ball as the
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ball approaches rather than after it has passed it by. sivity, timeliness, faithfulness and relevance.
Efficiency: is the ability of a representation to place as (few) . .
demands as possible on hardware resources such as procegsdr Evaluating Groundedness Qualities

time, communication bandwidth, internal and external stor{n order to assess the quality of grounding it is helpful if the
age, sensors, effectors, and actuators. entities to be grounded are identified. Such entities might
Self-Awareness Since systems with self-awareness are typ-include objects, relationships, actions, states, events, plans,
ically embedded or embodied the degree of self-awarenesgnd other processes. Objects can be physical e.g. a ball, or
is of interest. For example, the question of whether a robohbstract e.g. a penalty, and internal e.g. a forearm angle, or
is aware of the state of its body parts such as its forearm igxternal e.g. teammate. They can be permanent, temporary
cocked at al5° angle, will be important when assessing aor ephemeral. Relationships typically exist between objects
grounding capability. Self-awareness is a representation thaich as the ball is on the field; the ball is located in the yellow
is graded from physical awareness up to intention awarenesgalf; the goalie has possession of the ball; the ball is out of
It also raises issues concerning the role of trust in groundingsounds; the ball is in the goal area; the ball is dead.

e.g. being aware of one’s own sensor limitation can impact Our approach to evaluating groundedness is to assess
grounding capabilities. and/or measure constituent quality dimensions relative to sys-
Awareness of Others Awareness of others is graded: the tem goals and architecture. A wide range of instruments can
spectrum of awareness of others spans from the existence b& used in concert to assess and measure specific qualities
others to the awarengss ofhthe intergjtion of otgel\rs. Thehdeﬂcluding:

gree of awareness about the grounding capability of others . . , ,

and the intentions of others is important for communication ® Ewe_ct observation and analysis of working system be-
and collaboration because such an understanding facilitates ~2VIour:
the sharing of information in meaningful ways. The issue of e Design of test cases and scenarios that push the limits of
trust is also important, e.g. awareness of other’s limitations ~ system grounding capabilities.

and biases can impact grounding capabilities. e Analysis of artifacts produced by and for the system

require grounding. For example, some basic functionality of a

robot soccer player includes the ability to recognise the ball, ® Development of formal measures e.g. tiesenesof
move to the ball, grab the ball, and kick the ball. Differ- @ Soccer field configuration to the actual field configu-
ent robot players may have different abilities, for example a ~ [ation can be measured using techniques developed in
goalie may be able to dive for the ball whilst a forward may [14].

not. Some evaluation methods for certain systems are external
Transparency: is the ability of a system to represent its inter- such as direct observation, others involve internal analysis.
nal information and knowledge in a way that is assessible to Some qualities can be evaluated via external methods, others
human or other system. For example, is the representation aieed to be measured internally, whilst others measured using
information explicitly represented or implicit, clearly deriv- a combination of a both modes.

able or buried in a black box processor. Transparency is a

crucially important quality for some systems. A strong trans-4.7 Benefits of using Logic Driven Systems

parency quality allows a system to be compared with othe[ ogic-driven systems from database applications to more so-
systems across a wide range of dimensions with confidenceppsticated knowledge systems form an important, privileged,
Testability: is the ease of testing system grounding capabil-and well studied class of systems. Major benefits flow from
ities .and aS.SO'C|ated aCt|V|t|e$ such as be.ha.V|0Ur and d.eC|S|Qﬁe possession of clear semantics in particular bu||d|ng, man-
making. Building more effective systems in the future will be 3ging, testing, and measuring grounding capabilities can be-
advanced by learning from grounding capabilities in existingcome straightforward when the representations have a fully
systems, and clearly more will be learned from transparenigpecified semantics. For example, the faithfulness quality of-
easily understood and testable systems. .. tencollapses to an evaluation of truth/falsity, and as a result
Uncertainty Management It can be important to identify, properties of the methods and algorithms used to determine
qualify and quantify uncertainty in the grounding capabil- truth/falsity are at focus. A clear semantics can also enhance
ity. This will involve determining the strategies used by thethe qualities of expressiveness, relevance, correctness, accu-
system to address the uncertainty. The focus is on how thgycy, timeliness, understandability, transparency and testa-
system reduces the uncertainty of information gathering angility. Typically accounts of robustness, adaptability, self-
internal information mangement rather than what techniquegwareness, awareness of others can also be given.
are used to manage uncertainty in representations. Many types of logical representations and systems have
Important interrelationships exist among the qualities de €N developed to enhance standard logics’ ability to rep-

scribed above such as faithfulness, correctness and accurragy; ent _mprfe complex, |mr§JreC|se, incomplete, uncerﬁrtam, and
Transparency and testability are also clearly related. Othe na’?)]'ll(':t |r; or'm[%?og ?u? as .ncr){rérpgg]oton(;cl reaso ilﬁj%
gualities may be dervied from those listed above such as r JOSSIDIN 3& Oﬁ'c 38]6 IETrevisions, 2, and lahguages for
liability which could be the probability of an agent to mal- action and changd.g.

function or the probability that a system will behave similarly
in similar situations, flexibility which is related to robustness, 5 Power of the Groundedness Framework

and adaptability, and performance which captures the respotia this section we highlight the power of the framework by
siveness of a grounding capability which could be measuredemonstrating how it can be used to (i) measure the ground-
by the time required to respond to stimulus or the humber oédness of the UTS Unleashed! 2003 Robot Soccer System
events processed in some interval of time. Performance iKl], (i) compare the groundedness of the UTS Unleashed!
related to a number of qualities including efficiency, expres-2003 Robot Soccer System with the UTS Unleashed! 2004
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Robot Soccer Systebd], and (iii) develop a grounding qual- subsystem is grounded through visual information aquired via

ity ranking for use in systems design. the robots’ camera and a high level model of the robot body.
) The world model representation can be visualised via a 2D
5.1 Measuring a Systems Groundedness picture of the field with objects identified place in their per-

In this section we illustrate the use of the framework by out-ceived location, and subsequently evaluated. _

lining an analysis of a sophisticated robot soccer system's- Groundedness QualitiesDue the lack of space we briefly
grounding capability, i.e. robots can perceive the ball, searcHescribe a few of the more pertinent groundedness qualities
for it when it is not in view, chase it, kick it, etc. The robots from section 4.5 below. ) ) )

build and maintain a representation of the state of the soccefExpressivenessThe robots interact with the environment
field from their sensors and internal body data, and then use  through sensors and actuators. The sensor under anal-
that representation to make decisions about the best actionto  Ysis is the camera which uses YUV values for each

perform. The system is based on the classieake-think-act pixel. Parameters for motion are sent and received from

processing cyclé7]. motors in the robot's body. Perception for the pur-

1. System Objective: To play soccer in the RoboCup 4- pose of this analysis involves vision and control of ac-

Legged Leagufeat an internationally competitive level. tuators to achieve bodily movements such as walking

2. Architecture of Grounding Capability: and kicking. Conception creates and maintains the fol-
The system is the UTS Unleashed 2003 robot téHmit lowing concepts:physical objectall, beacons, goal,

is composed of four SONY AIBOs which are 4-legged mo- ~ {€am mates, opposition robotspstract objectplayer

positions, attack, defend, strategyjhysical relation-
shipgbehind, inside penalty areadctiongsearch, kick,
walk], eventfgame start, game restart, game end, kick-
off]. The problem solving subsystem constructs a rep-
resentation of the location of objects such as the ball,
team mates, opposition robots, and based on it the robot
determines its next action.

bile autonomous robots Each robot has a camera, and only
uses visual cues to communicate. The architecture of the sys-
tem is illustrated in Figure 3 where the grounding capabil-
ity is viewed as involving four major subsystems: interac-
tion, perception, conception, and problem solvingterac-
tion involves the exchange of information across interfaces,
sensors, and actuatorBerceptioninvolves the creation, ac- ) .
quisition, management and maintenance of sensorimotor andrelevance:Only relevant soccer related entities are repre-
other cued representatior@onceptiorinvolves the creation, sented. . .

acquisition, management and maintenance of concepb- Faithfulness: Each robot builds and maintains a represen-
lem Solvinginvolves the creation, acquisition, management  tation of the field configuration. The extent to which
and maintenance of high-level representations such as declar- the field configuration representation is faithful to the

ative, procedural, and tacit knowledge used for problem solv-  real configuration can be measured using the similarity
ing, reasoning, and decision making activities. measure developed [A4] which measures thdistance

from one field configuration to another, and it provides
r T ™ a means to explicitly measure the distance/similarity be-
1r T tween theeal configuration of the field and its represen-
T tation built by the robot as it moves its body and analyses
its raw camera data.
R i Timeliness:The robots are fairly responsive to changes in
i St field configurations and in particular to changes of ball
locations. Robot response times can be easy measured
and quantified using a wide range of methods at many
levels of granularity.
Transparencyis low due because almost all representation

Figure 3:2003 UTS Unleashed! Robot Soccer Architecture. t:na[lagegrjﬁnt is bu[ji_ed in C+E.f?d¢' bust to field
All interaction between the outside world and the inter- obustnessine grounding capability 1S robust to 1Ield sur-

nal representations takes place viaititeraction subsystem faces, but not robust to minor changes in lighting. Spe-

: ; cific measurements can be made regarding the lightin
The conception subsysteand theproblem solving subsys- levels and the roughness of playinggsurfages to %eterq
temare embedded in thgerception subsystenThe concep- mine the range of tolerance
tion, problem solving, and perception subsystems can -Com'AdaptabiIity: The grounding capability is not adaptable. It
municate with each other directly. Overall robot behaviour cannot make any changes to itself
's driven by the problem solving subsystem which commu- elf-Awarenessthe grounding ca abilit is aware of some
nicates to the actuators in the interaction subsystem via the> of ite irfornal setqcings sugh aspneckyangles appendages
perception subsystem. o , )=
3. Scope of the Analysis:The analysis will focus on the }%ugvt:/r?gggn Sgigsﬁ irtnoé?ég\%zr?ﬁéﬂsi ét (i:taga?lerceocgom-se
representation of visual and actuator information. All the ar- S OV yfp p 1€ 9
chitectural subsystems will be involved in the analysis. Only _ NiS€ Its own feet. . .
activities related to grounding within the robot are to be con- Awareness of Otherss achieved through visual cues only.

fﬁiegggbg%ftﬂ,ee*;‘ﬁ{g;’;‘,g@,eagners role in grounding is OUtS'dg.Z Comparing Systems Grounding Capability

4. Nature of the Grounding Capability: The world model In this section we briefly compare the UTS Unleashed! 2003

(field configuration) representation of the problem solvingSystem described above with the UTS Unleashed! 2004 Sys-

- tem[4]. The 2004 System is built on the 2003 System and it
°See http://www.tzi.de/4legged for details possesses the same overall objectives and underlying ground-
’See http://www.sony.net/Products/aibo/ for details. ing infrastructure with a few important extensions. The scope

P erception

-
Concepiio

b\.‘ Somsors intorfaces  Actuators _)
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of the analysis is the same as for section 5.1 and the natuiegs can be developed for each system and used to develop
of the grounding capability of the 2004 System has been exsystem requirements.
tended to include sharing vision information about field con- Design decisions should respect the priority ranking.
figurations among the robots via a wireless network. Clearly design and implementation decisions will impact on
Groundedness Qualities: various qualities in different ways and the key idea is to
ExpressivenessThe 2004 system can represent all the enti-ensure that high priority qualities are maintained in pref-
ties representable in the 2003 verison as well as the followingerence to lower ranked qualities whenever faced with a
Interaction:- Robots share information from their world choice. Given the interrelationships that can exist between
models via a wireless network, in other words full field con-the groundedness qualities, sometimes trade-offs will be nec-
figurations are represented in the interaction subsystem. I@ssary. Increasing efficiency is well-known to negatively im-
addition improvements were made to the walking engine s@act most other qualities regardless of how we choose to rank
that machine learning techniques such as reinforcement learghem. Identifying a priority ordering of qualities is standard
ing with self detection and correction could be applied to im-practice in software quality assessments. Some groundedness
prove walking speeds. qualities could be identified as so crucial that they must be
Perception- Major improvements in the 2004 Systems in- part of the design and should not be sacrificed for the sake of
clude (i) the relationship between YUV values of pixels andimproving other qualities. _ _
symbolic colours can be one to many, rather than one-to-one Dimensions of grounding can be graded according to their
as in the 2003 system which allows for overlapping colourdmportance. A ranking that reflects the importance of the
and more flexibility in identifying object&d], (i) the veloc- ~qualities determined in requirements allows system develop-
ity of the ball is perceived which supports new high level €rs to understand and evaluate grounding capabilities. A typ-
skills such as passing, catching, and diving, and (i) field lineical Grounding Quality Ranking is illustrated below:
recognition by perception subsystem. Rank 1. Essential - Failure to meet the stated degree of qual-
Conception- new object recognition for field lines, new ities will result in complete failure of the system.
skills conceived [dodge, dive, catch, pass] and new strateRank 2: Important - Failure to meet the stated degree of qual-
gies that exploit the new skills and perception grounding caities will result in a system with certain kinds of problems.
pabilites. Rank 3: Desirable - Failure to meet the stated degree of qual-
Problem So|ving_ Robots in the 2004 System cghare |t|eS.W|” result |n. less fleX[bI|Ity than des”ed:
information derived from their world model representation _Different rankings for different systems will reflect the de-
such as the location of the ball and the location otheSign goals. Different design goals will lead to different pri-
robot§15]. Robots on the team who cannot percieve obect®'ities. For example we would expect that a robot soccer
directly can be alerted to their location from team mates. Irsystem designed for winning would have a different ranking
addition, using the shared information they can localise usin@f grounding qualities that a system designed for innovative
the ball’s location and their internal body sensors. play!
For the purposes of illustration we make brief comments
about some of the other qualities. A#levantentities are 6 Discussion
represented in both the 2003 and 2004 systdfaghfulness : . . . .
is measured using the visualisation of the world model repGrounding of representations is an important capability for
resentation build by each robot. The similarity measure delNtélligent systems. Despite its importance there has not been
veloped in[14] which measures thdistancefrom one field & Practical way up to now to measure the groundedness of
configuration to another, allows us to explicitly measure theSYStéms. In this paper we develop a novel framework for mea-
distance between theal configuration of the field and the Suring how well a system is grounded. The framework sup-
configuration represented by the robot. Based on our experPOrts the identification and articulation of important similari-
mental testing the 2004 system was more faithful than 20031€S and differences in grounding capabilities across systems,
The 2004 System also turned out to be significantly moreétnd can be used to demonstrate how and why one system is
accurate, responsive, transparemindrobustto changes in  groundedoetterthan another. For the purpose of designing
lighting conditions (due to the one-to-many relationship be-more effective intelligent systems it is important to be able
tween pixels and symbolic colours) than the 2003 System© &rticulate that one system has a beter grounding capabil-
The 2004 System waswareof its internal power levels and 'ty than another, or to say things like if system As grounding
the 2003 system was not, and furthermore it had a heigh€@Pability had certain properties then it would have an equiv-
enedawareness of othefisecause high level representations &€t or better grounding capability than system B.
regarding the configuration of the field were communicated 1 h€ framework has lead to a deeper and richer understand-
between robots directly via the wireless network, and as a rd9 Of grounding capabilites. Furthermore, it provides guid-
sult it was moreadaptablebecause if a robot was unable to @1¢€ on how to evalute grounding capabilites, to compare
“see’the ball then his teammates could broadcast the ball's Ig@rounding capabilites across several systems, and to build
cation via the wireless network. In addition in the 2004 Sys-More effective grounding capabilities. Moreover, by devel-
tem the robot's movements were more adaptable due to tHePiNd & better understanding of grounding the framework has

incorporation of machine learning techniques in the walkingd!0Wed us to isolate new research problems, challenges, and
engine. directions. For example the framework raises the following

research questions: (i) Tard@5]developed a powerfulhe-

. . . ory of Truthbut what should &heory of Referendeok like?

5.3 Measuring Groundedness in System Design (ii) Is there a relationship between the hierarchy of represen-
Quality rankings can be generated from the framework bytations in section 2, the qualities of groundedness in section 4,
attaching levels of priority to the groundedness qualitiesand consciousness?, and (iii) How can we build systems ca-
The resultant priority rankings can then be used to evaluatpable of reasoning about their own grounding capability and
grounding capabilities during system designs. Tailored rankthat of other systems?
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Robot soccer offers a standard and rich domain that would18]
benefit from a comprehensive analysis of grounding capabil-
ities. In future work the framework will be used to analyse,
compare and contrast the grounding capabilities of the top 10
teams in the RoboCup Legged League. The analysis will inf19]
clude a survey for developers, as well as direct observation of
running systems. [20]
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Abstract

Vision is one of the most valuable sensors of an
autonomous mobile robot, but advanced robot
vision systems are still rare. A major obsta-
cle in applying advanced computer vision to
robotics are the additional constraints, that
need to be fulfilled in the domain of robot vi-
sion.

We propose that in order to make computer vi-
sion applicable to robotics, it needs thorough
support from the robot’s software architecture.
A robot vision architecture needs to encapsu-
late the constraints of the application domain
to keep a vision application flexible and main-
tainable.

This paper introduces the video image process-
ing (VIP) framework, a software framework for
multi threaded control flow modelling in robot
vision. It discusses its design and implemen-
tation as well as an experimental evaluation of
its performance in parallel, priorised image pro-
cessing.

1 Introduction

Vision is one of the most valuable sensors for autonomous
mobile robots. Cameras are relatively low cost and offer
a huge and diverse set of information that can be used
for very different sensing tasks. Unfortunately, there is
a severe lack of advanced vision processing methodolo-
gies applied in todays robotic applications. Especially
in highly dynamic environments and predominantly re-
active scenarios, research is still focused on model based
colour blob detection. In consequence, vision processing
in robotics lacks flexibility and scalability, which makes
it impossible to use such a vision system for different
tasks and multiple scenarios. This hinders advances in
the scientific view on the problem domain.

Applying advanced vision processing methodologies to
autonomous mobile robotics is difficult, as the require-
ments of this application domain add a whole set of
additional complexity to the original task of image un-
derstanding. For instance, image processing binds a lot
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of computational resources and most higher level image
processing operations are difficult to apply within the
timeliness constraints of a real-time reactive autonomous
system. Addressing such issues for a robotics vision sys-
tem requires extensive architectural support, which is
not available in currently available image processing sys-
tems.

This paper introduces the video image processing
(VIP) framework. A software architecture for real time
oriented video image processing for autonomous mo-
bile robots. We show how the framework enables and
facilitates the use of computer vision methodologies
within the heavily time-constraint environment of an au-
tonomous mobile robot within a highly dynamic environ-
ment, like the RoboCup mid-size league.

The remainder of this paper is organised as follows. In
the next section the challenge of doing computer vision
on autonomous mobile robots and related work in this
area is discussed. Our solution approach is then intro-
duced in section 3 and illustrated by a short example
in section 4. An assessment of the real-time oriented
features of the VIP framework is presented in section 5
before the paper ends with application examples, con-
clusions and the indication for future work.

2 Image Processing on Autonomous
Mobile Robots

Vision systems for mobile robots bring together the two
very challenging problem domains of image processing
and autonomous mobile systems. E.g. most of the state
of the art computer vision algorithms are computation-
ally rather expensive, even when efficiently implemented.
So a very careful assessment of their individual applica-
bility is necessary. This on the other hand often dis-
courages experts in computer vision to work on robot
vision, as most of the advanced algorithms seem to be
ruled out per se by timing constraints. In consequence
solutions in robot vision are often: (1) hard coded quick
hacks, that try to enable micro optimisations by doing
multiple operations at once, (2) heavily model based or
heuristic, exploiting special circumstances with little va-
lidity despite the one scenario they are targeted for, (3)
in consequence hardly maintainable and little flexible.



So to mediate between the partially contradictory re-
quirements of advanced vision processing in a real-time
constraint environment, proper conceptual support from
the vision processing architecture is necessary, to encap-
sulates the vision application within this application do-
main. In order to better understand the different re-
quirements that need to be supported, we first take a
brief look at the two problem domains.

2.1 Computer Vision and Image
Understanding

The basic concept of computer vision is the application
of operators to image data, such as the conversion of a
colour image into gray-scale, or filtering the image for
edges. Often operations transform more then one input
image into a new output image as e.g. a Canny edge de-
tector [Canny, 1986] usually needs two images which are
convolved using a horizontal respectively a vertical So-
bel operator. Other operators may use the same image
result from different time stamps as for example a oper-
ator using two timely consecutive images to detect the
optical flow [Horn and Schunck, 1980].

More sophisticated operations do not only cover filter-
like processing steps, but all possible input-output map-
pings in general. So the result of a computer vision op-
eration don’t have to be again an image but can be ev-
ery possible data as e.g. a colour histogram, a similarity
value between two images or any other image statistic
measure.

Sequences of such image operators reveal features
within the image that can be used to identify regions
of interest (ROIs). So filter don’t need to work on the
whole image but only on parts of the image. This is
done either to speed up the processing loop or to be sure
not to tamper the result with unwanted image structures
from outside the region. Further operators derive image
features from these ROIs that enable a reliable object
recognition. Various feedback loops such as integration
over time [Kalman, 1960] can speed up processing and
improve classification results.

2.2 Robot Vision

Performing the above sketched operations on an au-
tonomous mobile robot on the video image stream of the
robots camera(s) within a medium sized robotics appli-
cation adds a whole bunch of additional challenges to the
problem set.

Efficient organisation of control and data flow.
Video image processing on a mobile robot is usually sen-
sor triggered and is started as soon as a new image is
available to the robot as an image taken one second be-
fore does not necessarily resemble anymore the actual
situation in a dynamic environment. At the same time,
the performed processing needs to be demand driven, to
not misspend the available computational resources.
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Parallel and asynchronous evaluation. More and
more robots are equipped with multiple cameras for
stereo vision, or to extend their field of view. Multi-
ple image sources, but also dual CPU boards as well as
the upcoming hyper-threading and multi-core processor
technologies call for asynchronous, parallel processing
capabilities. Multiple image sources allow for interleav-
ing processing, and the true parallelism of the advanced
hardware features stay unused by single-threaded appli-
cations. The actual challenge however, lies in the proper
synchronisation between different image processing tasks
for the fusion of their results.

Timeliness and resource management. Due to the
computational cost of most image operations, and the
fact that the CPU is also used by other concurrent tasks
of the system, the available processing power will usu-
ally not be enough, to perform all possible evaluations on
every single image. In order to still meet the timeliness
constraints of the reactive systems, different perceptual
tasks (e.g. obstacle avoidance and face recognition) need
to be properly priorised. E.g. the data for obstacle avoid-
ance needs to be evaluated as often as possible, while the
face recognition for greeting known pedestrians can be
evaluated whenever some CPU cycles are left. Addition-
ally, not all image processing tasks have to be performed
over the whole time. The robots’ situatedness enforces
the use of special vision routines for different purposes.

Communication of results. Last but not least, im-
ages as well as extracted symbolic information of ob-
jects need to be accessible to the other modules of the
robot software. Interfacing is an issue in the context of
image processing on autonomous robots, as the infor-
mation requested by client modules usually determines
which information needs to be extracted from the im-
age in a given situation. Robot applications, e.g. multi
robot scenarios are most often distributed and therefore
support for communication in a distributed environment
has to be available, too.

2.3 Related Work

Common vision related architectures and publications
can be roughly divided into three types: subroutine li-
braries, command languages and visual programming
languages.

Subroutine libraries are the most commonly used ones.
They mostly concentrate on the efficient implementation
of image operators. Therefore they consist of normal
functions, each responsible for a different image pro-
cessing operation. Classical examples are e.g. the well
known SPIDER system [Tamura et al., 1983] or NAG’s
IPAL package [Carter et al., 1989] written in C or For-
tran. More recent approaches are e.g. LTI-Lib [Iti, | or
VXL [vxl, ] which both are open-source, written in C++
and consist of a wide range of operations, ranging from
image processing methods, visualisation tools and I/0
functions. The commercial Intel Performance Primitives



lipp, ] are an example for highly (MMX and SSE) opti-
mised processing routines with a normal C-API. What
they all have in common is there lack of support for
some kind of flow control support. Yet another collec-
tion of mutex or semaphore helper classes and some kind
of thread abstraction is the maximum of assistance for
this.

More advanced command languages for image process-
ing are mostly implemented as scriptable command line
tools, that a developer can use to direct the vision pack-
age. In case of the imlib3d package [iml, ], the image
processing operators can be called from the Unix com-
mand line, the CVIPtools [Umbaugh, 1998] are delivered
with an extended tcl command language. So both pack-
ages have the ability to include conditional and looping
facilities. But again the programmer not only has a flexi-
ble way of complete control over the system, but also the
full liability over the processing cycle. Additionally the
scripting approach makes it hard to meet the required
performance constraints of this application domain.

The most sophisticated solutions are the visual pro-
gramming languages. They allow the user to connect a
flow-chart of the intended processing pipeline using the
mouse. They combine the expressiveness and the flexi-
bility of both above groups. Often they contain not only
a real mass of image processing functions and statistical
tools, but also a complete integrated development envi-
ronment. Most of these systems are commercial prod-
ucts. One of the most advanced one is VisiQuest (for-
merly known as Khoros/Cantata). According to there
web site, it supports distributed computing capabilities
for deploying applications across a heterogeneous net-
work, data transport abstractions (file, mmap, stream,
shared memory) for efficient data movement and some
basic utilities for memory allocation and data structure
I/0.

To the best of our knowledge, there is no image pro-
cessing framework, that combines all of our above de-
scribed features like processing on demand of complete
parts of the filter tree in a flexible yet powerful way,
making the system suitable for a wider range of image
processing tasks, like e.g. active vision problems on au-
tonomous mobile robots.

3 Solution Approach

The principal idea of the VIP framework is to manage
the control flow and organise the data flow of the vision
application, for a clean separation of the two problem do-
mains. That is, the vision application programmer only
needs to implement the individual image operations (if
not already available in form of a library) and direct the
data flow for the target application. The VIP framework
then executes the implemented code as the execution
logic implies.

The basic processing unit is called a filter. This de-
notes not only a (non-)linear image transformation func-
tion like a Sobel operator, but every input-output map-
ping such as a neural classificator on image features.
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While the control flow is evaluated in a tree in depth
first order, the data flow is much more flexibly organised
as a directed acyclic filter graph (DAG). The framework
ensures the correct evaluation order. Freely definable so-
called meta-information, such as a list of regions of in-
terest, histogram values etc. can also be passed through
the DAG to successor filters. This actually extends each
filter instance to a general image processing node.

Support for the intrinsic problems of robotic vision is
supplied on the basis of the configurability and adap-
tivity of the framework and its execution logic, by spe-
cial purpose filters and also by additional development
tools. VIP is currently implemented as a C++ white
box framework for Linux platforms.

3.1 Robotics Support

To prevent excessive polling or context switching be-
tween waiting threads the framework performs sensor
triggered evaluation of filters. In order to maximise
performance in this highly time constraint environment,
VIP keeps track of which filters are actually queried by
client modules. Based on this connection management,
a dynamic graph pruning is performed to process only
the minimal required filter tree. If a client module con-
nect to a new filter, the filter is guaranteed to be part of
the processing tree, as soon as the next image becomes
available. The integration of the VIP framework into
the middleware MIRO [Utz et al., 2002] provides support
for network transparent as well as co-location optimised
access to images or higher level sensory results from the
filter DAG to client applications. For co-located image
queries a shared memory based approach is used with
zero-copying.

3.2 Source Nodes of a Filter DAG

Video devices are also modelled as filters within the
framework and form the root node of a processing tree,
that is source nodes in data flow graphs. The framework
supports various camera connections such as BTTV,
IEEE 1394 and USB-cameras and also multiple cam-
eras in parallel. Each processing tree its executed within
its own thread and is processed in parallel with other
source nodes, while the data flow can stay connected.
The framework then ensures appropriate synchronisation
between the image streams. Note that, as the framework
takes care of synchronisation, developers do not need to
worry about locking issues and the right usage of syn-
chronisation primitives.

Additional processing trees can be added to decou-
ple time-consuming image operations (a slow path), that
can not be performed at the full frame rate of the input
source, from fast image evaluations, needed at full frame-
rate for reactive tasks in the robotics application.

3.3 Real-time Constraint Image Processing

As one of the dominant features of robot vision is the
timeliness constraint, VIP integrates multiple concepts
for real-time processing. Each processing tree can be ex-
ecuted with its own thread priority and scheduler choice,



Figure 1: Original image, intermediate processing steps (blurred, grayed and convolved images) and resulting edge
detection. The thick, solid lines denote the data flow, the thinner, dashed lines the control flow.

which is directly mapped on the OS-native process sched-
uler by the framework. This is necessary to minimise jit-
ter and ensure correct priorisation, especially under high
load situations. Additionally detailed timing statistics
are provided for each filter. Different models for syn-
chronisation of filters between different processing trees
can be used to either optimise synchronisation of image
sources (stereo vision) or minimise locking overhead and
context switching between threads (slow/fast path pro-
cessing).

3.4 Development Support

Applications in robot vision require extensive testing and
tuning of filter configurations. Therefore VIP provides
various concepts to ease the development process. The
extensive use of the middleware provided configuration
management support allows to specify meta-information
about newly developed filters for various means, espe-
cially the flexible specification of filter graph configura-
tions by the help of an XML-based description language.
Such configurations can be built conveniently under a
graphical user interface, as illustrated in section 4. Also,
every filter, and therefor every intermediate result, can
be queried (e.g. for visualisation) by simple assigning it
a name for the according interface. The middleware in-
tegration also enables to change filter parameters on the
fly from client applications in reaction to changes in the
environment. By exchanging the physical video device
for an image file set based virtual device that replays
a stored image stream, the whole processing tree can
equally used on- and offline.

4 Example Configuration

The above described feature set of the VIP framework is
best understood by a small illustrative example. Figure 1
illustrates the derivation of an edge image from the clas-
sical test image of computer vision. The original image
is Gaussian blurred and transformed into a grey image.
Then a horizontal and vertical Sobel operator is applied
and in the last step the Canny operator is applied. The
screenshots are taken from the generic inspection tool.
Meta-information is not provided by these simple filters.
The data flow and control flow is are illustrated in fig-
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ure 1. The thick, solid lines denote the data, while the
dashed lines illustrate the control flow.

e6e
File Options Help
item Name: Value Type
~ config MiroCenfigDocument
~ Video Section
- Tree Video:Parameters
Palette rgb std:string
Heignt 512 int
Width 512 int
 Filter Video:FilterTreeParameters
Type DeviceDummy  std:string
Name DeviceDummy  std:string
v Successor
-0 Video:FilterTreeParameters
Type Gauss std:string
Name Gauss stdzstring
~ Successor
-0 Video:FilterTreeParameters
Type RGBloGray  std:string
Name RGBtoGray  std:string
~ Successer
-0 Video:FilterTreeParameters
Type Sobel stdzstring
Name Sobelt stdzstring
-1 Video:FiterTreeParameters
Type Sobel stdzstring
Name Sobel2 stdzstring
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Name  Canny stdzstring
~ BackLink
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UseROIFrom | | int
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Figure 2: Graphical user interface illustrating the pro-
cessing steps for a simple edge detection (lower window).
The upper dialog shows the parameter configuration win-
dow for the Canny filter.

In Figure 2, this configuration is shown in the graph-
ical user interface for the filter graph configuration. In
addition of the control- and data-flow also the parame-
ters (such as the threshold for the canny operator) can
be edited in typesafe dialog fields. The parameter man-
agement framework provided by the underlying robotics
middleware MIRO allows to add user defined filters with
their specifications for filter parameters and filter meta-
information for use by the configuration editor and the
runtime-inspection tools.



5 Performance Assessment

A critical part of robot vision is the timely processing of
image data. The VIP framework does not try to provide
faster implementations for standard image operations,
as sufficient libraries for this purpose exist. These can
be easily utilised for the use by VIP, as done for IPP in
our applications. Instead this framework concentrates
on improving the responsiveness of a vision application,
by allowing for proper priorisation and synchronisation
of image processing tasks with parallel and asynchronous
control flow.

A typical use case for the processing of multiple fil-
ter trees, is the combination of a fast path with an
asynchronous slow path of vision processing, which then
needs correct priorisation. We therefor assess in this sec-
tion the capabilities of the framework to correctly pre-
serve processing priorities under high-load situations.

The typical scenario would be one camera-
synchronous processing tree that runs at full frame rate
and extracts sensory information for the reactive control
module and one or more asynchronous processing trees,
that are connected to the data flow of the first tree and
perform time-consuming computations not possible at
full frame rate, extracting information for higher level
cognitive processes with relaxed timing constraints.

The configuration of
the VIP module for this |Camera l—’.I Worker 1 |
experiment consist there-
fore of one high prior-
ity tree with the camera
as source node, running
with a round robin real-
time scheduler (the fast
path) and one, resp. two
low priority asynchronous processing trees that are con-
nected to the camera tree, running with default priority
(the slow paths). The configuration is illustrated in fig-
ure 3. The low priority load is increased incrementally
in the experiment. In the first run, the synchronous pro-
cessing tree is run alone. In the second run one low pri-
ority processing tree is added to the configuration, but
still all processing threads can be completed at frame
rate (30Hz). In run three a second low priority tree is
added and the system load reaches saturation. The re-
sults are compared against the equivalent setup without
priorisation.

Table 1 shows statistics on the overall time, the differ-
ent processing trees need for completion. In the unpri-
orised configuration, the completion time of the camera-
synchronous tree drops significantly in the third config-
uration, as the thread is preempted before completion to
perform work on the other processing trees. This would
cause significant delay for the consumers of this sensor
information (e.g. the reactive control unit).

Figure 4 illustrates this effect by plotting the individ-
ual timings for 100 runs of the fast path. While the pri-
orised processing three still runs with predictable com-
pletion time, the timings of the unpriorised configuration

Figure 3: The filter configu-
ration of the experiment.
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o Priorised Unpriorised
Processing tree Mean [ Std. Dev. || Mean [ Std. Dev.
Fast path only
fast path [ 717 ] 003 [ 718 ] 0,052
Medium load
fast path 7,22 0,017 7,26 0,479
slow path 1 30,46 | 25,197 8,32 10,000
High load
fast path 7,22 0,025 8,55 3,192
slow path 1 53,31 | 69,921 60,77 | 94,601
slow path 2 57,66 5,065 56,84 5,240

Table 1: Different timing statistics for the individual
processing tree in both, the priorised and unpriorised
case. The values are stated in milli-seconds.

worsen significantly under high load.
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Figure 4: Timings of the fast path with none, one and
two slow paths running concurrently. The left plot shows
the unpriorised case, whereas the right plot shows the
fast path running with enabled real-time scheduling.

Another visualisation of these preemptions is shown
in figure 5. From the third setup a small section of the
interleaving processing of the three processing trees is
plotted. Each tree is assigned a different colour. Yellow
was chosen for the fast path, the slow paths are coloured
read and blue. To fit into the column, a new line is added
each time the processing of both slow paths is finished.
The completion of a processing tree is marked with a
black box at the end of the coloured bar. While the
real-time scheduled fast path always runs to completion
before its processing stops, it is occasionally interrupted
without priorisation. Additional load on the system will
worsen this effect. A medium complex robotics appli-
cation performs many other tasks in parallel to image



processing, which will contribute to the latencies in high
load situations.

Priorised fast path:
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Figure 5: Illustration of alternation between the different
running processes with a priorised resp. unpriorised fast
path.

6 Application

The VIP framework is successfully in use in different
robotic scenarios, such as biologically motivated neural
learning and object classification [Fay et al., 2004] and
reliable high speed image processing in the RoboCup
mid-size league [Kaufmann et al., 2004][Mayer et al.,
2004] . It also provides the basis of a large filter library
shared between the different scenarios.

It’s application in RoboCup consists of a dual cam-
era setup, combining a directed camera for object clas-
sification with an omni-directional camera for obstacle
avoidance and near range ball tracking. The application
combines 66 filters with 108 connections. One of the
fastest path, a simple colour based football goal detection
takes around 4 msec to complete, while one of the slow-
est paths (a complete neural robot classification) needs
around 20 msec on average when seeing one robot per
image (measured on a 1.4GHz Pentium M processor).

Currently, priorisation of and synchronisation between
processing trees is not yet used by the RoboCup appli-
cation. The use of an omni-directional camera as well as
the real-time features of the framework were both added
fairly recently. But the promising results of section 5 will
definitely encourage their prompt application.

7 Conclusions and Future Work

This paper discusses the difficulties of meeting the re-
quirements of th application domain, when applying ad-
vanced computer vision to autonomous mobile robots
in dynamic environments. The VIP framework is intro-
duced, which was designed to facilitate the application of
computer vision in robotics, by managing the additional
challenges of robot vision in this domain. The middle-
ware based framework approach especially enables to
support roboticists with the non-functional aspects like
configuration, priorisation and performance assessment.
Extensive development support is provided in the form of
parameter management, GUI-based configuration as well
as generic inspection of images and meta-information.
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The performance assessment confirmed the suitability of
the design for real-time constraint processing, as manda-
tory in highly-dynamic environments.

Future work will be directed in two different directions.
The first is to assess carefully the optimisation potential
for used system resources, especially memory consump-
tion. Improving cache hit rates for instance can tremen-
dously increase the performance of image algorithms and
control flow and memory management have a significant
impact on it. One possibility is to switch to in-place
processing of filters, if the filter and the filter graph con-
figuration allow it. The other direction is to connect the
priorisation of the image processing tasks with the real-
time capabilities of the underlying distributed systems
middleware (RT-CORBA), to ensure end to end quality
of service between sensory and actuatory processes.
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Cognitive micro-Agents:
individual and collective perception in microrobotic swarm
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Abstract question about "individual aspects” of collective peroept
Is a microrobot able to provide enough sensory information
for the collective perception ? Which sensing and processing
steps should be done individually and which collectively ?
For answering these questions we designed and proto-
typed a sensor system for our own test microrobot. This
is is actually larger as envisioned in I-Swarm project how-
ever is very cheap and easy to reproduce without specific
equipment. Based on this prototype we can investigate ques-
tions about "individual/collective intelligence” so thite re-
sults, e.g. principles, methods, algorithms can be latpteém
mented in the 1mrhrobot. The size of the sensor system is

In this paper we present the research results in the
field of perception for real microrobotic swarm.
The proposed hardware and software solution uses
IR-based reflective measurement for individual per-
ception and the Dampster-Shafer evidential reason-
ing for hypothesis refinement in collective percep-
tion. Especial attention is paid to a reliable identi-
fication of encountered geometries and a reduction
of local communication. Based on the experimental
results we make a conclusion about cognitive ca-

pabilities of individual microrobots and the whole 23x23x5mm. It uses the Megabitty board (223x2mm)
swarm. with Atmel AVR Mega 8 microcontroller, having 8 kB ROM
and 1 kB RAM [Megabitty, 2005. Besides perception,
1 Introduction the board supports 6-directional robot-robot and hosttob

communication, with the average communication radius 0-

many areas of research. Molecular-scale or nanotechnolo%ﬁ'omm (with special solution for deadlock reduction) and a
ical devices jumped from science-fiction novels to researchi@ximum of 300mm. The sensors are also used for prox-
papers. Even the today’s technology allows creating cotaple Imity sensing in navigation. Th_e communication subsystem
autonomous systems, such as robots, in the size of 1 rm for a large microrobotic swarm is described Kornienkoet
demonstrated by a progress in the I-Swarm prdjeSwarm,
2003 2007, the swarm of thousand such microrobots gets re
ality as well as come into the reality impressive appliaadio

f this technology. | I .
Ot IS fechno’ogy pections the problem of individual perception and the devel

The scaling down of the hardware influences almost al . X .
important parameters of microrobots, as e.g. running timeQPmMent of IR-perception system are described. Then, we dis-

communication distance and channel capacity, computgtion CUSS the nonlinearities of this perception and the algasth
power, movement and so on. However we ask ourselves aboff fe.ature extraction and surfaces classmcatlp n. The‘.‘.’@t
intelligence” of such a microrobot; is it also scaled dowa s sections are devoted to the problem of collective classifica
that we get finally some "stupid moving thingKornienko ~ @nd preliminary experiments.

et al, 2004 ? Since many years there exists in the sci-

entific literature the opinion that "artificial intelligeatfor 2 Problems of individual perception in

very small systems drifts towards “collective artificiataéh microrobotic swarms

ligence”, like those in social inseciBonabeatet al,, 1999. ) N )

For collective systems the "individual intelligence” getsne ~ AS mentioned before, the recognition of large objects by

pre-intelligence form. The questionighich minimal degree  Small microrobots is primarily performed in a collectiveywa
of individual intelligence does allow growing "collective- ~ However the prerequisite for collective perception is the s
telligence”? face identification and classification that is performedagte

In this paper we consider such an aspect of cognitive inMicrorobot. We name further this process as individual per-
telligence as perception. In a microrobotic swarm the sfze oc€ption. From the collective perception point of view the fo
a robot is essentially smaller than the size of most environlowing types of surfaces are required to be identified:
mental objects. The recognition of these objects is priyari 1) infinite-size surfaceffrom a robot's viewpoint), as huge
done in collective way. However here we encounter the samebjects or borders;

Miniaturization represents now a very important trend in

individual and collective perception in microrobotics.
The rest of paper is organized as follows. In the next two
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2) finite-size surface& microrobot has to calculate the visi- However the fusion of perception and communication using
ble size of a surface) which are classified, at least, intdlsma IR-devices does not find too many applications, perhaps be-

medium and large; cause of a high nonlinearity of IR-based perception and-avai
3) convex and concave corners ability of more appropriate solutions in the domain of usual
4) 2-side and 3-side concave surfaces robotics. Therefore the microrobotic domain of integrdied

5) one-surface/many-surfaces geometry solution (perception, communication, navigation) is more
Additionally, the microrobots have to be able to perform theless unexploited.

following activities: The IR-based perception consists on sending an IR radia-
1) detection of holes (gangways) in surfaces tion beam and receiving the reflected light. The intensity of
2) classification of the perceived surfaces into defined cassethis light contains information about the geometry of reflec
and providing a probability of correct classificatipn ing surface (primarily a distance between IR-receverfemit

3) recognition of robot's own position in relation to a corner and surface). As mentioned, the IR-based perception is
(left/right from a corner) or even its own slope to a surface. highly nonlinear. The most large influence on accuracy of
When each robot identifies the surface in its own sensind€ception exerts the resolution of the distance sensahneln

areal, further collective processing consists in fusirdiviia- enter of radiation ray, the intensity of IR radiation istitg
ual observations into many hypotheses and collectiveiiitent €St- Closely to the bounds of this ray, this intensity become

cation of most probable hypothesis about the observedlobje?r"’ldually degraded (Figure 1). The main component of a re-
(see also[Ye et al, 2007). lecting light consists of the energy of the central radiatio

Returning to the issue of individual perception, we identi-Stream. However low-intensity "secondary streams® spread

i S X o the reflecting light so that object’s edges and gaps between
fied the following implementation possibilities: objects get non-recognizable. With a poor resolution of dis

1) vision-basedway by e.g. using some small micro(faced)- tance sensor, small geometrical elements cannot be pedceiv

cameras, _ , , and so cannot be used as features for recognition. Therefore
2) reflection-basedway by using laser or infra-red light,

ultra-sound etc.;

3) wavelength-basedvay such as color sensing;

4) by usingspecificchemical, temperature, vibration, mag-

netic and so on sensors (we do not consider them here).
The vision-based way represents the most information in-

tensive mode. However its application in microrobotics hasRma!

several difficulties caused by very limited computatiores ¢ (@) (b)

pabilities and small memory. Algorithms of image process-

ing are difficult to be impllemented in this hardware. More—Figure 1:Perception by using the IR beaiR,.. recognition dis-
over due to very small size we prefer to use the same Serﬂénce,Dms, Oy distance/object resolutior(a) Thickness of radi-

sors for navigation (proximity sensing and obstacle detecziion beam and influence on the size measurengejNonlinearity
tion) and communication (robot-robot and host-robot) pur-in the identification of many-surfaces geometry.

poses as well. Finally, the geometrical features from deep i
ages are essentially more useful for collective perceptian . . .
egges and regionsyfrom camera’s grey—valuepimagpés. Thu£Or perception are swtable_only such IR-emitters that reave
the vision-based as well as wavelength-based ways, althou s small as possible opening angle of the beam. ,
they have found a large application in mini- and usual robot- Secondly, the accuracy of measurement depends on the dis-
ics, unfortunately are less useful here. The reflectioretas tance to a reflecting surfateln Figure 2(a) we demonstrate
perception uses the principle of sending and receiving-a sighis effect for the developed sensor system. Nonlinear-accu
nal, that can be also used for navigation and communicationfacy essentially influences the further recognition ofifess.
Considering different alternatives for reflection-  The reflecting light is also very sensitive to the color of re-
based perception we focus primar”y on laser, e|ectro.ﬂeCti0n ObjeCt. In Figure 2(a) we show the distance measur-
magnetic/inductive and infra-red systems.  Ultra-soundng values for white and gray objects. Further in experiraent
systems do not satisfy the size limitation. Though the lase¥e use only white color objects. The distance measuring also
provides the most exact measurement and long range, thef&pends on the object’s slope to a radiation ray. In Section 4
are several technical difficulties to use it with the mictwso ~ We discuss in detail these nonlinearities and suggest spme a
So, choosing between electro-magnetic/inductive andiinfr pProaches to absorb them.
red systems, we prefer the last ones due to their simplicity, Since we did not found a suitable integrated IR-solution
relative long working range and small energy consumption. for the microrobot, we decided to develop our own required
Generally, the IR-systems are recently dominant in sohardware and the corresponding processing algorithms. In
called small-distance-domain, as e.g. for communicaten b the next sections we describe them.
tween laptops, hand-held devices, remote control and @ther
The IR-solution is not new in robotic domain, see ¢kube, The dependence between reflecting light and distance is also
1994, [Suzukiet al, 1999. There are many approved nonlinear however this problem can be easily solved by a look-up
schemes or even industrial sensors for IR-communicatiortable or some approximation functions.
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Figure 2:(a) Dependency between ADC values of emitter voltage on phototransistthe@distance to reflecting object. Shown are values
for the white reflecting object (white paper) and the grey reflecting obggely (cardboard);(b) The used features of IR-diagrams relevant
for identifying the surfaced(c) The "thickness effect” of radiation beam by scanning a gap with differezat’s The distance between a
microrobot and the gap is 70 mm.

3 Development of the IR-based perception and the acceptable nonlinearity of sensing. Although the IR
system emitter is relatively large for the microrobot (8% mm), the

. . S specific construction of the chassis allows to hide it insie
The main requirement on the IR-perception is given by a30hot

small as possible opening angle of the radiation ray. Addi- Since IR-emitter and receiver are non-integrated and are

tionally, IR-emitter has to provide a high energy beam, yein placed side by side in the chassis, they have to be optically

gﬁl)eufg %?3&2‘13 sveoeIlTnag?:Sc;nfmgg?/é;&?\rmtctfj;and recew isolated. The optical isolation of the emitter allows alee r

The perception system of the microrobot is a part of IR-3Ucing the opening angle of the beam up to 16{lFeduces
also a perception distance). However the main problem here

system used for proximity sensing, obstacle detection, dis. ; S X L X .
tance measurement and communication, as well (Figure 38 [ Provide similar optical characteristics of isolatitim a
For the perception and objects recognition we use only th rge number of dlﬁgrent_mlcrorobots In a swarm (t‘? avoid

ater the problem of individual calibration of each microro
bot).

The principle of object recognition is the following. As
soon as a robot detects (by means of proximity sensors) an
obstacle in front of itself, it switches on the high power IR-
emitter and after 1ms delay (needed to get reliable reflgctin
light) measures voltage on the emitter of phototransiJioe
dependence between emitter voltage (after ADC) and the dis-
tance to an object is shown in Figure 2(a). Generally, this
sensor perceives distances up to 300 mm. However accuracy
(b) of measurement is different. For the pdistance-accuracy

where A is the accuracy, we obtained the following values:
Figure 3: (a) The megabitty board and the sensors board used in30'100 mm— A=1 mm, 100-150 mm- A=3-5 mm, 150-
thg prototy(p(g of a mic%orobzl)tb) The 6-directional sensor system 200 mMm— A=10-15 mm and after 200 mr- A=30-50
for directional communication and proximity Sensing_ mm. Therefore, the reasonable measuring distance fortObJeC

recognition lies within 30 mm-100 mm (with the accuracy of

distance measuring sensor, so that only this sensor is ful-2 mm).
ther considered. This sensor consists of a receiver with a Not only the resolution of the IR-sensor is important for
wide opening angle (used also for communication and proxscanning the objects. During scanning, a microrobot turns
imity sensing) and an emitter with as small as possible bearon some degrees. The more exact is this turning, the more
angle (used for perception and long-range communication)precise is the spatial resolution of sensor data. Micrarobo
We utilize the Si phototransistor TEFT4300 (6@eak sen- does not possess any devices allowing to measure positions
sitivity 950 nm) and the high power GaAs/GaAlAs emitter and orientation of chassis or wheels. Therefore there is onl
TSALG6100 (radiant intensity-80 mW/sr, 20, the real open- one way to rotate a robot, namely to turn the motors on and
ing angle is of 18-22 950 nm). This combination is a result after some delay turn them off. This delay has to be so cho-
of many experiments with different sensors (over 30 pairs)sen, that a robot rotates on some fixed degree. The motors
with integrated receiver/emitter like SFH9201, as well asare controlled through the H-bridge S19988, that can change
non-integrated ones. The TEFT4300-TSAL6100 pair demona polarity of supplying current. Choosing normal polariby f
strated the best spectral coupling, the longest sensitandis  one motor and inverse polarity for the second motor, the ro-
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Figure 4:Jasmine”, the prototype of the microrobot, scans different surfasd®red is the distance to surface@) Scanning of the finite-
size surface, object 48 mnf)) Scanning of the convex surfadg) Scanning of the 3-concave surfadd) The IR-diagram for finite-size
surface;(e) The IR-diagram for convex surfacg) The IR-diagram for 3-concave sides surface 0k95x 95 mm;

bot can rotate without changing its own position. In this wayminimal distance is measured as a perpendicular to a surface
we get relatively shift-errorless deep images. After somsést  This feature allows calculating the visible size of a susfag

we achieved the resolution and accuracy of rotatioiftdk-  using trigonometric relations;

ing into account different friction between weels/chassid 3. The left and right slopesdenoted as; and~, are use-
floor surface). ful for identifying the size-type of the surface (unlimitdsg,

In our experiments, when a robot detects an obstacle ofhedium, small). They are calculated as slopes of the approx-
the distance of 70 mmt 10 mm, it stops and then rotates jmation liness;, S,. The slope denotes also the "degree of
60° left. After that it scans the obstacle with the distancea distance decreasing” and enable us to identify the seetall
sensor by rotating 120right. During this scanning it writes  "convex surfaces” that cannot be recognized in the trigono-
the obtained values of distances each 1 degree into an integgyetrical way;

array. In this way we have 120 values describing a visible The position of the "center” of the IR-diagran®;

geometry ofhe encountered cbstace, In iure 1214 Wh eaton to he scanning anle (0" orgin i r e X

the scanned surface% s). Displacement of the center points to a slope between
' the front of robot and surface. In this way we can identify a

ion f d . directional orientation of the microrobot.
4 Features extraction from IR- eep images Now we formalize the nonlinearities mentioned in Sec-

After performing the first experiments, we faced the follow- tion 2 and present their impact on the corresponding festure
ing challenge: which features of the obtained IR-diagrams)  Nonlinear thicknessf the IR radiation ray and so differ-
are relevant for identifying the geometry of the surfaceg/? B ent distribution between high-energy beam and low-energy
analyzing the IR-diagrams in Figure 4 and 5, we find the fol-peam. The first effect of this nonlinearity consists in sprea
lowing features as representative and useful in the IR&asesdges (Figure 2(b)). This nonlinear effect can be absorbed
individual perception (Figure 2(b)): by calibration. The second effect is shown in Figure 2(c).
1. The anglex, which represents the scanning angle betweert scanning many-surfaces geometry (a gap between objects)
the first visible edge and the last visible edge of the surface a robot cannot reliable differentiate between 2-concave su
2. The peak |ntens|ty Of the d|agramnam Th|s Corresponds faceS and SurfaceS that belong to dlffel’ent ObjectS,

to the maximal intensity of reflecting light and, in turn, ket 2. Nonlinear measurement for small distanceAs known
minimal distancel between the surface and the microrobot.from other IR-distance measurement systems (€gprari

For the most types of surfaces (beside convex corners) thiand Siegwart, 2043 the maximal intensity of measurement
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Figure 5:IR-diagrams for different types of surfacess a distance to surfacega) "Infinite-size” surfaces with flat geometryb) Convex

round (external diameter 125 mm) surfade) Many-surfaces geometry {1convex corner 12260 mm and 2¢ concave corner 6095
mm), robot positioned 70 mm before the middle part.

lies in 10-25% before the front of IR-receiver, after that th tion. Now, based on the discussed features and nonliresgriti
intensity goes down (therefore small distances cannot lae mewe can briefly analyze the types of surfaces.

sured by these systems at all). Due to the specific restric- 1. Surfaces with flat geometry.The flat type of geometry
tion and the application of high-power GaAs/GaAlAs emit- is primarily characterized by only one peak value on the IR-
ter, we removed this effect. However the surfaces thatdie le diagram. Finite-size surfaces are also characterizedrgg la
then 40 mm away from a robot are represented only by valleft and right slopes and scanning angle< 120°, Fig-

ues 245-250. In this way, for close measurement ( 30 mmjre 4(a). The sizd.,;s can be calculated &l tan (a/2),

we get a flat horizontal diagram. Another undesired effectaking into account the "fuzzi edge” nonlinearity.

in small-average distances (40-70 mm) consists in a sponta- "Infinite-size” surfaces (Figure 5(a)) have small slopes of
neous decreasing of peak intensity (this is observablelin alR-diagrams andv ~ 120°. To absorb the nonlinearity of
IR-diagrams in Figures 4 and 5). We cannot identify the naslopes for small and large distance, we apply the polygonal
ture of this nonlinearity and assume multiple IR-reflecsias  approximation[Pitas, 1998 and use in calculation the rela-

a reason for them; tion v¢r1y/Sgrny i_nste.ad qf simpleyy,.;y, whereSy, ;y is t_he

3. Nonlinear accuracyof distance measurement. This re- length of approximating line. In the performed experiments
quires nonlinear correction (it is done as a look-up tabfe) othe probability of correct identification is very high andth
trigonometric relation in dependence of distance. HoweveRccuracy of size calculation is of 5 mm (15 mm in the worst
this nonlinearity is very "tricky”. Even when a robot starts case). ) )

a measurement in the "good” area of 40-120 mm, a part of 2. Surfaces with convex geometry.Surfaces with con-
geometry can lie over 150 or 200 mm away. The effect ofvex geometry possess also only one peak value, however
this nonlinearity appears in unreliable identification afny-  larger slopes then flat geometries. This type of geometry
surfaces geometry (Figure 5(c) "left to 1st. corner”); has to be identified before the calculation of size, which has

4. Nonlinear rotationof the robot. This can lead to different ngosrsgtsre' lrc]:otrrl]\llsexcizﬁerlhaerzg ggivséivﬁjrﬁlnéygﬁﬁca%];go(r;\i/ef(
left v, and right~,. slopes even for symmetric surfaces. The? Y- 9
most easiest solution here is to calibratand-, ; ure 4(b)), convex many-surface geometry (can be recognized
5. Nonlinearity in measuring convex surface%he identifi- only collect|vely)(F|gure 4(h). We Identiy this geomgtr

) Ulle by v(r13/S¢r0y in the IR-diagrams. The difference between
cation of all types of convex geometries is performechdy  them points to a position in relation to a corner (left to a cor

and~,. The difference between slopes for e.g. round objectger, right to a corner). The probability of correct identic
(Figure 5(b)), convex corners (Figure 4(b)) and finite-$iae  {jon of convex round geometry is very high, however convex
objects (Figure 4(a)) is small, moreover due to a nonlineagorers are often classified as flat geometry. One approach to
intensity diagram, these slopes change with distancess Thiygid this problem is the so-called "active exploratiorifr(s
problem has some basic character_and we hardly belief t_h e move towards the surface and scan again induces the ap-
with all nonlinearities of IR-perception we are able to +el pearance of a large "flat region” in the peak intensity which
able identify the type of convex surfaces. points to the flat type of geometry).

The main problem of these nonlinearities represents the ne- 3. Many-surfaces and concave geometries.Concave
cessity to maintain many look-up tables for correctiondsTh geometries manifest primarily as multiple peaks in IR-
in turn, is limited by a small memory of Atmel microcon- diagrams. Based on the number of peaks we can differenti-
troller. The assumption is that this problem can be solvedhte between 2-concave (concave corners) and 3-concage side
in collective way. We can reduce the accuracy of individ-geometry (Figure 4(c)). Concave many-surfaces geometries
ual recognition (so that to satisfy all hardware constgitil (Figure 4(b)) can be also classified by one robot. They have
such a degree which still allows a reliable collective retog one peak value, however multiple left or right slopes. Many-
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Figure 6: (a) Distributed architecture for collective observatiofly) Spatial distribution of the robots around the observed objéc};
Geometries for matching and objects classes.

surfaces geometry can also be composed from surfaces thaypotheses for the further fusion.
belong to different objects. Generally, concave geontrie )
can be identified with high reliability, however some fine-dif 5.1 Object model
ferentiation between them is not always possible. Given the limitations on the sensing capabilities of theotsp
4. Estimation of probability. Since the robot cannot reli- object classes can only be defined in terms of their geome-
able classify the type of surfaces, it calculates a proltglof tries, as mentioned in Section 4. Figure 6(c) shows the 2D
correct classification. The calculationis doneinthefollly  geometries of the four object classes which will be used sub-
way. We measure the possible valueswid, v;,.1) /S¢3, sequently. Once robots are situated around the object, they
Pinma and estimatd.,,;; for all types of surfaces. The robot can estimate the local properties of the object as seen from
uses last square metrics to calculate the relation betvwesen ttheir current positions callediewpoints The actual mea-
measured values and these presaved types. For collective pgurement obtained from a viewpoincan be noted aS(v);
ception a robot sends all possible classifications thattteve S : V' +— featurevector and represents the output of the
probability over 30%. distance sensors. Given an object class, it is possible-to es
Through the presented features of the IR-deep image weablish the expected sensor outputs for a number of views.
tried to classify several surfaces and to identify the di@és A number of viewpointm{fi for each object clas; are
tion probability as well, as base steps or components reduir chosen, along a trajectory situated in the center of the mea-
for the individual perception. surement domain, and noted @ = (vX+). The corre-
sponding expected measurements for objects of dlaswe

5 CoIIe.ctlve_ Percepthn S S (0%) = (S (vf) S (v’i@i)). Therefore, the ob-
The described in the previous sections individual percep- v

tion provides the sensor input for the collective perceptio j€ct model for a clas&; incorporates an ordered sequence of
The approach for collective perception presented here protiews for differentsuccessivpositions around objects of that
poses that each robdalks to its neighbors to exchange class. The starting position is arbitrary: only the ordgris
information about the surrounded object. In this task we'€elevant. The dlrec_tlon_— clockwise or counterclockwise —
limit ourselves only to the problem afollective classifica- can be chosen arbitrarily, but must be the same for all object
tion [Pradier, 200k The robot possesses the objects modelgnodels. , _ _ _
and have only to order the collective sensor input to one of Additionally, object models include information about the
the presaved model. reachab[llty of d|ffer¢nt viewpoints, tqklr]g into accoumdth
The distributed architecture for collective perception is9eometrical constraints and the limitations imposed by the
shown in Figure 6(a). There is no privileged agent with acommunication capabilities of the robots. It is noted as
special role: all robots perform the same operations. The su Wi = <1];{,1}£<>‘ vfi reachable from}jKi } Fi-
gested method is homogeneous, i.e. all robots act the sa

: "Mally, the corresponding distances between viewpoints in
and there is no need for a leader. Due to the homogeneoys K 5re added to the object model,ds : TR x T — R.

archnecture_the approach is robqst, scal_able, MOTEOWRr N€  Thea get of all canonical measurements — corresponding to
robots can join the team dynamically without any need sgtg of ghservable features, callasbects— in the model
readjust any task assignment. Figure 6(b) shows how robots K ) o
are deployed during collective observation. There are twdS notedA = {S (Ui J)} and its cardinality can be re-
possible implementations for the propagation of hypotkiese duced by clustering the expected measurements. In that
a single agent collects the information needed to identify a case, a sequence of canonical views could match several
object by moving around it and performing the sensing oper{identity, position) pairs.

ations; a single agent acquires local evidences and prigsaga The goal of collective classification in a swarm of robots is

38



to estimate that clags; the object being observed belongs to. mass to a set including both.

Whenn,. robots are situated in an area surrounding the object The probability mass assignmerftinction associates a
(measurement domain) in positioas, . . . , w,,., they are or-  probability mass to the sets in the power-88tof O; it is
dered implicitly depending on their position around thesgbj therefore a functiomn : 2° — R verifying the following
as the perimeter of the latter is explored in a given trigoedm  propertiesm () = 0,0 < m(X) < 1, > e m(z) = 1.
ric direction. Given these positions, the robots will measu The subset§z;} of © such thatm (x;) > 0 are calledfo-

(S(w1),...,S (wn,)). The proposed collaborative classifi- cal elementsthe union of those subsets is termeate of the
cation method will try to estimate the corresponding canoni probability assignmenta.
cal viewpoints(vf(g), .. ,vf(;; )) given the above measure- Dempster’s orthogonal sum. Two different sources

of information will yield different mass distributions;
b_and mo. Dempster'srule of combination or orthogo-
nal sum can combine them if they are relative to the
same FODO, according tom = mj; & ma, m(X) =

ments; the end result, namely the cl&sthe object belongs
to, is implicit. This means that not only the class of the o
ject, but also the relative positioning of each robot can be

obtained. . N

Without any other a-priori information, and based only on Lxinx,=x M1 (X1) ma (XQ)'lK is & normalization term
the features observed by a robot, the latter can already-gen&jefined ask = . which
ate an hypothesis regarding its current viewpoint, andiawnpl 1= % nx,—p M1 (X1) m2 (Xa2)

itly which object it is observing, if the matched view is only normalizes the new probability masses so that their sum
present in that object model. If the observed features matci$ still unity. It can be seen as a measure of the degree
closely the features corresponding to a view that is unique tof conflict between the two sources of information. When
an object class, the latter can be retained as a likely hgsath > x, ~x,—p ™1 (X1) m2 (X2) = 1, the information is com-

for the whole object. pletely inconsistent and it is impossible to integrate he t
orthogonal sum is then undefined.
5.2 Hypotheses fusion Hypothesis refinement. General, non-basic hypotheses

: , . L are notedH'v* = {(ay,...)|ar € A}. It is important to

By observing the object from a given position, a robot can’ = thata,, could {c(or]Fespyndk o tge output fprom several

gﬂgugﬁntgrgg;?;?rl{eaﬁ?Cclgggot;heez?&?s;i;allg tg]'s.lpﬁeqoqanonical viewpoints. The set of all possible hypotheses is
9 ) gs fo. "Hoted H. Clearly the sequences of canonical measurements

formation obtained from different measurements should b%an only correspond to valid view sequences in some object

fused via exchange of hypotheses between different robot L , : .
Amongst the many fusion processes introduced in the Iiter?mdel’ Impossible sequences, such as those having views tha

ature[Abidi and Gonalez, 1992; Hall, 1992 Klein, 1099  cannotbelong to the same object, will not be generated.

the Dempster-Shafer (Dé) form,alis[rH,utchin,son aﬁd Kak, In general’ a r:)bot ,\,Nlll_propagate Its current behefs_about

1997 was retained because it does not require a-priori clasg}etr?gjgg.tggtth_e il?i?i);t” ne'%2[%())”rb%;‘;gotth?éoig%maﬁ%ﬂgt

probabilities and is able to capture the notion of uncetyain t th J - byT X the followina:

The often-cited drawback of the DS method is that its com-sf)nll fefrtehcelvmg_ robo gzgacgﬁss € following:

.pllexity grows t_axponentially with the cardinality of the pri dz,tlgnge toetﬁ;ex)lgg?vrv%oselr;ess?é e is being recdiyed

itive hypothesis set. However, due to the way hypotheses its own beliefs about the observgi]n art %f theugb'ect

are generated from the object models, the complexity can be (HO) 9gp !

pr(B/en to be gﬁ'yfﬂoqg&{s?um_zinsqr} and Ka[%g} 9f92 1976 '7|7:Lth De.mpster-Shafer combination rule for two hy-
empster-Shafer evidential reasoniSfpafer, : ; : :

is an extension to Bayesian inference that allows each taour(potheSIS sezt:s n- a conlﬁlt)lble(};r?me of discemment

of information to contribute only to the evidence it has gath ,, (7, ) = == Mn )M is  slightly

ered, without overcommitting or trying to make hasty cheice L= mnm,— m (Hi) m (Hj)

based on incomplete information. The Dempster-Shafer apmodified to use the information about the relative

proach allows to express the lack of information by sepagati positions of the robots as follows. Given an hy-

belief for a proposition from its mere plausibility, assig;m  pothesis set H", the refined hypotheses will be

probability masses to sets of propositions in such a way that/"+! = {U(h@a)lhe H",ac A,h@ac H},

the latter is free to move to any subset. where the last condition means that the new view se-
Probability mass assignment. Information sources can quence must be possible for at least one object class.

distribute probability masses among subset®pivhere®  The operation® : H x A ~—— H is defined as

is the set of all statements about the possible outcomes ofla ® « = (hl, PR £ SO oy ,x), where the

random experiment. It is represented by tteme of dis- viewsa,,,,...,a,, are a “filler”, andz is the view that is

cernmeni{FOD). The FOD is a set of mutually exclusive and to be added to the sequence. An additional restriction can
exhaustive statements namsdgletons When a probability be imposed to theb operation, namely that the filler has
mass is assigned to a set of singletons, it is free to moveyto arto be no longer than some arbitrary number of viewpoints
subset. Consequently, assignment of probability ma$3 to k£ with p < k in the above expression. The output of the
represents ignorance, since the probability mass can move functionU (k) is defined as the shortest hypothesis equivalent
any element oB. When a source of evidence cannot differ- to h, that is, an hypothesis that corresponds to the same
entiate between two propositions, it can assign a prolabili (object, offset) matches.
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Algorithm 1 Hypothesis refinement (pseudocode). can be encoded in at moibg, |K;|] + [2 log, max; ”{/ﬂ

functionnew hypotheses(incomingnessage) bits. The amount of information transmitted far hy-
in_hypotheses = decode(incomingessage) pothesis is directly proportional to the latter, resultimg
new hypotheses %} k ([logy =, nX¢] + cpm) bits normally, wherer,,,, is the
for hypothesis in ichypotheseslo amount of bits needed to encode the probability mass itself.

for feature in initialfeatureestimateslo
if existssuccessor(hypothesis, feature)
for succ in successors(hypothesis, feature)
pm = hypothesis.pm * feature.probability *
distancefactor(incomingmessage.distance, succ.dist)
if succ not in newhypotheses
add succ to nevinypotheses with p.m. pm
else
add pm to the probability mass of succ in naypotheses

end endfor endif endfor endfor Linear encoding. If a simple linear, fixed-point scheme
trim-hypotheses(nevaypotheses) is employed, and the resolution is chosen to be a fraction of

totalpm = sum of all prob. masses in ndwpotheses - P & ;
for hypothesis in nevhypotheses the average probability mass, as many aslog, (£ )] bits

; _ would be needed. For areasonable value ef 10 andny =
rgﬁeg;hee;ﬁ%gﬁets(g[?m endfor 60, a fixed-point encoding would requiféog, (10 x 60)] =
endfunction 10 bits per probability mass.
Dynamic range compression.ITU-T G.711[ITU, 1984
introduces twacompressioralgorithms based on the follow-

The new probability mass assignment is calculated witHng key idea: the signal is compressed according to a log-
m' (h?H) = et M1 (W) ma (2) € (dpres dmodet)s arithmic expression. 'll'hle simplest onejaw, applies t'he
nily m/(hzﬂrl)l N ) transformy = sign (x) W,—l < x < 1 wherep is
m (h) = S () where an additional normaliza- - p,5sen according to the desired output resolution; for§ bit
tion is required due to the usage of the distance termu = 255. The similarity with probability mass encoding is
& (dpre,dmoder)-  The latter reuses the known distancesstriking. Indeed, based on thelaw expression, probability
between the last canonical viewpoint bf and the view- values can be encoded usifitim) = on In(1+(2"—1)m) o

. . . nln(2)
point that is chosen to match ¢ is taken as the normal - that the encoded probability mass fitsrirbits, and the dis-
pre —%model

T 1 22 tortion ratio is minimal. Figure 7(a) shows the minimal rep-
distribution¢ (dpm’d’f“’d_el) = Vrydmoda modet resentable probability mass for different encoding lesgth
whose standard deviation depends on the expected distancey nqhesis set compression.Regardless of the method
to cope with the increasing inaccuracy as the latter growsyge 1o encode the hypothesis set, the cost, in terms of amoun
in practice, valu_es arou_m;l ~ 0.5 yle_ld good results. The ot jrtormation to be transmitted, grows with the number of
overall process is described in Algorithm 1. hypotheses propagated. It is thus desirable to minimize the
. . . cardinality of the hypothesis set before transmission.sThi
5.3 Hypothesis encoding and compression can be performed either liyimming (discarding hypotheses

Once a number of robots have acquired information about th&#hose probability mass is comparatively or in absolute germ
object they are observing, hypotheses can be refined througtnall) or by coalescing(grouping several hypotheses into
exchanges. The associated communication cost is propofNe corresponding to the union of the corresponding preposi
tional to the volume of data being communicated. It is pos{ions).
sible to bound the cost of the communication associated to Trimming. The cardinality of an hypothesis set can be re-
collective classification as follows. It can be seen thatehe duced by simply ignoring unlikely hypotheses. The simplest
can only be at mosty =), n{f hypotheses being consid- way is retaining only hypotheses whose probability mass is
ered at any point in time, representing the number of differhigher than some absolute threshold. Figure 7(b) shows the
entiable object identities and poses. The information aboucardinality of the hypothesis set when the latter is trimmed
the hypothesis to be transmitted can be encoded either by egerding to different absolute thresholds. The hypothesis ¢
plicit encoding on a per-hypothesis basis, or by factoring o also be made smaller by removing all the hypotheses whose
information common to multiple hypotheses and using im-probability mass is below a threshold relative to the most
plicit information (like ordering) across message fragtaen likely hypothesis, i.e. those that satigfy: < r x max; pm;,
Per-hypothesis encoding. A unique identifier for each Wherer is the relative threshold angin; are the probabil-
hypothesis can be encoded using Olﬁlygg S nf] bits. ity masses. The performance of this method is illustrated in
Due to memory constraints, hypotheses can be encoded dfigure 7(c).
ternatively ash = (i,1,0), whereK; is an object model] Coalescing. It is possible to further minimize the cost of
is the number of aspects of the hypothesis arigl the off-  transmitting an hypothesis set by transferring only some hy
set in the canonical views sequence. Thus, each hypothegi®theses. Those not specified explicitly can be coalested in

Implicit encoding. Only hypothesis selectaran be sent,
indicating which hypotheses are actually transmitted asel a
guence of probability masses. It consists9f bits: then-th
bit specifies if the probability mass of the hypothesis whose
identifier isn is attached to the message. In order to trans-
mit k& hypothese$ _, nki 4 kcpm, bits are needed. Therefore
this encoding approach is only practical whep> 1, that is,
when a large number of probability masses are to be transmit-
ted, so the overhead is amortized.
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Figure 7:(a) Minimal representable probability mass using dynamic range compres&pNumber of hypotheses with reduction based on
absolute threshold(c) Number of hypotheses with reduction based on relative threshold.

a more general hypothesis carrying the sum of the probabil- Feature Distances Probability masses
ity masses using:(X) = >,y m(Y). This scheme also Flat Concv. M | Flat Concv. M

makes the overall communication more robust, since it can beConca-| 1020 543 1096 0.26 0.49 0.24
interrupted without adverse consequences at any poimgluri  Vity 765 872 1359 041 0.36 0.23

the transmission of the probability masses. 664 764 12511 042 036 0.22

Termination. When information fusion is successful, the 1275 861 995| 0.27 0.39 0.34
whole group of robots will converge as a whole towards a 702 215 1105/ 0.20 0.67 0.13
common decision regarding the nature of the object. The final 1020 1020 1418 0.37 037 0.26

decision of each robot can be taken as the hypothesis with the Flat 258 812 1864 0.69 0.22 0.10
highest associated probability mass. It is therefore rszegs  surface| 259 954 1846/ 0.71 0.19 0.10
to know when a given hypothesis set can be considered as 510 872 1862/ 0.54 031 0.15
"refined enough”. The key idea is that hypothesis refinement M 1785 1785 1644 0.32 0.32 0.25
can be considered finished when enough evidence has beer¢onca- | 1530 1343 789| 0.25 0.28 0.48
collected, i.e. the ambiguity of a set of hypotheses is large  vity 1436 1288 1190 0.30 0.34 0.36

than a given thresholdHutchinson and Kak, 1992iefines 1444 1331 895| 0.27 0.29 0.44
the ambiguity of an hypothesis set, closely related to time co 1530 1376 1053 0.28 0.31 0.41
cept of entropy in information theory, as followst (2) = 1624 1570 1312 0.31 0.32 0.38
_ _ 2eenm(H) : e 1457 1294 861| 0.26 0.29 0.44

K2 peqp (9)logp (), p(0) = =*<fr~—. This defini 1275 1061 559| 0.22 027 051

tion takes into account the fact that an hypothesis might cor
respond to several individual statements or singletonzarit - ) ) )
be seen than the ambiguity measure of the probability mas&able 1: Probability mass assignments according to Jasnine
assignmen{() —> 1}, i.e. complete ignorance, corresponds Scan data.

to the entropy of an equiprobable distribution ojf possi-

ble outcomes. the belief of a robot after its initial estimation, which iased

L . . . only on the information obtained via distance sensors, &d a
6 Preliminary experiments and discussion ter reception of messages from other robots. The beliebgalu

Preliminary experiments have been performed with 10 proconverge quickly towards the correct value.

totypes of the microrobots Jasmine in the field of individual ~Figure 8(b) illustrates the evolution of robots placed abu
and collective perception. In experiments we measured tha@ “T shaped” object. The curves “correct”, “wrong class” and
feature extraction and surface’s recognition, as destribe “wrong pose” indicate respectively the fraction of robdtatt
Section 4 and collective hypothesis refinement, as destribetook the correct decision, those which made a mistake in the
in Section 5. The robots are placed in the situations like¢ho class of the object, and finally those which were able to deter
depicted in Figures 4, 5. Table 1 contains the probabilitgsna mine the class of the object correctly but could not estimate
assignments for the three stored patterns “flat surfaceh-‘c their relative positions accurately. The graphs corredpda

cave area” and “M concavity”, represented in Figure 6 (c).an average value for several successful processes.

The calculated probabilities from experimental scans confi Figure 8(c) shows the success rate for different conver-
the results predicted by the simulation. The collectivescla gence rates. It can be interpreted as follows: a@,ﬁé, ﬁ)
sification process was tested in hybrid approach, where thi the curve means that in percent of the runs the rate of
real scan data are taken from the microrobots, however theorrect decisions remained stablexapercent or higher af-
hypothesis fusion was performed in the host computer. Théer thirty message exchanges. We can therefore see that in
reason is a lack of bidirectional communication in the proto around 66% of the processes all robots took the right deci-
types, that is currently under improvement. Figure 8(ajwsho sion regarding the object identity and their relative posit
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Figure 8: (a) Evolution of the classifying estimations of a robot. The belief value evolvieasbot obtains information from its peers,
while observing an object of class “T shape(b) Convergence in successful collective classification processegcjTduccess rate for
different convergence thresholds.

(the rate for a convergence equals to or greater than 80% efHutchinson and Kak, 1992S. A. Hutchinson and A. C. Kak. Mul-

ceeds 82%), more than one half of the robots reached correct tisensor strategies using dempster-shafer belief accumulation. In

decisions regarding both object identity and position inrov ~ Data fusion in robotics and machine intelligencehapter 4,

90% of the classification operations. The group of microro- Pages 165-209. Academic Press Professional, Inc., 1992.

bots converged towards a wrong decision regarding the iderit-Swarm, 2003 20017 I-Swarm. I-Swarm: Intelligent Small World

tity of the object in around 5% of the classification processe = Autonomous Robots for Micro-manipulation, 6th Framework

Around 10% of the classification processes end up with less Programme Project No FP6-2002-IST-European Communi-

than one robot out of ten with correct identity but wrong posi  ties, 2003-2007.

tional decisions. Around 15% of the classification processel[ITU, 1989 ITU. G.711 pulse code modulation (pcm) of voice fre-

failed to converge to either a correct decision within a 20% quencies. nov 1988.

rate or to an erroneous decision. [Klein, 1999 Lawrence A. Klein. Sensor and Data Fusion Con-
Summary. In this paper we addressed the specific prob- cepts and ApplicationsSociety of Photo-Optical Instrumentation

lem of perception in a swarm of microrobots. We investigated Engineers (SPIE), 1999.

the process of individual perception by designing and imple [korienkoet al, 2004 S. Kornienko, O. Kornienko, and P. Levi.

menting the IR sensory system. We researched also the prob- Generation of desired emergent behavior in swarm of micro-

lems related to IR-based perception and developed/tdsted t  robots. InProc. of the 16th European Conf. on Al (ECAI 2004),

hardware and the corresponding algorithms allowing sgnsin  Valencia, Spain2004.

and classifying the geometry of the surfaces. The collectiv [kornienkoet al, 2009 S. Kornienko, O. Kornienko, and P. Levi.
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using a formalism based on the Dempster-Shafer evidential the IJCAI 2005, UK2005.
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(overb20 tim)es;] in compﬁ\rison withbthe rlrlwiddle-size Ieague[Megalbitty 2005 Megabitty. see

in RoboCup), however the microrobot still possesses cogni- T ; :

tive features. However we also observe that the smaller the .http.//groups.)./ahoo.-C(-)m/group/megabltt.y/. 2005'_
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Abstract

This paper demonstrates the use of Multi Agent
Systems (MAS) to model a real-time dynamic
system. The specific goal here is to diagnose faults
in an analogue electrical circuit. This modelling
represents a layer from the seven layers
architecture described on [Zaki et al, 2005]. The
design is described and the implementation is
carried using the Jade — Multi Agent toolkit.

1

An analogue electrical circuit is an example of a dynamic
continuous non-linear and time invariant system. Certain
faults diagnosis approaches can fit better for different types
of systems. For instance, while a rule-based system and
Modal-Based Diagnosis MBD are suitable for a system
involving complicated interactions and whose outcomes are
hard to predict, they are not yet effective for a real-time
continuous system [Sampth, 1995].

Introduction

This paper shows that how the type of system has impact on
the choice of the modelling techniques and that modelling is
a crucial phase when building diagnostic tasks. It also
demonstrates the effective use of Bond Graphs to model
dynamic systems. Similarities and commonality is drawn
between Bond graphs and agents. The seven diagnostic
layers, where each layer is represented by one or more
dedicated software agents, are revisited. Emphasis,
however, is on two of the middle layers: modelling and
controlling. Many of the design issues for those two layers
are explained, such as threading and behaviours, transferring
effort and flow between agents, agents’ relationships,
controlling the agents, and the automatic creation of the
model.

1.1 Models and Modelling

The characteristics of the system will impose on the
modelling techniques used, for example Automata and
Petri-Nets are suitable for discrete event systems (known as
Active Systems), but not for a dynamic continuous systems.
In this paper a MAS is used to model a real-time dynamic
system, an analogue electrical circuit.
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Modelling is a crucial phase when building diagnostic tasks
[Console, 2001]. Modelling may be accomplished at
different level of abstraction. Models can be classified into
two main categories quantitative models (sometimes
referred to as analytical models) and qualitative model
(sometimes referred to as conceptual models). MAS provide
a suitable suite to utilize both types of modelling.

1.2 Faults and Failure

Component life-time can rarely be estimated accurately.
Hardware can be viewed at three different levels:
component level, board level, and system level (i.e.
detecting the replicable unit). Failure in one of the
components or broken links (wires) can lead to an open-
circuit or a short circuit. The fault diagnostic process is
broken into three steps: 1) fault detection, 2) fault isolation
and 3) fault diagnosis. In some cases the fault diagnosis
includes fault recovery. While detecting faults can be
accomplished by a real-time inspection of the system,
isolation and diagnosis requires a reasoning mechanism.
Faults can be classified into different classes: 1) based on
the time taking to occur (abrupt and incipient faults), 2)
based on the period of time they occur (intermittent and
permanent faults), 3) based on the number of faults (single
and multiple faults), and 4) based on failure coverage
(complete and partial). MAS, intuitively, can cope with
most type of faults.

1.3 Diagnostic Techniques

Diagnostic tasks are mostly offered by the two
communities; FDI (Fault Detection and Isolation) and DX
(Based on Intelligent techniques). Both methods use an
explicit model, which is known as model-based diagnosis
(MBD) to predict normal behaviour. The process
(algorithms) detects faults from inconsistencies between the
observed (from real physical system) and the predicted
behaviour by the model. Then they interlink a set of
components with the detected inconsistencies to isolate the
faults. But techniques and hypothesis are different. FDI uses
Analytical Redundancy to expresses a constraint among
possible observations that hold when the system is working
correctly. The Analytical Redundancy builds quantitative



mathematical models. Quantitative models require
knowledge of differential equations, transfer functions,
signals and pattern estimation. = The DX approach uses
consistency-based logic and logical inference to determine
the symptoms, then determines the minimal conflicts, and
hence determines the minimal diagnoses. The DX approach
builds qualitative models for the systems. There were
common agreements among researchers from both
communities that a bridge can be made between the
techniques. Studies showed that major parts of the two
theories fits into a common framework. As a result,
technology such that OBD II (on-board diagnosis), which
make use of both quantitative and qualitative modelling
[Struss, 2001].

Because of the nature of the diagnostic tasks — uncertainty
and incomplete data probabilistic and fuzzy methods may be
used. Incipient faults, in particular may require the use of
probabilistic models.

2 Related Work - Diagnosis Using Agents

A multi agent system was developed to monitor industrial
turbine start-up sequences. It was also used for data
interpretation in electrical plant monitoring [Mangina et al.,
2001; Hossack et al., 2003]. Zeus (an agent building toolkit
from BT) was used.

Schroeder [Schroeder, 1998] proposed an architecture for
autonomous model-based diagnosis agents. He developed a
logic programming approach for model-based diagnosis and
introduced strategies to deal with more complex diagnosis
problems, and then embedded the diagnosis framework into
the agent architecture of agents. Two algorithms were
developed; a bottom-up algorithm to remove contradiction
from extended logic programs and top-down evaluation of
extended logic programs. PVM-Prolog was used to
implement the algorithms. Both algorithms are evaluated in
the circuit domain including some of the ISCASS85
benchmark circuits. Many diagnosis problems were
modelled such as: digital circuits, traffic control, and
integrity checking of a chemical database, alarm-correlation
in cellular phone networks, diagnosis of an automatic mirror
furnace, and diagnosis of communication protocols.

Multi-Agents-based Diagnostic Data Acquisition (MAGIC)
project was funded by the European Commission [K&éppen-
Selige et al., 2001]. One of the main goals of MAGIC is the
on-line detection and diagnosis of incipient or slowly
developing faults in complex systems. The MAGIC basic
architecture was based on multi-level approach. The idea is
that the task of the complex embedded system's diagnosis
and operator support is distributed over a number of
intelligent agents, which perform their individual tasks
nearly autonomously and communicate via the MAGIC
architecture. The tasks of the six levels are as follows:
process specification, information acquisition, diagnosis,
diagnosis monitoring, decision, and operator support.
Because agents allow you to model the device, the process
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and the topologies in one shot, a MAS approach is adopted
to perform diagnostic tasks. The strengths and advantages of
MAS architecture allow us to integrate different diagnosis
tools and techniques. It would also support heterogeneous
distributed systems. It was suggested to separate between
different tasks of diagnostics using what it was called the
Seven Diagnostic layers [Zaki et al., 05].

The work in this paper is advancements in the state of the
art in the area of fault diagnosis. The idea is new and the
approach is interesting. No similar work was reported
before.

3 Agents and Bond Graphs

Bond Graphs are widely used for modelling dynamic
systems [Mosterman and Biswas, 1998]. Similarities and
commonality can be drawn between Bond Graphs and
agents

Bond Graphs is a modelling language and it is domain
independent. The Bond is the connection to enable Energy
transfer among components. Two components A and B will
have link between them with two associated values e (effort)
and f (flow). Bond Graphs force you to make explicit
assumptions about the physical system and it is based on
small number of primitives: dissipative elements, energy
storage elements, source elements and junctions. Physical
system can be mechanics, electricity, hydraulic and
thermodynamic.

In an electrical system, the effort e is the voltage and the
flow is the current. While in a mechanical system, the effort
e is force and the flow is velocity. The product of the effort
and the flow is power and integration of power is the energy.
The state of the system is determined by the energy transfer
between components, more accurately, the rate on energy
transfer.

For passive 1-port elements (energy storage elements);
resistor R, e =R - f, e (1) = R (t) - f(¢). For capacitor C, e =
1/C [ f dt. Other 1-ports are Effort Source (Se) and Flow
Source (Sf). To connect elements together, for 2-ports,
transformers for examples, e2 = (b/a) - el and f1 = (b/a) - {2.
This leads to el - f1 = (a/b) - e2 (b/a) - f2 =2 - f2.

For 3- ports there are 1-junction (Common flow junction),
which enforces Kirchhoff’s voltage law, and O-junction
(Common effort junction), which enforces Kirchhoff’s
current law. The Common flow junction is equivalent of
series junction where there is no loss of energy at junction
and net power in is equal to net power out, all flows is equal
to 0. The Common effort junction is equivalent of parallel
junction where there is no loss of energy at junction and net
power in is equal to net power out and all efforts is equal to
0. Figure 1 shows Bond Graph for a circuit consists of
battery, capacitor and resistor.



Causality relations are usually used with Bond Graphs to aid
the generation of equations among system variables. As
described above a Bond Graph considers variables as
interacting variables pairs. The cause effect relation
considers the effort as push and the flow as response. There
are various types of causality relation these are: necessary
causality, restricted causality, integral causality, derivative
causality, and arbitrary causality.

C
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Se_Vv N ¢ % N\ Ro

!

Figure 1: Bond Graph representation for a simple
circuit

All of these causal relations are based on algebraic relations.
Figure 2 shows Bond graph with causality relationship for
electrical circuit with voltage source, inductor and resistor
(R1) in series connected with capacitor and resistor (R2) in
parallel. In the Bond Graph diagram, the relation between
Se, L, and R1 is restricted causality. The relation between
1, C, and R2 is also restricted causality.
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Figure 2: Bond Graph with causality relations for
electrical circuit
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Agents are a suitable implementation environment for Bond
Graphs where many of the features and concepts in a Bond
Graph can be adopted easily by agents. For example
messages exchange between agents can be viewed as the
energy transfer (the arrow) between the elements on the
electric circuit. Direct mapping can be drawn between the
agents and the nodes on the electric circuit. Causality
relations can be also represented on agents as it will be
described in the next section.

4 Overall Architecture

The overall architecture is composed of 7 layers, called the
Seven Diagnostic layers. Each layer of the Seven Diagnostic
layers receives data and depends on the lower layer.
Practically each layer can be represented by one or more
dedicated software agents. The Seven Diagnostic layers
depict both; hardware and software.

Decision Explain
Agent Agent
6
Diagnostic
Diagnostic Tools Agents
Control NN, GA,
Agent Rules,
Statistics and
Probabilities
5 o
Components
Agents
Resistor, Transform —
capacitor, Agent
Battery,
4 wires, efc...

Figure 3: The middle three levels — the core

At the first level is the physical hardware: board, device or
systems (e.g. a dynamic electrical circuit contains a battery
and two resistors). The second level includes both hardware
and software for data acquisition purpose, reading on-line
real-time data from the device. This would include analogue
to digital conversion. The third level - the communication
level — is responsible for preparing, formatting and
packetisation of the data to be ready for the diagnostic
engine at higher levels. Levels 4, 5 and 6 are the core of this



research and they represent the diagnostic engine. Figure 3
shows these three levels in more details.

At the fourth level, Figure 3, the modelling level, we try to
use the dynamistic of the agents to be used as a modelling
language for dynamic systems. A qualitative Model-based
diagnosis is implemented using the agent's architecture.
Bond Graphs are used for modelling dynamic systems.
Similarity and commonality was drawn between Bond
Graphs and Agents in the previous section. At this level
also, a Transform agent will be used to transform
quantitative models (developed by third software package,
e.g. Matlab) into the qualitative Model-based diagnosis
agents. However, mathematical models will be still used
inside the agents. At the fifth level, the diagnostic engine
level, there is the main agent which monitors and controls
the overall mechanism of diagnostic tasks. At this level
there are also agents that host different tools, such as an
agent for neural networks (NNs) and other for genetic
algorithms (GAs) and etc.

At the sixth level, there are two agents. One agent is to
make the final decision and select among different
hypothesis. The other agent is to produce a suitable
explanation to the end-user. At the higher level, there is a
user friendly interface to interact with the user

5 Design and Implementation Issues

In the rest of this paper the focus is on some design and
implementation issues for levels 4 and 5. Figure 4 shows the
two layers out of the complete architecture: the lower layer,
in Figure 4, is the modelling layer.

Diagnostic
Control
Agent

Components
Agents
Resistor,
capacitor,
Battery,
wires, etc...

Figure 4: Diagnostic layers architecture

The dynamics of the agents allow to perform the modelling.
A qualitative model based diagnosis in implemented using
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the agent’s platform. The upper layer, in Figure 4, is the
diagnostic engine level - one agent which monitors and
controls the overall mechanism of diagnostic tasks.

For each single component on the electrical circuit there is
an agent to represent it and monitor it. In a real-time each
agent reads two values; current and voltage (flow and
effort), at different nodes on the electrical circuit. These
nodes of measurements are pre-selected near the monitored
components. The real-time observed values are compared
with the expected values which are stored inside the agent.
Expected values are taken from the numerical model that
was already built by one of the electronics design tools, e.g.
PSpice and it was transformed to the agents by the
Transform agent.

Each dual reading (the energy transfer which is discussed in
the previous sections) determines the status of the
component. The status of the component can be either:
GOOD, FAULTY, DEGRADING, UNKNOWN, and
UPNORMAL. The status of the components are different
form the actual status of the agents, Jade (agent
toolkit/library) provides the following status for the agents:
INITIATED (agent build, not registered, and has neither
name nor address), ACTIVE (registered, has a regular name
and address), SUSPENDED (agent is currently stopped, no
agent behaviour is being executed, internal thread of agent
is suspended), WAITING (agent is blocked, waiting for
something, its internal thread is sleeping, wake up when
message arrive), TRANSIT (mobile agent is migrating to
new location), and DELETED (agent is definitely dead)

There is no direct mapping between the status of the
components and the status of the agents. This means that
when the component is FAULTY it doesn’t necessarily
mean that the agent is DELETED.

The dual readings allow capturing the open and short circuit
failures on the electrical circuit. Here we assume that the
data acquisition software is embedded into the agent itself.
In the complete architecture, this would take place at layers
1 and 2. Values should be read at milliseconds intervals.
Current sensors should be fitted into the circuit. The
accuracy of data read depends on the efficiency of the
hardware and software used for data acquisition. A good
data acquisition tool should have precision timing and high-
speed sample buffer. There are two modes for data logging
from the electrical circuit: stream and burst. Software timed
acquisition (also called command/response) allow the PC to
send a command to the device and it responds with data in
either modes; stream or burst. In burst mode, for a typical
device, up to 1,024 samples per channel will be acquired
and then stored in a buffer. In stream mode, 300
samples/second per channel will be acquired and then stored
in the buffer. Simultaneously the data is transferred from the
device buffer to the PC buffer. The device should also have
reasonable numbers of analogue and digital I/O channels.
For 1/0 digital up to 50 Hz per bit is needed.



Inside each agent, there is one or more fault model which
describes the expected energy transfer values; current and
voltage when the named component fails. For example, a
simple circuit consists of a DC battery and two resistors,
shown in Figure 5, demonstrates how agents can be used to
model and then detect a fault in a real-time manner for as an
example for a dynamic system.

R1

100R

R2

10V - 100R

° T

Figure 5: A simple circuit consists of DC battery and two
resistors

For this simple circuit we would have three agents to model
the circuit: V1 agent, R1 agent, and R2 agent. Each agent
monitors one single component. Three positions (a, b, and ¢
are selected to acquire the energy transfer values, flow and
effort. This means we six values will be available as
follows: IR1 and VR1 at point a, IR2 and VR2 at point b,
IV1 and VV1 at point c. For this circuit, I = 50mA and P =
0.5 watt. The agent which is representing and monitoring
R1, named A_R_RI1, will be reading the IR1 and VRI1
values from the circuit, and among other data the following
fault model:

R1 is faulty when:

IR1=0 VRI1=10
IR2=0 VR2=0
IV1l=0 VV1=0

The observed values are compared with the expected values
and these are: IR1=50mA and VR=10. If the values are not
matching the agent, as one of the task to do among other
tasks, is to investigate the fault models.

The agent which is representing and monitoring R2, named
A_R_R2 observes the IR2 and VR2 values and compares
them with the expected values and then investigate
following fault model:

R2 is faulty when:
IRI=0 VRI=10
IR2=0 VR2=5
IVi=0 VV1=0

The agent which is representing and monitoring V1, named
A_R_V1 observes the IV1 and VV1 values and compares
them with the expected values and then investigates the
following fault model:
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V1 is faulty when:

IR1=0 VRI=0
IR2=0 VR2=0
IVl=0 VV1=0

5.1 Creating the Model/Agents Automatically

The transform agent which will be used to transform
quantitative models into the qualitative Model-based
diagnostic agents can create the agent model automatically.
This can be done by parsing the Netlist file (the output of a
design package, such as PSpice) and creates agent for each
node in the electrical circuit. For example, the following
part of the Netlist file for circuit in Figure 5 when modelled
with PSpice is as follows:

Name +Node +Node Value
R RI1 $N_0002 $N_0001 100R
R R2 $N_0001 0 100R
V_V1 $N_0002 0 10V

The transform agent can parse the Netlist file and creates
agents (the model) automatically. This eases the
implantation of the model, adds extra flexibility to the
architecture, and allows integration with different packages.

5.2 Controlling Agents

There are three ways to make agents communicate together.
The interest here is on the communication at the abstract
level. The low level communication (interaction protocols)
is handled by the agent toolkit as it will be described in the
next sections. These are:

e Agents communicate together using an external
controller (a control agent as in Figure 2).
Agents communicate together using a build-in
controller inside each agent.
Agents communicate using external and build-in
controllers.

When acquiring the values from the dynamic systems and
when communicating between agents, time slices is a
crucial issue and this should be handled carefully by the
implementer and the by actual agent toolkit.

5.3 Using a Rule-Based Engine to Control Agents

It is recommended to use an agent-reasoning engine to
control the behaviours (activation and deactivation) of
agents. Reactive-deliberative agent architecture can be built.
The agent-reasoning engine plays the deliberative role and
agent behaviours play the reactive role. The external control
agent in our architecture embeds JESS — a rule-based
engine. However, the architecture allows the agents to also
have reactive relations among themselves without the
interference of the external control. This is because we have
decided to use both external and internal controllers at the
same time.



5.4 Agent Relationships

Each agent will have more than one thread (task) to deal
with all sorts of communications coming from or going out
to the outside world. One or more thread read the values
from the dynamic system. Others threads communicate with
neighbour agents. More threads communicate with related
(relative) agents. And other threads communicate with
related (relative) neighbour agents. This adds more work on
the agent to handle all these type of traffics. Neighbour
agents are those that are directly connected to the named
agent Relative agents are those that have relation with the
current agent. Relative neighbour agents are those that have
relations and they are directly connected to the named agent.

This social arrangement of the agents into: neighbour,
relative, and relative neighbour agents, allow the agent to
deal with the incoming and outgoing information
(messages) in prioritized manner. In this way the priority of
communications should be classified into the following
classes:

Controller (external)
Self-control
Relative-Neighbour
Relative

Neighbour

Nk =

Therefore, each thread running inside the agent should
belong to one of these classes. For, example, the thread
which is communicating with the Controller agent is of type
Controller thread and this one has the highest priority. And
the thread that is communicating with the dynamic system is
of type Self-control which has priority 2. This is somehow
maps with the casualty relations in Bond Graph.

5.5 Threading and Behaviours

In Jade toolkit threads are implemented in what is called,
behaviours. Behaviours are of two types: primitive and
composite. Primitive behaviours can be one of three
choices: 1) Simple behaviour which models simple atomic
behaviour, 2) OneShot behaviour which is executed only
one, 3) Cyclic behaviour which is executed forever.

The Composite behaviour is made up by composing a
number of other behaviours, called children. This means
that the actual operation of the composite agent is defined
inside its children. The composite agent its job is to
schedule its children. Three types of composite classes are
defined: 1) Sequential behaviour which executes its
subclasses sequentially and terminates when all sub-
behaviours are done, 2) Parallel behaviour which executes
its sub-behaviours concurrently and terminates when a
particular condition on its sub-behaviours is met, or when
any one of its sub-behaviours are terminated. Or when a
user defined number N of its sub-behaviours have finished.
3) Finite State Machine behaviour which executes its
children according to a user defined Finite State Machine.
The activity of its child performed within a state of the
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FSM. When state Si (one of its child) completes, its
termination value is used to select transition to fire and new
state Sj is reached. This goes on until the final state is
reached. For our problem Parallel is most appropriate
because the threads executes concurrently.

5.6 Transferring Effort and Flow between Agents

Effort and flow in the electrical circuit are mapped as
messages in the agent environment. The form of message
exchanged between agents is defined in the FIPA
communicative act and the Coder/Decoder classes for the
Semantic Language for messages. The FIPA standards ease
the communications between different agents written in
different languages and running on different platforms.

The message is composed of content and auxiliary parts.
The actual content can be encoded in different ways
according to the Agent Communication Language (ACL).
Content can be encoded as Strings, Java objects, or ontology
objects.

The most basic way consists of using strings. It is
convenient for atomic data but not for structured data or
object. The meaning of the String is application dependent.
The second way to code content as serialized Java object
(not readable). This method is useful when all agents are
written in Java. The third method is to define ontology (own
vocabulary and protocols). This method can be used if more
flexibility is required. At this stage for our application,
String is sufficient to transfer the energy elements: effort
and flow information between objects.

The auxiliary parts of the message (specific to Jade) are:
sender (agent ID), message type (performative), Recipients
(agent ID), Protocol type, ReplyWith, InReplyTo, ReplyBy,
and ConversationID (which is useful when having parallel
negotiation with several other agents). Message types can be
for example: INFORM (agent gives another some useful
information), QUERY (agent asks question), PRPOSE
(agent starts bargaining). Answers to performative include
AGREE and REFUSE.

Jade provides Template messages. Template messages are
useful to our application since it allows us to filter messages
and set up distinct behaviours to handle messages from
various agents or various kinds of messages.

5.6 Inside the Agents

Each agent contains two Parallel behaviours; controllers and
listeners. Listeners are implemented as sub-behaviours.
Listeners listen to incoming messages. Four listeners are
implemented; ObserveVaules (listens to data from the
hardware), ListenToAIIRN (listens to Relative-Neighbour
agents), ListenToAlIR (listens to all Relative agents), and
ListenToAIIN (listens to all Neighbour agents). Agents,
behaviours and sub-behaviours all work in parallel.
Controllers are also implemented as sub-behaviours. Two
controllers are used; ControltaskInt (manages the internal
communications between the different behaviours) and



ControltaskExt (manages the external communications
between the agents). A UML can be used to describe the
contents of each agent. More tools and notations need to be
added to UML to complement the extra features in agents.

5.7 An Example and Results

The hardware for the DC circuit described on Section 5 was
built. The circuit consists of a DC battery and two resistors.
The software agents were also implemented - using Java and
Jade. A simple scenario was prepared for testing. The
scenario is using the build-in controller which resides inside
each agent (no external controller was used and therefore no
rule-based engine was used to control the agents). Also no
fault models were presented inside the agents.

For this scenario three software agents were designed
manually (no automatic creation of agents). Faults were
injected into the circuit to different components. To speed
and ease the testing procedures, faults were injected directly
into the software. Assume an incorrect reading (or null
reading) was inspected by the ObserveVaules sub-
behaviour. The ObserveVaules informs the ControltaskInt
via internal communications. The ControltaskInt sub-
behaviour send messages to all related agents (Relative-
Neighbour, Relative and Neighbour) and terminates the
agent who is monitoring the faulty component. When other
agents receive the messages from the agent who is
monitoring the faulty component, they communicate with
their own internal controllers and then these agents
terminate too, because they would have been affected by the
faulty component/agent.

The system was able to detect all type of faults which were
injected to different nodes on the circuit. Although, this
simple electrical circuit and the scenario give indication of
the success of the approach more complex examples are
needed. At the time of writing more complex electrical
circuit was built which consists of about 115 components.
To create the software agents for all these components
manually is complex and can led to errors. For this reason,
investigation is carried out to find possible ways to
implement the agents automatically and to find out whether
the automatic creation of the agents is sufficient to solve the
problem of a big electrical circuit.

Conclusion

The use of a Multi Agent Systems (MAS) to model a real-
time dynamic system has been described, specifically for
use with an analogue electrical circuit. The described design
and implementation was carried out using the Jade — Multi
Agent toolkit. It was shown that there are similarities and
commonality between Bond Graphs and agents. A number
of agents at the modelling layer (of the Seven layers
architecture) were used to model the circuit (in other words,
to implement the Bond Graph). It was shown that the model
can be created automatically via a transform agent. Parallel
behaviours for the threads (tasks) inside each agent were
suggested. Each task inside the agent has priority 1 to 5,
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tasks are prioritized. It was decided that Template messages
are useful to transfer energy (effort and flow) between
agents, since it allows us to filter messages down to the
threads. It was found that both type of controls: external (in
which a rule-based engine can be used) and build-in
controlled are needed to manage the activation and
deactivation of the agents. The architecture was tried out
with a simple electrical circuit using three agents. The
preliminary results from these tests were good, with the
system being able to detect all type of faults that were
injected to different nodes on the circuit. This is to be
extended to more complex systems to further investigate the
agents’ behaviour.

Acknowledgments

The work in this paper is supported by ESPRC and SeeByte
Ltd.

References

[Console, 2001] L. Console. Model-Based Diagnosis:
histroy and state of the art. Monet School, 2000.

[Hossack et al., 2003] J. Hossack, J. Menal, S. D. J.
McArthur, and J. R. McDonald. A Multiagent
Architecture for Protection Engineering Diagnostic
Assistance. 1EEE  TRANSACTIONS ON POWER
SYSTEMS, VOL. 18, NO. 2, 2003.

[Koppen-Selige et al., 2001] B. Képpen-Selige, S. X. Ding,
and P. M. Frank, European Research Projects on Multi-
Agents-based Fault Diagnosis and Intelligent Fault
Tolerant Control. 2001.

[Mangina et al., 2001] E. E. Mangina, S. D. J. McArthur, J.
R. McDonald, A. Moyes. A Multi Agent System for
Monitoring Industrial Gas Turbine Start-up Sequences.
IEEE TRANSACTIONS ON POWER SYSTEMS,
VOL. 16, NO. 3, 2001.

[Mosterman and Biswas, 98] P. Mosterman and G. Biswas.
A Modeling and Simulation Methodology for Hybrid
Dynamic Physical Systems, Journal of the Society for
Computer Simulation, June 1998.

[Sampath, 1995] M. Sampath. A Discrete Event Based
Approach to Failure Diagnosis. PhD thesis, University
of Michigan, 1995.

[Schroeder, 1998] M. Schroeder. Autonomous, Model-based
Diagnosis Agents, PhD thesis, 1998.

[Struss, 2001] Peter Struss. AI Methods for Model-based
Diagnosis. DX, 2001.

[Zaki et al., 2005] Osama Zaki, Keith Brown and Dave
Lane. Automated Fault Diagnosis of Complex Systems:
An Overview and Proposed Architecture. ARTSI16,
2005.



50



Qualitative Mapping of Sensory Data for Intelligent Vehicles

Jan D. Gehrke, Andreas D. Lattner, and Otthein Herzog
TZI - Center for Computing Technologies, Universitit Bremen
Am Fallturm 1, 28359 Bremen, Germany
{jgehrke|adl|herzog} @tzi.de

Abstract

Recent advances in the field of intelligent vehi-
cles have shown the applicability and utility for
driver assistance systems, or even letting a car
drive autonomously on highways. Usually these
approaches are on a rather quantitative level. This
hampers their capability to cope situations of great
complexity in which humans need a lot of knowl-
edge to act safely, for instance in city traffic. A
qualitative representation of traffic scenes allows
for formulating and using common sense knowl-
edge in a human-comprehensible and machine-
processable way. A vocabulary for such a repre-
sentation is proposed and a prototype that does the
qualitative abstraction for knowledge-based behav-
iour control is presented and evaluated. Experi-
ments in a simulation environment show the ap-
plicability of the approach for intelligent vehicles.

1

Recent developments in the field of Intelligent Vehicles (IV)
address driver assistance systems like lane departure warn-
ings, adaptive cruise control, and lane change assistance
[Bertozzi et al., 2000; Dagli et al., 2004; Dickmanns, 2002;
Riider et al., 2002; Weiss et al., 2004] or efforts to let-
ting a car drive completely autonomously as, e.g., in the
DARPA’s Grand Challenge' in 2004 where IVs had to drive
autonomously through the Mojave dessert. In the 2004 com-
petition the vehicle who came farthest — “Sandstorm” from
Carnegie Mellon University — only managed to drive 7.5 of
the 160 miles route.

Intelligent Vehicles perceive information about their envi-
ronment through sensors like CCD cameras, radar, laser range
finders, and GPS. Based on this sensory information a world
model has to be created. The “belief” of the IV about its envi-
ronment is then used for situation assessment and behaviour
decision. The selection of the behaviour finally leads to actual
control of the vehicle.

The interpretation and evaluation of traffic scenes demands
for sophisticated knowledge representation and reasoning

Introduction
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techniques. If it is aimed to create cognitive abilities simi-
lar to those of human beings a lot of information about traffic
situations, traffic rules and common sense knowledge, e.g.,
about traffic participants must be available. In order to man-
age complex situations like those in cities background knowl-
edge must be accessed. Setting up behaviour directly on
quantitative data acquired by sensors is very difficult as the
environment might vary a lot in different situations and com-
mon sense knowledge had to be formulated in a quite unnat-
ural way.

We claim that a qualitative description in combination with
background knowledge can be used for a concise and compre-
hensible representation of traffic scenes and allows for han-
dling complex situations. Humans also abstract from con-
crete quantitative information of continuous movements in
time and space, e.g., by dividing directions and velocities into
equivalence classes. Such an abstraction allows for describ-
ing similar situations which — on a quantitative level — ac-
tually are not identical by reducing the representation to the
relevant information.

Objects in dynamic environments move in four dimen-
sions: three spatial dimensions and one temporal dimension.
Spatiotemporal information can thus be represented quantita-
tively by different spatial coordinates at certain time points.
Qualitative representations abstract from these concrete coor-
dinates. In the literature many different approaches for tem-
poral, spatial, and motion (spatiotemporal) descriptions have
been proposed.

Famous representations for the temporal dimension are
Allen’s temporal logic and Freksa’s semi-intervals [Allen,
1983; Freksa, 1992al. Allen defines a set of disjoint relations
between time intervals. He distinguishes the relations before,
equal, meets, overlaps, during, starts, and finishes and their
inverse relations. A composition table can be used to infer
which temporal relations between two intervals are possible
by knowing the relations of both to a third interval.

Freksa introduces the concept of semi-intervals where rela-
tions between start and end points of intervals are described.
This allows for making statements about intervals even if one
of the time points is not known (e.g., older and survives).

Spatial representations can be classified into approaches
that describe ordinal, topological, or metric information.
[Clementini et al., 1997] present a framework for the qual-
itative representation of 2D positional information. In their
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work they describe how orientation and distance information
can be discretised into qualitative classes (e.g, front, back,
left, right and close, far).

The best-known approach to spatial representations based
on topological information is the Region Connection Calcu-
lus (RCC) by Randell, Cui, and Cohn [Randell et al., 1992].
RCC can be used to describe connectivity and overlap rela-
tions of regions. RCC-8 distinguishes between disconnected,
externally connected, partial overlapping, tangential proper
part (and its inverse), equal, non-tangential proper part (and
its inverse).

Freksa presents an approach where orientation information
based on a direction vector is used to qualitatively describe
the position of other points relative to this vector [Freksa,
1992b]. Three lines — one covering the vector and two or-
thogonal lines at the start and end point of this vector — divide
the space into six regions. Including the positions which lie
on at least one of the three lines, i.e., which lie on one of
the region borders, 15 qualitative orientation relations can be
distinguished.

Schlieder’s panorama approach defines an ordinal arrange-
ment of objects in the order how they are perceived by look-
ing around from a viewpoint (panorama). More detailed in-
formation can be achieved if the opposite position of objects
is also acquired in the panorama. The panorama was recently
extended by metric information and qualitative directions and
distances [Wagner et al., 2004].

A qualitative motion description was introduced by Miene
[Miene er al., 2003; Miene, 2004]. In this approach move-
ments and positions are abstracted to different direction, dis-
tance, and velocity classes. Intervals are created from time-
series based on monotonicity and threshold criteria. Such in-
tervals are created for properties of single objects or for re-
lations between object pairs (e.g., speed of object x is slow,
distance between x and y is very close).

In the next section our representation for traffic scenes is
introduced. The subsequent section presents how the quali-
tative abstraction of the quantitative data is performed. The
evaluation section shows results on simulated traffic scenes
including performance measures of the mapping cycles. The
last section presents our conclusions.

2 Traffic Scene Representation

The qualitative representation of traffic scenes proposed here
is an explicit and comprehensible representation that allows
for knowledge-based situation assessment based on back-
ground knowledge and situation patterns.

The basic approach is to describe traffic scenes as a com-
bination of the static road network configuration and the in-
volved dynamic objects in spatiotemporal relations. Each net-
work region and object is assigned to a type and for each ac-
tive object we describe its motion in relation to other objects
or regions. For this purpose we established a taxonomy of ob-
jects and regions relevant in the road traffic domain and devel-
oped a symbolic vocabulary of predicates describing motions
of actors. The vocabulary consists of qualitative actor prop-
erties and qualitative relations between actors or between ac-
tors and traffic regions. Additionally, there is a formalism to
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describe the spatial relations between road regions like road-
ways, lanes and junctions called Road Network Configuration
(RNC). RNC is discussed in [Gehrke, 2005].

The actual dynamic traffic scene is represented with tem-
poral predicates as introduced by Allen [1984] indicating the
interval where a specific property or relation holds. Situation
patterns are realised as logic formulae of road scene and ob-
ject descriptions in connection with abstract intervals of qual-
itative relations and their temporal relations using Allen’s in-
terval logic [1983].

2.1 Object taxonomy

There are many objects in road traffic with characterising
properties and capabilities. There are traffic participants like
vehicles, pedestrians and bicyclist, and also static objects like
traffic signs, any obstacles, and the road and its subregions.

To formulate the conceptual knowledge on objects in road
traffic we developed a domain model as a taxonomy of ob-
jects with properties describing their relations and capabili-
ties forming an ontology for road traffic. Actor’s capabilities
include, e.g., maximum possible speed, maximum allowed
speed, and allowed traffic regions. The taxonomy incorpo-
rates 20 object types like pedestrian, vehicle, animal, and bus
The other part of the taxonomy are 14 region types such as
roadway, lane, junction, and footway. The ontology may be
extended easily if need for other object types or properties
should arise.

2.2 Motion Vocabulary

The qualitative motion vocabulary is the basis to formu-
late actor motions in the road network. A motion proposi-
tion consists of the predicate symbol (e.g., space_distance),
the primary object (if necessary), the reference object,
and a qualitative value for non-binary propositions (e.g.,
medium_distance). In the following each motion predicate
is described respectively.

velocity: an actor’s longitudinal velocity in relation to its
current lane or roadway. Qualitative values for veloc-
ity are zero_speed, very_slow, slow, medium_speed, fast,
and very_fast.

acceleration: the development of an actor’s longitudinal ve-
locity. Qualitative values for acceleration are decreas-
ing_speed, constant_speed, and increasing_speed.

relative_speed: the relative speed of a primary object w.r.t.
a reference object with the qualitative symbols slower,
same_speed, and faster.”

space_distance: the spatial distance between a primary and
a reference object. Qualitative classes are zero_distance,
very_close, close, medium_distance, far, and very_far
following the well-known abstraction of [Hernéndez et
al., 1995].

time_distance: Because distances are very speed-dependent
in safety perspective, this additional predicate is intro-
duced. It expresses the speed-relative temporal distance

The relative speed abstraction may be refined to further classes
if it should turn out necessary.



of vehicles driving on the same roadway or of actors to
regions, e.g., the next junction. The symbols of qualita-
tive classes correspond to those of space_distance.

distance_trend: the trend of spatial distance between ob-
jects. Currently we distinguish three classes: decreas-
ing_distance, constant_distance, and increasing_dis-
tance.

lateral_position: the lateral position of a vehicle w.r.t. its
current lane. Qualitative values are left_in_lane, cen-
tral_in_lane, and right_in_lane.

lateral_motion: the trend of a vehicle’s lateral position with
qualitative values moving_left, constant_lateral_position,
and moving_right.

driving_direction: the driving direction of a vehicle or a lane
w.r.t. a reference object. This predicate is only applica-
ble for actors on the same roadway and differentiates be-
tween same_direction and opposite_direction.

relative_direction: the direction where a primary object is
located w.r.t. a reference object’s orientation, e.g., a
vehicle’s front direction. Like in [Hernidndez, 1994;
Clementini efr al., 1997], qualitative values are front,
front_right, back_right, back, back_left, left, and left_-
front in cyclic order.

roadway _relative_direction: like relative_direction but
w.rt. the roadway. Qualitative values are front_on_-
roadway, right_on_roadway, back_on_roadway, and
left_on_roadway. This predicate is only applicable for
vehicles on the same roadway.

relative_lane: the relative lane of vehicles on the same road-
way. Distinguished qualitative classes are: same_lane,
direct_right_lane, direct_left_lane, outer_right_lane, and
outer_left_lane. The last two values incorporate all lanes
being no direct neighbours of the reference object.

in_region: indicates whether an object’s reference point
(e.g., its centre) is inside a region.

rcc_relation: The topological relation between a region and
a reference object (treated as region). We use RCC-
5 [Randell and Cohn, 1989; Randell et al., 1992]
as formalism. The corresponding qualitative symbols
are not_overlapping, partially_overlapping, proper_part,
proper_part_inverse, and equal.

The above vocabulary allows for motion descriptions in
consideration of special characteristics in road traffic and
does not need any absolute reference system. It is based on
egocentric perspectives of actors in road traffic as reference
objects. More sophisticated motion predicates may be created
by composition in logic formulae, e.g., proposed in [Miene,
2004]. A moment of two vehicles v; and v in short time dis-
tance nearing each other in opposite directions on the same
lane could be represented with the following predicates:

time_distance (v, vo, close) A
distance_trend (v, va, decreasing_distance) A
relative_direction(v;, v2, opposite_direction) A
relative lane(v, vo, same_lane)
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The above simple formula just describes an arbitrary single
moment (not saying which moment actually). To describe sit-
uations over time we need a temporal extension as described
below.

2.3 Motion Description

Following the approach of Allen [1984] and its appli-
cation to qualitative motion description and analysis in
RoboCup [Miene et al., 2003; Miene, 2004] and in Intelligent
Vehicles domain [Miene et al., 2004; Lattner et al., 2005], the
actual motion is represented by association of motion predi-
cates with time intervals they hold in.

HOLDS(p, ) describes the continual validity of predicate
p during time interval 7. The time line consists of discrete
ticks. Time intervals are defined by their first and last tick
(both inclusive). A development of two actors’ relative spatial
distance could be expressed with the following predicates:

HOLDS(space_distance (v, v, close), (0, 15))
HOLDS (space_distance(v , v, very_close), (16, 25))
HOLDS(space_distance (v, va, zero_distance), (26, 30))

Thus, the combination of HOLDS predicates for motion
predicates and their validity intervals represents a dynamic
scene. As opposed to approaches like Musto’s Qualitative
Motion Vectors [Musto, 2000; Musto et al., 1999] this allows
for flexible addition or omission of motion predicates in road
traffic depending on necessity or availability.

2.4 Pattern Description

In order to utilise qualitative motion descriptions for knowl-
edge-based situation assessment in road traffic, actual scenes
are checked against situation patterns. Traffic situation pat-
terns are realised as logic formulae of road scene and object
descriptions in connection with abstract validity intervals of
qualitative motion predicates and their temporal relations us-
ing Allen’s [1983] and Freksa’s [1992a] interval logic.

Patterns may be made up of a simple conjunction of motion
predicates that have to hold in one interval or they may define
sequences of intervals in qualitative interval relations. The
most complicated kind of patterns describe temporally ex-
tended events with semantically defined start and end points,
e.g., an overtake manoeuvre as a whole. These patterns
are defined by the temporal predicate OCCURS as introduced
in [Allen, 1984].

The above simple example of two mutually approaching
vehicles in collision course would be expressed as follows:

HOLDS (collision_course(v,v2),1) <
Jdist :
HOLDS (distance_trend(
v1, V9, decreasing _distance),i) A
HOLDS (relative_direction(
v1, Vg, opposite_direction),i) A
HOLDS (relative lane (v, vo, same_lane), i) A
HOLDS (time_distance(vy, v, dist), i) A
dist < medium_distance

In [Gehrke, 2005] and [Lattner et al., 2005] we used the
qualitative scene description and background knowledge on
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Figure 1: System architecture

traffic rules to recognise right of way at junctions and let
cars stop if the situation should arise. Thereto, patterns
are checked automatically during runtime using background
knowledge on temporal logic and a Prolog-based inference
engine. This requires online-mapping of quantitative sensor
data to the qualitative representation.

3 Qualitative Mapping

Qualitative mapping is the abstraction process from quantita-
tive sensory data to qualitative motion descriptions. There are
four major challenges in qualitative mapping for traffic scene
representation for intelligent vehicles:

1. Acquisition of the needed sensory data from the intelli-
gent vehicle’s environment

Definition of adequate qualitative equivalence classes (in
terms of amount, symbols, and value bounds) for the re-
spective motion predicate

Online-mapping for many objects and predicates with
bounded resources in real-time.

Online-segmentation of quantitative data time series
considering smoothing and threshold-based tolerance
corridors for monotony segmentations, e.g., for trends
of relative distances.

The three latter challenges are in the main focus of this pa-
per. The first one is an important requirement for real-world
feasibility but has been postponed for the time being because
the main motivation is knowledge-based situation assessment
and behaviour decision. Accordingly, the current testbed is
a simulation environment without incomplete or noisy sensor
data.

3.1 System architecture

The qualitative mapping of sensor data is embedded in the
software prototype developed for knowledge-based situation
assessment and behaviour control in intelligent vehicles. Fig-
ure 1 depicts the architecture of the system and its application
for knowledge-based behaviour decision.

The prototype works with simulated quantitative sensor
data on vehicle positions, extensions, orientations, and ve-
locities. The mapping module generates the qualitative scene
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representation and stores it into a knowledge base (KB). The
KB also contains background knowledge on the road net-
work, on object and region types and their properties, and
spatiotemporal knowledge. The representation language is F-
Logic [Kifer et al., 1995] in the variant of FLORA-2 [Yang
et al., 2003]. FLORA-2 uses the Prolog-like inference engine
XSB [Sagonas er al., 1994]. Background knowledge also al-
lows for spatial and temporal inference. Currently this infer-
ence is barely used due to complete knowledge in the sim-
ulation prototype. Background knowledge on the semantics
of the HOLDS predicate is necessary to recognise patterns in
actual scenes. Within the patterns applied so far spatial infer-
ence is reduced to partonomy relations.

The qualitative scene representation in the KB is queried
by a pattern matching module that checks situation patterns
specified in an XML file. Query resolution is done by XSB.
The patterns are used for situation assessment and behaviour
generation depending on the situation.

3.2 Time Series Segmentation

Each possible motion predicate with its participating objects
(i.e., actors and regions) is created by analysing the corre-
sponding time series of quantitative sensory data. In a seg-
mentation process the incoming sensory data that is recorded
in a time series is divided into validity intervals of qualitative
classes. This has to be done at runtime. Incoming values are
added to the current interval if they belong to the same qual-
itative class, otherwise a new interval is started and the old
one is finally closed. New intervals, their extension or end
are written to the knowledge base perpetually.

Our approach of time series segmentation follows the
work of Miene [2004]. Miene differentiates two segmen-
tation modes: threshold-based segmentation and monotony-
based segmentation. The first is applied to motion predi-
cates like velocity or spatial_distance, where changes over
time are not relevant for qualitative classification. The lat-
ter is applied to motion predicates like acceleration and dis-
tance_trend that are derivatives of the time series for velocity
or spatial_distance respectively and therefore need to regard
the previous values to determine the current qualitative class.
Figure 2 gives an example for threshold and monotony seg-
mentation.

The whole segmentation and mapping is done in mapping
cycles that cover sensor data of a minimum of 50 ms and 100
ms in general in our tests. The duration of a mapping cycle
determines the time granularity of the qualitative representa-
tion. A cycle must not endure longer than the time scope of
its handled sensor data to allow for real-time application. Fur-
thermore, due to real-time requirements, smoothing of time
series may only be done within the current mapping cycle.

To be handled properly and efficiently in pattern recogni-
tion and by the temporal background knowledge, intervals
formed during the segmentation process need to be maxi-
mal, i.e., a following interval of the same series (in Allen
relation meets) has to belong to another qualitative class.
This is ensured by interval extension. The current interval
teur = (Scur,€cur) With qualitative value ¢, extends the
interval 4cyr—1 = (Scur—1, Scur — 1) With qualitative value
Geur—1 to @ combined interval icyr—1 = (Scur—1,€cur) iff
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Figure 2: A fictional quantitative data time series with
monotony and threshold segmentation.

Qeur—1 = qeur- This is done automatically as a knowledge
base operation.

For instance, if the space distance of two vehicles was close
in the previous interval and is still close in the time scope of
the current mapping cycle from 11 to 15 the knowledge base
would contain

HOLDS (space_distance(v, vo, close), (0, 10))
before the update and afterwards

HOLDS(space_distance (v, v2, close), (0, 15))

3.3 Mapping to Qualitative Classes

In order to determine the valid gualitative classes of motion
predicates, the quantitative sensory data needs to mapped by
an abstraction function for each qualitative information. The
function for a motion predicate has to be applied for each ob-
ject or object pair (i.e., primary object and reference object).
In the implementation of our approach the task of mapping
is done by “mappers”. A mapper is responsible for one or
more qualitative motion predicates and all associated objects.
Some motion predicates share a mapper because they analyse
the same time series of sensor data, e.g., spatial_distance and
distance_trend (cf. sec. 3.2). In the following we describe the
realised mappers and their particular abstraction functions.

SpeedMapper

This mapper does the mapping of actor velocities (predicate
velocity) and accelerations (acceleration) to the correspond-
ing qualitative classes as both predicates use the same sensor
data.
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We interpret velocity depending on actor’s type and con-
text. For instance, a pedestrian with normal speed is signif-
icantly slower than a passenger car with normal speed and a
fast passenger car on a freeway is faster than one on a normal
road in town. Because we have an object taxonomy, objects
are instances of multiple classes and thus their velocity may
be interpreted in different object type contexts, e.g., as a pas-
senger car, as a vehicle, or as an actor in general. So qual-
itative representation of velocity needs to state which object
class is the reference for its interpretation. In general, we treat
qualitative velocities in the object context of actor. Reference
for actor is object type passenger_car as the standard object
type in road traffic.

Situation context is taken into account in terms of maxi-
mum permitted speed for the object type in the current situa-
tion. The qualitative class medium_speed covers those veloc-
ity values being moderate and appropriate in the situation.
For this reason the range of medium_speed is rather small
whereas range of class slow is rather big in comparison to
classical class separations, e.g., for distances. Figure 3 de-
picts the schema for qualitative classes in velocity.

! slow ! ! fast ! very_fast
medium_speed

»
»

very_slow

Figure 3: Schema for qualitative classes of actor velocities.

DistanceMapper

The DistanceMapper is responsible for the predicates spa-
tial_distance and distance_trend as the monotony segmenta-
tion of relative distance. The spatial distance is determined
for pairs of actors or an actor and a region. Objects are han-
dled as rectangle regions and the minimal region distance is
calculated to get reasonable values. Distance of actors to
regions is currently restricted to nearby junctions to reduce
computational complexity.

For spatial distance qualitative classes the well-known
approaches of Herndndez [Herndndez er al., 1995] were
adapted. Every distance below 5 metres (slightly more than
a vehicle’s length) is considered very_close or zero_distance
in case of contact. Distances beyond 250 metres are cate-
gorised as very_far. Within this distance even a vehicle of 200
km/h is able to stop. The intermediate qualitative classes are
partioned homogeneously with respect to monotonicity and
range restrictions constraints as introduced in [Herndndez et
al., 1995].

The distance_trend motion predicate expresses the mono-
tony property of distance changes by applying the monotony-
based time series segmentation method.

Since distance and distance trend are symmetric the map-
per only has to calculate one qualitative relation per object
pair.

TimeDistanceMapper

The module maps the temporal distance of a pair of actors
or an actor and a region to qualitative abstraction (time_-
distance). As for spatial distance, junctions are currently the
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Figure 4: Matrix to determine qualitative time distances. The
interval limits are stated in seconds. Symbols ¢g to g5 denote
the six qualitative classes.

only considered regions. In contrast to spatial distance this
predicate is not symmetric.

Temporal distance combines time to collision (¢ ) and
net-time-gap (T'y,,) of a reference object ro to a primary ob-
ject. Both objects need to be on the same roadway. Trc .o
is the time to a collision or encounter of both objects with re-
spect to the roadway regarding their current spatial distance,
speed, and acceleration. Tl ., is the time the reference ob-
ject would need to reach the primary object’s current position
assuming constant acceleration.

According to [Dagli et al., 2002] they are defined by

TN,ra = —Uro £ /U2o + 2Ax - ar,
Aro
and
—Av+ VAV +2Az - Aa
TTC,TO = A
a

Az denotes the spatial distance of both objects, Av and
Aa are their relative velocity and acceleration in perspective
of the reference object. Some cases of undefined values need
special handling, e.g., if Aa = 0.

In order to determine the qualitative time distance we use a
matrix that maps the combination of both values to the corre-
sponding class as depicted in figure 4. The matrix describes a
simple function that uses the lesser distance as the one to con-
sider. The interval limits are motivated by cognitive aspects
analysed for collision avoidance systems (cf. [van der Horst
and Hogema, 1993)), reaction time, and safe distance.

LateralPositionMapper

This mapper examines the lateral position of a vehicle in its
lane (lateral_position) and its development (lateral_motion)
as monotony segmentation. If the vehicle’s centre is located
less than 30 cm remote to the lane’s centre it is considered
central_in_lane, otherwise left or right respectively.
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Figure 5: Relative directions between actors (disregarding the
roadway context).

H.H‘ EQ

Figure 6: Topological relations between an actor and a sur-
face region in RCC-5.

RelDirectionMapper
The RelDirectionMapper calculates the angle of a reference
objects’s front vector to another objects’s position and maps
the angle to a qualitative direction class (relative_direction).
The partitioning of angles is pictured in figure 5. Front,
back, left, and right direction have a range of 30°, the other
classes comprise 60°. The well-known qualitative classes and
their mapping function were proposed in [Hernandez, 1994].
The mapper presupposes an orientation vector for the ref-
erence object to determine the front direction.

InRegionMapper

This mapper determines whether the motion predicate
in_region holds between an actor and a surface region. An
actor is considered in_region iff his reference point is situated
inside that region. Currently all pairs of actors and regions are
checked. Due to performance issues this might be restricted
to certain region types, e.g., lanes. Notice that some relations
may be inferred through sub-region relation.

TopologyMapper

The TopologyMapper determines the topological relation of
an actor (as rectangle region) to a surface region in RCC-5
model (rcc_relation). Figure 6 shows the relations and possi-
ble transitions between them over time.

Other Motion Predicates

Some of the motion predicates described in section 2.2 are not
covered by the above mappers. This is because some predi-
cates are not yet implemented in the prototype (relative _speed
and driving_direction). Other predicates are not handled by
mappers but inferred from qualitative motion predicates. This
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Figure 7: Relative directions and positions in relation to a reference vehicle, its roadway, and lane.

concerns roadway_relative_direction and relative_lane. Fig-
ure 7 illustrates the use of roadway relative predicates.

4 Evaluation

The evaluation of the presented approach takes two aspects
into account: the application of qualitative scene represen-
tation for knowledge-based behaviour control for intelligent
vehicles and the runtime performance regarding real-time re-
quirements. In this paper we focus on performance of quali-
tative mapping.

The basis for both is the developed prototype that com-
prises the qualitative mapping through mappers and a rather
simple behaviour decision based on traffic scene patterns
checked at runtime. The traffic scene is simulated based on
a scenario script setting the behaviour of all actors but the
intelligent vehicle. The running scenario is visualised in a
graphical user interface that also shows the recognised pat-
terns.

Our behaviour decision module controls the intelligent ve-
hicle’s speed depending on the situation. With a small set
of patterns a rule-conform autonomous behaviour was shown
when turning off left at a junction with oncoming traffic and
children running across the street. Figure 8 shows a snap-
shot of that scenario. Also other scenarios were tested with
encouraging results [Gehrke, 2005; Lattner et al., 2005].

4.1 Mapper Performance

The aim of knowledge-based behaviour decision for intelli-
gent vehicles is in proactive control to ensure safe and rule-
conform driving. Humans have a reaction time of about 1 sec-
ond and are capable of safe driving nevertheless. Of course
an intelligent vehicle should act faster.

The challenge is to do all: qualitative mapping, pattern
recognition, situation assessment, and behaviour generation
within an adequate decision cycle. Qualitative mapping cy-
cles from 50 to 250 milliseconds time granularity were sur-
veyed. All mappers have to complete their work within the
scheduled time or the qualitative scene representation will get
more and more dated, i.e., the reaction time increases.

S7

In order to evaluate the approach different measures were
extracted from log files created by the prototype. Six traf-
fic scenarios with different characteristics were tested and re-
peated five times. The six scenarios, in turn, were modified
in reference to the amount of participating actors and time
granularity of mapping.?

Figure 9 shows that up to seven actors can be handled
within 150 milliseconds on average. Numbers above have
proven critical in the current implementation. However, there
is no substantial influence on duration of pattern matching
cycles when the amount of actors is increased.

It is important to note that the development of mapping du-
ration for one time slot has to be considered. As mentioned
above, the mapping time will increase more and more if not
all sensor values could be processed within the intended slot.
This is depicted clearly in figure 10. If there are ten actors, the
duration of a mapping cycle increases enormously over time.
Interestingly, it also increases after some cycles for seven ac-
tors, although it seems to be processed within time before.
This is not because of unprocessed old sensor data but owing
to increasing duration of single knowledge base operations
over time. The problem is currently analysed and has no rea-
son in the prototype’s software design.

To get more information on performance issues, the map-
pers were examined separately. Table 1 gives a review of the
average mapping cycle duration for each mapper type. The
DistanceMapper is by far the most expensive one. It has to
handle distance and distance change for all object pairs. Ad-
ditionally, the calculation of correct region distances — by an
external library — turns out to be costly which should provide
some possibilities for improvement.

The current main issue is the increasing time for single
knowledge base modifications which should be addressed
with highest priority. On the other hand, real-time algorithms
have to be applied that adapt precision, considered motion
predicates and objects with respect to their importance and
available processing time.

3 Experiments were run on a Pentium M 1.6 GHz system with
512 MB RAM and Microsoft Windows XP as operating system.
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Mapper Duration Commands
in ms
SpeedMapper 0.46 +2.10 7.96 + 0.93
TimeDistanceMapper 297+453 | 3.13+0.98
DistanceMapper 14.52 +8.04 | 19.90 £ 0.98
RelDirectionMapper 6.01 £5.83 | 12.00 &+ 0.00
LateralPositionMapper 5.10£5.10 | 7.96 +£0.39
InRegionMapper 1.63 £3.73 | 2.86 +2.08
ObjectTopologyMapper | 3.28 +=4.84 | 3.25+2.52

Table 1: Average duration of a mapping cycle with transmit-
ted knowledge base manipulation commands. Test runs were
made at a mapping time slot of 100 ms and with 4 actors and
1 junction.

5 Conclusion

In this paper we presented a qualitative representation for the
description of traffic scenes. In order to create such a rep-
resentation quantitative data as it might be supplied by sen-
sors must be mapped to the symbolic vocabulary which is
based on a number of existing qualitative spatial and tempo-
ral representations. We have shown how this mapping and a
matching of traffic patterns can be performed and presented
evaluation results with simulated traffic scenes. It is beyond
doubt that many real-world challenges were left out by the
simulation, e.g., real-time image processing, object tracking,
and handling noisy data.

The evaluation results indicate the feasibility in principle.
Knowledge about traffic participants, networks of streets and
relevant segments, motion of dynamic objects, relations be-
tween objects and between objects and ground regions can
be stored in the knowledge base. In experiments up to seven
dynamic objects could be managed by the system without ef-
ficiency problems when the mapping interval was set to 100
- 150 ms. However, experiments with a growing number of
objects show that there actually is a problem with complex-
ity. As some mapping modules compute relations between
all pairs of dynamic objects the growth of the duration of the
mapping cycles is approximately quadratic.

In our experiments the mapping cycles took too much time
when more than seven objects were moving in the scenes. It
should be considered that the number of relevant objects for
behaviour decision on a high level usually is not that large.
The most time-consuming part during mapping are the inter-
actions with the knowledge base. Thus, here is some poten-
tial for improving the efficiency. In our current implementa-
tion intervals are extended in each cycle, i.e., interaction with
the knowledge base happen all the time. If we introduced
open intervals, interactions with the KB could be reduced
enormously because interaction would only be necessary if
a monotonicity criterion is not valid any longer or some other
property switches to another qualitative class. Another way
to improve performance is to perform the mappings of the
single mapping modules concurrently. This was not possible
earlier because XSB just allowed for sequential processing of
queries and commands. In recent XSB versions concurrent
interactions are supported.
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Future work could address different directions. So far in
our experiments for actual vehicle control just the speed of the
IV was controlled by the behaviour decision module. It would
be interesting to set up more patterns for situation assessment
and implementing a more complex behaviour. Another re-
search direction could address the prediction of the behaviour
of other traffic participants based on our qualitative represen-
tation, e.g., by probabilistic approaches like Bayesian Net-
works and their extensions. In this work we assumed that
there is just one value per time step in the time series (e.g.,
just one value for the velocity of an object). It would be in-
teresting to investigate impact on time series segmentation if
probabilistic distributions are taken into account instead of
single values.
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Most robots currently used for research issues are equipp
with a broad variety of fairly reliable sensors. Edutainmen
robots however often have only low quality sensors. Despit
this, they have become increasingly popular and must be ab
to solve complex spatial tasks even when accurate distan
and orientation information is not obtainable. Qualitative re
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Abstract

The granularity of spatial calculi and the resulting
mathematical properties have always been a major
guestion in solving spatial tasks qualitatively. In
this paper we present the Oriented Point Relation
Algebra OPRA,,), a new orientation calculus
with adjustable granularity. Since our calculus is a
relation algebra in the sense of Tarski, fast standard
inference methods can be applied. One of the ma-
jor problems—depending on the environment, the
robots’ capabilities and the tasks to be solved—is
the choice of the granularity of an applied calculus.
To present, granularity had to be chosen at the start
and could not be changed on the fly. In a dynami-
cally changing environment under real time condi-
tions it is necessary to choose a coarse but still ade-
guate granularity of the spatial representation: only
in that case irrelevant feature changes fail to trigger
unnecessary inference steps. A qualitative, coarse
abstraction suppresses tiny changes in the environ-
ment and leads to fast computation.

Introduction

soning may allow them to do so.

Qualitative Reasoning about space abstracts from the ph)f%§
ical world and enables computers to make predictions abo
spatial relations, even when a precise quantitative inform
tion is not availablefCohn, 1997. The two main trends
in Qualitative Spatial Reasoning are topological reasonin

about regiongCohn, 1997; Renz and Nebel, 19%hd po-

sitional reasoning about point configuratidifseksa, 1992;
Schlieder, 199F Positional reasoning, i.e. distance and orien

tation, in particular is important for robot navigatibMusto
etal, 1999.

a

RCC-8[Randell and Cohn, 1989; Randetlal., 1997, about

the relative position orientation of three points as in Freksa’s
Double Cross Calculusreksa, 199Por about orientation of
two line segments as in the Dipole CalculiMoratz et al,,
2000; Schlieder, 1995 Standard constraint-based reasoning
techniques can be applied for reasoning with calculi such as
the above mentioned ones. For example, Schli¢tig®q
sketched how a qualitative calculus like the Dipole Calculus
might be applied to robot navigation.

One of the major problems is the choice of the granular-
ity of an applied calculus according to the environment, the
robots’ capabilities and the tasks that have to be solved. To
present, this granularity had to be chosen in the beginning
and could not be changed on the fly. In a dynamically chang-
ing environment under real time conditions it is necessary to
choose a coarse yet adequate granularity of the spatial repre-
sentation: only in that case will irrelevant feature changes fail
to trigger unnecessary inference steps. A qualitative, coarse
abstraction suppresses tiny changes in the environment and
results in fast computation.

With the Oriented Point Relation Algebl@@PRA,, we
present a calculus whose granularity is scalable with a pa-
rameterm € N. The parameter can be adjusted according
to perception and motion capabilities. The reasonable maxi-
dgum, i.e. the finest reasonable granularity, correlates to the
tresolution and error of perception and motion. Yet, it would
@e unwise to use the finest resolution possible just to an-
pwer a guestion whether an object is to the left or right. We
esent an integration schema where data represented in dif-
erent granularities can be mixed when deriving new relations
rom prior observations. The rest of the paper is organized
follows: After a brief introduction of related qualitative
patial calculi and their according properties, we will intro-
;%uce theOPRA,, calculus. First we will give a definition
or the coarsest typer{ = 1), followed by the model for ar-
é)itrarym € N including the rules for composition of base
elations. In the end we will give an example with linguis-
tic commands and coarse perceived configuration information
that have to be integrated by constraint propagation to achieve
survey knowledge.

Calculi dealing with such information have been well inves—2 Related Work

tigated over recent years and provide sound reasoning straf@ualitative Spatial Reasoning (QSR) is an abstraction that
gies, e.g. about topological relations between regions as isummarizes similar quantitative states into one qualitative
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characterization. From a cognitive perspective the qualitativeurvey knowledge was given.
methodcomparedeatures of the domain rather thareasur-

ing them in terms of some artificial external scéfreksa, ; ; ;

1994. The two main directions in QSR are topological rea—3 The Oriented Point Relation Algebra
soning about regions, e.g. the RCd®andell and Cohn, (OPRA;)

1989; Randelet al, 1993, and positional (distance and ori- opjects and locations are represented as simple, featureless
entation) reasoning about point configurations. An overview,sints in aforementioned approaches on orientations. In con-
is given in[Cohn and Hazarika, 2001We will concentrate a5t our paper presents a positional calculus which uses
on the most important positional calculi for our work. more complex basic entities: It is based on objects which are
The Double Cross calculuZimmermann and Freksa, represented as oriented points. It is closely related to a pre-
1994 is an approach based on fundamental knowledge abowfously designed calculus which is based on straight line seg-
human spatial reasoning. In contrast to previous approachgents (dipolesjMoratzet al, 200d. In [Dylla and Moratz,
t_he base relgtions dq not only describe a relative point posppog the dipole approach was extended for modeling behav-
tion wrt. a single point, but wrt. a vector. In other words,jor in dynamic environments. Conceptually, our new calculus
an observer tries to relate to a poifitwhile he is walking  can pe viewed as a transition from oriented line segments with
from position A to B. In [Scivos and Nebel, 2004t was  concrete length to line segments with infinitely small length.
shown that the calculus is not closed under permutation angh this conceptualization the length of the objects no longer
composition, and that reasoning with a set of base relations iggg any importance. Thus, only the direction of the objects is

NP-hard. A further application driven development based onhydeled.O-points our term for oriented points, are specified
the scheme above is the Ternary Point Configuration Calculugs pair of a point and a direction on the 2D-plane.

(TPCC)[Moratzet al., 2003. We will describe this calculus
in more detail in section 4.1.
Schlieder[1995 proposed a calculus with 14 basic re-

lations based on line segments with clockwise or counter Left

clockwise orientation of generating starting points. Isli and

Cohn[1999 presented a ternary algebra for reasoning about Back O Front
orientation containing a tractable subset of base relations.

Schlieder’s approach was extended for robot navigation tasks Right

in [Moratzet al,, 2000; Dylla and Moratz, 20Q5resulting in
relation algebras in the sense of Tarbdkadkin and Maddux,
1994 at different levels of granularity. Figure 1: An oriented point and its qualitative spatial relative direc-
Clementiniet al. [1997 introduced a binary approach for tions
dealing with qualitative relations at an arbitrary level of gran-
ularity. The angles are not necessarily equidistant. Their ap-
proach did not provide a general and restrictive schema fog 1 = paagoning with Coarse O-Point Relations
reasoning with multiple position expressions. Also no con-
cept for combining relations at different levels was given.  In the coarsest representation a single o-point induces the sec-
In [Renz and Mitra, 2004the Star Calculus, a qualitative tors depicted in figure 1. “Front” and “Back” are linear sec-
direction calculus with arbitrary granularity, was introducedtors. “Left” and “Right” are half-planes. The position of the
The relation of two points in the plane with respect to onepoint itself is denoted as “Same”. A qualitative spatial rela-
global reference direction is expressed, which leadsita-1 tive orientation relation between two o-points is represented
basic relations. These basic relations form a relation algebry the sector in which the second o-point lies with respect to
for the cases with uniform angles. The authors claim thathe first one and by the sector in which the first one lies with
when using a Star Calculus with more than two referencéespect to the second one.
lines, the boundary between qualitative and quantitative repre- For the general case of the two points having different posi-
sentation disappears. The main disadvantage of the Star Cabns we use the concatenated string of both sector names as
culus is its need for a global reference direction which musthe relation symbol. Then the configuration shown in figure 2
always be available at each point in space. is expressed with the relatiofh RightLeft B. If both points
The extended panorama approach was presentBtfdag- share the same position the relation symbol starts with the
neret al, 2003. The representation is based on the cyclic orword “Same” and the second substring denotes the direction
dering information of a 360view within the reference frame of the second o-point with respect to the first one as shown in
of an observing agent and on qualitative distance informatioriigure 3.
It can be interpreted as an ordered set of relations between Altogether we obtain 20 different atomic relations (four
an oriented object and the according observed point. Due tbimes four general relations plus four with the o-points at
this structure it is rotational and translational invariant. Upthe same position). These relations are jointly exhaustive and
dating the model due to changes in a dynamic environmerpairwise disjoint (JEPD). The relation SameFront is the iden-
can simply be done by changing the order. Different leveldity relation. We use)P; to refer to the set of 20 atomic re-
of granularity were also introduced. No formal method forlations, andDPR.A; to refer to the power set @7?; which
granularity switches or composition of local observations intocontains al2?° possible unions of the atomic relations.
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all constraints are satisfied &olutior). We call this prob-
lem OPSAT. OPSAT is a Constraint Satisfaction Problem
(CSP)[Mackworth, 197F and can be solved using the stan-
dard methods developed for CSPs with infinite domains (see,
e.g.,[Ladkin and Maddux, 199%.
B A partial method for determining inconsistency of a set
A of constraintsO is the path-consistency methpavhich en-
forces path-consistency dd [Mackworth, 1977. A set of
constraints is path-consistent if and only if for any two consis-
Figure 2: Qualitative spatial relation between two oriented points attent variable instantiations, there exists an instantiation of any
different positions. The qualitative spatial relation depicted here ighird variable such that the three values taken together are con-
A RightLeft B (which reads B is to the right ofA, andA isto the  sjstent. It is necessary but not sufficient for the consistency of
left of B). a set of constraints that path-consistency can be enforced. A
naive way to enforce path-consistency is to strengthen rela-
tions by successively applying the following operation until a
fixed point is reached:

V’i,j, k: Rij — Rij n (Rzk e} Rkj)

wheres, j, k are nodes and;; is the relation betweenand
A j. The resulting set of constraints is equivalent to the original
set, i.e. it has the same set of solutions. If the empty relation
occurs while performing this operatiod,is inconsistent, oth-
B erwise the resulting set is path-consistent.

3.2 Finer Grained O-Point Calculi

The design principle foOPR.A; can be generalized to cal-
Figure 3: Qualitative spatial relation between two oriented points Culi OPR.A,, with arbitrarym € N. Then an angular resolu-
located at the same position. The qualitative spatial relation depictetion of 22—;2 is used for the representation (a similar scheme for
here isA SameRightB (which reads: A and B are at the same absolute direction instead of relative direction was recently
location, andB is heading right with respect td). designed by Renz and Mitfaoozﬂ).

For reasoning about the o-point relations we apply
constraint-based reasoning techniques which were originally
introduced for temporal reasonirdllen, 1983 and also
proved valuable for spatial reasonifigenz and Nebel, 1998;
Isli and Cohn, 200D In order to apply these techniques to
a set of relations, the relations must form a relation algebra 4
[Ladkin and Maddux, 1994 i.e. the atomic relations must
be jointly exhaustive and pairwise disjoint and they must be
closed under compositior), intersection (), complement
(), and converse{). There must also be an empty rela-
tion, a universal relation, and an identity relation. While the
converse, the complement, and the intersection of relations
can be computed from the set-theoretic definitions of the re-
lations, the composition of relations must be computed based Figure 4: OPRA; granularity
on the semantics of the relations. The compositions are usu-
ally computed onkIJ)I/fothe atomic relatiofns and theg sth)red in 1 formally specify the o-point relations we use two-
a composition table. The composition of compound relations;; : : : :
can b(fobtained as the unionpof the composir;ions of the Cosdjmensmnal continuous space, in pa_rtlcu]l%?. Every o-

: ; . " -point .S on the plane is an ordered pair of a popy repre-
responding atomic relations. The compositions of the atomltEented by its Cartesian coordinatesndy, with =,y € R
relations can be deduced directly from the geometric semai- ' -nda direction Y Y
tics of the relations (see section 3.4). S

O-point constraints are written aRy wherex, y are vari- _ .
ables for o-points and? is a OPRA; relation. Given a 5= (ps; ¢s), Ps = ((Ps)z: (Ps)y)
set © of o-point constraints, an important reasoning prob- We distinguish the relative locations and orientations of the
lem is deciding whethe® is consistenti.e., whether there two o-pointsA and B expressed by a calculé@PRA,, ac-
is an assignment of all variables 6fwith dipoles such that cording to the following scheme. We use the symbg; for
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To clarify the notation above we will give examples here.
The configuration in figure 1 witim = 1 for example results

s 43 in A 1/} B. Frontin this schema is denominated witH_eft
6 2 is 1, Back is2 and Right is3. In figure 6 the same config-
7 1 uration is shown with the reference frame for= 2. This
results in relationd -/ B. Thus we can say that lies in
8 0 segment 7 regarding and A lies in segment 1 relative tB.
15 Form = 4 (figure 6) we getd ./, B.
10
oy 13 14

Figure 5: OPR.A4 granularity

tan—! %:Egi;?{ (tan—! has two arguments, the numera-

tor, and the denominator, and maps to the intef9aln]).
Figures 4 and 5 show the resulting granularity.foe= 2 and
m = 4. According to the cyclic order of the directions it is
appropriate to enumerate them by using 4he elements of
the cyclic groupZy,,.

If pa # pp therelationA .2} B (i,j € Z,4,,) reads like
this: Given a granularityn, the relative position of B with
respect to A is described byand the relative position of A
with respect to B is described by

Formally, it represents the following set of configurations:

(=2 D) A (2152 <pap —¢a <2742)) (D)
((i=20) A (@AB —da =2m7)))

(=2 DA @2rit < pap — ¢p < 2nitl))
(G =20) A (aB — d5 = 21L)))

< > <

a =3 bstands fow mod 2 = b mod 2. Using this notation,
a simple manipulation of the parameters yields the converse
operation(m /%)~ = m/] .

If p4 = ps, the relationA ../i B represents the follow-
ing set of configurations:

Figure 7: Two o-points in relatiod +/3; B

3.3 The Triangle Constraint

Besides the composition we have an additional source for spa-
tial knowledge. The following scene is given: An agent is at
((z’ =5 0) A (¢B — s = Qwﬁ)) (2)  position A and perceives object’ including the view angle
o i1 i1 relative to the current heading. Then the agent turns towards
V(=2 ) A @2 < dp —¢a <2797)) position B, moves there and perceives the relative angle to
objectC again. We now are able interpret this setting as a
triangle (compare figure 8)x is defined by the difference of
Hence the relation for two identical o-points = B for the or_iginal hea_lding, the vigw angle and the heading towards
arbitrarym € N is A./0B. Using this notation a simple B. (is determined accordlr_wgly after the perception. Due to
manipulation of the parameters yields the converse operatio€neral knowledge about triangles ¢ 3 + v = 7) we are
(n/i)~ = wm/(4m —1i). The composition tables for the able to derivey. _ N _
atomic relations of thé€ PR A,,, calculi can be generated us-  With Az we denote the o-point positioned Atand orien-
ing a schema which is based on the parameters j of the tated_ towqrds pqsmom?. In the follpwmg,z, k and the ac-
corresponding relations (analogous to the generating scheng@rding arithmetic operators are still definedds,,. Within
for the converse operation). We describe the schema for the P RAm, & now may be described as
composition operation in section 3.4. Ao nZk Ap
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and respectively as
Ba /i Be
AssumingA, B, C being ordered in mathematically posi-
tive orientation and: =5 0V ¢ =, 0, we can conclude angle
v
Cp ml(2m —k —1i) Cy
Thus we can generate additional relations omwith two
prior perceptions.

Figure 8: A triangle defined by the o-points A,B and C

3.4 Composition of Relations
Throughout this section we assume that three o-points,
C and the relationst../! B and B..£} C are given. First we

also assume that4 # pp # pc.
In the case of uneven j, k and! they correspond to open

angular intervals according to (1)4 is called atotally pla-
nar relation, ifi =, 1 Aj =5 1. If (i +j) =2 1, w7 is
called asemi-planarelation. ..~/ is called alinear relation,
ifi=20Aj=20.

First we will describe the composition procedure for the

special case of totally planar relations, because it is rather
straight forward. In the next section we will generalize to a

common procedure for arbitra@PR.A,, relations. In the

Composition of Totally Planar Relations

Composition of two totally planar relationd../!B and
B/t C is mainly a composition of angular intervals. If we
want to describe the relative position @fwith respect ta4,

we need to combine the angular intervals which correspond
to i, j andk. The first possible sector which can contéin

is eitheri ori — j + k — 2m — 2, depending on which one

is “first” in a circular ordett The last possible sector is either
10ri—j+ k—2m + 2. To determine this, we define a
minimum and a maximum relation within a cyclic gro#p

(n € N)witha,b € Z,;:

min(a,b) |b—al <%
minz(a,b) = { max(a,b) [b—al> % (©)]
b |b—al =%
max(a,b) [b—al <%
maxz(a,b) = { min(a,b) |b—a|l> % 4)
b |b—al =%

For the sake of simplicity we assume thatn(a, b) is the
minimum of the corresponding natural numbersztand b.
maxz (a, b) is defined analogously t@inz(a, b).

All sectors and linear relations between the first) (@nd
the last possible ones{) may containC'. Analogously, we
also get a first and a last sector arouridvhich can contain
A:

$1 ming (i,7 — j +k — 2m — 2) (5)
s = maxz(i,i—j+k—2m+2)
t ming(l,l —k+j—2m —2)
to maxz(l,l —k+j—2m+2)

end we point out how to compose the so-called “same” rela-

tions, where two o-points share the same location.

Figure 9: Composition of twoOPR.A4 relations A+«/¢ B and
Ba/!.C. In this example the values aie= 13, j = 5 andk = 11
(see figure 5). Because the direction(dis not depicted in this ex-
ample, no value ofis given. As a result of the compositiofi, may
lie in sectors 9 to 13 with respect tb.
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We get all possible directions (a full circle) i = sy or
t1 = t9, because a composition of totally planar relations can
never result in a single sector:

{

t} andt), are derived analogously.

We achieve a disjunction of relations in whi¢hcan be
with respect tod and a disjunction of relations in whicA
can be with respect t¢’. The overall result is a disjunction
of all possible combinations:

817&52

S1 = S9g

817582
S1 = 82

S1
0

S1
4m — 1

/

— /
51—

82:

y
AwllBoBusiC=\/ \Q/Angc

— ! p—y
a=s} b=t}

’
52

(6)

1This notation, of course, is simplified: We need to consider
an element of the cyclic group as well, but we did not want to intro-
duce another symbol for this purpose.



Composition of Arbitrary Relations and analogously for; andt).

In this section we present a generalized schema for determin-The resultingDPR.A,, relation is
ing the composition of arbitra®PR A, relations. The only
cases to be excluded are the “same” relations, which are de- j . b
scribed in the following section, and those resulting in a linear Amli BoBmlp = \/ \/ Ansy € (9)
sector or a disjunction of two linear sectors: a=s} b=t}

((G=k+2m)V(G=k)Aj=0Ak=0 (7) Compos?t@on with “Same” Relati_ons
Compositions of cases where eithex = pg or pg = pc,
The solution for these few cases can be constructed fairly eas-rather simple, because it can be seen as an addition of inter-
ily. For all other cases the procedure is as follows: vals, or, ifi =5 0 A k =5 0, vectors.
A linear part of anOPRA,, relation can be seen as an
angular intervalla, o] with a; = «as. According to the 59 L .
second and fourth line of (1) the composition formula mustbe |, /io ../ = {Va—m mlq 1=20Ak=20 ., (10)
adapted for the cases of even values ¢f k andi. Therefore i+k else
a linearity correction term

N ik — 14,k 1)

(i, j k) = ae{;k}«a +1) mod 2) (8) o = ikl (kD)
is incorporated to the equations in (5).counts the number ¢ @dain denotes the linearity term given in (8). The third
of linear relations. Simply adding (or subtracting)however, argumentis 1 because we only need two arguments here.
may deliver (half) closed intervals in the caseiafr I being ~_ The composition./; o .Zk works analogously. Composi-
even; but this cannot happen. So we can make sure to achietien of two “same” relations is trivial.
open intervals by using modified minimum and maximum re;

’ ’7
Sa 12

S1

lations for Z,, (n = 4m in this case): 3.5 Integration of Relations with Different
" ' Granularity
_ N _ Sometimes it is reasonable to perceive or act using different
m@(a, b) b—al <3, m?n(a» b) =21 degrees of accuracy depending on context or time constraints.
min(a,b) +1 [b—a| < 3,min(a,b) =20 Therefore we have relations at different levels of granularity,
. max(a, b) |b—a| > %, max(a,b) =, 1 i.e. varyingm. It is not reasonable to represent such infor-
min’z (a,b) = max(a,b) +1 |b—a| > 2, max(a,b) =, 0 Mation at a very precise level, because a large disjunction
b b—al = H b=, 1 with many literals would emerge. We call the chosera
27 :2 context dependent granularitinconsistencies arising due to
b+1 b—al=%5,0=20 imprecise or faulty perception or movement can be solved by
b b " b = 1 adding even more uncertainty to draw a reasonable conclu-
max(a, b) |b—a| < g,maux(a7 ) =9 sion.
max(a,b) =1 [b—al < g, max(a,0) =20  Gijven two relations with granularityn; and mo, it is
) — min(a, b) |b—a| > %,min(a,b) =2 1 no problem to integrate relations with; = n * my with
maxz(a, b) = min(a,b) =1 [b—a| > 2, min(a,b) =, 0 7 € N > 0andm; > mo. If the values are not a multi-
b b—a|=2,b=y1 ple of each other, naive and fast methods for integrating the
bl b af ,%’b — 0 knowledge are e.g. the least common multiple (LCM) or the
- = 3,0=2

greatest common divisor (GCD). Information loss is minimal
We now get with the LCM, but again a large disjunction might be gener-
ated. In contrast, combining the relations with the GCD of

o - ! .. . R

s = ming(i,i—j+k—2m—=2+9(jk) my andms results in a greater loss of information, but the
sg = maxz(i,i—j+k—2m+2—(i,4k)) result consists of fewer relations compared with the LCM ap-
t1 min’z (1,1 — k45 —2m — 2+ (1, j, k)) proach. Currently, we choose a method where the relations
ts = maxy(l,l—k+j—2m+2—0(,5k). are combined according to their algebraic semantics and a

suitable granularity is chosen depending on the result.
In contrast to the totally planar cases, a single sector is a

possible result when composing semi-planar relations. Fod Qualitative Spatial Reasoning in Robotics

dlscr!gun?kt]m? a fu]: cwfctlﬁ frorln ? single sector, we need t0yye i now give a detailed example on how to integrate local

consider the linearity of the relations given fy knowledge into survey knowledge with the presented TPCC
calculus. Afterwards we will show how the given problem

, 0 s1=53AY(,5,k)=0 can be solved wittOPRA,,, as well. The example we use
S = s, else here has already been introducefidylla and Moratz, 2004
The basis of the example is a robot system able to perceive
S - {4m —1 sy =s2AYP(i,j,k) =0 colored cubes. The system only measures the direction to-
27 s else wards perceived objects. It cannot measure their distance.
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Furthermore the system is able to perform discrete motiomelative anglep4 . must be defined
steps. The task is to “move to the red object behind the blue

cube”. The initial situation is shown in figure 11(a). For bet- \/(xc _ x3)2 ¥ (yo — yB)2
ter differentiation we visualize the two ambiguous red objects r 4 p =
B1 and B2 as circles. First we will give a short recap of \/(xB —24)’ + (yp —ya)?
TPCC[Moratzet al., 2003. Then we show how to solve the
given task with TPCC, followed by a solution WithPR A, ,,. bap.C — tapt Yo" YB -1 YBTYA
o To— B T —TA
4.1 The Ternary Point Configuration Calculus Then we have spatial relations as the examples shown be-

low. All relations are named in figure 10 except the special
casegdou andtri. For a complete list of the definitions we
refer to[Moratzet al,, 2003.

(TPCC)

TPCC[Moratz et al, 2003 deals with point-like objects in

the 2D-plane. It is an application oriented variant of the DouA, B sam C = 7450 =0
ble Cross calculufFreksa, 199R which allows for finer dis- 1
tinctions of positional information than most calculi for con- A, Bclb C = 0<7rapc <1A0<¢apc < i
straint based reasoning presented before. The partition of the 1
calculus is shown in figure 10. A,BdlbC = 1<rapc/A0<¢apc< Vi
1
A BcflC = 0<7"A,B,c<1/\§7r<¢,4_,370<17r
A,Bdsr O := 1§7“A,B,C/\¢A,B,C=g7r

TPCC is not closed under transformations (intersection,
complement and converse), i.e. a transformation might gen-
erate a proper subset of base relations. It is as well not closed
under strong composition):

VA,B,D : A,B(riore)D < 3C : A, B(r1)CAB,C(r2)D

Therefore 4-consistency cannot be enforced directly when in-
ferring with TPCC. Instead a weak compositiah)(was de-
fined:

VA,B,D: A,B(ri@®ry)D «— 3C : A, B(r1)CAB,C(r3)D

Figure 10: The reference system used by TPCC

. The composition table for the weak case was already pre-
The lettersf, b, |, 1, s, d, ¢ stand for front, back, left, ”ght’lsented iMMoratzet al, 2003. The weak operations are still

straight, distant, and close, respectively. The terms fron ufficient to solve a task as shown in our example in the next
back, etc. are given for mnemonic purposes only. The use o% P

TPCC relations in natural language applications is shown ir,?ubsectlon.

an article by Moratzt al. [2004. In this application TPCC 4.2 A Solution with TPCC

relations are used for natural human robot interaction. The ™ . ) )

configuration in which the referent is at the same position a¥Vith the relations defined in TPCC the task “move to the red
the relatum is calledam(for "same location”). The two spe- cube behind the blue cube” can be described such that one
cial configurations in which origin and relatum have the sameof the relations:lb, csb or crb must hold for(C, k1, B1) or

location @ou, tri) are also base relations of this calculus.  (C, R1, B2). We will refer to the disjunction of the three

For a formal and precise definition of the relations the correr-elatlons asc?h. We visualize the initial situation in fig

sponding geometric configurations on the basis of a Cartesi \re 11(a). Figure 11(b) integrates the initially perceived con-

: : Alraints about what is known aboBtl and B2. To deduce
coordinate system representediywere dgscnbed. For ex- the desired knowledge the agent has to move. How to choose
ample, the special cases for the three poifits= (z4,y4),

B=( ) andC — ( ) are defined as follows: the most reasonable action for a maximum of information
= \¥B,YB = e Yo : gain goes beyond the scope of this paper. Therefore we ap-
ply the heuristic: "Move straight forward until the first object

A,BdouC = za=zpAya=ypA is passed and get new perceptions there”.
(xc £ xAVYyc #ya) We will use a simple path-based scheme of constraint prop-
A, B tri C = TA=2p=TcAYa=1Yp=yc agation, where the two last relations of a path are composed

2Here we refer to the arcus tangent function with two arguments
For the cases witd # B a relative radius'4 g, and a  mapping all four quadrants (atan2).
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and then the reference system is incrementally moved to-
wards the beginning of the path to demonstrate reasoning effi-
ciently.

In the example the robot moves towards a position to the
right of the blue cube (fig. 11(c)-11(d)). In figure 11(e) it .
reaches the desired positioR%). Relation 3 just describes (3 &
the fact that the agent’s move to the right of the blue cube #cemex o052
relative to the starting poin®1. The agent’s perception gives
additional knowledge o31 and B2 relative to(C, R2)3. In
order to make a composition we have to transform relation 3
with the Sc transformation leading to relation 3’ (fig. 11(f)).  (a) The initial situation
Now 3’ can be composed with 5 leading to the fact kit and task
is not valid for(R1, C, B2) (fig. 11(g)). Composing 3’ and 4
showsB1 being somewhere behind the blue cube relative to
(R1,C) (fig. 11(h)). Although according to constraint propa-
gation B1 might be somewhere left of the reference a&s,
is the only red object having a chance of fulfilling the given M %o e
constraint ¢7b). R1,Ce7) BX?

Solving general constraint satisfaction networks on the ba-. ., e e
sis of Double Cross relations {8 P-hard[Scivos and Nebel, .o e o
2001. TPCC has not yet been proven to b&P-complete.

Anyway, in the case of many real world problems the desired (¢) Moving to gain addi-
knowledge can be gained in polynomial time without the need  {jona| knowledge

to solve the whole constraint system. The solution can be ob-

tained via a path-based constraint propagation as presented in

[Dylla and Moratz, 2004 All the algorithms given there are

in P.

ol

ol

| |
4.3 OPRA,,— Reasoning about Perceptions =S

R1,C (c?b) BX ?

At first the agent perceives basic relations between the ob-

jects of the environment. Then the agent moves, gets new_~ """ "
perceptions, and can combine these perception using qualita- ( oo
tive spatial reasoning using the previously defined operations . ., . . e «
of OPRA,,. We now relate to the example in figure 11. AC- creeban 2
cording to the granularity of TPCC we assume= 4. Apg

denotes the o-point at positiohwith orientation towards3. (e) The agent reaches

In contrast,p A denotes the inverting, i.e. point looking a position where new

away from objectB. knowledge  can  be
The initial task (figure 11(b)) may be expressed as perceived

Rl 32§ Cri A CrioZ{0 ) BX,?

with X € {1,2} and withA ngfg B denoting the disjunc- . "
tion ‘ . Core &
J l R1,C (c?b) BX ? 052
\/ \/ A 771,42 B . C,R1(dl,clfy BT (1)
a=1 b=k C,R1(dlf,cif) B2 (2)

R1,R2(csl,dsl) C (3) —— R1,C(crf, cfr) R2

The x stands for the set of all available points in our setting.

C,R2(dfl, cfl) B1 (4)

We do this, because the orientation B is of no interest o R2 by dib B2 (5) —> ThOULetd

for the given task.

The initial perceptions (figure 11(b)) are: (g) Path-based integration
0 of 3’ with 5, resulting B1
(1) Blps 21 Blo = Rlpa o237 O being to the right o'

(2) RlRQ 1/1 R131 — RlRQ 44(1) BlRl
(3) Rlg2 +£15 Rlpy — Rlpy +/8; B2p;
the blue cube!” with TPCC

3perhaps more relations are perceivable, but we concentrate on
the relations relevant for this example.
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R1 °
B1

R1,C(c?b) BX?
C,R1(dif,clf) B1 (1)

C,R1(dif,clf) B2 (2)

(b) Initially perceived
relations

R1 °
NS T
R1,C (c?b) BX ?

C, R1(dif,clf) B1 (1)

C, R1(dif, clf) B2 (2)

(d) ... still moving

.

R1 °

: Gom 8
R1,C (c?b) BX?
C,R1 (dif, cif) B1 (1)
C,R1 (dif, clf) B2 (2)
R1,R2(csl,dsl) C (3) ——> R1,C(crf, cfr) R2
C,R2(dfl, cfl) B1 (4)

C,R2(clb, dib) B2 (5)

(f) Transformation of re-
lation 3 with Sc to 3’

.
R1 °
: [Jore %
R1,C (c?b) BX ?
C,R1 (dif, clf) BT (1)
C, R1 (dif, cIfy B2 (2)
R1,R2 (csl, dsl) C (3) —> R1,C (crf, cf) R2

C, R2 (dfl, cfl) B1 (4 —> R1, C(dbl, cbl, clb, dib,
csb, dsb, crb, drb) B1
C, R2 (clb, dib) B2 (5)

(h) Integration of3’ with 4
resulting inB2 being some-
where behind”

Figure 11: Solving the task: “Go to the red object (circle) behind
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Abstract

This work explores how extended modeling of sen-
sors and robot motion can be used to improve
Markov localization by monitoring deviations of
actual measurements from expected sensor read-
ings. By comparing target and actual motions of
robot joints, proprioception is achieved yielding a
quality measure for the current odometry. a quality
measure for odometry that helps differentiate peri-
ods of unhindered motion from periods where ro-
bot motion was impaired for whatever reason. By
negative information we denote the absence of an
expected sensor reading. Negative information is
seldom used in localization because it yields less
information than positive information (i.e. sensing
a landmark) and a sensor often fails to detect a land-
mark, even if it falls within its sensing range. We
address these difficulties by carefully modeling the
sensor to avoid false negatives. In real world exper-
iments, we are able to demonstrate that a robot is
able to localize in positions where without the use
of negative information it could not.

1 Introduction

The estimation of position and orientation of a mobile robot
is a cruical task in mobile robotics. One of the most success-
fully applied approaches is called Monte-Carlo-Localization.
This method is used in numerous robot navigation applica-
tions, such as office navigation [3], museum tour guides [22],
RoboCup [14] [9], as well as outdoor or less structured envi-
ronments [16]. We propose 2 extensions affecting the sensor
model as well as the motion model.

1. We show how negative information can be incorporated
into Monte Carlo localization. The sensor model is
extended by modeling the probability of non-detection
events.

The motion model is improved by modeling of proprio-
ceptive information. The resulting model is incorporated
into the action update of the particle filter.

The presented adjustments and changes improve the gen-
eral ability to localize and also allow the robot to localize in
areas where it was previously unable to do so. They enable
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the robot to quickly recover its belief after collision events
and to adjust quickly to large displacements (kidnapped ro-
bot).

Negative information denotes the ascertained absence of
expected sensor readings. This is incorporated into the cur-
rent belief much like an additional sensor. Proprioception is
based on the comparison of actual motion to intended mo-
tion. This information is used to enhance the influence of
action commands onto the belief.

This work is motivated by the desire to improve the lo-
calization of robots that compete in the RoboCup Sony Four
Legged League. In this league, two teams of four robots com-
pete on a field of green carpet sized 6 m x 4 m. There are
two colored goals and white field lines which define the di-
mensions of the field. There is also a center line, a center
circle and penalty areas near each goal. To help the robots
localize there are four cylindrical landmarks at the side of
the field. These beacons have a simple two color code that
uniquely identifies them. The Aibo robot itself has a camera
with a field of view of 55° and a resolution of only 208 x 160
pixels YUV. It is built into the robot’s head which has 3 de-
grees of freedom. The robot’s legs have 3 degrees of freedom
each. Due to their small size and low power requirements the
robots have rather limited computational power (576 MHz
processor). This somewhat limits the sensory capabilities of
the Aibos compared to robots that are equipped with laser
range finders, sonars and a possibly high end notebook and
requires for efficient algorithms and attention control. The
nature of the soccer games in RoboCup Sony Four Legged
League makes the localization task even more challenging.
The robots have little evidence whether desired movements
were successful or not. Odometry data is of poor quality as
the robots often slip on the ground or run into each other.
Furthermore, the robots are required to track the ball which
makes localization even more difficult as landmarks are only
seen infrequently and may be occluded by other robots. In
the following sections we will present ways to address these
challenges.

2 Monte Carlo Localization

The Monte Carlo Localization method is a probabilistic
method, utilizing Bayes law and the Markov assumption. The
robot maintains a set of samples, called particles. The parti-
cles approximate the belief of the robot’s position, a prob-



ability distribution over the possible positions of the robot.
The current belief of the robot’s position is modeled as parti-
cle density, allowing for multi-modal probability distributions
and beliefs. Each particle represents a hypothetical position
of the robot. The belief Bel(s;), the localization estimate at
time ¢, to be at position s; is determined by all previous ro-
bot actions u; and observations z;. Using Bayes law and the
Markov assumption, Bel(s;) can be written as a function that
only depends on the previous belief Bel(s;—1), the last robot
action u;_1, and the current observation z;:

Bel™(s;) «— /p(st|st,1,ut,1)Bel(st,l)dst,l(l)
—_————

motion model

Bel(s;) «— 1 p(z¢|st) Bel™(s) 2)
——

sensor model

with normalizing constant 1. Equation 1 shows the a priori
belief Bel™ (s;) which takes into account the previous belief
and propagates it using the motion model of the robot. It is
the belief prior to the measurement. The measurement is then
incorporated into the belief as described in (2) using the sen-
sor model (‘sensor updating’). In Markov localization, given
an initial belief Bel(sq) at t = tq, the robot updates its belief
using odometry and then incorporates new sensor informa-
tion. Each time new information arrives the robot updates
its particle distribution using the previous motion command,
the resulting distribution is updated using the gathered sensor
information. This 2 step operation requires 2 models. The
motion model p(st|si—1,us—1) tries to model the effect of
motion commands on the hypothetical positions. The sen-
sor model incorporates environment and sensor information
regarding this environment into the current belief. The parti-
cle filter employed for our work is based on the method de-
scribed in [19]. Here particles consist of a robot pose and
a probability (x,y,8),p. The robot pose (x,y, f) represents
the position and orientation of the robot (z,y coordinates on
the field in mm and orientation in radians). The likelihood p
is a measure of the plausibility of the hypothesis being at the
specified robot pose. The approach first moves all particles
according to the motion model of the action chosen. After-
wards the probabilities of the particles are adjusted using the
sensory input and the sensor model. In a third step, called
resampling particles are moved, deleted from the particle set
or injected from observation, based on their probability.

The RoboCup uses a color coded environment. The dis-
tance and bearing to landmarks and the goals are used for sen-
sor update. Other features of the domain are field lines which
are also used by some approaches [19]. Goals and landmarks
are identified by the camera located in the robot’s head. The
color pattern of the features is used to identify landmarks.
The sensory input of the leg and head joints is used to deter-
mine gaze direction, field of view, as well as the direction of
identified features. The motion model is usually determined
before the game by measuring the effect of motion commands
on the actual displacement of the robot (see next section).

3 Proprioceptive Motion Modeling

Many research efforts in mobile robotics aim at enabling the
robot to safely and robustly navigate and to move about both
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Figure 1: Sensor and actuator data (shoulder joint FL1) for
a freely walking robot. The corresponding difference func-
tion shows discrepancies between actuator and sensor data,
caused by walking motions (peaks in the curve).

known and unknown environments (e.g. the rescue scenar-
ios in the RoboCup Rescue League, planetary surfaces [24]).
While wheeled robots are widely used in environments where
the robot can move on flat, even surfaces (such as office envi-
ronments or environments that are accessible to wheelchairs
[13]), legged robots are generally believed to be able to deal
with a wider range of environments and surfaces. There are
many designs of legged robots varying in the number of legs
used, ranging from insectoid or arachnoid with 6, 8 or more
legs (e.g. [1]), 4-legged such as the Sony Aibo [5], humanoid:
2-legged (e.g. [17]).

Obstacle avoidance is often realized using a dedicated
(360°) range sensor [23]. Utilizing vision rather than a dedi-
cated sensor is generally a much harder task since a degree
of image understanding is necessary. For the special case
of color coded environments, straight forward solutions exist
that make use of the knowledge about the robot’s environment
(such as the color of the surface or the color of obstacles [15],
see also previous section). If, however, obstacle avoidance
fails, robots are often unable to detect collisions since many
designs, like the robot used in this work, lack touch sensors
or bumpers. Such robots run into walls and continue to do so
since they have no way of telling that they are in a fatal sit-
uation. Apart from the current action failing (e.g. the target
position not being reached), collisions and subsequently be-
ing stuck have severe impact on the robot’s localization. This
is due to the motion update step in Bayesian filtering where
the current motion of the robot is incorporated into its belief
(cf. 1). This updating is usually limited to incorporating the
robot’s own motion which is commonly referred to as odom-
etry. While calculation of odometry is straightforward in a
wheeled robot (counting turns of the wheels), the task is much
more complex for a legged robot. Forward kinematic can be
used to a certain extent [18], but this requires well defined gait
patterns. Since gait optimization is often done using genetic
optimization, patterns tend to be highly complex and a phys-
ical simulation of the robot would be necessary to adequately
predict its motion. Such gaits require calibration for them to
be used in actual robotic applications [2]. However well the
odometry is calibrated, robot locomotion remains a stochas-
tic process and is never quite reproducible. In the RoboCup
domain, there is an additional source of errors: other robots
competing for the ball. Robots often push each other or in-
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Figure 2: Bottom: The collision sensor - values greater than
4 are interpreted as a collision. Top: The entropy of the belief
(represented by the sample set) with and without (thin line)
improving the motion model. When the enhanced model is
used, the entropy increases during collisions, because noise
is added to the distribution.

terlock their legs causing motions to have erratic outcome.
The following approach is based on work dealing with colli-
sions detection for a Sony Aibo using the walking engine and
software framework described in [7]. The approach uses the
servo motor’s direction sensors for the task of estimating the
quality of the odometry data gathered by the walking engine.
In analogy to biology we call this proprioception because in-
ternal sensors are used to determine the state of the robot’s
body.

3.1 Motion Model

The motion model consists of consecutive acquired odometry
data incorporated into the belief, as well as a random error
Aerror, Which is related to the distance traveled and the angle
rotated. Every particle is updated using the odometry offset
accumulated since the last update.

3

DOS€new = POS€Eold + Aodomelry + Acrror

Where A.por is defined as

0.1d x random(—1...1
Acrror = ( 0.02d x random(—1...1) ) 4)
(0.002d 4 0.2a) x random(—1...1)

3.2 Collision Detection

The Aibo is not equipped with sensors to directly perceive the
contact with obstacles. We have shown ways of detecting col-
lisions using the sensor readings from the servo motors of the
robot’s legs in [7]. The comparison of motor commands and
actual movement (as sensed by the servo’s position sensor)
can be used to detect collisions (see fig.1). This comparison
has to compensate for the phase shift between the two signals
and has to cope with arbitrary movements and accelerations
produced by the behavioral layers of the robot. The method
provides a virtual collision sensor that can be used to improve
the motion model.
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2)

Figure 3: Belief distribution without (1) and with (2) odom-
etry quality used after a collision (marked by the star on the
robot’s path).

3.3 Extended Motion Model

The extended motion model accounts for the supplementary
information provided by the collision detection module, by
changing A, as well as affecting the accumulated odom-
etry update data in a random way. The binary decision of
the collision sensor has a static impact on the motion noise.
This means that Agyo is no longer dependent on the dis-
tance traveled and the angle rotated, but rather is a uniform
noise, within an interval expected to be a possible outcome
of collisions. But also odometry data can not be fully re-
lied upon, which is accounted for by randomly updating par-
ticles through the gathered odometry information, with the
assumption that the robot most probably ends up somewhere
between the requested destination and the starting point. The
noise tries to account for the severe and unforeseeable impact
of the collision. If collisions are detected, every particle is
updated by:

DPOSEnew = POS€old + random(O.‘.l) : Aodometry + Aerror

Where Aqror S
Acrror = ( 40 x random(—1...1) >
0.5 x random(—1...1)

Otherwise, when no collision was detected, the motion model
is not extended and the update is performed as usual(3). The
effect of the changes can be seen in fig.2 and 3.

40 x random(—1...1)
&)

Entropy We use the expected entropy [ as an information
theoretical quality measure of the position estimate Bel(s;)

[4]:

Hy(s;) = — > _ Bel(s) log(Bel(s;))
The sum runs over all possible states. The entropy of the par-
ticle distribution becomes zero if the robot is perfectly local-
ized in one position. Maximal values of H mean that Bel(s;)
is uniformly distributed.

Fig. 3 illustrates the effect of the described motion model-
ing on the particle distribution. A robot is walking from the
center circle in the direction of the goal when a collision oc-
curs. It then continous towards the goal and turns left before
reaching the penalty area. When the collision is modeled, the
uncertainty in the belief is clearly visible and can be used to
trigger appropriate robot behavior.

(6)
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Figure 4a: (t = t() llustration of a robot localizing in an of-
fice hallway. The robot has a sensor to detect doors. At the
beginning, the robot does not know its position in the hall-
way (uniform belief distribution Bel*(s;)). At this time, no
sensing of the world takes place.
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Figure 4b: (¢ = t1) The robot has moved down the hallway
and now senses a door p(z|s;) which results in the shown
belief Bel*(s;). It has two peaks since the robot could be
standing in front of either door. The previous distribution is
illustrated by the dashed line.

4 Exploiting Negative Information

The classic example of negative information was described in
the Sherlock Holmes case “Silver Blaze.” In this case, a house
has been broken into. Under such circumstances, one would
expect the watch-dog to bark. The curious incident of the
non-barking of the dog in the nighttime provides Holmes with
the information that the dog must know the burglar, allowing
him to solve the case. Applied to mobile robot localization,
this means that conclusions can be drawn from expected but
actually missing sensor measurements [10]. Markov local-
ization methods, in particular Monte Carlo localization, have
proven their power in numerous robot navigation tasks, e.g.
in office environments [3], in the museum tour guide Min-
erva [22], in the highly dynamic RoboCup environment [14],
and outdoor applications in less structured environments [16];
an evaluation of the various algorithmic approaches is given
in [6].

Our work is focussed on localization based on landmarks.
Whenever a robot senses a landmark, the localization esti-
mate is updated using the sensor model. This sensor model is
acquired before the actual run. It describes the probability of
the measurement 2 given a state s (position, orientation, etc.)
of the robot. Sensor updates only occur when landmarks are
detected. If no landmark is detected, the state estimation is
updated using (only) the motion model of the robot.
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Figure 5a: (t = t3) The robot moves on. There are no doors
nearby so the “door sensor” does not sense a door. The sensor
update distribution is shown in p(z;|s;). This negative infor-
mation is of negligible use at this position: it does not help
differentiate between the peaks.

p(z,*s)

Bel*(s,)

negative info. not used

Figure 5b: (¢ = t4) The robot moves on and the door sen-
sor still does not sense a door. Bel*(s;) shows the belief if
negative information is taken into account, whereas Bel(s;)
shows the belief without using negative information to bet-
ter illustrate the case. As can be seen from the diagram, using
negative information allows the robot to rule out the left peak.

Example. Consider a robot driving down a corridor as
shown in fig. 4a-5b. The robot has a sensor to detect doors
when it is standing in front of one. Let us assume further that
the robot is moving to the right but is oblivious of its starting
position. As it starts to move to the right it passes and senses
a door. Given this information, it could be standing in front
of either of the doors (states sif and Sygn). As it moves on,
it does not pass another door for some time. At time t = t3,
if sier had been the true position, the robot would have had
passed another door by now. Using the negative information
of not perceiving a door, the belief based on sy can be ruled
out. As Thrun, Bugard, and Fox put it quite graphically, “not
seeing the Eiffel Tower in Paris implies that it is unlikely that
we are right next to it” [21].

We present a localization approach that incorporates such
negative information. To our knowledge, no explicit study
of using negative information in Markov localization has
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Figure 6: Probability of not sensing a landmark for a robot on

a RoboCup soccer field. For a robot located around the center
of the field, it is hard to miss landmarks.

been published. One difficulty is brought about by the fact
that, generally speaking, sensing a landmark constitutes a
greater information gain than not sensing one simply because
there are many positions within the robot’s environment from
where the landmark cannot be perceived. A landmark is, by
definition, something that stands out in an environment.

The other difficulty in implementing a system that uses
negative information on a real robot is that there are two main
reasons for the absence of an expected sensor reading: the tar-
get may not be there or the sensor may simply be unable to
detect the target (due to occlusions, sensor imperfections, im-
perfect image processing, etc.). Differentiating the two cases
is not a trivial task and requires careful sensor modeling. We
address this problem by considering the field of view of the
robot and by using obstacle detection to estimate occlusions.

Negative information modeling has been applied to ob-
ject tracking (see [20] for an introduction and [10] for an
overview). The event of not detecting an object is treated
as evidence that can be used to update its probability density
function [11]. In the RoboCup domain, not seeing the ball on
the field can be used to delete Monte Carlo particles in that
region as long as occlusions are considered [12]. Negative
information is also mentioned in the context of simultaneous
localization and mapping (SLAM) where it is used to adjust
the confidence in landmark candidates [16].

4.1 The Notion Of Negative Information

Negative information describes the absence of a sensor read-
ing in a situation where a sensor reading is expected given the
current position estimate.

To integrate negative information, imagine a binary sensor
being added that fires whenever the primary sensor does not
detect a particular landmark [. Its probability of it firing is
given by:

JAEED) ©)
This sensor model can be used to update the robot’s belief
whenever it fails to detect a landmark, i.e. when negative evi-
dence is acquired. Fig. 6 shows the probability p(z; |z, yi) of
not sensing a landmark on a RoboCup field at position (z, ;)
summed over all possible robot orientations. This figure also
shows that it is most likely for the robot to sense a landmark
when it is standing in the middle of the field. The likelihood
of not sensing a landmark is highest for positions at the edge
of the field as the robot may be facing outwards.
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Algorithm 1 Iterative Bayesian updating incorporating nega-
tive evidence
1: Bel™(s¢) «— [ p(se|si—1,ui—1)Bel(si—1)dsi—1

if (landmark [ detected) then

Bel(s:) «— np(zt|s:)Bel ™ (st)
else

Bel(st) «— np(2f|st; 11, 00) Bel ™ (s¢)
end if

AN i

This rather coarse way of incorporating negative informa-
tion can be refined by taking into account the sensing range 7
of the robot’s sensors and possible occlusions o; of land-
marks. The sensing range is the physical volume that the sen-
sor is monitoring. In case of a stationary robot, r; = rg is
constant, for a mobile robot with a pan-tilt camera it is not.
By o, we denote a means of detecting whether or not occlu-
sions have occurred. In practice, this can be calculated from a
map of the environment, directly sensed by a sensor such as a
laser range finder, or derived from a model of moving objects
in the environment.

Combining the two yields the probability of not sensing an
expected landmark :

p(271|s¢,71, 00) (3)

Whenever a landmark is not detected, it can be used in the
sensor update step of the Iterative Bayesian Updating (see Al-
gorithm 1).

4.2 Sensor Modeling For The Sony Aibo

Field of View

The ERS-7 is a legged robot with a camera mounted in its
head. The camera has a horizontal opening angle of 55°
and the robot’s head has 3 degrees of freedom (neck tilt,
head pan, head tilt). We abbreviate gaze direction by ¢ =
(ritt1, @pan, @riz)- The sensing range is calculated by consid-
ering the field of view (FOV) of the robot:

?@\M

Occlusion

In order to account for occlusions, we opted for an approach
that has been used successfully for detecting obstacles, re-
ferred to as ‘visual sonar’ [8; 15]: The camera image is
scanned in vertical scan lines and unoccupied space in the
plane of the field is detected since it can only be of green or
white color (field lines). Scanning for these colors tells the ro-
bot where obstacles are and where there is free space which
in turn can be used to determine if the visibility of the land-
mark is impaired, i.e. if it is occluded by other robot or some
other obstacle. More specifically, if the expected landmark
lies in an area where the robot has detected free space, the
likelihood of the corresponding pose estimate is decreased. If
it lies outside of the detected free space, no inference can be
made.




Taking FOV and occlusion into account, the sensor model
for not perceiving an expected landmark is given by:

p(zf\st, Zt,obs) 9

Where s; = (x4, yt, 94, p¢) describes the robot state that

consists of the robot pose (position x;, y;, and orientation ;)
and the current gaze direction ;.

4.3 Experimental Results

In the following experiments, unless otherwise stated, only
landmarks were used for localization to emphasize the effect
of using negative information.

Monte Carlo Localization, Implementation

This work is based on the Monte Carlo localization described
in [19] which also serves as a base line implementation. Sen-
sor updating was extended to account for FOV and occlusion
as described. This also requires sensor updating to be trig-
gered by new camera images regardless of whether or not
there was a percept. Before re-sampling, the weight of an
individual particle is calculated as follows: Of all landmarks
L, the subset of landmarks L’ is detected, the subset L* is
expected but not detected, and lastly the subset L is not de-
tected but was also not expected: L = L' U L* U L® and
L* N L’ = (). The probability of a particle p; is calculated by
multiplying all the likelihoods of all gathered evidences:

pi = H Sl(ameasdyaexpd) . H Sf(Waaexpd)

leL’ leL~*

(10)

detected expected and not detected

The function s; is an approximation of the sensor model
and returns the likelihood of sensing the landmark [ at angle
Omeasd fOr a particle p; that expects this landmark to be at
Qiexpd- Function s models the probability of not sensing the
expected landmark [ € L* given the current sensing range as
determined by ¢, the robot pose associated with p;, and the
obstacles percept zops.-

Preliminary Experiment

For illustration purposes, we conducted a preliminary exper-
iment in simulation. In this experiment, the robot starts out
being well localized and is then displaced to a position where
it is not able to get any new sensor information (fig. 7). It
is similar to the kidnapped robot problem, but here we em-
phasize the moment right after the robot is displaced rather
than investigating how fast it can recover. The effect of the
displacement on the Monte Carlo particle distribution is the
following: particles which represent the previous belief be-
come less likely when negative information is taken into ac-
count (i.e. the information that the landmark is not detected
where it is expected). The distribution diverges towards par-
ticles which were less likely prior to the displacement. Parti-
cles representing the previous belief are eventually eliminated
from the distribution because they are inconsistent with the
current (negative) sensor data. Particles which differ from the
previous belief just enough to be compatible with the current
sensor data are favored; particles remain close to where the
robot was last able to localize. This does, in most cases, bet-
ter represent what has happened to the robot than distributing
the particles uniformly over the entire field.
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Figure 7: Incorporating negative information. White (out-
lined) arrows denote particles that receive negative informa-
tion and that are therefore less likely than others. In (1), the
effect of using negative information is shown for a robot that
is well localized and frequently sees landmarks. (2) Distrib-
ution shortly after the robot has been displaced (kidnapped):
particles facing the goal are less likely and will eventually be
eliminated from the distribution.

4.4 Localization Experiment

The following experiment is a localization task using the real
robot. The robot is placed on the field at the location indi-
cated in fig. 9, facing outwards. The robot performs a scan-
ning motion with its head (pan range [—45°,45°]) but does
not move otherwise. From its position, it can only see one
landmark. A panorama composed of actual robot camera im-
ages is shown in fig. 8. The a priori belief is assumed uni-
form. This position was chosen because it is a particulary
difficult spot for the robot to localize given the limited sensor
information. Two quantities can be used when a landmark is
seen: its size in the camera image can be used to estimate the
distance to the landmark d; and the relative angle to the land-
mark (bearing, ;) can be calculated from its position within
the image. In practice we only use the bearing because the
distance measurement is error prone. Using just the bearing,
only the orientation of the robot can be inferred. Note that
this differs from triangulation where distances are used.

In the following paragraphs, the basic localization not us-
ing negative information and localization incorporating nega-
tive information are compared. We first qualitatively analyze
the particle distribution and then show how the entropy of the
distribution decreases when negative information is consid-
ered.

Particle Distribution

The basic experiment was conducted using 100 particles for
Monte Carlo localization. It was repeated on a log file con-
taining camera images, robot joint angles, and odometry data
using an increased particle count of 2000 to get a better rep-
resentation of the probability distribution.

Not using negative information. Without using negative
information, the robot is unable to localize (fig. 10). Only
the orientation of the particles is adjusted according to the
sensor readings. The apparent clustering in the small sample
set in fig. 10 is not stable and, even after considerable time,



Figure 8: A panorama view generated from actual camera
images, single camera image highlighted. The robot can only
see one landmark.

Figure 9: Experimental setup: Robot is standing at the posi-
tion shown in the photo. It performs a scanning motion with
its camera.

the particles do not converge. The distribution for the larger
sample set is uniform (w.r.t. position).

Note that the distribution is not circular because the dis-
tance to the landmark was not used. Instead, only the bearing
to the landmark was used. This results in a radial distribution
resembling magnetic field lines.

Incorporating negative information. The negative infor-
mation gained in this experiment is not seeing but one land-
mark within the pan range (pardon the double negation).
Incorporating this information, the robot is able to local-
ize quickly. On average, the robot is reasonably well lo-
calized after about 10 secs with a pose error of less than
Ap = (25 cm, 25 cm, 20°).

Entropy

Entropy is considered for the localization task as defined in
equation 6. Fig. 12 shows the progression of the distribution’s
entropy over time for the above localization experiment cal-
culated from the 100 particle distribution.

Not using negative information. The run starts with a uni-
form particle distribution which equals to maximum entropy.
When the landmark comes into view, a decrease in entropy
is observed. This information gain is due to the robot being
able to now infer its relative orientation w.r.t. the landmark.
Since there are no constraints on the robot’s position, the en-
tropy remains at a relatively high level. This is easily seen
by separately calculating the entropy of the angle and posi-
tion distributions. Note that even though there is a drop in
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Figure 10: Particle distribution not using negative informa-
tion, initial uniform distribution and distribution after 10s.
Solid arrows indicate Monte Carlo particles (100). The ex-
periment was repeated using 2000 particles (shaded lines) to
better represent the actual probability distribution. The actual
robot position is indicated by the white symbol, the estimated
robot pose by the solid symbol. Not using negative informa-
tion and only using the bearing to the landmark, the robot is
unable to localize. Some clusters of particles form but they do
not converge. As one would expect, the position distribution
is almost uniform but the relative angle is quite distinct.

entropy, the pose estimate itself is still highly uncertain.

Incorporating negative information. When using negative
information, the entropy decreases even before the first sen-
sor reading. The information gain is much smaller than that
caused by perceiving a landmark but nevertheless noticeable.
As soon as there is a percept, the negative information in com-
bination with the knowledge of the robot’s orientation results
in a quick convergence towards the actual robot pose. This is
remarkable since without using negative information, local-
ization was not possible.

Using field lines for localization. The previous experi-
ment was repeated using field lines for localization in addi-
tion to landmarks. This enables the robot to localize quickly
at the actual robot pose even when using the basic localiza-
tion (fig. 12, right). Adding negative information, however,
greatly increases the rate of convergence and the overall level
of entropy is reduced even further. The decrease of entropy
when incorporating negative information is not obscured by
the usage of lines for localization although field lines offer a
much greater information content than negative information.

Kidnapped Robot. The kidnapped robot problem is a com-
monly used benchmark for the flexibility and robustness of
localization algorithms [6]: a localized robot is displaced and
the time for it to recover is measured. Our kidnapped robot
experiments underlined and confirmed the already stated find-
ings. The robot is able to recover from displacements with-
out using negative information as soon as it successively sees
three landmarks. In regions where this is not guaranteed, the
case is different. Whereas without using negative informa-
tion, the robot does not have enough evidence to update its
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Figure 11: Particle distribution when negative information is
incorporated, initial uniform distribution and distribution af-
ter 10s. When incorporating negative information, the robot
is able to localize quickly.

belief, incorporating negative information allows the robot to
localize quickly and reliably in such regions.

The ability to localize more quickly using negative infor-
mation is highly beneficial in real world applications where
the robot is trying to actually perform a task rather than to
localize perfectly. Such tasks often require the robot to focus
its attention on objects other than landmarks and the sensing
strategy may keep it from seeing as much of the world as it
potentially could. Integrating negative evidence thus allows
for more efficient sensing and improves overall robot perfor-
mance.

5 Conclusion

In this paper we demonstrated how integrating negative infor-
mation as well as information about collisions into Markov
localization can be used to achieve significantly better local-
ization performance for a mobile robot.

An odometry-based motion model is improved using the
knowledge about collisions with obstacles yielding a quality
measure for the odometry data. This knowledge is obtained
by comparing the motor commands and the sensor readings
of the leg joints. In the case of a collision, the influence of the
odometry on the motion model is reduced and extra noise is
added that models the impact of an obstacle.

Incorporating negative information into the sensor model
makes localization more stable even in areas where land-
marks are rarely visible. Because sensors are more likely to
overlook observable landmarks than hallucinate ones that are
not visible, extra care has to be taken in designing the sen-
sor model. To avoid false negatives, the model needs to take
into account the sensor’s sensing range and possible occlu-
sions of landmarks. We have presented how such modeling
can be achieved for a Sony Aibo robot in the RoboCup envi-
ronment. In real robot experiments, we have shown that using
negative information, a robot is able to localize in positions
where it otherwise would not. The entropy of the distribution
is greatly reduced when negative information is incorporated
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Figure 12: Expected entropy of the belief in the localization
task with (*) and without (thin line) using negative informa-
tion. 1) At first the robot does not see the landmark. As soon
as the landmark comes into the robot’s view (indicated by the
dashed vertical line), the entropy drops. Using negative infor-
mation, the quality of the localization is greatly improved and
the entropy continues to decrease over time. 2) Additionally
using field lines for localization enables the robot to localize
even without negative information. Incorporating negative in-
formation, however, yields a higher rate of convergence and
the entropy is significantly lowered.

and the rate of convergence towards the estimated position is
increased.

The additional information that is being incorporated into
the belief makes it more responsive. This improves local-
ization in areas where there are few landmarks visible and,
on the other hand, leads to a quick degradation of the belief
when collisions occur. The latter is often the case when two
robots fight over a ball and one tries to shot the ball; such ac-
tion often fails because the robot is unaware of being badly
localized and then shoots the ball in an undesirable direction.
Incorporating collision detection into the belief allows the ro-
bot to recognize such situations and act accordingly.

Future work will focus on how negative information can
be used for other types of landmarks (e.g. field lines) and
other sensors. Performance evaluation will be continued in
more complex situations and the possibilities of reducing the
number of particles necessary for robust Monte Carlo local-
ization will be investigated. The increased responsiveness of
the probability distribution will allow for active vision ap-
proaches that take the current belief into account.
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Abstract

In this paper we show how to train soccer robots
using static game situations in diagrams arranged
by a human coach. Rather than programming every
detail by hand, we let the robots learn from strate-
gic examples sketched by the coach. With our ap-
proach, the coach defines new game positions and
indicates to the players how to react to them, like
in real soccer. We have implemented a manage-
ment tool to collect and organize all the game po-
sitions entered by the coach. The game situation is
encoded as a feature vector, which is used to train
a neural network. The network learn to general-
ize and give advice on the best option for a player.
The general method is illustrated with the specific
case of robots learning to pass. The method can be
generalized to other tasks and to several networks
encoding different game strategies.

Motivation

code in long and difficult “training” sessions. We would like

to teach the robots in the same way a human coach explains
plays to human players: using static diagrams of what con-
stitutes a good and what constitutes a bad move. What we
propose is that a human coach draws interesting game situ-
ations, for example for passiféok et al., 2003, and then
assigns them a “good” or “bad” grade. The computer should
then learn to generalize from such examples to new and un-
seen game situations.

Entering enough examples into the system, it is then pos-
sible to train a neural network which can achieve the desired
generalization. The coach trains the robots with examples,
and the robots learn to do the right thing. Moreover, by keep-
ing separate databases of offensive or defensive strategie
is possible to train several neural networks for differéylies
of play. We then can integrate an external agent (a coach,
as in the simulation league), which can provide advice on
the best strategy for the current adversi¢yhimannet al.,
2004. The robots can then switch their strategy dynamically
according to this advice.

RoboCup robots are usually programmed by hand. Ther Setting up Training Examples of Game
has been work done to set parameters graphicallyf ¥kieen
and Scerri, 1999 but learning techniques for abstract behav-

iors are widely missing. Different techniques, such as-rein The first step for training the robots with our approach is to
forcement learning, have been used for several years in tHget up some examples of possible game situations. For this
simulation leagud¢Lauer and Riedmiller, 20Q4whereas in
the robotic leagues it is more difficult to automaticallyrkea 0N, let us assume that we want robots to learn how to pass the
high-level skills. Therefore learning has been mostly used ball (and receive it). The player with the ball will be callee
allow robots to automatically adapt the parameters of low-'passer”, and the player receiving the ball will be called th
level skills[Fidelman and Stone, 20D4lt is also clear why:
we cannot let real robots play against themselves hundfeds pass the ball to player 1, which is waiting for the pass. With
times, so that they learn to behave successfully.

Situations

we can use our simulator for the small-size robots. From now

“receiver”. Figure 1 shows a scene in which player 0 should

our simulator, the user can set up such a game situation by

An alternative could be a simulation, but an exact model ofdragging players from each team to the desired position.

the robots is never so exact that a simulation could be used asIn what follows, we focus only on a passer and a single

a complete substitu{&loyeet al., 2004. On the one hand, it

available receiver. Later on, we generalize our technigoies

is hard to have an errorless prediction of the driving befravi take all other field players into account.

of real robots. On the other hand, very small changes in hard- Once an example has been entered by the coach, we save
ware can lead to significantly different characteristiag;hs
as more or less ball control when driving.

all relevant information in an XML-file. In the experiments
described in this paper, we have used static situations;evhe

In this paper we investigate a second option. We want tahe speeds of all robots and the ball are zero. However, the

supply our small-size robots with our own human knowledgesame general approach can be applied to dynamic situations.
about soccer. Until now, we have achieved respectable rd-or every stored game situation, we associate with it infor-
bot behavior mostly using manual hard coding and tuning thenation that reflects our belief on the correct decision fer th
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corner, for example, has a dribbling angle of zero. A

robot in the middle of the field, has a dribbling angle of

90 degrees. A larger dribbling angle means that more
space for dribbling is available.

. Dribbling distance to the goal
This is the just distance from the passer to the goal line.

The next five features describe the reward obtained from
passing. We can visualize these features in the following wa
The player on the left has the ball, and ponders whether to
give a pass. The player on the right is only a symbol for a
receiver at one position. In fact, we displace the passvecei

M [Educational] - ExampleCollector (2]

[0

Take Exampie

i

J

over a grid ofl7x21 points covering the field, and calculate

at each vertex the features. The results are illustrateden t

Figure 1: A static game situation entered by the human coacfo

the potential passer (giving the pass or not). In the case of
the passing game, we store a real number[—1; 1]. In our
system, we apply the convention that wher 0.0 dribbling

is desirable, and that when> 0.0 passing is desirable.

3 Encoding Relevant Features

In order to generalize from the stored examples, it is cidcia
look not at the coordinates of the robots, but to some feature
of the game situation. If we would just encode the coordmate
of the robots on the field, and would give this information to a
neural network, the net would have extreme difficultiestgyi

to generalize to new game situations. A barrier of playens, f
example, is a feature that looks similar in almost all places
in the field, although the coordinates are of the robots can be
very different.

We need to encode the field using a numerical feature vec-
tor. For example, a possible feature is the free space around
the ball receiver. This feature is very relevant becausedsd
not pay to give a pass to a player which will be trapped.

By encoding the game situation with a feature vector, we
necessarily lose information because we cannot recomstruc
all robots’ positions from the features, but we obtain a moreFi

llowing figures.

4. Space available
This parameter encodes the distance from the receiver up
to the nearest opponent. It is large when the opponents
are far away, it is small when an opponent is near. Fig.
2 shows, with a white marker, those portions of the field
where there is much space available, and with black the
space dominated by opponents.
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gure 2: Space available: White areas of the field are rela-

abstract view of the field. The information given to the nettively opponent-free, dark areas are not

has a better format, since important field aspects are edcode
numerically.

Back to our passing example. Conceptually, the features
we use are split up into two parts, the features having to do
with dribbling (that is, driving with the ball), and the feaes
having to do with ball reception. The features are indepehde
from the training method used.

The features associated with dribbling are:

1. Dribbling freedom

This parameter describes the space available for drib-
bling with the ball, before an opponent appears (in the
direction of the opponent’s goal). This parameter re-
flects the time that it would take the nearest opponent
to interfere with the dribbling path of my robot.

. Dribbling angle
This is the angle defined by the position of the passer,
the middle of the opponent’s goal line, and the nearest
corner of the field. A robot positioned at an opponent’s
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5. Passing angle
This is the same feature we had above (dribbling angle),
but now for the receiver. A high passing angle means
that it is good to receive passes, for example in the mid-
dle of the field. A low passing angle means that it is not
so good to receive a pass, for example, at the corners or
near the sides of the field. Fig. 3 shows with a white
marker those positions in the field which offer a good
passing angle, and in dark those positions with a worse
passing angle.

6. Minimal tangent distance
This value is the shortest distance an opponent has to
move in order to block a pass. Fig. 4 shows, in black,
those field areas where a pass can go through. The white
areas can be blocked by the opponents. In the example,
the receiving robot (lower right) is too near to an oppo-
nent. It would be better if the receiving robot was lo-
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Figure 3: Passing angle: White areas of the field provide &igure 5: Waiting time: Opponent robots in white areas can
good passing angle, dark areas do not wait longer for the ball when a pass is coming

cated at some point in the diagonal corridor going from
the middle of the field to the upper right.
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Figure 6: Dribbling freedom for the receiver. Dark areas-ind
cate much free space, bright areas are covered by opponents

Figure 4: Minimal tangent distance: In dark areas of the fiel

the distance to block a pass is large, in white areas not dsymmetrical cases every time we enter an example. The fea-

tures described above take care of encoding all symmetrical
field positions with the same feature vector. The classifisr h
7. Waiting time during passing an easier task, once the symmetries of the learning problem
This feature is the time elapsed after an opponent habave been incorporated in the encoding.
moved to a new position, where a pass can be blocked,
and the instant where the ball arrives. An opponentwith4  Training neural networks
a large waiting time can block a pass easily. An oppo- )
nent with negative waiting time cannot reach the ball. We have written a tool to keep track of all the examples of
Fig. 5 shows an example where the dark areas cannot f#ame situations defined by a human coach (or several human
easily reached by the opponents to stop a pass, while tHeoaches). We can group the examples in §evera| categories to
white or gray areas can be reached eas”y_ This is probdla.ve a better overview of them and to activate and deactivate
bly one of the main criterions which need to be used forParticular example groups.
deciding to give a pass or not. By acti\llating ar:(d deactivaé[ing_ fgf]roupsl;)V\;]e can tr?:in differ-
—_ . ent neural networks to encode different behaviors. For exam
8. Dr!bt?"”g freedom for the recelvt?,r a'fter. apass . . ple, if an opponent has the ability to block long passes acros
This is the same parameter as "dribbling freedom” forine fie|d, we can deselect all examples where long passes are
the robot with the ball, but now for the robot receiving ;onsidered “good”, and we can train a network which behaves
the pass. Fig. 6 shows the regions of the field whergggentially as the original one, except for its reluctarme n
receiving a pass provides high reward (in black) and low, propose long passes across the field.
reward (in white). We achieved good classification results using a three-layer
It is worth noting that all these features encode symmetrifeed forward networkRojas, 1996 The network has 8 input
cal field positions with the same numbers. If we had storechodes - the features seen in section 3 - and a hidden layer,
the coordinates of the robots, we would have to store all thevhose dimension can be set arbitrarily. Right now, we usu-

83



Figure 7: This is the output of a trained neural coach. If a

teammate stands in one of the 2 bright areas, the left playe

with the ball should pass.

ally have 14 hidden nodes. The output node emits a valu 5
that indicates the action that should be taken. An output ir|

the interval(—oo; 0] is interpreted as “Do not pass”, while an
output in(0; co0) as “Do pass”. The neural network we use,
has already reached a size where it is questionable wheth
it would be good to let it grow further. One would need too
many examples to cover all degrees of freedom of the net
work. Right know, we have stored around 100 examples ir
our system. The effort is worth it: game situations are ewat
quickly with our simulator, and the results we obtain have
good quality.

The trained networks can be saved, and it is possible to us
them for behavior control. In our current system, the evaintu
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passer first ponders shooting a goal. This behavior inhibits
all others. If shooting is unfeasible or not so good, the tobo
considers whether to dribble or to pass. The system iterat
over all team mates (as possible receivers of a pass), and ag
the coach whether it would be good to pass or not. If there

Example Management

Figure 8: The topology of the neural network used as passing
coach

[ Check Al ] [ Remove

[ LoadDefaut ][ Load

[ Save Default J[ Save As

[ MNew Category
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[ Init J [ Train

[ LoadDefaut ][ Load

[ Save Default J[ Save As

[ Set Training Set

Training Cycles
Hidden Layer Nodes
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Visualizer
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Figure 9: Our management tool saves static examples of
me situations. The examples can be deleted, or organized

groups which correspond to alternative offensive stjiate

are more than one well positioned receivers, the passet robo

selects the one for which turning towards it is easier. S

We have succesfully used this system in the robocup cha
lenge "German Open 2005". Itis hard to compare the result
empirically to other methods, but we hope that a video tha
shows the output of the net in dynamic gameplay can con
vince you. Please take a look at it at http://robocup.mi.fu
berlin.de/videos/NeuralCoach/index.html.

In our robocup domain, it is possible to use this system in
real-time. In a whole compution cycle we not only evaluate
the quality of a pass to 3 different team mates, but also cal-
culate the grid seen in 7 every frame using a resolution of
16 x 10. Then this grid is used for player positioning. To eva-

lute these 160 imaginary passees, 2ms are needed. The larges

part of the 2ms is used to evaluate the exponential function
that is used by the activation function of the neural net. One
could further reduce the computation time by either having
the exponential function in hardware or by parallelising th
calculations.
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o Planes

Application to other domains

n this section we show a posible use of this approach in an
other domain. Let us consider a mars rover that wants to

avel to a specific destination. Further let us have a system
hat suggests different routes. What route is considera® bes
This is an offline problem that could be tackled with our ap-
“proach. For every obstacle type one or more problem specific
values are calculated. For example:

1. How many meters do we have to traverse?

o Mountains

1. How many meters do we have to traverse?

With these features, engineers can now use the neural
coach to determine the best route. They can create an ex-

2. What is the summarized attitude difference?
3. What is the steepest rise?



ample where it is advantageous to go over an additional 10 editors, RoboCup-2004: Robot Soccer World Cup VIII,
meter height of a mountain rather than taking a 100 meter pages 636—644. Springer Verlag, Berlin, 2005.

detour on a plain if the rise is gradual enough. On the othey| 5,er and Riedmiller, 2044Martin Lauer and Martin Ried-
har(ljd IS a mountain W'thb"’ll height of only 5 meter butarise of ey Reinforcement learning for stochastic coopeativ
40 degrees not acceptable. multi-agent-systems. [Mhird International Joint Confer-

This is a very comfortable procedure to define the desired  gnce on Autonomous Agents and Multiagent Systems - \ol-
behavior. If the neural coach has a well written flexible feam ume 3 (AAMAS 04), 2004.

work for taking and managing examples, the only important[ ) ) i
and creative task is to find the right problem specific feature [R0jas, 1995 Raul Rojas. Neural Networks - A Systematic
Introduction. Springer-Verlag, New York, 1996.

to calculate.
[Ydren and Scerri, 1999Johan Ydren and Paul Scerri. An
6 Conclusion editor for user friendly strategy. Robocup Smulation

) League, Team Description Headless Chicken, pages 44—
We have developed a “neural coach” for our small-size ro- 47,1999,

bots. The coach is a neural network which accepts game situ-
ations encoded as a feature vector, and which provides as out
put a number reflecting the best alternative: dribbling whth

ball or passing. The robot with the ball can periodically ask
the neural network which is the best strategy, and can apply
it.

Our behavior control system has grown with the years and
contains many parameters which must be tuned by hand. It
is difficult to modify them when the hardware changes, also
because the many programmers work with our system. Our
coaching tool is a decisive step towards abandoning such
hand-tuned implementations, in favor of a more general ap-
proach.

Many other game decisions could be modelled in the way
described in this paper, like for example the team formation
or individual behaviors of a robot ("I am the goalkeeper and
see a opponent dribbling to my goal. My defenders are far
away. Shall | come out of my goal to decrease the shooting
angle or not?").If the behavior control system can alsorlear
the low-level skills, such as driving, or dribbling with thall,
using reinforcement learning or other machine learning al-
gorithms, one obtains a more versatile robotic platfornal an
code which is easier to manage and maintain.
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Abstract

Coordination of agents in a dynamic and non-
deterministic environment is a difficult task.
There are many approaches to this problem
where agents are controlled reactively. In this
paper we present an approach to coordinate the
behavior of a multiagent team using an HTN
(Hierarchical Task Network) planning proce-
dure. To coordinate teams, high level tasks
have to be broken down into subtasks which is a
basic operation in HTN planners. We are using
planners in each of the agents to incorporate
domain knowledge and to make agents follow
a specified team strategy. With our approach,
agents coordinate deliberatively and still main-
tain a high degree of reactivity. In our imple-
mentation for use in the RoboCup Simulation
League, first results were already very promis-
ing. Using a planner helps to maintain a clear
agent design, separating the agent code from
the expert domain knowledge.

1

Coordination among different agents and the specifica-
tion of strategies for multiagent systems (MAS) is a chal-
lenging task. For a human domain expert it is often very
difficult to change the behavior of a multiagent system.
This is especially true when not only general tasks should
be specified, but also the way in which tasks are to be
executed. Due to interdependencies simple changes in
one place of the code may easily affect more than one
situation during execution.

In this work, we suggest to use Hierarchical Task Net-
work (HTN) planners in each of the agents in order to
achieve coordinated team behavior which is in accor-
dance with the strategy given by the human expert. The
expert knowledge should be separated from the rest of
the agent code in a way that it can easily be specified
and changed. While pursuing the given strategy, agents
should keep as much of their reactiveness as possible.
HTN planning explicitly supports the use of domain spe-
cific strategies. To coordinate groups of agents, tasks
usually have to be broken down into subtasks, which is

Introduction
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one of the basic operations of HTN planning. Different
levels of detail in the description of strategies further
facilitate the generation of useful information for debug-
ging or synchronization.

In classical planning, operators are deterministic and
the single planning agent is the only reason for changes
in the environment under consideration. We show how
it is possible to use an HTN planner in the domain of
robotic soccer, even though the robotic soccer environ-
ment is very different from classical planning domains.
For our approach, we have chosen a team of agents
for the RoboCup 3D Soccer Simulator [Obst and Roll-
mann, 2005] that was introduced at RoboCup-2004 in
Lisbon [Lima et al., 2005)].

The following section describes our approach to coor-
dinate the behavior of a multiagent team using an HTN
planner. Section 3 contains the description of an imple-
mented example. We present and discuss the results of
our first tests, and give a review of relevant related work.
Finally, Section 6 concludes the paper.

2 HTN Planning for Multiagent Teams

The usual assumptions for HT'N planning, like for clas-
sical planning approaches, are that we plan for a sin-
gle agent who is the only cause for changes in the do-
main. When the plan is executed, all actions succeed
as planned. Executing an action in a classical planning
framework is instantaneous, it takes no time, and there-
fore the world is always in a defined state.

To plan for agents in a team and in a real-world do-
main, we have to relax some of these assumptions and
find a way to deal with the new setting. The definition
below is a way commonly used to define nondeterministic
planning domains. An approach to deal with these kinds
of domains is to use model checking (see for instance
[Cimatti et al., 2003]). Depending on the problem and
the desired properties of the results, the planner tries to
compute solution plans that have a chance to succeed or
solution plans that succeed no matter what the results
of the nondeterministic actions of an agent are.

Definition A nondeterministic planning domain is a
triple ¥ = (S, A, ), where:

e S is a finite set of states.



e A is a finite set of actions.

e v C S x A xS is the state-transition relation. g

When the number of different possible results of v is
high, computing a plan can easily become intractable for
domains where decisions have to be made quickly. Nev-
ertheless, using a planner could still be useful to achieve
high-level coordination for a team of several agents in
a dynamic environment without using communication
and without a centralized planning facility. For our ap-
proach, all planning should be done in a distributed fash-
ion in each of the autonomous agents. The task of the
system is to automatically generate individual actions
for the agents in accordance with those plans during ex-
ecution. Despite using plans, agents should still be able
to react to unforeseen changes in the environment. A
further goal of using a planner is that team behavior can
easily be specified and extended, which is supported by
the separation of agent code and expert domain knowl-
edge.

2.1 Multiagent Team Behavior with HTIN
Plans

In Hierarchical Task Network (HTN, see Definition be-
low) planning, the objective is to perform tasks. Tasks
can be complex or primitive. HTN planners use methods
to expand complex tasks into subtasks, until the tasks
are primitive. Primitive tasks can be performed directly
by using planning operators.

Definition A task network is an acyclic directed graph
w = (N, A), where N is the set of nodes, and A is the set
of directed edges. Each node in N contains a task ¢,,. A
task network is primitive, if all of its tasks are primitive,

otherwise it is nonprimitive. o

Our approach of interleaving planning and acting, and
also of handling nondeterministic actions, is similar to
the one described in [Belker et al., 2003] where an HTN
planner is used for navigation planning of a single robot.
Here, like in most realistic environments, it is not enough
to initially create a plan and blindly execute it, but af-
ter execution of each action the state of the world needs
to be sensed in order to monitor progress. As a con-
sequence, for generating HTN plans it is not absolutely
necessary to generate a primitive task network from the
beginning. Instead, an HTN where the first tasks are
primitive is sufficient, if we interleave planning and act-
ing. Future tasks are left unexpanded or partially ex-
panded until the present tasks are done and there is
no other task in front. In dynamic and complex envi-
ronments, creating a detailed plan can be considered as
wasted time, because it becomes virtually impossible to
predict the state of the world after only a few actions
already.

Rather than expanding complex tasks completely, our
planner generates what is called plan stub in [Belker et
al., 2003, a task network with a primitive task as the
first task. As soon as a plan stub has been found, an
agent can start executing its task. The algorithm in
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Fig. 1 expands a list of tasks to a plan stub, if it is
not already in that form. The notation of our algo-
rithms is similar to the one used in [Ghallab et al., 2004]:
(t1,...,tg) is a set of tasks, O is the set of operators, M
is the set of methods, subtasks(m) stands for the set of
subtasks of a method m, and the dot (’.”) used in the
algorithms denotes a concatenation.

Function: plan(snow, (t1,...,tk), O, M)
Returns: (w,s), with w an ordered set of tasks, s a
state; or failure

if k=0 then return (0, snow) // i.e.
plan
if t1 is a pending primitive task then
active — {(a,0)| a is a ground instance of an
operator in O,
o is a substitution such that
a is relevant for o(t1),
and a is applicable t0 Spow };
if active = () then return failure;
nondeterministically choose any (a, o) € active;
return (o((t1,...,tx)), Y(Snow, a));
else if t1 is a pending complex task then
active — {m| m is a ground instance of a
method in M,
o is a substitution such that
m is relevant for o(¢1),
and m is applicable to
5now}§
if active = () then return failure;
nondeterministically choose any (m, o) € active;
w «— subtasks(m).o((t1, ..., tk));
set all tasks in front of ¢1 to pending, set t1 to
expanded;
return plan(spow,w, 0, M);
else
// t1 is an already executed expanded task
and can be removed
return plan(snow, (t2, ..., tx), O, M);

Figure 1: Creating an initial plan stub.

the empty

In classical planning, executing an action takes no
time. This means that immediately after executing a
planning operator, the world is in the successor state. In
our approach we have to consider that actions are not
instantaneous and might not even yield the desired re-
sult. The first problem is when to regard operators as
finally executed: Depending on the actual domain agents
are acting in, actions can be regarded as finished after
a given amount of time or when a specified condition
holds. This domain specific solution to this problem is
not part of the algorithms in this paper.

A second problem is the computation of the successor
state: as defined above, for nondeterministic environ-
ments v is a relation with possibly several results for the
same state-action pair. For our algorithms, we expect
7 to be a function returning the desired successor state,
more precisely a subset of the desired successor state.
The returned state should describe those properties of
the environment that are deliberately changed by an ac-
tion. Likewise, the effects of an operator describe the



desired effects. The underlying assumption is that oper-
ators have a single purpose so that the desired successor
state can be uniquely described. The desired effects can
be used by the operators to coordinate actions of team-
mates during the same plan step. For this, we introduce
multiagent operators, which is effectively a shortcut for
defining a set of combinations of operators. Actions that
are executed simultaneously but which do not contribute
to the desired effects of the multiagent operator are sim-
ply not included. This makes it easy for the developer
of a multiagent team to create team operators, but the
disadvantage is that agents not modeled as part of the
multiagent team cannot be regarded with our approach.

Definition (Multiagent Operator) Let o1, ...,0, be
operators, effects™(0) and effects™ (o) the negative and
positive effects of an operator o, respectively, and
effects™ (0;) N effects™ (o) = 0 for all j,k € {1,...,n}.
p is a new operator with name(p) = name(o;) while
(name(02), ...,name(0,,)). The preconditions and effects
of p are defined as unions over the preconditions and
effects of all o;, respectively:

pre(p) = U pre(o;), and

1=1,...,n

effects(p) = U effects(o;)

i=1,....,n o

The multiagent operator describes the actions of sev-
eral agents; the operator in front of the while is the one
actually executed by the agent, and the operators after
it are used to determine the collective preconditions and
effects of the team action. In the algorithms, a multi-
agent operator is treated as regular operator with the
difference that at execution time only the operator in
front of the while leads to an action by the respective
agent.

The desired successor state is used to check the success
of the last operator application in the second algorithm
(see Fig. 2). Both algorithms treat plans as a stack,
tasks on this stack are marked as either pending or as
expanded. Pending tasks are either about to be executed,
if they are primitive, or waiting to be further expanded,
if they are complex. Tasks marked as expanded are com-
plex tasks which already have been expanded into sub-
tasks. The function step removes executed tasks from
the plan, it is called whenever a step was finished. If the
task was successfully executed, only the finished task is
removed from the stack — and possibly also parent tasks
if there are no further pending child tasks. If execution
of the task failed, all subtasks of the parent task have
to be removed. In this case, it is checked if the parent
complex task can be tried again. Function plan from
Fig. 1 is used to create an initial plan stub by calling the
function with an initial task. It is also used to create an
updated plan stub when called from step.
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Function: step(Sezpected, Snow, (t1, .-, tx), O, M)
Returns: (w,s), with w a set of ordered tasks, s a
state; or failure

if £ =0 then return ((Z), Snow) // i.e., the empty
plan
if t1 is a pending task then
if Seapectea 15 valid in Spow then
i < the position of the first nonprimitive task in
the list;
return plan(spow, (ti, ..., tx), O, M );
else
// t1 was unsuccessful; remove all pending
children of our parent task
return Step(sczpected7 Snow, <t27 ceey tk)v O? M)’

else
// t1 is an unsuccessfully terminated
expanded task, try to re-apply it
active — {m| m is a ground instance of a
method in M,
o is a substitution such that
m is relevant for o(t1),
and m is applicable to
Snow};
if active = () then
// t1 cannot be re-applied, remove it from
the list and recurse
return Step(sexpecteoh Snow, <t27
else
nondeterministically choose any (m, o) € active;
w «— subtasks(m).o((t1, ..., tx));
set all tasks in front of ¢; to pending, set t1 to
expanded;
return plan(spow,w, O, M);

7tk>707 M);

Figure 2: Remove the top primitive tasks and create a
new plan stub.

3 Robotic Soccer Sample
Implementation

To give an example, we take the simulated soccer do-
main [Kogler and Obst, 2004; Obst and Rollmann, 2005].
In [Dylla et al., 2005], we formalized soccer domain
knowledge as it can be found in soccer theory books [Luc-
chesi, 2001]. Based on the diagrams in this book (see for
example Fig. 3), we created HTN methods for the sim-
ulated soccer domain.

Figure 4 shows that part of the plan stack which
contains the team plan for the situation depicted in
Fig. 3. All pending tasks in this plan stack are still
complex tasks on the team level, so that this stack
could be part of any of the agents on the field. It was
created by expanding the top level task play_soccer
into offensive_phase. The task offensive_phase
was expanded to build_up_play, final touch and
shooting. In the current situation, only the first
task of this sequence, build_up_play, was already ex-
panded to build_up_play_long pass, which in turn
was expanded to diagram-4. Finally, diagram-4 ex-
panded to the sequence pass(2,9), pass(9,10) and
leading-pass(10,11).
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Figure 3: Diagram #4 from [Lucchesi, 2001]

To create a plan stub so that an action can be exe-
cuted, the planner needs to further expand the top pend-
ing task, in this case pass(2,9). When team tasks get
further expanded to agent tasks, each agent has to find
its role in the team task: the HTN methods contain
variables that need to be unified with actual uniform
numbers. In our soccer example, the role finding is done
via preconditions on the current formation, position and
function of the respective players in the formation. This
also means that symmetric situations are handled au-
tomatically (provided the formation of the team is also
symmetric).

Further expanding the abstract plan, agent #2 will
expand pass(2,9) to do_pass(9), agent #9 has to do
a do_receive_pass for the same team task. The other
agents position themselves relatively to the current ball
position with do_positioning at the same time. The de-
sired effect of pass(2,9) is the same for all the agents,
even if the derived primitive task is different depend-
ing on the role of the agent. That means each agent
has to execute a different action, which is realized as
C++ function call in our case, and at the same time an
operator has to update the desired successor state in-
dependently. To express that an agent should execute
the do_positioning behavior while taking the effect of
a simultaneous pass between two teammates into ac-
count, we are using terms like do_positioning while
pass(we,2,9) in our planner. Figure 5 shows methods
reducing the team task pass(A,B) to different primitive
player tasks.

In different agents, the applicable methods for the top
team task pass(2,9) lead to different plan stubs. This is
an important difference to the work presented in [Belker
et al., 2003]. The plan stubs created as first step for
agent 9 and agent 11 are shown in Fig. 6 and 7. When
a plan stub is found, the top primitive tasks are passed
to the C++ module of our agent and executed. A ’step’
for a plan in our agents can consist of more than a sin-
gle action, for example, we do not want the agent who
passes the ball to stop acting while the ball is already
moving to a teammate, but instead after the kick the
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pending-pass(2,9)
pending-pass(9,10)
pending-leading-pass(10,11)
expanded-diagram-4
expanded-build_up_play_long_pass
expanded-build_up_play
pending-final_touch
pending-shooting
expanded-offensive_phase
expanded-play_soccer

Figure 4: Plan stack during planning.

method pass(A,B)

pre [my_number(A)]

subtasks [do_pass(B) while pass(we,A,B),
do_positioning] .

method pass(A,B)
pre [my_number(B)]
subtasks [do_receive_pass while pass(we,A,B)].

method pass(A,B)
pre [my_number(C),#\=(A,C),#\=(B,C)]
subtasks [do_positioning while pass(we,A,B)].

Figure 5: Different methods to reduce the team task
pass(A,B) to agent tasks.

agent should adjust its position relative to the ball until
the ball reached its destination and the step is finished.
If possible, the agent has to execute all pending primitive
tasks until the next step in the plan starts. If there are
pending primitive tasks after one step is finished, these
agent tasks are simply removed from the plan stack and
the next team task can be expanded. Figures 8 and 9
show the plan stub for the second step from the diagram
in Fig. 3. For player 11, the expansion leads to a plan
stub with two primitive tasks in a plan step while for
player 9 there is only one task to be executed.

What we did not address so far was the point in time
when the transition from one plan step to the next step
takes place. Here, the basic idea is the following: each
step in plans for our team stops or starts with an agent
being in ball possession. If any of the agents on the
field is in ball possession, we can check for the desired
effect of our previous action. If the action succeeded,
the right agent possesses the ball and the planner can

pending-(do_receive_pass while
pass(we, 2, 9)),
expanded-pass (2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,

Figure 6: Step 1: Player 9 receives the pass.



pending-(do_positioning while
pass(we, 2, 9)),
expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,

Figure 7: Step 1: While players 2 and 9 pass, player 11
stays in the formation.

pending-(do_pass(10) while
pass(we, 9, 10)),
pending-do_positioning,
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,

Figure 8: Step 2: Player 9 passes to 10.

continue planning by generating the next plan stub. If
an adversarial agent intercepted the ball, the last action
failed and the planner needs to backtrack. For dribbling,
the planner needs to check if the dribbling agent still
possesses the ball and arrived at the desired destination
in order to start with the next step.

4 Results and Discussion

For our approach of generating coordinated actions in a
team we implemented an HTN planner in Prolog which
supports interleaving of planning and acting. Our plan-
ner supports team actions by explicitly taking the effects
of operators simultaneously used by teammates into ac-
count. The planner ensures that the agents follow the
strategy specified by the user of the system by generat-
ing individual actions for each of the agents that are in
accordance with it. The lazy evaluation in the expan-
sion of subtasks which generates plan stubs rather than
a full plan, makes the planning process very fast and en-
ables the agents to stay reactive to unexpected changes
in the environment. The reactiveness could, however, be
increased by adding a situation evaluation mechanism
that is used prior to invoking the planner. This would
improve the ability to exploit sudden, short-lived oppor-
tunities during the game.

We implemented a distributed planning system in
the sense that each of the agents uses its own plan-
ner. This was, however, somewhat facilitated by the

pending-(do_positioning while
pass(we, 9, 10)),
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,

Figure 9: Step 2: Player 11 stays in the formation while
player 9 passes to 10.

fact that agents in the RoboCup 3D Simulation League
are equipped with sensors that provide them with a full
(though possibly inaccurate) view of the world, similar
to Middle-size League robots using omni-vision cameras.

To truly evaluate the approach we presented, it would
be necessary to measure the effort it takes to create a
team and compare it to other approaches to create a
team exhibiting the same behavior. We strongly believe
that our approach leads to a modular behavior design
and facilitates rapid specification of team behavior for
users of our agents, but we cannot present numbers here.
A comparison to the results of other teams is not helpful
here, because better results do not necessarily mean that
the planning procedure is the reason for differences in the
performance: in many cases, careful engineering can lead
to implementations that perform well without using Al
techniques.

Our plans can describe plays as introduced in [Bowling
et al., 2004], which have shown to be useful for synchro-
nization in a team. There are some important differences
to plays, however. First, our approach supports differ-
ent levels of abstraction in plans. That means there are
different levels of detail available to describe what our
team and each single agent is actually doing, from very
abstract tasks down to the agent level tasks. A second
important difference is that the planner can find alter-
native ways to achieve tasks. This is possible if plays
are specified in terms of player roles or properties rather
than fixed player numbers. The approach in [Bowling
et al., 2004] was used for Small Size League, where the
numbers of players and the number of alternative ways
of doing plays is low. That means in Small Size League,
a plan is either applicable or not. For Simulation League
or larger teams in general, more opportunities are possi-
ble for which an approach using fixed teammates seems
to restrictive. On the other hand, the approach in [Bowl-
ing et al., 2004] supports adaptation by changing weights
for the selection of successful plays. In our approach, the
corresponding functionality could be achieved by chang-
ing the order in which HTN methods are used to reduce
tasks. At this point in time, our approach does not sup-
port this yet. As soon as we do have an adaptive compo-
nent in our approach, it makes sense to compare results
of our team with and without adaptation.

The way our plans are created and executed, we as-
sume synchronous actions for all our agents. Our team
actions are geared to actions of the player in ball posses-
sion, so this simplification can be made. There are a few
situations in soccer, where more detailed reasoning over
the time actions take would be useful. This includes
for instance all situations where a ball receiver should
appear at the receiving position just in time to surprise
the opponent. In our approach, we make this possible by
synchronizing the behavior of two agents in the current
step by using both ball and agent velocity to estimate
interception times, in the operator implementations out-
side of the planning procedure. Inside our planning pro-
cedure, we do not reason about durations, which would
be useful to make asynchronous actions possible.



Although more detailed evaluations have to be carried
out, the first tests using the planner seem very promising
and indicate that our approach provides a flexible, easily
extendable method for coordinating a team of agents
in dynamic domains like the RoboCup 3D Simulation
League.

5 Related Work

Several approaches that use a planning component in a
MAS can be found in the literature.

In [Dix et al., 2000], the authors describe a formalism
to integrate the HTN planning system SHOP [Nau et
al., 1999] with the IMPACT [Subrahmanian et al., 2000]
multiagent environment (A-SHOP). The preconditions
and effects used in SHOP are modified so that precondi-
tions are evaluated using the code-call mechanism of the
framework, and effects change the state of agents. While
the environment of this work clearly is a multiagent sys-
tem, the planning is carried out centralized by a single
agent. This is a contrast to our approach, which uses a
planner in each of the agents to coordinate the agents
actions.

Planning in each of the agents in the RETSINA mul-
tiagent system [Paolucci et al., 2000] is also HTN based.
Additionally to the planning module, RETSINA agents
consist of a scheduler, a communicator and an execution
monitor. The architecture of the system is targeted to-
wards agents that interact by exchanging informations,
in contrast to our approach where agents basically coop-
erate by physical actions. RETSINA uses a special mech-
anism to suspend tasks that need to wait for information
gathering processes. To decide if the execution of a task
failed, RETSINA uses sets of constraints describing con-
ditions that should hold during or after the execution.
The basic planning algorithm in RETSINA returns par-
tial solution plans, then they are scheduled for execution
and finally executed by the execution monitor. In our
approach, the planner returns plan stubs where the first
task is already executable.

A general HTN planning framework for agents in dy-
namic environments has been presented in [Hayashi et
al., 2004]. The authors show how to integrate task de-
composition of HTN planning, action execution, pro-
gram updates, and plan modifications. The planning
process is done via abstract task decomposition and is
augmented to include additional information such as the
history of action execution for the plans to enable their
incremental modification. Rules are given for plan mod-
ifications after having executed certain actions or after
program updates. In the robotic soccer domain, how-
ever, the results of actions like e.g. kicking the ball can-
not be undone. Thus, the plan modification mechanism
given in [Hayashi et al., 2004] does not apply and could
not easily be used for our purposes.

HTN planning has also been studied in the context of
creating intelligent, cooperating Non-Player Characters
in computer games. In [Mufioz-Avila and Fisher, 2004],
an HTN planner is used to enable agents in the highly
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dynamic environment of the Unreal Tournament game to
pursue a grand strategy designed for the team of agents.

Bowling et al. [Bowling et al., 2004] presents a strat-
egy system that makes use of plays (essentially being
multiagent plans) to coordinate team behavior of robots
in the RoboCup Small Size League. Multiple plays are
managed in a playbook which is responsible to choose
appropriate plays, and evaluate them for adaption pur-
poses. The plays are specified using a special language
designed with ease of readability and extensibility in
mind. Preconditions can be specified that determine
when a play can be executed. Furthermore, plays contain
termination conditions, role assignments and sequences
of individual behaviors. While the use of preconditions
resembles a classical planning approach, the effects of
individual plays are not specified due to the difficulties
in predicting the outcome of operators in the dynamic
environment. This is in contrast to our approach, as we
use desired effects of the operators in our plans. Another
difference is that in [Bowling et al., 2004] the planning
component is also centralized.

A centralized planner is also used in [Riley and Veloso,
2002] to generate team plans for distributed execution.
A coach agent observes the opponents agents and uses
opponent models in the planning process. It communi-
cates the plan to the agents periodically and the agents
use this information to maintain consistency in their
cooperating behavior. The team plans are represented
as Simple Temporal Networks which are essentially di-
rected graphs describing the temporal constraints be-
tween events. Using this representation, the specification
of parallel events is facilitated and can also be used for
monitoring purposes. Despite those appealing features
of Simple Temporal Networks for multiagent plan specifi-
cation, we used a rather more traditional representation
without any explicit modeling of execution times for the
operators for the sake of easier integration into the plan-
ner. They might, however, be beneficial for a more fine
grained control over the parallelism in our plans.

Other approaches towards multiagent collaboration
like [Cohen et al., 1998; Grosz, 1996] are based on negoti-
ations between the agents in a multiagent system. How-
ever, as pointed out in [Stone and Veloso, 1999], this kind
of complex communication might take too much time or
might even be infeasible in highly dynamic real-time do-
mains like robotic soccer.

The work in [Murray et al., 2002; Murray, 2003] de-
scribes the approach to creating our agents so far: We
used UML statecharts to specify behaviors for agents in
a multiagent system. The agents were designed in a top-
down manner with a layered architecture. At the highest
level global patterns of behavior are specified in an ab-
stract way, representing the different states the agent can
be in. For each of these states, an agent has a repertoire
of skeleton plans in the next layer. These are applicable
as long as the state does not change. Explicit specifi-
cation of cooperation and multiagent behaviors can be
realized. The third and lowest level of the architecture
encompasses the descriptions for the simple and com-



plex actions the agents can execute, which are used by
the scripts in the level above.

This hierarchical decomposition of agent behaviors is
similar to the HTN plans described in this work. How-
ever, the separation of domain description knowledge
and the reasoning formalism accomplished through the
use of the HTN planner within our agents provides us
with much greater flexibility in respect to the extensibil-
ity of methods and operators, compared to the amount
of work needed to change the state machine description.

6 Conclusion and Future Work

We presented a novel approach that uses an HTN plan-
ning component to coordinate the behavior of multiple
agents in a dynamic MAS. We formalized expert domain
knowledge and used it in the planning methods to sub-
divide the given tasks. The hierarchical structure of the
plans speeds up the planning and also helps to generate
useful debugging output for development. Furthermore,
the system is easily extensible as the planning logic and
the domain knowledge are separated.

In order to use the system in the RoboCup competi-
tions, we plan to integrate a lot more subdivision strate-
gies for the different tasks as described in the diagrams
in [Lucchesi, 2001]. A desirable enhancement to our
work would be the integration of an adaption mech-
anism. Monitoring the success of different strategies
against a certain opponent, and using this information in
the choice of several applicable action possibilities, as e.g.
outlined in [Bowling et al., 2004], should be explored.
The introduction of durative actions into the planner
(see for instance [Coddington et al., 2001]) would give
a more fine grained control over the parallelism in the
multiagent plans. Simple Temporal Networks as used in
[Riley and Veloso, 2002] seem to be well suited for this
purpose. Furthermore, a situation assessment will be
added to the agents to be able to exploit unforeseen sit-
uations in a more reactive manner. Finally, we want to
restrict the sensors of the agents to receive only partial
information about the current world state, and address
the issues that result for the distributed planning pro-
cess.
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Abstract
In this paper, an approach to solving the
differential  pursuit-evasion game involving

multiple pursuers and a single evader is presented.
To reduce the computational complexity of the
problem, a simulated annealing type optimization
scheme is used to arrive at a sub-optimal solution.
An example is used to show the efficiency and
potential shortcomings of the approach.

1 Introduction

In recent years, the problem of improving the autonomy of
Unmanned Aerial Vehicles (UAVs) has received much

Autonomous Control Levels
Fully Autonomous Swams
Group Strategic Goals
Distributed Control

Group Tactical Goals
Growp Tactical Replan
Group Coodination

Onboard Route Replan

Adaptto Failures & Flight Condiions
@ Global Hawk

Real Time Health/Diagnosis @ Predator

Remotely Guided

1955 1965 1975 1985 1995 2005 2015 2025

Fig. 1. Autonomous Control Level Trend
attention. As outlined in the Department of Defense UAV
Roadmap [OSD, 2002] shown in Fig. 1, the goal of the
research is to enable swarms of heterogeneous UAVs to
collaborate to achieve a common objective.

Such technology has in addition to many military
applications, the potential of improving the efficiency of
search and rescue operations significantly by having groups
UAVs coordinate their efforts to locate and recover
individuals. Moreover, swarms of UAVs can also be
deployed to effectively prevent shipments of illegal
merchandize to cross international borders by intercepting
the transport vessels.
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However, replacing human pilots is a very difficult task
especially in adversarial situations when the UAVs have to
react intelligently to scenario changes imposed by an
intelligent opponent. An example of such a scenario is
shown in Fig. 2, in which multiple ground targets located in
an urban warfare environment are attempting to evade the
UAVs deployed in the area. The evaders have the ability to
coordinate their actions and intelligently attempt to escape
the UAVs, and it is the objective of the UAVs to intercept

)

Command
& Control

F

S SR

ig. 2. Urban warfare scenario with four UAVs attempting to
intercept two evading targets

. <

the targets at some minimum cost.

The problem of having UAVs intercept evading targets, also
known as the multiplayer pursuit-evasion game, is of high
dimensionality and complexity. The strategy needed to
intercept the evading targets is dependent not only on the
dynamic properties of the UAVs and their ability to
cooperate, but also on the intelligence and agility of the
evading targets.

In this paper, a computational algorithm is developed to
determine a suboptimal control strategy that a swarm of
pursuers can utilize to intercept a single evading target. By
only considering a single evading target, the problem
complexity can be reduced significantly since it is possible
to rewrite the game in the evading target’s reference frame.
To further simplify the problem, it is assumed that the
differential game considered is a so-called complete
information game, that is, as the game is being executed all
the players in the game are aware of the other players’
current states such as position and heading.



2 Related Work

The problem of solving multiplayer pursuit-evasion
differential games has been studied intensively from both a
theoretical and a numerical perspective. In order to derive
real-time strategies, the approach to solving multiplayer
differential games has been to consider probabilistic
solution methods [Sastry. et al, 2002]. The approach
normally used in such solution methods is to generate a
probability map of the game space, and then command the
pursuers to head toward the points at which there is a high
probability of finding the evaders. The advantage of such a
technique is that complete information about the evaders’
states is not required to find a solution. However, several
advantages that a swarm of pursuers has when dealing with
an intelligent evading opponent is also disregarded. The
pursuing swarm has the ability to shape the probability map
if the pursuers collaborate, that is, the pursuers can deploy a
herding-type pursuit strategy in which the evaders are
forced to commit to unfavorable evasion strategies.

An overview of solution techniques presented from a
theoretical perspective is provided in [Bardi and Falcone,
1999] and [Stipanovic et al., 2004]. However, the
approaches to solving the differential games in general
relies either on using mathematical insight into the
particular game considered, and hence is not applicable to a
wide range of differential games, or a decomposition is
performed by introducing multiple value functions.

In contrast to these approaches, we introduce a solution
technique used to solve the complete information
differential game by determining a single value function.
Strategies are derived using numerical optimization schemes
and will therefore include blocking and herding of the
evader.

3 The Minimum Time Differential Game
Problem

In this problem the vehicles are governed by the following
dynamics,

xpi :fpi(x’upi)

xe :.fe(xbue)

where u,; and u, is the control input of pursuer 7 and the
evader respectively. The functions f() and f,() are
considered to be smooth but potentially nonlinear functions.
The objective of the game is to intercept the evading
vehicles as fast as possible, that is,

(M

2

minmaxJ(x,up,ue,T)=rninrnax

u, U, u, u,

T
[t
0
where the parameter T is a part of the functional to be
minimized. In order to determine the time-optimal
trajectory, the following equality has to hold,
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where f{x,u,u.)=f,(x,u,) - fux.u,), and V(x) is the value
function. The condition expressed in (3) is the Hamilton-
Jacobi-Bellman equation, which is a sufficient condition
used to generate a time optimal solution given that the value
function V(x) is zero upon game termination and positive
otherwise [Sundar and Shiller, 1996].

Finally, a termination condition will have to be introduced,

min max<

Y (x(T))=0. 4)

For the multipursuer game with only a single evading
target, the collection of possible termination points becomes
quite substantial, since in many instances capture is
achieved by only a small subset of the pursuers. Hence, the
final position of the pursuers not directly involved in the
actual interception of the evading target is not specified.
However, it should be noted that even though some of the
pursuers will not intercept the target, they are still able to
influence the evading target’s escape  strategy.
Consequently, the strategies of all the pursuers have to be
included in the optimization process.

4 The Value Function Problem

As mentioned in the previous section, the termination
condition W(x(T)) = 0 does not in general reduce the
possible final states of the pursuers to only a small set of
points. The significance of having a large set of termination
points arises when considering the value function V(x). The
standard approach for determining the value function is to
propagate the set of termination points backwards in time.
However, since the termination condition is not exclusive
enough, this process proves to be very time consuming. The
approach considered in this paper to reduce the problem, is
to use a Guiding Value Function (GVF). The purpose of the
GVF is to derive an estimate of the final state of the
pursuers. Based on the estimate of the final state of the
pursuers, it is possible to generate the value function
associated with the time-optimal problem. However, since
the final state is only an estimate arrived at using a GVF, the
estimated final states are not likely to be the actual final
states of the time-optimal problem. Consequently, when
propagating the set of termination points backwards, a &-
neighborhood around the set of final positions is included.
The following equation is used to construct the value
function:

IV (x")

V(x° +Ax) =V(x”)+< ,f(xO,uf,,uf)>-Az+o(Az). (5)

The partial derivative of the value function is approximated
using a standard two-point first order approximation.



Once the value function associated with the termination

Solution
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v

Value Function
Module

Vv

Forward
Propagation
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Fig. 3. Flow chart of suggested solution technique

conditions has been determined numerically, the solution is
propagated forward again. If the new final states are within
a d-neighborhood of the previous solution where & << g, the
solution is considered to be a suboptimal solution and the
process is terminated. Otherwise, the process will have to be
repeated with the new termination points. Naturally, the
number of iterations needed to arrive at an acceptable result
is dependent on how well the GVF is constructed.

5 Overview of the Solution Technique

A flow chart of the algorithm is shown in Fig. 3. The
initialization step provides an estimate of the final states of
the players using the Guiding Value Function (GVF).

The final states of the solution is then passed to the Value
Function Module, which determines the value function used
to solve the problem of reaching a neighborhood around the
final states in minimum time. The new value function is
then passed to the Forward Propagation Module, which in
turn will generate a new solution. The new solution is
passed back to the Value Function Module for as long as it
is not close to the previous solution.

6 Optimization Algorithm

To reduce the complexity of propagating the solution
forward the search for u, and u, is done using a simulated
annealing type search algorithm. The outline of the
algorithm used is as follows:

1) Generate a random initial guess and set initial
Temperature T to 1.

2) Insert guess into HIB equation and determine the
value which ideally should be 0.

3) Save the value of the minimax term and the value

of the HJB equation.
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Perturb the initial guess by temperature bounded
random disturbance.

If the new guess is better than the initial guess save
the new guess and reduce temperature.

If the new guess is not better than the initial guess
generate a random number on the interval [0,1]. If

5)
6)

Viow ~Vhigh

T

the random number is less than e , the new
guess is saved whﬁre Vhigh and vy, are the values of
the minimax term™,
7) Repeat steps 4-7. Stop when the value does not
improve after a set number of iterations or when

the user terminates process.

By applying the above algorithm, the total amount of time
spent searching for the pursuers’ and the evader’s control
strategy is reduced significantly since only a small subset of
the control space is searched. However, it should be noted
that the solution in general is suboptimal. In addition to the
ability to limit the time spent searching for a solution the
algorithm, as opposed to a gradient descent type algorithm,
is capable of escaping a locally optimal solution.

7 Example Problem
As an example, consider the 2-dimensional game in which
three pursuers are attempting to capture one evader. The
motion of each vehicle is described by the following
differential equations,
X, =V, -cos(H,)
J>pi = Vpi ' Sln(le)
H pi = I/Vp
%, =V, cos(H,)
V.=V, sin(H,)
H, =W,

(6)

where V,;, W,V and W, are the players’ controls and i = 1,
2 and 3. The termination condition will be

W)= =) (5" =) (15" =1) )

where 1; is the distance from pursuer i to the evader. The
initial value function guess will be the same as the
termination condition, since it appears reasonable that the
closer the pursuers are to the evader the lower the
interception time becomes. It should be noted that the GVF
derived from distance considerations is generally not
equivalent to the time-optimal value function. The classical
homicidal chauffeur problem [Isaacs, 1965] is an example

! The best solution is always saved separately. Hence, if the
process is terminated early, the current solution, which may not be
the best solution, is not returned.



of a scenario in which a pursuer has to move away from the
target to be able to intercept it.

In constructing the value function a simple rectangular grid
is superimposed on the game space. Linear interpolation is

Control Bounds

Vomax 0.6 distance per time
unit

Womax +/- 0.5 radians per time
unit

Vemax 0.5 distance per time
unit

Wemax +/- 0.4 radians per time
unit

Table 1. Control Bounds

used to determine the value of V(x) at the grid points.

It should be noted that the solution arrived at with infinite
computational resources may only be a locally optimal
solution. That is, the starting point of the algorithm arrived
at by using an initial value function guess, could result in a
local optimal solution due to the gradient descent type
approach used to determining the time-optimal final states.

8 Results

The solution used to initialize the optimization process is
shown in Fig. 4. The pursuers’ trajectories are marked by
o’s while the evader’s trajectory is marked by x’s. The
bounds used to limit the control are shown in Table 1.

Notice, that the players can turn very rapidly but not move
very fast. The values were chosen in this fashion to show
that the optimal solution to this multiplayer game is not a
bang-bang type control strategy often encountered in

Initial
Positions

1
0 1 2

Fig. 4. Initial simulation used to determine estimated final
optimal control problems, since the players do not maneuver
aggressively

Clearly, the trajectories shown in Fig 4 are suboptimal, since
initially the pursuers’ and the evader’ trajectories are wavy
as if they do not know how to approach the problem.
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Initial
Positions

1
2 -1 0 1 2

Fig. 5. Time Optimized Solution

However, once the simulated annealing algorithm has run
through a couple of iterations, the near optimal solution is
found. The initial solution was found within a few minutes
using a Matlab routine. However, constructing the value
function is much more computationally demanding due to
the interdependence of the pursuers’ control efforts. For
instance, if at some particular step in determining the value
function 100 possible states of each of the three vehicles are
considered, the total number of points propagated
backwards is approximately 1,000,000. Consequently, each
time the value function is constructed a significant amount
of processing time has to be allocated due the non-
polynomial complexity of multiplayer differential games.
The optimization algorithms used to simplify the problem
only reduces the coefficients of the exponential growth;
consequently, if a large number of players or very high
dimensional resolution is required, the timeframe needed to
solve the problem approaches infinity.

The solution after two iterations of the time-optimization
algorithm is shown in Fig. 5. The time required to intercept
the target was reduced by approximately 8%, however to
obtain this improvement the algorithm had to run several
hours.

9 Future Work

Since advanced optimization techniques do not appear to be
able to provide a real-time implement able solution
technique to the non-polynomial complexity multiplayer
differential games even in simple cases, another approach
relying on reducing the problem complexity from non-
polynomial to polynomial appears to be required.

Such an approach will have to decouple the pursuers’
strategies by possibly decomposing the problem into smaller
two-player differential games with obstacles.

A possible simplification process is shown in Fig. 6. The
prediction algorithm is used to estimate the cost of capturing
each of the evaders. To arrive at the estimate, the
multiplayer pursuit-evasion game is decomposed into
multiple two-player pursuit-evasion differential games by
considering all combinations of pursuers and evaders.



Once the interception cost has been determined, the
pursuing players are each assigned an evader by applying a
Greedy-type matching algorithm.

Finally, the interception can be executed by solving the
much simpler two-player pursuit evasion problem.

Stage 1: Prediction

— B
Stage 2: Assignment

(s ]

Stage 3: Execution

Performance
Estimates

State
Feedback

Fig. 6. The problem simplification process

Such an approach will naturally arrive at a suboptimal
solution to the multiplayer differential game due to the
decoupling of the pursuers control strategies, however the
problem can be solved in polynomial time which is
desirable when attempting to implement a solution
technique in real-time. The decoupling of the pursuers’
control strategies has to be done such that a level of
cooperation between the pursuers is maintained, which is a
problem we are currently investigating.

10 Conclusion

In this paper, a solution technique used to solve the
differential pursuit-evasion game consisting of multiple
pursuers and one evader is presented. A simulated annealing
type solution technique is introduced to reduce the problem
complexity and thereby reducing the computation time
required to solve the problem significantly. A simple
example is used to highlight potential complexity problems
with the solution technique. Finally, a problem
decomposition approach is suggested to reduce the problem
to one of polynomial complexity.
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Abstract

Nowadays, artificial intelligence (Al) techniques
are being used by real-time designers, as a means
to soften their systems.

In this paper, we propose to use auctions as tasks
scheduling policies of an agent working in hard
real-time environments.

These techniques have been implemented in the
ARTIS (Architecture for Real-Time Intelligent
Systems) agent architecture because agents imple-
mented with this architecture are able to handle
hard real-time restrictions while showing agent fea-
tures (believes, social conducts, ...). In this paper,
we have also detailed the needed conditions and
processes to apply these methods in the ARTZS
agent.

Finally, we show the results obtained of the batter-
ies of critical conditions tests and the comparison
of these results with the ones applying the same
tests to the methods used currently by the AR7ZS
agent.

1 Introduction

A multi-agent system working in a real-time environment, not
only must have good working, but also must be efficient in
its execution. This variable (time) will must be taken into
account when implementing the tasks of the agents forming
such multi-agent system.

In this paper, we propose some studies, comparatives, and
implementations of negotiation methods as auctions in multi-
agent systems working in real-time environments. Specifi-
cally, in the ARTZS agent architecture [Botti et al., 1999;
Carrascosa et al., 2003al.

Section 2 of this paper presents a brief review of negoti-
ations among agents. In section 3, we show two different
points of view to describe AR7ZS agents (user model and
system model), along with the scheduling policies used by
these agents. After that, in section 4, we describe the way ne-
gotiation between AR7 ZS agents was carried out; the pur-
poses of each negotiation and the different implementations

* Auspices for Universidad de Magallanes — Punta Arenas (Chile)
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that have been done. In section 5, we present the different the-
oretical and real results obtained in the different implemented
tests. Lastly, we show some conclusions and references in
section 6.

2 Negotiation among agents

The application of negotiation methods to conflict-solving in
multi-agent systems is becoming more common. The nego-
tiation strategy to be followed by the agents (buyers, sellers)
depends on the type of conflict existing between them. These
strategies will help them to reach agreements and to obtain
mutual benefits. The benefit that each partner obtains is deter-
mined by a value called “reserved price”. The farther away
or the closer the agreement is to the “reserved price”, the
higher or lower the benefit will be [Raiffa, 1982], depending
on whether it is the buyer or the seller. The negotiation strat-
egy will also specify steps that have to be followed during the
negotiation.

We can find several works on negotiation among agents in
the literature: [Zlotkin and Rosenschein, 1992; Weinberger
and Rosenschein, 2004] identify three domain types for the
negotiation between agents, these are:

o Task-Oriented Domains (TOD), where agent actions are
determined by the tasks it has to carry out. In these do-
mains, the agent has all resources it needs available for
its tasks.

Worth-Oriented Domains (WOD), where the agent as-
signs a value to each possible state depending on its de-
sire to reach it, and determining its actions evaluating
these values at each moment.

State-Oriented Domains (SOD), where agent actions
consider other agents present in the system, because they
share plans to reach their objectives.

[Kraus et al., 1998] presents a negotiation model that com-
bines reasoning and optimization. [Kraus and Lehmann,
1995] develop their works based on *Game Theory’ using
"diplomacy’ to reach agreements. [Parsons et al., 1998]
presents a negotiation model, among independent agents so
that they reach agreements by using arguments in order to
offer or obtain certain services.

Other approaches to negotiation are auction-based meth-
ods. Auction is a useful choice when there are many agents



interested in limited resources. There are, mainly, two differ-
ent kind of auctions: “one-to-many” and “many-to-many”. In
both cases, it is necessary to determine beforehand the proto-
col type that will be used (for example, FIPA protocols [FI-
PASpec, FIPA]). Usually, in “one-to-many” auctions agents
don’t use a mediator, whilst in “many-to-many” auctions they
use it. The auctions protocols used by agents are First-Price
Sealed-Bid Auctions, English Auctions and Dutch Auctions.
In this work, we have applied “one-to-many” auctions
among AR7TZS agent entities. Before explaining the nego-
tiation, we will present the AR7TZS agent architecture.

3 ARTIS Agent

ARTIS is the acronym of an Architecture for Real-Time
Intelligent Systems [Garcia-Fornes, 1996]. The main feature
of this agent architecture is to guarantee the fulfillment of
temporal restrictions for critical components and to support
the execution of optional components, both kinds of compo-
nents are user-defined.

An ARTIS Agent (AA) is able to perceive informa-
tion from the environment in which it is situated, to cal-
culate fast answers (and to refine them), and finally to act
over the environment. These actions can be physical ac-
tions or message passing. The architecture of an AA can be
viewed from two different perspectives[Terrasa et al., 2002;
Carrascosa et al., 2003al: the user model (high-level model)
and the system model (low-level model). The user model of-
fers the developer’s view of the architecture, while the system
model is the execution framework used to construct the final
executable version of the agent.

3.1 User Model

The User model is a high-level model in which the AA is
composed of sub-entities that model its behaviours, environ-
ment, etc. These are:

1. A group of sensors and effectors allowing the agent to
interact with the environment with time restrictions (de-
mand for Real-Time Environments).

2. A group of behaviours, each one composed by a group
of in-agents. Each in-agent solves a part of the problem
of the AA, activating itself in a periodic way so that all
of them cooperate to solve the whole problem. There are
two kinds of in-agents:

Critic in-agents which are characterized by a period and
a deadline. Its execution is guaranteed during execution
time. They have two layers: the reflex layer that ensures
an answer to the problem of the A.A with the minimum
quality in a guaranteed execution time; and a real-time
deliberative layer which tries to improve the quality of
the answer reached by the reflex layer.

Non-critic in-agents which are part of the A.A’s deliber-
ation. This kind of in-agents don’t have their execution
guaranteed, but the agent tries to execute as many non-
critic in-agents as possible with the aim of maximizing
the global quality of the solution to its problem.

3. Set of believes forming a mental state of the in-agent
including: a model of the world and its internal state.

4. A control module which is responsible of the execution
of the in-agents forming the current behaviour of the
AA. Since the in-agents have two layers, reactive and
deliberative, to manage them the control module is di-
vided into two sub-modules: Reflex Server (RS) and De-
liberative Server (DS).

3.2 System Model

The System Model is the low-level model of the AA. This
model is the translation of the A.A’s user model, so every part
is translated into an equivalent low-level entity in the AA’s
system model (see figure 1):

1. The sensors and effectors of the user model correspond
with a library in order to access to the different hardware
devices.

2. Each behaviour is translated into a working mode [Car-
rascosa et al., 20041, and their in-agents into low-level
tasks.

(a) In the system model. This way, every task can have
three parts:

i. An initial part. This is the reflex part of the in-
agent; it must always be executed obtaining a
first reflex answer to the problem of the A.A with
a low quality. This initial part includes the per-
ception part of the in-agent.

ii. An optional part. This is the deliberative part
of the in-agent. These optional components in-
crease the quality of the answer calculated in the
initial part establishing the cognitive process of
the in-agent. For this, artificial intelligence tech-
niques are used and are executed between the ini-
tial and final parts of the correspondent in-agent.

iii. A final part. This part executes the answer which
was generated in the previous parts (initial and
optional parts) of the in-agent. This part is in
charge of the actions of the in-agent.

3. The set of believes is translated into a shared memory
(frame-based blackboard) that is accessible from all the
tasks [Barber et al., 1994].

4. The two parts of the Control Module of the user model
are translated into:

(a) The Reflex Server: includes First-Level Scheduler
(FLS) for the real-time tasks. The FLS uses real-
time policies at execution time to decide what task
to execute at every moment. This planning helps
the AA to adapt to the changes of its environment,
and how to execute the tasks using less time than
the estimated for its worst-case execution.

(b) The Deliberative Server is formed from two sub-
modules: the Event Manager (EM) and the Second-
Level Scheduling (SLS). The EM activates when
receiving events and reacts to them; the SLS is
in charge of distributing the available slack time
among the optional components of the in-agent.
This improves the global quality of the agent’s an-
swer. To do this distribution, the SLS needs to know
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the mean-case execution time (mcet) of the deliber-
ative parts (optional components) of the in-agents.
Currently the AR7ZS agents use the following
policies:

e EDF (Earliest Deadline First). It chooses those
tasks that with lowest deadlines.

e HSF (High Slope First). It tries to get the biggest
possible quality, by selecting first those tasks with
smallest execution time.

e BIF (Best Importance First). It executes first the
most important tasks of the system.

Control Module

4 Deliberative sew@v\
(>s)

Bvent Manager

EM
) TN Agendas

Lanux

KDM Blackboara
A

Reflex Server
(RS)

A

RT-LAnUX

- - - - Dota Activation Data Transfer

Figure 1: System Model of the AA

Previous to the work here presented, SLS is the only one
in charge of selecting the active in-agent’s optional parts to
execute.

We propose to extend the SLS whit the capacity of using
auctions as negotiation techniques with in-agents about their
possible execution.

So, we try to soften how the SLS selects and schedules the
optional tasks by means of including on these processes auc-
tions taking into account the agent current situation, believes
and desires.

4 Auctions in the AR7TZS Agents

In order to implement these auctions we consider the time-
restrictions fundamentals in an architecture of an Artificial
Intelligence System in Real-time (AIS-RT — [Musliner et al.,
1995; Terrasa et al., 2002]) such as AR7TZS. Due to these
restrictions, the duration of the auctions and of the offerings
proposals creation by the involved in-agents must be limited.

Recalling the structure of AA (section 3), the deliberative
part of the agent is represented by the deliberative parts of the

An-agents

Execution

CPU
Time

200

LAnux

Reflex Server

RT-LANUX

Figure 2: Negotiation in AR7T ZSAgent architecture.

in-agents that form the current behaviour of the agent. So,
these parts are translated into optional components which are
dealt on the DS. Once the EM generates the list of active in-
agents, the SLS distributes the time to execute the optional
parts of the in-agents. The SLS must decide which in-agent to
execute so that the best possible solutions are produced. On
the other hand, there are the AA entities, in-agents, which
have the answers to their problem and each of them is associ-
ated to a pre-determined quality and execution times.

The goal of our auctions is to allow both parts, SLS and in-
agents (see Figure 2), reach their goals which are compatible
with the goals of the system they belong to, AA. In this way,
the SLS will be the seller and the active in-agents will be the
buyers of the available time (or slack) that the SLS has for
executing optional parts.

We have decided to use auction for all the possible negoti-
ation processes due to the following features of our problem:

e The negotiation process must be time-limited. It will
depend on the available slack.

e The best available answer must be produced in this lim-
ited time, so that the SLS is able to execute something.

e The best answer is selected from a group of participant
offers from the active in-agents. The offer is their con-
tribution to the global agent quality.

So, the SLS must consider the following to decide what in-
agent to execute in every moment:

e The quality of the answers that are offered by each one
of the active in-agent.

e The time of calculations that is estimated in each in-
agent to obtain its solution.

e The importance that each in-agent has assigned.

To summarize, there is a resource in conflict which is the CPU
time that must be distributed by the SLS under the previously
mentioned conditions; and there are many clients, the active
in-agents, that desire to acquire this resource. However, this
process of awarding will have to be fast and advantageous for
both parts. Considering all the exposed so far, the best option
to this domain is to use auctions as negotiation techniques.
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Since the aim of auctions is to award the product to the par-
ticipant giving the best offer based on the pre-determined con-
ditions. Moreover, in this case, the time restrictions must be
considered according to the A.A characteristics.

We analyzed two kinds of auctions

1. “Voracious auctions”: They are those auctions in which
the participants do not know who will be able to execute
until the destined time to the auction finishes. Until then,
the participants will have to compete to give the best of-
fer. The English Auction (EA) and the First Sealed-bid
Auction (FSA) are two examples of this kind of auctions.

2. “Semi-voracious auction”: In this kind of auctions, the
participants determine whether they accept or not the
proposed offers by the seller (SLS). In this way, the par-
ticipants can control the offers that are more appealing
to them. The Dutch Auction (DA) is of this kind of auc-
tions

In the following sub-sections we explain the implementation
of these auctions in AR7 ZS agents.

4.1 Implementation

The deliberative process begins when the RS sends a message
to the DS indicating that it can execute the deliberative parts
of active in-agent (see figure 2). These messages are received
by the EM, that selects and orders the active parts, giving the
definitive list to the SLS.

The in-agents will be able to participate in the auctions if
they fulfill the following conditions (Figure 4):

e Their final part have not still finished.

e They have not executed all their optional parts.

e Their mean-case execution time (mcet) to generate an
answer must be smaller or equal to the available slack
time (Sa): mcet < Sa.

e Their next deadline expiration (%) must be before the
end of the auctioned time (slack time) (téa): t? < tJ;a

Before beginning the auction, the SLS sends the following
information to all the participating in-agents:

e Sa: (available slack time) The total available CPU time
for the execution of the optional parts.

o t$,: Start time of the available slack.

e T9/Je: End time to generate offers, because ARTZS
is an architecture for Real-Time Systems (inflexible con-
dition), T21fe" < T4, where T, is the total time
assigned for DS to the auctions.

e Depending on the auction protocol used, the SLS sends
the best offer received from the participants up to that
point.

These auction implemented in ARTZS Agent use the pro-
tocols proposed by FIPA [FIPASpec, FIPA] considering the
restrictions of time imposed by the RTS (Figure 5 and Figure
6).

Voracious Auctions
In this kind of auctions, the participant in-agents try to get the
biggest amount of slack time to run themselves.

The auction begins with the call for proposals of the
second-level scheduler (SLS). In this call, the SLS asks the
active in-agents for bids. Participants will have a limited time
to generate and to send these bids. These bids of the par-
ticipant in-agents must include: the offering quality and the
estimated execution time needed to get this quality. The SLS
gets all the generated bids from the participants and selects
the best one.

We have lightly modificated this process to be used in First-
Sealed Auctions: once the SLS has received all the bids from
the participant in-agents, it proceeds to share out all the avail-
able slack between the best bids it has received.

To implement the English Auction, the SLS assigns the
amount of slack needed by the winner in-agent and, if there is
spare slack time, it repeats the call for proposals for this new
available slack. This process is repeated until one of these
conditions is fulfilled:

e The time the SLS assigned to the auction process is
reached.

e The SLS runs out of available slack.
e There is not any interested in-agent.

Then, the SLS module calls to active in-agents offering pro-
posals by slack available to execute its optional parts and be-
gins the auction (see figure 3). Once finished the auction, the
SLS sends to execution the winning in-agents (optional parts
of these in-agents). Thus, the SLS determines which optional
parts are going to be executed in the available slack time.

For our auctions, the participating in-agents will receive
and evaluate the information according to their beliefs, limi-
tations and characteristics.
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Figure 5: Voracious Auctions Protocol

For the English Auctions and the First-Price Sealed Bid
Auctions, the participating in-agents generate offers in order
to execute their optional parts. In the English Auction, the
offers are increased in time until there are no more offers or
auction time ends. In both kind of auctions, the in-agent of-
fers are directly proportional to the following conditions:

e The participating in-agent has not executed any of its
optional parts.

o mcety < Sa; Vk € optional_parts
The mean-case execution time (mcet) for its optional
parts is smaller or equal than the time auctioned by the
SLS, Sa (slack available for optional tasks executions).

j f

o 1Y <tg, .
The next deadline of in-agent i, t*,, expires before the
auctioned space ends, téa.

¢ Qi <
The answer quality offered by the participating in-agent
i, %, increases the previous quality offer, fol.

So, the functions that generate the offer of in-agent i in order

to execute its optional part k are shown: for English Auction
in Equation(1) and for First-Price Bid Auction in Equation(2).

X
Fip(z) = | — : k| EMP
k() (t;—t%a)*[tfi—(mcetm-!—tga)}*Qk
(1)
X
Oferri, = * Qi (2)

(ti, = t%,) * [th — (meeti +t5,)]

1 inform-start-of-auction n
0
. CFP-1 n n
@ not-understood m D
reject-proposal

e n
>0

p accept-proposal p

reject-propose é

! \

end-of-Auction

CFP-n n

accept-propose

agree for sale’s actions

L ‘ end-of-auction

CFP-n n

reject-propose é 1

| end-of-Auction

Figure 6: Semi-Voracious Auctions Protocol

Where:
e 13, : the start instant of the auctioned space.

e t! : the expiration instant of the next deadline for in-

agent i (tfi < téa).

e mcet;i: the mean-case execution time of in-agent i to
execute its respective optional part k.

e MP : The best offer received up to that point. M P
starts at 0 in Equation (1).

e 2 : the number of iterations for the English Auction (x €
[1...n]) in Equation (1).

e ;i : the quality that in-agent i offers to execute its op-
tional part k.

Semi-Voracious Auctions

Auction begins when the SLS calculates and sends a proposal
(SLSWeight) to all active in-agents. The in-agents evaluate
this bid according to their believes, characteristics, temporal
restrictions and abilities. If there is still enough slack, and
time to continue with negotiations, the SLS calculates again a
SLSWeight for the new slack.

In Dutch Auction, the SLS makes an offer to the partici-
pating in-agents for available slack which we call SLSweight
(calculated according to Equation 3). The SLS begins by re-
questing a high answer quality for the .AA problem which
we call expected quality, QFEg,. The in-agents evaluate the
benefits of the SLSweight sent by the SLS. If there is no in-
terest, the SLS decreases the SLSweight for available slack by
decreasing the QFEs, . The reduction ratio of the QFEg, is
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determined by a function that has a negative slope without
reaching zero percent. This process repeats until some par-
ticipating in-agent accepts the SLS conditions or the SLS ex-
pected quality (Q) E's,) reaches the minimum value (or which
is QEs, = 20%).

The equations for Dutch Auction are expressed to follow.

SLSweight(t) = e~"(t+59) « QEg, (3)
Where:
e ¢ : the point in time where the SLSweight is calculated.

e Sa : the size of available slack for the execution of the
in-agent’s optional parts.

e QQFEg, : the quality expected by the SLS from the partic-
ipating in-agents for the A.A problem solution.

The equation to evaluate the benefits of each participating in-

agent is:
QESa
o< (Gar) < v

Where:

o (QEg, : the quality expected by the SLS from the partic-
ipating in-agents for the A.A problem solution.

e (QA; : The accumulated quality offered by the partici-
pating in-agent for the solution to the A.A problem.

5 Experimental Tests

This section presents the experimental test that have been
made to establish the feasibility of implementing auctions as
ARTILS agent acritical tasks’ scheduling policies.

We have made both simulated and real execution tests. We
have used the same data to make both kind of test, allowing
to compare both results.

Due to its real-time performance, AR7 ZS agent architec-
ture works over real-time operating system, R7-Linux. Nev-
ertheless, the A.A’s deliberative layer works over Linux oper-
ating system. As we have previously presented our auctions
are part of this deliberative process.

In this way, the SLS assigns (on-line) a percentage of total
available slack time to auctions executions. This percentage
is known and will depend on the kind of auctions executed,
therefore it does not influence in the general AR7ZS plan-
ning (see previous sections).

We have defined some restrictions in the simulation tests
to match hardware limitations existing in corresponding real
tests. Each test execution lasts until their tasks hyper-period’,
because this is the minimum time after which the execution
sequence is repeated.

For both kind of tests realized, we generate battery tests
with the following common specifications:

e Three, six, nine or twelve in-agents per AA.
e Tasks time restrictions obtained using probability func-
tions proposed in [Campos and Garcia, 2002].

Y“The tasks will be released together again at the least common
multiple of the periods of the tasks.’[Bernat et al., 2001]

e We have used two different initial situations regarding
the in-agents time-features values:

— The one with deadlines equals to periods.
— The one with deadlines lower than periods.

e For each previous situations are repeated for different
period values: 20000, 40000, 80000, 160000, 2560000
(milliseconds).

For simulation tests, we have used the tool of simulation In-
SiDE [Julidn et al., 2004] simulation toolkit with our negoti-
ation techniques. To execute an AA in InSiDE for simulation
tests is necessary to enter all its data such as: time restric-
tions, behaviours, believes, the system load, etc. In our pre-
vious work [Maldonado et al., 2005], we have shown these
specifications and obtained some results.

For real tests, we implemented the same scenarios used in
simulation tests directly in AR7 ZS agent architecture.

In order to compare the results obtained in the simulation
tests with the results obtained in the real tests, we will use the
final quality that was obtained in the answer to the problem
of the AA which is called Real Relative Quality (RRQ, that
is detailed in [Herndndez et al., 2003]) and it is represented
as RRQ = %, where ORQ (Obtained Real Quality) is
the quality reached by the in-agents of the A.A and IQ (Ideal
Quality) is the quality offered by the AA.

5.1 Obtained Results

Real Relative Quality (simulated tests)

0,81

0,78

0,75

0,72

0,69

0,66

—k-FsA |

0,63

—®&— HSF

0,6 T T T T

20000 40000 80000 160000 2560000

deadlines

Figure 7: Simulate tests for deadlines equal to periods

The obtained results on the realized tests according to the
specification mentioned before are showed in the figures 7,
8, 9 and 10. It can be observed from these graphics that the
obtained results in real tests are very similar to the obtained
ones on simulations. However, all the policies obtain better
qualities than the obtained on simulated tests. The main dif-
ference is that on simulations the system got over-saturated.
This was done because the optional load influences directly
on the executions of our policies since these are executed on
the system’s slack.
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Real Relative Quality (simulated tests)
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Figure 8: Simulate tests for deadlines minor or equal to peri-
ods

Real Relative Quality (experimental tests)

0.8

0,76

0,72

%

0,68

0,64

0,6 T T T T

20000 40000 80000 160000

deadlines

2560000

Figure 9: Real tests for deadlines equal to periods

This indicates that it is feasible to use auctions as AR7 ZS
agent optional tasks’ scheduling policies.

6 Conclusions and Future Works

As we have detailed, the main purpose of the work presented
here was to study the usage of auctions as methods to solve
the problems of intelligent agents that work on real-time en-
vironments, specifically on the AR7TZS architecture. Con-
sidering the obtained results (simulation and real tests) we
proposed the real viability of introducing these techniques in
the ARTZS agent architecture.

It can also be observed in the graphics that our auctions
obtain the best quality of all ARTZS policies. In this way,
the implemented techniques showed in this paper produce an
improvement with respect to the existing methods. This good
results helps to think about the application of these methods

Real Relative Quality (experimental tests)

20000 40000 80000 160000

deadlines

2560000

Figure 10: Real tests for deadlines minor or equal to periods

to schedule real-time systems.

On the other hand, the results obtained on the practice
matched to the obtained on the simulation in which the real
quality obtained decreases almost /0% when the deadline is
minor than the period.

The implemented auction techniques (explained in this pa-
per) along with the scheduling policies existing before this
work, form a solid study battery for current and future imple-
mentations about task scheduling in intelligent agents.

Finally, based on the obtained results, the future tasks will
be:

e To use the obtained simulation results to identify the
most suitable situations (environment and internal state)
for each scheduling policies, so that the A.A can be pro-
grammed to adapt to this situation changing its current
policy to the most suitable one [Casamayor, 2003].

o To orientate the auctions toward more deliberative meth-
ods that involve the planning of all the available slack in
the whole application.

e To generalize the methods here presented to be used in
Multi- AA Systems (SIMBA)[Carrascosa erf al., 2003b].
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State-of-the-Art autonomous robot controllers capable o
solving a large spectrum of complex tasks are typically
equipped with libraries of actions implemented by controld
routines. The controllers then dynamically combine and par
tially parameterize these actions on the fly in order to solv

Tailoring Action Parameterizations to Their Task Contexts'

Freek Stulp and Michael Beetz
Intelligent Autonomous Systems Group, Technische Univaritinchen
Boltzmannstrasse 3, D-85747 Munich, Germany

{stulp,beetz

Abstract

Solving complex tasks successfully and efficiently
not only depends owhatyou do, but alsdvowyou

do it. Different task contexts have different perfor-
mance measures, and thus require different ways of
executing an action to optimize performance. Sim-
ply adding new actions that are tailored to perform
well within a specific task context makes planning
or action selection programming more difficult, as
generality and adaptivity is lost. Rather, existing
actions should be parametrized such that they opti-
mize the task-specific performance measure.

In this paper we propose a novel computation
model for the execution of abstract action chains.
In this computation model, a robot first learns
situation-specific performance models of abstract
actions. It then uses these models to automatically
specialize the abstract actions for their execution in
a given action chain. This specialization results in
refined chains that are optimized for performance.
As a side effect this behavior optimization also ap-
pears to produce action chains with seamless tran-
sitions between actions.

Introduction

the respective set of active tasks.

Consider, for example, the controllers for autonomous socg,
cer robots. These controllers are provided with actions for

navigating, kicking, searching, etc. During the game, the con
trollers dynamically select these actions to perform their im
mediate tasks. For example, they navigate to the ball in ord
to get possession of it, or to clear a dangerous situation.

another task context, they navigate in order to dribble the ba
towards the opponent’s goal. As a consequence, the use
actions in different task contexts require the designer to re
son about how the implemented action will perform in thes

etIOI’lS.

}@in.tum.de

contexts. On the one hand, programmers want to implement
the navigation action as fast as possible to be more agile and
mobile than the opponents. Unfortunately, fast navigation be-
havior will cause more frequent and harder collisions with the
ball when approaching it and thereby the robot will loose con-
trol of the ball. Even worse, while these hard collisions are
to be avoided when gaining control of the ball and dribbling,
they are often desirable in other task contexts such as clearing
a dangerous situation.

Most robot controllers deal with task contexts by pro-
viding variants of actions for the different task con-
texts. A soccer robot programmer provides, instead of
a single navigation action, a set of navigation actions
such as:clearBall , approachBall , dribbleBall .
interceptBall , andblockOpponent In the design
of the action libraries, most programmers consider a trade-off
between the compactness of the action library and its perfor-
mance. And they are typically willing to sacrifice compact-
ness for performance.

However, having only few abstract actions instead of many
specific actions has several advantages. Fewer actions need
to be implemented because viewed at an abstract level the
actions are applicable to a broader range of situations. At
more abstract levels the search space of plans is substan-
tially smaller and fewer interactions between actions need to
be considered. This not only eases the job of the program-

ers but also the computational task of automatic planning

ystems. Having fewer actions also makes the system more
adaptive. Suppose the robots play on a new field on which the

ynamics of the robots are very different, and all navigation
actions perform badly. If there are many navigation routines,

qhey all have to be retuned, rewritten or relearned to perform

well in the new situation. The fewer actions there are, the
ster this can be done, and the more adaptive the system is.

_ In this paper we propose a novel computational model
for autonomous robot control that allows the control sys-

dem to use small sets of general and abstract actions while
|gt the same time achieving the performance of large sets

pf specialized actions. The computational model performs

grecution time and context-specific optimization of action
P

ans using learned performance models of the general ac-
The basic idea of our approach is to learn perfor-
mance models of abstract actions off-line from observed ex-

*The work described in this paper was partially funded by theperience. These performance models are rules that predict
Deutsche Forschungsgemeinschaft in the SPP-1125.

the situation- and parameterization-specific performance of
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abstract actions, e.g. the expected duration. Then, at exec 'sl‘:'_:swre! 17T [ coatscoret 7T Goal: Score!

. . . : Plan: . Plan:
tion time, our system determines the set of parameters thijll = serceese = goTorosetnorderTofiill . '~ goTorose.
are not set by the plan and therefore define the possible ajill = S = R = e R

In this paper, we investigate two mechanisms for executiora) | Y S b
time and context specific action specialization: : : : :

1. Specialization of general actions for their improved ex-Figure 1: Three alternative plan executions to approach the
ecution within given action chains. ball in order to dribble it.

2. Specialization of actions for predictive failure preven-
tion through subgoal assertion.

tion executions. It then determines for each abstract actio il - : | BT aar, oy
the parameterization such that the predicted performance (™= ; IR :
the action chain is optimal. Bt | | (\/

58

c)

provides the optimal position from which to start dribbling.
Preferably, an existing action should be parameterized such
1. We propose a novel computational model for the executhat it performs well with respect to the performance mea-
tion time optimization and generation of action chainssure of the given context. Again, there is also a solution that
(section 2). only usesgoToPose action. By determining the angle of
pproach at which the overall performance of the plan is opti-
al, and parameterizimgpToPose so that it approaches the

The technical contributions of this paper are fourfold.

2. We show how situation-specific performance models®

for abstract actions can be learned automatically, (sec: / ;

; all at this angle, also leads to improved performance. The

tion 3). . o L oy

) _ ~ behavior shown in Figure 1c exhibits seamless transitions be-

3. We describe a mechanism for subgoal (post-conditionjween plan steps and has higher performance, achieving the

refinement for action chain optimization. We apply our yltimate goal in less time than in Figure 1a. This optimiza-

implemented computational model to chains of naviga+ion, called subgoal refinement, can also be automated, as will

tion plans with different objectives and constraints andpe demonstrated in section 4.

different task contexts (section 4). Another frequent task in robotic soccer is to approach the

4. We show how performance models can be used to deball. In Figure 2, the defender’s goal is to clear the ball, and
termine when no action can solve the task, and subgoals has decided to do so by approaching the ball from behind,

must be introduced to achieve the goal (section 5). and kicking it away from the goal. One way to execute this
plan is by first executing its genegbToPose action. How-
2 System overview ever, since this action does not take the ball into account, it

) o ) ] might bump into it before achieving the desired position and
This section introduces the basic concepts upon which Wgrientation, as can be seen in Figure 2a.

base our computational model of action chain optimization.
Using these concepts, we define the computational task and

sketch the key ideas for its solution. First of all, we will de- |ggg Geareiearball = gy [CoaliClearball | gy |Goar Cleartal
scribe two exemplary scenarios that clarify the problem. " = gortopose it = goTorose
=il . - kick . - - goToPose

g el dn

2.1 Two exemplary scenarios

In Figure 1, a typical situation from robotic soccer is shown.
The robot’s goal is to score a goal. A three step plan suffice, _ :
to solve this task: 1) go to the ball; 2) dribble the ball to gy " b) .
shooting position; 3) kick. If the robot naively executed the
firstaction (as depicted in Figure 1a), it might arrive at the ballrjgyre 2: Three alternative plan executions to approach the
with the goal at its back. This is an unfortunate position frompg]|.
which to start dribbling towards the goal. The problem is that
in the abstract view of the planner or programmer, being at
the ball is considered sufficient for dribbling the ball and the To solve this problem, a specialized action that takes the
dynamical state of the robot arriving at the ball is consideredall into account could be written, e.cgapproachBall
to be irrelevant for the dribbling action. This variant is shown in Figure 2b, and would work
What we would like the robot to do instead is to go fine. However, there is also a solution that only uses the
to the ballin order to dribble it towards the goal after- goToPose action, and that does not require us to write
wards. The robot should, as depicted in the Figure lbapproachBall . The solution is to introduce an interme-
perform the first action sub-optimally in order to achieve diate way-point that ensures there will be no collision with
a much better position for executing the second plan steghe ball, and performing the navigation task with by append-
This behavior could be achieved by designing a new actionng twogoToPose actions. Since the chosen path is similar
e.g. goToPoselnOrderToDribbleTheBallToX , that  tothe pathapproachBall  would probably choose, perfor-
takes into account that we plan to dribble the ball to a cermance is not lost. When a way-point is needed, and where it
tain position afterwards. Its long name already indicates thehould lie is determined automatically, using subgoal asser-
loss of generality, and it is also not guaranteed that this actiotion, which will be presented in section 5.
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2.2 Conceptualization action in a teleo operator chain. In Figure 5, such a specific

Our conceptualization for the computational problem is baseguPgoal has been chosen. This state will be visited in the
on the notion of actions, performance models of actionstransition from one action to the next.
teleo-operators, teleo-operator libraries, and chains of teleo-
operators. In this section we will introduce these concepts. ) Pre—Cond.
Actions are control programs that produce streams of con- ‘ (PostgCond)| crion:
trol signals, based on the current estimated state, thereby in- | cufrent state L
fluencing the state of the world. The basic action we use State-space Refined Subgoal
here isgoToPose , which navigates the robot from the cur-
rent pose (at time) [z;,y:,¢:] to a future destination pose Figure 5: Subgoal refinement.
[z4,y4,04] Dy setting the translational and rotational velocity
of the robot:
goToPose (z+,yt,¢4%d\Yd,Pd) — Vira,Vrot Performance models of actiongnap a specific situation
Teleo-operators (TOPs)consist of an action, as well as onto a performance measure. These models can be used to
pre- and post-conditiorifNilsson, 1994 The post-condition predict the performance outcome of an action if applied in
represents the intended effect of the TOP, or its goal. It spea specific situation, by specifying the current state (satisfy-
ifies a region in the state space in which the goal is sating the pre-conditions) and end state (satisfying the post-
isfied. The pre-condition region with respect to a tempo-conditions). An example of a performance measure is pre-
rally extended action is defined as the set of world states iglicted execution time:
which continuous execution of the action will eventually sat- goToPose.time  (zt,y¢.¢¢:%a,yd,da) — t
isfy the post-condition. They are similar to Action Schemata
or STRIPS operators in the sense that they are temporally e2.3 Computational task and solution idea
tended actions that can be treated by the planner as if thephe on-line computational task is to optimize the overall per-
were atomic actions. formance of a TOP chain. The input consists of a TOP chain
that has been generated by a planner, that uses a TOP library
State—space State—space as a resource. The output is an intermediate refined subgoal
Pre—Cond, that optimizes the chain, and is inserted in the chain. Exe-
Post-Cond; cuting the TOP chain is simply done by calling the action of
each TOP. This flow is displayed in Figure 6.
] To optimize action chains, the pre- and post-conditions of
Figure 3: An abstract teleo-operator. the TOPs in the TOP chains are analyzed to determine which
variables in the subgoal may be freely tuned. These are the

The goToPoseTOP has the empty pre-condition, as it vVariables that specify future states of the robot, and are not

can be executed from any state in the state space. Its pogonstrained by the pre- and post-conditions of the respec-
condition is [ty &~ zay: ~ ya, ¢ ~ ¢g4]. Its action is  tive TOP. For the optimization of these free variables, per-

goToPose . formance models of the actions are required. Off-line, these
TOP libraries contain a set of TOPs that are frequently models are learned from experience for each action in the

used within a given domain. In many domains, only a smallTOP library. They are used by the subgoal refinement sys-

number of control routines suffices fo execute most tasks, ifem during execution time, but available as a resource to other

they are kept general and abstract, allowing them to be apsystems as well.

plicable in many situations. Our library contains the TOPs:

goToPoseTOP anddribbleBallTOP . TOP Library
A TOP chain for a given goal is a chain of TOPs such /{Learn Performance Model>
that the pre-condition of the first top is satisfied by the currentz TOP1

situation, and the post-condition of each step satisfies the prg- [Action | %
condition of the subsequent TOP. The post-condition of thé Lo
last TOP must satisfy the goal. It represents a valid planto - — o .
achieve the goal. { Generate TOP chain )
""""""" T Subgoal refinement
»| | TOP chain and
Pre—Cond. —? @’D‘@f@ Subgoal assertion
Co-Cond] 5 !
Cutrent state Goal e R — N [Refined (optimal) subgoal
State-space | '___Execute TOP chain _
Figure 4: A chain of teleo-operators. Figure 6: System Overview.

Subgoal refinementis the process of choosing a specific  One of the big advantages of our approach is that neither
state as a subgoal, from the set of states defined by the poStOP library, nor the generation of TOP chains (the planner)
condition of a preceding and pre-conditions of a subsequentor the TOP chain executor need to be modified in any way to
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accommodate the action chain optimization system. We as-%"D:%t, Ye,% Xa, Ya,% 3-D:dist, a“g‘e;z‘gigets(f st
sume that the programmer provides a library of actions con- -

taining domain knowledge expressed in the pre- and post= Q ) S

condition, and has mechanisms for generating and execut- N T P & P

ing chains of these actions, be it through planning, arbitration- '\ o . -anglevat dest
schemes, or simply manual specification. Although each of’ ’ =

these components is a research field in its own right, our pa-

per will not focus on them, also to emphasize that our system s l

does not rely on their implementation. t
The next three sections describe the main components in

Figure 6. In section 3 we describe how performance modelgigyre 7: Transformation of the original state space into a

of actions are learned from experience. Subgoal refinemengwer-dimensional feature space.

and subgoal assertion are presented in sections 4 and 5 re-

spectively.

. approximated well by a simple representative model. Deci-
3 Learning performance models sion trees use a nominal value, and model trees a linear func-

To perform subgoal refinement and assertion, performanc on to represel"]t'the data in a partition.

models of each action in the TOP library must be available, W& use decision and model trees because 1) they can be
For each action, the robot therefore learns a function thaf@nsformed into sets of rules that are suited for human in-
maps situations to the cost of performing this action in the>P€ction and interpretation 2) comparative research shows
respective situation. The robot will approximate the perfor-N€y are the very appropriate for learning action models

mance function by learning decision and model trees basedpelker, 2004; Balac, 20023) they tend to use only rele-
on observed experience. vant variables. This means we can start off with many more

Let us consider the navigation actignToPose . This features than are needed to predict performance, having the

navigation action is based on comput[ing a Bezier cur\Z/]e, angnodel tree function as an automatic feature selector.
trying to follow it as closely as possib[@eetzet al., 2004. - . .
O)l/,lrgribbleBall actior%l useg the same method, but re-3'1 Prediction of execution duration
stricts deceleration and rotational velocity, so as not to loos& he first performance model we have learned is execution du-
the ball. We abstract away from their implementation, as ouration. It maps a current state and a goal state to the expected
methods consider the actions to be black boxes, whose petime needed to achieve the goal state with this action.
formance we learn from observed experience. To gather experience, the robot executed each action thou-

To gather experience, with which the model will be sand times, with random initial and destination poses. The
learned, the robot executes the action under varying situaobot recorded the direct variables and the time it took to
tions, observes the performance, and logs the experience eseach the destination state at 10Hz, thereby gathering 75 000
amples. Since the method is based solely on observationexamples of the formate},y;,0:,24,y4,04,time] per action.
it is also possible to acquire models of actions whose interUsing our Pioneer | robots, acquiring this amount of data
nal workings are not accessible. The examples are gatheredbuld take approximately two hours of operation time.
using our simulator, which uses learned dynamics models of Additional transformed features that were used to learn
the Pioneer | platform. It has proven to be accurate enougthe model are shown in Figure 7. The model tree was ac-
to port control routines from the simulator to the real robottually learned on an 11-dimensional feature spagey[,¢;,
without change. Tq,Wa,Paq,dx,dy,dist,angle_to_dest,angle_at_dest]. The

The variables that were recorded do not necessarily corranodel tree algorithm automatically discovered that only
late well with the performance. We therefore design a transfdist,angle_to_dest,angle_at_dest] are necessary to accu-
formed feature space with less features, but the same potentiadtely predict performance.
for learning accurate performance models. In Figure 7 it is We will now give an example of one of the rules learned by
shown how exploiting transformational and rotational invari-the model tree. In Figure 8, we depict an example situation
ance reduces an original six-dimensional feature space intoia which dist andangle_to_dest are to 2.0m and Orespec-
three-dimensional one, with the same predictive power. tively. Given these values we could plot a performance func-

Currently, we perform the transformation manually for tion for varying values ofingle_at_dest. These plots are also
each action. In our ongoing research we are investigatingepicted in Figure 8, once in a Cartesian, once in a polar coor-
methods to automate the transformation. By explicitly rep-dinate system. In the linear plot we can clearly see five differ-
resenting and reasoning about the physical meaning of statnt line segments. This means that the model tree has parti-
variables, we research feature language generation methodtoned the feature space fdéist=2.0m ancingle_to_dest=0°

The last step is to approximate a function to the transinto five areas, each with its own linear model. Below the two
formed data. Depending on whether a nominal or continuplots, one of the learned model tree rules that applies to this
ous value needs to be predicted, we use a decision or modsituation is displayed. An arrow indicates its linear model
tree respectively. Both methods learn a mapping from inpuin the plots. The polar plot clearly shows the dependency of
features to output feature from experience, by a piecewise regredicted execution time on the angle of approach for the ex-
cursive partitioning of the examples in feature space. Partiample situation. Approaching the goal at 0 degrees is fastest,
tioning continues until all the examples in a partition can beand would take a predicted 2.1s. Approaching the goal at 180
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The learned tree, as well as a graphical representation of
it, are depicted in Figure 9. The goal pose is represented by
the robot, and different areas indicate if the robot can reach
this position withgoToPose , without bumping into the ball
first. Remember thajoToPose has no awareness of the ball
at all. The model simply predicts when its execution leads to
a collision or not. Intuitively, the rules seem correct. When
coming from the right, for instance, it can be seen that the
robot always disrespectfully stumbles into the ball, long be-
fore reaching the desired orientation. Behind the ball, the
robot may not be too close to the ball (checkered area), un-
less it is facing it. This last rule is indicated by the arrows
pointing in the direction of the ball.

situation:

dist = 2.0

angle_to_dest 0.0 ‘
[-1

angle_at_dest

(s)

predicted execution time
w

0
-180 0 592 180

angle_at_dest (degree)
(angle_at_goal < 56)

model tree rule: ;74
if (2.3 > dist > 1.86) .
if (angle_to_dest < 49.7) (dist_to_goal < 0.93) °
if (angle_at_dest < 59.2) }}eé
: - * A1 n L.
then time 1.26*dist (angle_to_goal < 49) Collision g
+ 0.018*angle_to_dest
yée Ao

+ 0.0037*angle_at_dest
- 0.42

Success Ml
Success B Collision B

Figure 8: An example situation, two graphs of time prediction o ]
for this situation with varyingingle_at_dest, and the model ~Figure 9: The learned decision tree that predicts whether an
tree rule for one of the line segments. unwanted collision will happen.

. To evaluate the accuracy of this model, the robot executed
degrees means the robot would have to navigate around thg,sher thousand runs, and compared predicted collision with
goal point, taking much longer (6.7s). observed collisions. The decision tree predicts collisions cor-

To evaluate the accuracy of the performance models, Wgactly in almost 90% of the cases. A more thorough analysis
again randomly executed each action to acquire test exanjs gepicted in Table 1. The model is quite pessimistic, as it
ples. For the actiogoToPose , the mean absolute error and nregicts failure 61%, whereas in reality it is only 52%. In
root-mean-square error between predicted and actual exectigo, of cases, it predicts a collision when it actually does not

tion time were 0.31s and 0.75s. For tibbleBall ~ rou-  pappen. This is preferable to an optimistic model, as it is
tine these values were 0.29s and 0.73s. As we will see, thesgtter to be safe than sorry.

errors are accurate enough to optimize action chains.

3.2 Prediction of ball approach failure Observed Total
i Coll. Succ. Predicted

The goToPose action can often be used well to approach —predicted Coll. 51% 0% = 61%

the ball. However, in some situations it will bump into the Succ. 1% 38%| —» 39%

ball before achieving the desired orientation, as was shown 1 1 1

in Figure 2. The second performance model we have learned Total Observed  52% 48%| —  100%

predicts whether executingoToPose will lead to a colli-

sion with the ball or not. Table 1: Accuracy of ball collision prediction.

To acquire experience, the robot again executed
goToPose a thousand times, with random initial and
destination poses, the ball always positioned at the desti- Actually, this decision tree is much more than a perfor-
nation pose. The robot recorded 65 000 training examplemance model. It can be considered as the conditions in
of the format f+,y¢,01,24,y4,04,collided?] per action. The which goToPose will successfully approach the ball. We
flag collided? is set toCollision for all the examples in  now have an teleo-operatapproachBallTOP , with dif-
a whole run, if the robot eventually collided with the ball ferent preconditions frongoToPoseTOP. However, since
before reaching its desired position and orientation, and tapproachBallTOP  also uses the actiogoToPoseTOP
Success otherwise. there is no explicit actiompproachBall . We have only
The model was learned with the same 11-dimensionatietermined the conditions under whighToPose must be
transformed feature space as used in learning temporal prexecuted to achieve successful ball approach. We will make
diction. Again, only {ist,angle_to_dest,angle_at_dest] use of this when applying automatic subgoal assertion in sec-
were used to predict a collision. tion 5.
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4 Automatic subgoal refinement this means only those variables that are used in the model

As depicted in Figure 6, the automatic subgoal refinemenf €€ 10 partition the state space at the nodes, or used in the
’ near functions at the leaves.

system takes the performance models and a chain of tele In both the | d model t for th tiong oP

operators as an input, and returns a refined intermediate goal S do'bbl %eliarne mtﬁ € nlaes (?[r € a%llgn 0 e(l)'si

state that has been optimized with respect to the performan ribbieba ' e relevant varables arenst,
angle_to_dest andangle_at_dest. These are all derived vari-

of the overall action chain. To do this we need to specify ; ;

all the variables in the task, and recognize which of thes@Ples, computed from the direct variables, ¢+, ,y;.¢:]

variables influence the performance and are not fixed. Thegdd Fiyidistg,y4.0,], for the first and second action re-

variables form a search space in which we will optimize the>PECtiVely. So by changing these direct variables, we would

performance using the learned action models. change the indirect variables computed from them, which in
effect would change the performance.

4.1 State variables But may we change all these variables at will? g,

or ¢¢, as we cannot simply change the current state of the

world. Also we may not alter bound variables that the robot

‘has committed to, beingzf,yi,z,,y4.6,]. Changing them

would make the plan invalid.

N This only leaves the free variabfg, the angle at which the

b h luti fthe d ! . intermediate goal is approached. This acknowledges our intu-
robot. The evolution of the dynamic system is representegiqn, from Figure 1 that changing this variable will not make

by a set ofstate variableshat have changing values. The g hjan invalid, and that it will also influence the overall per-

controlling process steers the controlled process by sending..nance of the plan. We are left with a one-dimensional
control signalsto it. These control signals directly set some aearch space to optirﬁize performance.

of the state variables and indirectly other ones. The affecte
state variables are called thentrollablestate variables. The 4.3  QOptimization
robot for instance can set the translational and rotational ve-
locity directly, causing the robot to move, thereby indirectly
influencing future poses of the robot.

For the robot, a subset of the state variablebservableéo

In the dynamic system mod@Dean and Wellmann, 1991
the world changes through the interaction of two processe
the controlling processin our case the low-level control pro-
grams implementing the action chains generated by the pla
ner, and theontrolled procesdn our case the behavior of the

0 optimize the action chain, we will have to find those val-
ues for the free variables for which the overall performance
of the action chain is the highest. The overall performance

its perceptive system, and they can be estimated using a stdfegStimated by summing over the performance models of all
estFi)matiopn modyule For any c):)ntroller there is a disti%ctionacuons that constitute the action chain. In Figure 11 the first

betweerdirect andderivedobservable state variables. All di- WO polar plots represent the performance of the wo indi-
vidual actions for different values of the only free variable,

rect state variables for the navigation task are depicted in Fi%{vhich is the angle of approach. The overall performance is
ure 10. Direct state variables are directly provided by stat mputed by adding those two, and is depicted in the third

estimation, whereas derived state variables are computed

combinations of direct variables. No extra information is con-Pelar plot.

tained in derived variables, but if chosen well, derived vari- goTorose +

ables are better correlated to the control task. goToPose (3) dnbblfoBiil (s) dribbleBall (s)
60 1 1

= "/\% .)%
- / : )(Pg
X

{ |
T T

X¢ X

total = 7.5s

Figure 10: Direct state variables relevant to the navigation
task.

2.1s

State variables are also used to specify goals internal to‘ ‘
the controller. These variables @seund conform to plan-
ning terminology. It is the controller’s goal to have the bound ) . o ]
internal variables (approximately) coincide with the externalFigure 11: Selecting the optimal subgoal by finding the opti-
observable variables. The robot's goal to arrive at the intermum of the summation of all action models in the chain.
mediate position could be represented by the state variables
[x:,5:]. By setting the velocities, the robot can influence its  The fastest time in the first polar plot is 2.1s, for angle of
current positionf;,y.] to achieve i ~ z;,y; ~ yi- approach of 0.0 degrees. The direction is indicated from the
. center of the plot. However, the total time is 7.5s, because
4.2 Determining the search space the second action takes 5.4s for this angle . These values can
To optimize performance, only variables that actually influ-be read directly from the polar plots. However, this value
ence performance should be tuned. In our implementatioris not the optimum overall performance. The minimum of
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the overall performance is 6.1s, as can be read from the thirthat this is a shortcoming of the action itself, not the chain
polar plot. Below the polar plots, the situation of Figure 1 isoptimization methods.
repeated, this time with the predicted performance for each

aCtion. (angle_between_goals < 122)
We expect that for higher-dimensional search spaces, ex- ,74

haustive search may be infeasible. Therefore, other optimiza-

tion techniques will have to be investigated. ‘a“"left;t/"ee“*‘-‘°als DA

yEs

4.4 Results (distl < 1.4) e Equalldl

To determine the influence of subgoal refinement on the over- _ / 0 ‘

all performance of the action chain, we generated a thousand,/. @  signe: m figher B

situations with random robot, ball and final goal positions.

The robot executed each navigation task twice, once with sub-

goal refinement, and once without. The results are summagjgure 12: The decision tree that predicts whether subgoal

rized in Table 2. First of all, the overall increase in perfor- refinement will make the performance better, worse or have
mance over the 1000 runs is 10%. We have split these cas@g influence at alll.

into those in which the subgoal refinement yielded a higher,

equal or lower performance in comparison to not using re- :
finement. This shows that the performance improved in 533 We then performed another thousand test runs, as described

cases, and in these cases causes a 21% improvement. In Ve, b”t only applied_ subgoal_refinement if the decision
cases, there was no improvement. This is to be expected, € predicted applying it would yield a higher performance.
there are many situations in which the three positions are aly though increase in overall performance is not so dramatic

: - : : : from 10% to 12%), the number of cases in which perfor-
{ggﬁgﬁgﬂ? veillllyhzzil\l/%nﬁg éﬁégc'tm a straight line), and SUb(-:loaﬁnance is worsened by applying subgoal refinement has de-

creased from 98 (10%) to 10 (1%). Apparently, the decision
tree correctly filtered out cases in which applying subgoal re-
Before filtering [ Total | Higher Equal Lower finement WO)l/.I|d decrease performance. PRlyINg 9
im #rtor\L/]er:]r?]ent i%f,’/o 255’5 ?6?/9 _1%%/ Without subgoal refinement, the transitions between ac-
provem 0| -7 0 0 tions were very abrupt. In general, these motion patterns
After filtering | Total | Higher Equal Lower are so characteristic for robots that people trying to imitate
_ #runs 1000 505 485 10 robotic behavior will do so by making abrupt movements be-
improvement | 12% | 23% 0%  -6% tween actions. In contrast, one of the impressive capabilities
o , . of animals and humans is their capability to perform chains
Table 2: Results, before and after filtering for cases in whichyf actions in optimal ways and with seamless transitions be-
performance loss is predicted. tween subsequent actions. It is interesting to see that requir-
ing optimal performance can implicitly yield smooth transi-
. jons in robotic and natural domains, even though smoothness
Unfortunately, applying our method causes a decrease (I}It?itself is not an explicit goal in either domain. 9

e oimome Some e poomar, i o PUTMarang:Subgoal refinemert i fterig yild
9 P ! g ooth transitions and a 23% increase in performance half

each of the above runtdigher , Equal orLower . We then : ; . .
: . ' : : ; f the time. Only once in a hundred times does it cause a
trained a decision tree to predict this nominal value. This treés)mall performance loss,

yields four simple rules which predict the performance differ-
ence correctly in 86% of given cases. The rules and a graph; . .
ical representation are depicted in Figure 12. In this graphs Automatic subgoal assertion
the robot always approaches the centered ball from the left dh the previous section, we have seen how subgoals can be
different distances. The different regions indicate whether theefined in order to optimize performance. In this section,
performance increase/decreased due to subgoal refinementg will show how performance models can be used to detect
if the goal lies in this region. Three instances with differentwhen the assertion of a new subgoal is necessary.
classification and therefore different colors circles have been We use a scenario in which a robot approaches a ball,
inserted. introduced in section 2.1. A difficulty in approaching the
The rules declare that performance will stay equal if theball is that the robot might collide with the ball before it
three points are more or less aligned, and will only decreashas reached its desired position and orientation. Since our
if the final goal position is in the same area as which thegoToPose action is not aware of these potential collisions,
robot is, but only if the robot's distance to the intermediateit is not always appropriate for approaching the ball. Actu-
goal is smaller than 1.4m. Essentially, this last rule states thatlly, it can be derived from Table 1 that it fails in 52% of
the robot using the Bezier-basgdToPose has difficulty cases. To solve this problem, one could write a new action,
approaching the ball at awkward angles if it is close to it.e.g. approachBall . It would probably be very similar to
In these cases, small variations in the initial position lead tagoToPose , but take the ball into account.
large variations in execution time, and learning an accurate, Instead of writing a new action, thereby causing the prob-
general model of the action fails. The resulting inaccuracylems discussed in the introduction, it is also possible to reuse
in temporal prediction causes suboptimal optimization. NotegoToPose , and adapt it to the current context. First of all,
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it is important to recognize thatoToPose is actually suc- direct with subgoal

cessful in approaching the ball almost half the time (Table 1). (no subgoal) assertion
Fortunately, we have models that can predict when success Success 47% 97%

is probable. So when the goal is to approach the ball, and Collision 53% 3%

the performance model predicts tlgatToPose can do this

collision-free, this action is executed as is. Table 3: The effects of applying subgoal assertion to the ball

When no action can be parameterized in such a way thapproach task.
ball approach is likely to succeed, we need to find a chain of
actions that can. This is done in a means-ends fashion. First,
the robot determines which actions can achieve the goal, anslibgoal was introduced, and if it was helpful to do so. In
which preconditions must hold for this action to succeed.37% of cases, no subgoal was needed, as no collision was pre-
Then, it determines if any action can achieve these preconddicted. In 52%, a subgoal was asserted, causing a successful
tions. In our example, a sequence of tw@loPose actions  completion that was not possible without a subgoal. In 10%
can achieve the goal. A constraint is that the second actiopf cases, a subgoal was introduced unnecessarily, as the task
in the sequence must be able to reach the ball without unincould have been solved without a subgoal. Note that all these
tentional collisions. This could be any position in the mostpercentages are roughly the same as those in Table 1. In-
left area of Figures 9 and 13, because the performance modgppropriately introducing the subgoal caused a performance
predicts that there will be no collision when starting from any|oss of 11% in these cases.
of the position in this area. Summarizing: if subgoal assertion is not necessary, it is
usually not applied. Half of the time, a subgoal is introduced,
which raises successful task completion from 47 to 97%. In-
frequently, subgoals are introduced inappropriately, but the
performance loss in these cases is an acceptable cost com-
pared to the pay-off of the dramatic increase in the number of
successful task completions.

6 Related Work

Most similar to our work is the use of model trees to learn
Figure 13: Subgoal assertion to avoid collisions with the ball performance models to optimize Hierarchical Transition Net-
work plans[Belker, 2004. In this work, the models are used
. o . ) to select the next action in the chain, whereas we refine an
Although all positions in this area can function as an inter-existing action chain. Therefore, the planner can be selected
mediate goal for the twgoToPose actions, the overall ex- independently of the optimization process.
pected execution duration is different for all off them. There-  Reinforcement Learning (RL) is another method that seeks
fore, we sample a thousand points from the area, and comg optimize performance, specified by a reward function. Re-
pute the overall performance by adding the predicted time ofent attempts to combat the curse of dimensionality in RL
the first and secondoToPose actions in the action chain. have turned to principled ways of exploiting temporal ab-
The point with the best performance, that is, fastest executiogtraction [Barto and Mahadevan, 2003 Several of these
time, is chosen to be the intermediate point. This optimizaHjerarchical Reinforcement Learningiethods, e.g. (Pro-
tion process is nothing else than subgoal refinement, as h@$ammable) Hierarchical Abstract MachinéBarr, 1998:
been presented in section 4. _ Andre and Russell, 2000MAXQ [Dietterich, 2009, and
In Figure 13, three instances of the problem are depictedpptions[Suttonet al, 1999. All these approaches use the
Since the robot to the left is in the area in which no coIIisionconcept of actions (called ‘machines’, ‘subtasks’, or ‘options’
is predicted, it simply executegpToPose , without assert-  respectively). In our view, the benefits of our methods are that
ing a subgoal. The model predicts that the other two robotghey acquire more informative performance measures, facili-

will collide with the ball when executingoToPose , and @ tate the reuse of action models, and scale better to continuous
subgoal is asserted. The optimal positions of the subgoalgng complex state spaces.

cles. action failure) arénformativevalues, with a meaning in the
physical world. Future research aims at developing meaning-
5.1 Results ful composites of individual models. We will also investigate
To evaluate automatic subgoal assertion we executed a thodynamic objective functions. In some cases, it is better to be
sand random ball approaches, once with assertion, and onéast at the cost of accuracy, and sometimes it is better to be
without. The results are summarized in Table 3. Itis clear thaaccurate at the cost of speed. By weighting the performance
using onlygoToPose is not very successful. It approaches measures time and accuracy accordingly in a composite mea-
the ball collision-free less than half the time. This is actuallysure, these preferences can be expressed at execution time.
exactly what our performance model predicts, as can be see&dince the (Q-)Value compiles all performance information in
in Table 1. Applying subgoal assertion dramatically improvesa single non-decomposable numeric value, it cannot be rea-
this. In less than 3% of cases does the ball approach fail.  soned about in this fashion.

We have also investigated under which circumstances a The methods we proposetalebetter to continuous and
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complex state spaces. We are not aware of the application On-line optimization of action chains allows the use of
of Hierarchical Reinforcement Learning to (accurately simu-planning with abstract actions, without losing performance.
lated) continuous robotic domains. Optimizing the action chain is done by asserting and refining

In Hierarchical Reinforcement Learning, the performanceunder-specified intermediate goals, which requires no change
models of actions (Q-Values) are learned in the calling conin the planner or plan execution mechanisms. To predict the
text of the action. Optimization can therefore only be doneoptimal overall performance, performance models of each in-
in the context of the pre-specified hierarchy/program. Individual abstract action are learned off-line and from experi-
contrast, the success of action selection in complex robotience, using model trees.
projects such as WITA$Doherty et al, 200d, Minerva Applying subgoal refinement and assertion to the presented
[Thrunetal, 1999, and ChigFirby et al, 1994, depends on scenarios yields significant performance improvement. How-
the on-line autonomous sequencing of actions through plarever, the computational model underlying the optimization
ning. Our methods learn abstract performance models of ads certainly not specific to this scenario, or to robot naviga-
tions, independent of the context in which they are performedtion. In principle, learning action models from experience
This makes themeusable and allows for integration in plan- using model trees is possible for any action whose relevant
ning systems. state variables can be observed and recorded. The notion of

The only approach we know of that explicitly combines controllable, bound and free state variables are taken directly
planning and RL is RL-TOPSRginforcement Learning - from the dynamic system model and planning approaches,
Teleo Operators[Ryan and Pendrith, 1998 Abrupt tran- and apply to any scenario that uses these paradigms. Our
sitions arise here too, and the author recognizes that “cufuture research therefore aims at applying these methods in
ting corners” between actions would improve performancepther domains, for instance robots with articulated arms and
but does not present a solution. grippers, for which we also have a simulator available.

Many behavior based approaches also achieve smooth mo-Currently, we are evaluating if subgoal refinement im-
tion by a weighted mixing of the control signals of various proves plan execution on real Pioneer | robots as much as
actions[Saffiotti et al, 1995; 1993 In computer graph- itdoes in simulation. Previous research has shown that action
ics, this approach is callechotion blending and is also models learned in simulation can be applied to real situations
a wide-spread method to generate natural and fluent trarwith good resul{Buck et al, 2002; Belker, 2004
sitions between actions, which is essential for lifelike an-
imation of characters. Impressive results can be seen iReferences
[Perlin, 1993, and more recentlfiShapiroet al, 2003;  [Andre and Russell, 2000David Andre and Stuart Russell. Pro-
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Abstract

Developing a conflict-free plan for a multi-agent
system in a complex and dynamic environment is a
difficult task. Moreover, it is impossible to take into
account all possible events that might occur dur-
ing the execution of the plan. Unexpected events
may cause a plan to be no longer executable with-
out leading to conflicts: we then say that its ex-
ecution is unhealthy. This paper presents a new
model that enables agents (1) to control their plan-
execution health and (2) to regain health when nec-
essary. The agents can utilize the model to pre-
dict consequences of occurring disruptions and thus
detect unhealthy situations. With the help of the
model's predictions, agents can correct the execu-
tion of tasks within the plan in such a way that con-
flicts will be avoided and health is regained. We
emphasize that, in the case of bad health, the ap-
proach of correcting the plan execution should be
applied before relying on the more drastic approach
of replanning. The applicability of the presented
model is demonstrated by introducing two multi-
agent protocols to keep the plan execution healthy.
Finally, we investigate the solving capabilities and
the efficiency of our method in experiments using
randomly generated plans. Our conclusion is that
a reasonable proportion of unhealthy situations can
be solved adequately by well-thought corrections in
the plan execution instead of performing a replan-
ning procedure.

Introduction

is not widely available, even though the execution of plans

in complex and dynamic environments requires continuous
control and adaptation. Our research focusses on employing
a multi-agent system for plan-execution control and adapta-
tion. Multi-agent systems seem an obvious means to this end
since the plans in environments such as ATC are mainly dis-
tributed.

An adequate plan normally satisfies all constraints imposed
by its environment and by other plans. Hence, such a plan is
conflict free. This is a property that should be kept conse-
quently and persistently during the execution of the plan. We
denote a plan execution as healthy, when during the execu-
tion of the plan no constraints are violated. Conversely, an
unhealthy plan execution violates one or more constraints. A
conflict-free plan can have an unhealthy plan execution when
unexpected or unanticipated changes in the environment oc-
cur. For instance, a change in the environment can cause a
plan execution to behave differently from what was expected,
which might result in a conflict with other plan executions
(through violation of their interaction constraints). The pro-
cess of keeping a plan execution healthy can be viewed as a
continuous cycle of detecting unhealthy situations and regain-
ing health. Plan-execution health can be regained by either
correcting the execution or changing the plan (i.e., replan-
ning).

In our opinion, corrections within the execution of a plan
have three advantages when compared to replanning, viz. (1)
they are often easier to accomplish, (2) they are less influen-
tial for the environment and the rest of the plan, and (3) es-
pecially within domains such as ATC, plan changes are more
costly than changes in execution. For instance, gate changes
require a large amount of organization as the passengers need
to be informed, the engaged ground handling needs to be re-
located, and so on. Not surprisingly, within the ATC practice,

Plan development and plan execution in complex, dynamigne first attempt to regain health is always to try and find so-
environments are difficult tasks. This explains the tendencytions within the execution of the current plan. Therefore,
to apply intelligent computer programs to support these taskgye emphasize that before applying replanning, agents should

Currgntly, the (initial) _plan development in fields such as Airtry to regain health by correcting the execution of the plan
Traffic Control (ATC) is to a large extent performed by plan- uithout changing the plan itself.

ning software. For plan execution, however, such software

In summary, the contribution of this paper is that it enables

“This research is supported by the Technology Foundation STWAJENts to keep the plan execution healthy by applying small
applied science division of NWO and the technology programmeCorrections within the plan execution. For this purpose, we
of the Ministry of Economic Affairs. Project DIT5780: Distributed developed a model that agents can apply (1) to control the
Model Based Diagnosis and Repair health of the plan execution and (2) to find corrections to re-
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gain health when necessary. Below, we present our modéh particular in air traffic, it is common to specify margins for
and demonstrate its potential by two multi-agent protocolsthe duration of tasks. For instance, it is the primary respon-
viz. (1) a protocol fohealth controlto detect unhealthy plan sibility of a pilot or aircraft agent, flying from one waypoint
execution (conflicts) and (2) a protocol foealth repairto  to the next one, to keep the aircraft in the assigned flight path
find small corrections (repairs) to regain health. To gain in-within an assigned time interval. The activities of adjusting
sight into which unhealthy situations are suitable for our apspeed, height, and directions are not specified in the plan, but
proach of correcting plan execution, we tested the protocolare assumed to be applied within the boundaries. However,
in experiments with randomly generated plans. the activities contribute to the attempt to follow the plan, i.e.,
The outline of the paper is as follows. Section 2 introducedo keep the plan execution within the specified margins such
the basic notions for our approach and section 3 briefly deas the flight path and the time interval. So, the unplannable
scribes related research. In section 4, we present our modacttivities within plan execution influence whether the con-
for plan-execution health control and repair in a multi-agentstraints are satisfied or violated. Even when a plan is exe-
system. Section 5 provides formal definitions of when a plarcuted within its margins, it still may happen that constraint
execution is healthy, and how plan-execution health can byiolations occur (e.g., due to overtaking manoeuvres when
regained by applying small corrections to the execution. Irdriving a car from A to B).
section 6, we present the two protocols, viz. for health con- .
trol and health repair. The experiments and the test results afdodel overview
described in section 7, while section 8 provides our concluThe model proposed in this paper assigns a health state to

sion and topics for future research. each task in a plan. This health state may change during the
execution of a task caused by unforeseen environmental in-
2 Basic notions fluences or by activities of the agent executing the task. The

] ) ) ) . .. external influences of the environment will be modelled as
In this section, we discuss important notions on planning ingisruption events and the activities of agents, assuming that
complex and dynamic environments, and present an overvieggents do not deliberately disrupt the execution of tasks, as
of our model. Moreover, we briefly discuss the interplay be'repair events.
tween our approach of small corrections and the approach of The assignment of health states to tasks will enable us to
replanning. Finally, we introduce a running example derivedaygjuate the effects of disruption events that have occurred

from the ATC case. during the execution of tasks. Our first (implicit) assumption
| . . of the model is that disruption events are observable. This as-
Planning notions sumption will not hold in general, especially in environments

As stated in the introduction, we address the execution of s&vhere not all possible disruption events can be known. How-
plan after it is created. So, we assume that a plan is alreadgver, the model is also useable, with minor adaptations, if
developed. We view a plan as a partially ordered set of stepsigents are able to determine the actual health states of tasks,
These steps are actions carried out at specific points in thfer instance through plan diagnosis (see, d\litteveenet
plan, while the actions are instantiations of general operationsl., 2003). We note that this will often mean that the agent
[Ghallabet al., 2004. The execution of the steps usually has has less time to take appropriate action by initiating repair
a certain duration and may require resources that have to eyents. A second assumption is that the plans of the individ-
shared with other steps of the same plan or of other plans. Weal agents are linear. This assumption is mainly made for the
assume that a set of constraints describes requirements widharity of the presentation of the model. Moreover, itis a com-
respect to shared resources. Within ATC, for instance, we camon practice in ATC. The model is, however, also applicable
think of safety constraints and of environmental constraintsf agents have partially ordered plans.
on noise pollution. Since we consider a multi-agent context i
we assume that the plan is distributed over the agents. EadReplanning
agent is responsible for a subplan, consisting of a sequence bf the introduction we implied that when plan-execution
steps the agents wishes to execute. We assume that only ohealth cannot be regained by applying corrections, replanning
agent is responsible for one step of the plan (so the subplarshould be applied. There are two more situations in which
do not overlap), and that the distribution of the steps of theeplanning might be applied. (In our view, they are excep-
plan is determined in advance. For example, in the ATC caseions of our model.) The first situation arises when finding
we can think of a multi-agent system containing one agent foa plan-execution health repair takes too much time, and an
each aircraft (controlling the aircraft's subplan). adjustment in the plan itself (instead of an adjustment in the
Plan descriptions generally see the steps as atomic pandan execution) can be found much faster. To gain a better
that make up the plan. Here, we view them as tasks that r@nsight into this consideration, a comparative assessment of
quire several, often reactive, activities of the executing agentdoth methods (plan-execution health repair and replanning)
These activities cannot be planned because they depend wiith respect to the expected complexities and costs is re-
the status of the environment (cf. when driving a car from Aquired.
to B, not every overtaking manoeuvre can be planned in ad- The second situation in which the agents should fall back
vance). Therefore, the way the plan should be executed is nain replanning techniques is when tasks reach states that can-
specified exactly and we may state that the tasks have sonm®t be changed by applying repair events. For instance, when
boundaries or margins within which the execution may varyduring arrival an aircraft is running out of fuel and needs to
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land immediately. Such ‘emergency states’ should trigger thevents we would like to mention are adjusting the position of
agents to solve their problems more drastically, by changin@n aircraft on the taxiway or air corridor, adjusting the speed

their plans. of an aircraft, and applying small reparations to an aircraft.
_ Note that these reactive adjustments are not typified as replan-
Running example ning since the corrections in executions will remain within the

The following example will be used as a running exampleMargins of the planned tasks.

throughout the text. Consider a small airport with only one

runway used for both arrival and departure. It is a small3 Related research

but busy airport, so plans are tight. Assume that two aircraft

agents, agent and ageni3, each have their own (sub)plan, The main contribution of this paper is the model for plan-
connected through a constraimt’s plan is (1) to taxi from  execution health control and repair. A fundamental property
the gate to the runway, and (2) to take off from the runway.of such a model is, in our opinion, the ability to represent
Bsplanis (1) to arrive at the airport (at the runway), and thenthe current and future states of the plan and its environment.
(2) to taxi from the runway to its gate. The obvious constraintThe models that are at the basis of such a property are Dis-
that connects the two plans is that the runway cannot be useifete Event Systems (DESs) and Markov Decision Models
by more than one aircraft at the same time. Therefore, thésee, for an overvielCassandras, 1993 A DES models (1)
agents have agreed on a mutual plan in whiclands before the states that a task (or object) can reach by nodes, and (2)
A takes off. It is remarked that the aircraft can pass each othdhe changes of states by events. Markov Decision Models are
on the taxiway. a specific type of DES, in which changes of states are prob-

In our model, taxiing, taking off, and arriving are consid- abilistically determined. Our model is partially inspired by
ered as tasks, since they are the smallest planned actions. THgse two models.
execution of one such a task is a reactive process in the senseThe TZEMS modelling framework used HiRaja et al,
that (sub)actions during the execution of a task (for exampl@00d is also related to our model, since their plan represen-
manoeuvring or changing speed) are not part of the plannindation is rather similar. In TAEMS, a plan is represented by
Although the plan satisfies the constraint, still, small change$ask descriptions that express the uncertainty in plan execu-
in the execution (mostly caused by external influences) cation. Such task descriptions can be viewed as the range of
cause a violation of constraints imposed on the plan execistates the task might be in during its execution. The main dif-
tion. For instance, assume thétis a bit early as the aircraft ference with our model follows from its purpose and applica-
speeded up while taxiifgandB is a bit delayed because of tion. Raja et al. use TAEMS for plan development: based on
heavy head wind during its flight. Then, they still may not expectations of the occurrence of certain states, a plan is de-
use the (same part of the) runway at the same time, but theeloped and tasks can be divided among agents. In contrast,
two aircraft might pass one another at a close distance. Howsur research focusses on predicting the states that the tasks
ever, a close distance could cause a violation of the safetyill reach, and how to influence this to regain plan execution
constraints on the distance that should be kept between tHeealth.
two aircraft. )

In this situation, we would model the following three states ©Our goal to keep plan execution healthy somewhat overlaps
for both the ‘Arrive’ and the ‘Take off’ task: ‘normal’, ‘de- the goal of so-called continual planning (for an overview of
layed’, and ‘early’. These states represent the timing aspectgistributed continual planning, s¢gesJardingt al, 2000).
but other types of states are imaginable as well. For instancé continual planning, the processes of planning and execu-
for ‘Taxi’ the state ‘off track’, denoting that the aircraft is di- tion are interleaved so as to deal with uncertainties in a dy-
verging from the standard taxi route may be introduced. Thé@mic environment. In general, continual planning consists
unanticipated changes in the plan execution are modelled By two parts, viz. (1) monitoring, which corresponds largely
disruption events. So the disruption events ‘speeded up’ (dufith our plan-execution control, and (2) (re)planning, which
ing the task ‘Taxi’) and ‘heavy headwind’ (during the task iS applied to prevent conflicts or improve the current plan-
‘Arrive’) may occur during the plan execution. Given the or- Ning. .desJardms et al. state that the most .preferred plan_nmg
der in which the aircraft may make use of the runway, theféchnique for continual planning uses a hierarchy. In hier-
safety constraint can be translated into the demand that f'chical planning, initially, an abstract plan is made and as
should not happen that the task ‘Taxi’ is ‘early’, and the taskthe execution approaches, the plan is being refined. Even
‘Arrive’ is ‘delayed’. If so, then appropriate action should be though we do not reject this approach completely, it is our
taken. In our example, the disruption events cause the tasi@pinion that plan refinement cannot resolve all possible un-
to achieve these states which then violate the constraint, arf¢galthy situations, since there is a level within each plan for
therefore the plan execution becomes unhealthy. To regaiyhich its (sub)activities are unplannable (as discussed in sec-
health, agents can apply so-called repair events to reach othé@n 2). This level is of reactive nature and its activities are
states. For instance, in our example, agdntould wait a  NOt planned beforehand by any planner. The corrections at
short while during its ‘Taxi’ task. Other examples of repair this level can be seen as an adjustment of the parameters that
- control the reactive execution of these activities. Our model

1t is known that in practice, some pilots have a tendency to taxiiS particularly suitable to monitor and correct the activities at
at higher speed since they are familiar with the taxiways at the airthis reactive (task) level. Apart from that, since plan refine-
port. ment can be viewed as a type of replanning, it can be used
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Figure 1:Normal plan execution of agent A.

when our model does not succeed in regaining health by cosection, for simplicity reasons, we assuimdo be totally or-
recting the plan execution. dered. However, with some minor adjustments, our model is

also applicable on partially ordered sequences of tasks. To

Other related research is performed in the area of exeCljegcribe the health of a task. we have the Semnd&; con-
tion monitoring. What sets our approach apartis, to our beskyining for each task a set of states and a set of events respec-

knowledge, the state-based model we propose. We would lik ey “The functions-; ando; formalize, in combination with
to single oufReece and Tate, 19B4vho model plans as ac- dj

) o the common rule®, the execution of tasks within a plan (we
tions that are causally related by their in- and outputs. Baseg;, specify this further on)

he model, it is determined which in- and outputs ought to - - ' ;
82 ﬁnonitored during execution of the actions. When specifi During the execution of an agents subplan, a task
values outside an a%cepted range are monito.red vioIaFt)ions 9% In a certainstate - Each .tas'k hgs its own set of possi-
the plan execution is detected. Repairs to the plan execution. states: s ; € & We distinguish three types of state:

o " : : ending, active, and finish. For each tagk holds: S; ; =
are initially sought and applied at the execution level, without . ;..o = "0 =0 " cich ) .
unnecessary contacting the level of the planner. This con?i; Y90 .U_S% . There is only one pending state
cept of low-level repair to avoid overhead is similar to our fOr €ach task, this is the state in which the task |§_awa|t|ng
basic concept of plan-execution health repair. Our approachefore it is being executed. Thus;’, spa Y.
differs with respect to the model used by Reece and Tate, a¥hen the current task (task1) finishes, the next'task (task2)
we abstract states and constraints between the states from thél become active by changing from the pending state to an
actions and their causal relations. It is our opinion that by usactive state (which state that is, depends on the execution of
ing states as a way to abstract from detailed parameter valudde previous task). Finally, when task2 is completed, task2
(indicating how a plan is being executed), agents are able tehanges from an active state to a finish state and consequently,
perform their task of controlling plan execution health morethe then subsequent task (task3) is triggered. Note that a fin-
efficiently. Moreover, when the agents communicate on thdsh state is different from a goal state. So, a task can reach a
plan execution at the state level, agents are provided a certaliflish state, even when its goal is not reached (then, the task
privacy (which is preferable in economic, competitive envi- has failed).
ronments). Each subplan has one start task;o, with S;¢ =
{sVg ™" s} The start task has only one pending and
one finish state. When the start conditions are fulfilled, this
start task will change from the pending to the finish state,
Which will cause the next task to begin execution (viz. go

usénelnding _

4 Model description

We model a multi-agent plan as a quadruple consisting of
of agentud, 2)  setof plan descripton’D, contaiming one ™0 the pending siate o an active state)
| gd @2 IOh > p Athyeel U IgD State changes are causeddwents Each task; ; has its
plan description for each agent’s subp = U2} PD,, - e o finish | pdisrupt
(3) a set of common ruleR specifying the execution of the ovxngt Of_ eventsts,; € Eiy V‘{'th Bij=Fiy Uk, 0
plan in general, and (4) a set of constraitg between the £; ;" . Finish events are triggered when pre-defined condi-
agents’ subplans. In the remainder of this section, these fodions are fulfilled. Moreover, finish events change tasks from
sets will successively be explained in more detail. an active to a finish state. Disruption events are externally
We assume that eaelgentin the setd has its own individ- caused and represent unexpected changes in the execution of
ual subplan. All subplans are gathered witdild P. There @ task that might effect the plan-execution health. Finally,

are no other plans outside the model that the agents shoutfe repair events are executed by the agent to regain the plan-
consider. execution health when necessary. They represent the correc-

tions in the plan execution. A task’s state is the result of the
A plan descriptionPD; = (P;,S;,&i,mi,0;) describes  sequence of events during the plan execution, and will be rep-
how the subplan of agent will be executed. The base resented by predicates(t; ;, s, E), wheret; ; € P, is the
of the plan description is the sequence of tagks =  task for which event sequendg= (e, ..., e;,) leads to state
(ti,0.ti,1, -, ti,n) Which the agent wants to execute in this s € S; ;. We use the predicatets(t, s) to denote that task
specific order. We usé’; to denote the corresponding set will achieve states during the actual plan execution, i.e., the
of all tasks in sequenc®;. As pointed out in the previous past, current, and expected events lead to
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Figure 2:Disturbed plan executions of agents A and B.

Figure 1 illustrates the normal execution of a subplan of théThe third rule in R defines which states will or will not
departing agentl in our running example. The subplan con- be reached during the plan execution. We use the predi-
sists of three tasksP1 = (f1 star t1 Taxi: t1,Takeoff), and has  cate Events({En, ...., Ey, }) to denote that these sequences
event sequenCEinish Start Cfinish.Taxis Efinish Takeoff ) - NOte that,  of events will occur (a sequendg for eachP;).
for reasons of clarity, the figure does not present the whole
model, but shows only the occurring states. e, ..., ex(Events({(e1, ..., €k, - €n)is ... })

. . - Nts(t; i, S, s e ts(t; q, 3

As stated above, we formalize the execution of tasks within sltio s (e e))) = atsltis,s) )
an agent’s subplan by the partial functionsando;, and by We denoteRPD as the set of all instantiations of the rules
the set of common rule® from MAP. The partial func- in R for all plan descriptions’D;.

tion ; maps a task, its state, and an event to a new state: . . . .

7 P x Uj S x Uj B » Uj S;. ;. (with - denoting a Thte s_ettCst in M,%P ;s th(caj.setwc;fconstrgnlns_wnh esc?
partial mapping).r; is defined such that only events hj ; constraint composed of predicates(, ) and logic symbols

g ; V,A,—}. Moreover, constraints are only defined on fin-
can change the state of a task into a new state Inb; ;. We { h’ sfatgs as they can be viewed as a syummary of the ex-
assume that there is exactly one finish event for each task’ Ution of a task. An example of a constraintds —
Ther_ef_ore, the finish state that is_ reached does not_de_pend (‘i ats(t, s) A ats(t'. SV ats(tP’ s, inwhichs, s/, " aEe
the finish event, but on the previous state the task is in. Th'ﬁnish sEates The 7constraints a}e ‘d’emands’ 01’1 tr,le lan exe-
transition is defined in. The partial functions; returns the : P

new state in the next task based on the previous task and i#ltion that should be fulilled. A const_rain_t v_iolatior_l or con-
- X finish . ict occurs when the expected execution is inconsistent with
finish statew; : P x{J; 57" = U; Si,;- Thefunctions; 5 certain constraint. We will assume that when plans are ex-
ando; are defined per agent (instead of being the same for albcyted normally, all constraints will hold and the plan execu-
agents), since they represent different types of plan-executiofion is in good health. Consequently, the constraint violations
behaviour for different types of agents. are caused by disruption events, and might be solved by repair
events to regain the plan-execution health. In addition, we as-

Theset of common ruleB in MAP consists of three rules. - sume that the constraints represent all interdependencies that
The first rule inR describes how a state transition of a task isexist between subplans of different agents.

caused by an evea;;: ) ) ) )
Y Figure 2 illustrates a disrupted execution of the sub-

(ts(tij, 8, (€15 s eho1)) ATi(tij, S, €) = ') plans of the departing agenf and arriving agentB
— ts(tij, 8 (€1, e)) (1) in our running example. Both subplans consist of
three tasks: P, = <t1,Starbtl,Taxiytl,Takeoff>y and P, =

The second rule iR describes the immediate activation of (tastar t2.Arrive, t2.Taxi).  The event sequences of the plan

the next task when the previous task is finished: execution are{efinish stars €Speededips Cfinish.Taxis Cfinish Takeoff) 1

. i and <€finisI"LStart7 €Heavyheadwind; Efinish Arrive ; efinishTaxi>2- In
(ts(tm,pendlng<e1,...,ek_1>/) this setting, the constraint(ats(t1 takeof, finish.early) A
AS(tij—1, 8, (€1, -y €k)) A 0i(tij-1,8) = §') ats(tz anive, finish.delayed) between the two subplans is vi-
— ts(t; 5,8, (e1, ... ex)) (2) olated.
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In general, we assume that each agemis knowledge (i) minimal RE we limit the subsets oRE to those which have
of its individual plan descriptionPD;, (ii) of the common  no subset that will construct a (weak) plan-execution health
rules R, and (iii) of the constraint€’'st; C Cst that are rel-  repair as well. Note that computing a weak plan-execution
evant for its subplan. Moreover, we assume that each dgenthealth repair corresponds to constructively applying consis-
is able to communicate to the other agents to whose subplanency checks.

the constraint€’st; apply.
A strong plan-execution health repadizR™ differs from

5 Health and health repair the weak version in thaFER™ ensures that all constraints

We assume that an agent notices when disruption events oggﬂd

cur during the execution of its subplan (for instance througrDefinition 4. A strong plan-execution health repair
its sensors). Based on the detected disruption events, an age‘ﬁlt?RJr is a set of sequence’ERt = FE U
can construct the sequence of past events (up to and includE where RE is a minimal subset ofE,.q.ir S.t.
ing the current or latest events) in the so-called current evenEvents(CEH o FER') U RPD + C'st.

history CEH; (with CEH = J, CEH,;). We assume that Findi | ion health . d
in the future, from current task ; on, no disruption or re- Inding a strong plan-execution heaith repair corresponds

pair events will occur. Hence, for each task in the remainingIO aPp'y'”g abducu_on. ) )

plan, one finish event will occur. The resulting sequence of Since both consistency checking and abduction problems
eVentsFE; = (e, €541, ..., en), With e, € Efinisn, Will be are knpwn to be NP-hard, in general, plan-execution health
called the future event sequence. The current event histofgPar is NP-hard as well.

can be combined with the future events sequence into the fu-
ture event historyFEH; = CEH; o FE; (with o denoting a
concatenation of the two sequences, &itd7 = | J, FEH;).
Based on the set of future event historié¥;H, we can de-
fine a constraint violation as follows. Proposition 1. A weak plan-execution health repair is a

Definiion 1. A constraint cst* is violated iff Strongone and vice versa.
Events(FEH) U RPD + —cst*.

Since constraint violations decrease the health of plan exd2roof. (=) The instances of common rule (3) guarantee

Though generally, abduction is strictly stronger than con-
sistency checks, here we have the result that definitions 3 and
4 are equivalent.

cution, we can define plan-execution health as follows. that for every task; ; and for every finish state ¢ Sf;?i‘gh
Definition 2. A plan execution is healthy ifvents(FEH)U  €itherats(t; ;, s) or —ats(t; ;, s) holds. Hence, for every
RPD - Cst. cst € Cst, either Events(CEH o FER™) U RPD + cst

When an unhealthy plan execution has been detected, tf¥ Events(CEH o FER™) U RPD - —cst. However, there
agents should correct the execution of the plan such that n§ N0 cst € Cst for which the latter holds, because then
constraint violations will occur in the future and the plan- Events(CEH o FER™) U RPD U Cst + L, which con-
execution health is restored. To achieve this, each agent c4licts with our definition of a weak plan-execution health re-
insert repair events in the future event history in order to crePair. Therefore Events(CEH o FER™) U RPD + Cst and
ate new state paths in its plan execution. By inserting repaisubsequentlyF’ER™ satisfies the condition of strong plan-
events, the anticipated constraint violations can be avoidedxecution health repair.

Inspired by research in the field of Model-Based Diagnosis (<=) Note that the instances of common values do
(for an overview, sefiMozetic, 1992), in which a distinction  not enable us to derive conflicting propositions. Hence,
is made between consistency-based diagnosis and abductit@ents(CEH o FERT) U RPD i/ L. Since
diagnosis, we define weak and strong plan-execution healtBvents(CEH o FER™) U RPD + C'st, and since predicate

repair, respectively. logic is monotonic, we have thavents(CEH o FERT) U
Aweak plan-execution health repdiER ~ is asetofevent RPD UCst i/ L. Hence FER™ satisfies the condition of a
sequences containing all future event sequences with sonf¢eak plan-execution health repair. O

repair events inserted, in such a way that by applyiiR ~

all anticipated constraint violations will dissolve and no new Due to proposition 1, we refer to plan-execution health re-
violations will be created. pair as the sef’ER and make no further distinctions between
Definiton 3. A weak plan-execution health repair the weak and strong version in the remainder of this article.

FER™ is a set of sequence$¢’FER~ = FFE U RFE

where RE is a 7m|n|mal subset  Of Erepair - St the taxi task, which changes the state of taska from

Events(CEH o FER™)URPD U Cstl/ L. ‘active_early’ into ‘activenormal’, and subsequently the
We useFER™ = FEURE to denote that the events R state of task; tax also to ‘activenormal’. This correction of

are placed at specified places within the sequences collectgdian execution resolves the constraint violation. Therefore,

in FE. Note that for the samé&FE and RE different sets an example of a plan execution health repairFIER =

FER™ = FE U RE are possible, depending on the place- {(efin_start; €speededip; Efin_Taxi> €Wait, €fin_Takeoff ) 1,

ment of the repair events in the sequenced’ . With a  (efin_start €Heavyheadwind; Efin_Arrive s €fin_Taxi)2 }-

In our example, agent A can apply an evet;; during
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6 Two protocols sequences with inserted repair events). Therefore, the set of

In this section we propose two multi-agent protocols to keegP!an constraints can be constructed as follows.
plan execution healthy, vihealth controlandhealth repair Cotan = (¢ (s1,59)]
The protocols utilize our model for plan-execution health and plan Vi Vi, 171 92

thereby demonstrate its applicability for maintaining plan- AFER : Events(CEH o FER) U RPD

execution health with a multi-agent system. Fats(tij,s1) ANats(tijr1,52)} (4)

Health control The set of conflict constraint..,, s1;c: is a direct mapping of

During the execution of a plan, agents control its developmenf"€ SEst in MAP onto the variables; ;.
to detect unhealthy states (conflicts) as follows. Based on

the detected disruption events and the expected future events,
the agents construct a future event history. Using the future @45(tij; 51) A oo Aats(ty, sp) = cst, Vest € Cst} - (5)
event history, agents are able to predict which states will be - ) . -
reached in the future. If these expected states are part %f The problem of finding a plan-execution health repair is

a possible constraint violation, the agents communicate thiOW transformed into the problem of assigning values to the

Cconflict = {Cvi,j,....,vk,L (Sla EEE) Sp)l

2. . : . Variables from their domains such that all constraints are met.
new values to other agents that participate in this constrain

; L n overview on algorithms for distributed constraint satisfac-
(the related agents). This way, the agents individually hav‘i*:ion is given by[Yo?<oo and Hirayama, 2000We would like

suff|(_:|ent information to determine Whethe_r a constraint W|IIto single out the recent asynchronous and synchronous algo-
be violated and an unhealthy plan execution is reached. T ithms by Mailler and LessdiMailler and Lesser, 2004nd
corresponding protocol for health control is presented in fig—by Brito);nd MesegueiBrito and Meseguer 20’@3 In our

ure 3. When one or more conflicts are detected, i.e., WheBrotocoI for health repair, we apply a basic synchronous al-

the plan-execution health is disturbed, the protocol for find-g i - Our algorithm is based on the representation of the
ing repair events to restore plan-execution health is actlvate(g.

Note that we made the simplifying assumption that there i onstraint satisfaction problem in a constraint graph. On re-
. P 9 P . “beated occasions in the protocol, arc consistency is applied
one unigue agent (agent 0) that all agents can communica

 IIT . . : . 5t this graph to rule out inconsistent value assignments at an
to and that is either involved in the conflict or is informed to early stage and thus narrow the search space.
start the health repair protocol.

Each agent maintains an individual constraint graph which

Health control protocol of agenti is a subgraph of the whole constraint graph. An individual

while executing plan constraint graph consists of two types of nodes, viz. so-called
if disruption event occurs internal and external nodes. The internal nodes represent the
determine expected future states; variables of the agent’s plan, these are the variables that the

send messageTATE_CHANGE to related agents; agent itself can influence. The internal nodes are connected

end if; through bidirectional arcs that represent the plan constraints.

if messagesTATE_.CHANGE received The external nodes represent the variables of other agents’
update view on other agent's states; plans that are linked to the variables of the internal nodes

check for conflicts; through the conflict constraints. These conflict constraints

if conflict detected
agent O starhealth repairprotocol,
end while

are represented by unidirectional arcs between the external
and internal nodes. The domains of the external nodes are
communicated by the agent that owns the nodes (i.e., which
) tasks or variables are represented). Each node in the graph is
Figure 3:A protocol for health control. labelled with its variable’s domain.

Because of the sequential nature of plans, the individual
. subgraph solely based on the internal nodes and the bidirec-
Health repair tional arcs, will be linear. The individual constraint graph
To enable the agents to find a plan-execution health repaifthe subgraph combined with the external nodes and unidi-
we formulate the plan-execution health repair as a constrairntectional arcs) itself is a non-cyclic graph.
satisfaction problemHR,,, = (V,D,C). The set variables

V contains a variable for each task#Md P: V = {v; ;t:; € The individual constraint graph of agent B from our ex-
P;}. D contains for each variable a domain of possible Val'ample is presented in figure 4. Each task in B's subplan
ues. We choose 4for the possible variables the set of ﬁnis}jb2 = (ta.swm t2Arives t2.Tax) has its own node. These
states:D = {S{""*"|t; ; € P;}. We divide the set of con- nodes are connected through bidirectional arcs denoting the
straintsC into plan constraints},.,,, and conflict constraints, dependencies between the two tasks (i.e., the event paths
Ceonflict- The plan constraints represent the execution of theéhat are possible). The node ‘A: take off’ is the exter-
subplans, as described ByD. A plan constraint between nal node, connected to the ‘Arrive’ node by the constraint
two successive tasks is true, if there is an event path from the (ats(¢; Takeoft, finish.early) A ats(ts arnive, finish.delayed).
value assignment (or finish state) of the first task, to the valuoreover, each node has a domain of possible values: the
assignment (or finish state) of the second task. The posspossible finish states of the task.

ble paths depend o6@EH and FER (the sets of future event
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{normal} {normal, delayefl  {normal, delaye#
( Start)-—»(Arrive)o—-( Taxi >

L
&

{normal, early

Figure 4:Individual constraint graph of agent B.

A protocol for finding a plan-execution health repair is de-

its health repair protocal

is required. Second, for each internal node with a changed do-
main that is involved in a conflict constraint, the correspond-
ing agent communicates the new domain to the other agents
involved (represented by the external nodes). Subsequently,
the latter agents adjust the domains of the corresponding ex-
ternal nodes to the communicated values. Then again, the
agents apply arc consistency on the updated individual con-
straint graphs, which is followed by communication on the
altered domains. The two steps are repeated as long as some
domain changes during the process. This subprotocol ends
when the whole constraint graph is arc consistent and the do-
mains are maximally reduced.

{normalt {nernTal, delayefl {norntal, delayeyl

TN TN TN
picted in figure 5. Once a conflict is detected, agent 0 starts@ )'—’( A”ive> Taxi )
4 \_/ d

Health repair protocol of agent 0
all agents stararc consistencgubprotocol;
if arc consistency succeeded
agent 0 starvalue assignmerstubprotocol;
else
health repair failed, no solution possible;

Value assignment subprotocobf agent i
whilelvalue assigned && !failed
assign new values to each variable;
if succeeded
all agents: starérc consistencgubprotocol;
if arc consistency succeeded
value assigned
if agent i+1 exists

agent i+1 starvalue assignmersubprotocol;

else
all agents apply repairs
elseifi'=0
failed, agent i-1 stantalue assignmersubprotocol;
else
failed, no solution possible;
end while

Arc consistency subprotocobf agent i
repeat
apply individual arc consistency;

A
( ake ofa
AN

e
{normal, early

Figure 6:Arc-consistent individual constraint graph of agent B.

Figures 6 and 7 show one iteration of the arc-consistency
process of agent A and B from our example. Figure 6 depicts
the individual constraint graph of agent B, after applying arc
consistency (task ‘Arrive’ is the current task). The domains
of tasks ‘Arrive’ and ‘Taxi’ are both reduced, since i) there
is no event sequence that causes a state transition to ‘(finish)
normal’ in the task ‘Arrive’, and ii) based on the state domain
of task ‘Arrive’, there is no event sequence that will lead to
state ‘(finish) normal’ in task ‘Taxi’. Then, agent B commu-
nicates the new domain of node ‘Arrive’ to agent A, which
updates the label at the external node in his individual con-
straint graph. Consequently, applying arc consistency on its
graph results in altered domains for agent A (which should be
communicated to agent B and so on). See figure 7.

if domains changed normal normal,e normal,e
send messageOMAIN _CHANGE to related agents; {/-\_.I} { /<aﬁy} { /__<arly}
receive allbOMAIN _CHANGE messages, / A / ) / )
update internal representation; k Start )‘ - Taxi ) - Takeo
until no domain changes occur anymore ~ S~ S~
Figure 5:A protocol for health repair.
B:
( Arrive)
it S
Initially, agent O requests the other agents to startatice (doayed

consistency subprotocol The arc consistency subprotocol
achieves arc consistency on the whole constraint graph by re-
peating two steps. First, the agents reduce the domains ofFigure 7:Arc-consistent individual constraint graph of agent A.
their variables by applying arc consistency on their individ-

ual constraint graphs. This can be achieved in linear time, When the protocol of finding arc consistency has suc-
provided that the domain reduction is started with the unidi-ceeded and arc consistency on the whole constraint graph
rectional arcs connected to the external nodes. Note that fas achieved, agent O starts italue assignment subprotocol
this part of the algorithm no communication with other agentsHowever, if during the arc consistency subprotocol one do-
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main becomes empty, enforcing arc consistency has failedenting more than one constraint per unique set of tasks).
and no value assignment is possible. Following the valudo specify each generated conflict constraint, (unique) sets
assignment subprotocol, agent 0 searches for a value assigof-states representing the allowed state combinations are ran-
ment for its variables within the restricted domains. Thendomly selected. The number of state combinations that are
again, all agents apply arc consistency. If this succeeds, thiselected, depends on parameter p2. pla@ constraintsare
assignment is accepted and a ‘new’ agent startgliise as-  dynamically defined as they depend on the future event his-
signment subprotocolf the arc consistency fails, a new value tory. Given a certain partial value assignment, the plan con-
assignment needs to be made by the current agent. If thetraints define that two states s1 and s2 of two consecutive
current agent is not able to create a new value assignmertgsks t1 and t2 are allowed only if s1 equals s2 (under the as-
it passes the turn back to the previous agent (which startsumption that an activation of task t2 by t1 leads to t2 having
the subprotocol again and tries to find a new assignmentthe same state as t1) or if there is an event path possible (con-
The (sub)protocol ends when the value assignment of the laskining one or more repair events) in task t2 from state sl to
agentis accepted. Then, all agents apply the repairs that resisi2.

in the assigned values, and plan-execution health is restored.After initialization, the experiment proceeds as follows.

However, if agent 0 is notable to find a new value assignmeng ,mper of randomly generated disruption events are ex-

thatis not (eventually) rejected, the subpro_tocol ends and su cuted, which causes state changes. Based on the current and

sequ_en;ly, Ittr;1e' prot?col e!?)clis. IHet?]C?' finding r?paw_ eveﬂts ﬁ xpected future states, the agents detect constraint violations.

Legaln |'e3 IS not possible. In that case, replanning sNoulgyhen an unhealthy plan execution is detected, the agents start
€ applied. the repair protocol to regain plan-execution health.

In our example, the only possible value assignment might
be for A to assign value ‘normal’ to all its tasks, and for B
to assign value ‘normal’ to task ‘Start’ and value ‘delayed’ to
both tasks ‘Arrive’ and ‘Taxi’. This assignment corresponds
to the plan-execution health repair as described in the prev
ous section, in which agent A applies the repair event ‘wait’
during the execution of the task ‘Taxi’.

7 Experiments

As stated in the introduction, the goal of the experiments is Ve ' . &0
to gain insight into which unhealthy situations are suitable L v

for our approach of correcting plan execution. Moreover,
we would like to test the efficiency of the proposed proto-
cols with respect to the communication overhead. For thes
two purposes, the protocols presented in the previous sectic
have been implemented and tested with randomly generate
plans. During the experiments, the complexity of the prob-
lem of finding repair events has been varied by altering twc
conflict-constraint parameters: (i) the percentage of conflic 10
constraints on the variables (or tasks), p1, and (ii) the percen
age of value combinations that are allowed within a conflict
constraint between the variables, p2. The performance of th
protocols is measured by the number of messages on state
domain changes.

In each experiment, one (abstract) random subplan pe
agent is generated according to parameter settings that a
defined beforehand. The subplans each consist of a sequer
of abstract tasks (the variables), specified by their sequenc iy %
number. Each task has a number of states (the values), - ‘ NAul S b00
which one is chosen as the task’s initial value. By random se ,, &% i
lection, we generate for each state a set of possible disruptic
and repair events, specified by the states they lead to. Su
sequently, constraints are generated. @teflict constraints
are generated according to the parameters pl and p2. Nc
that a conflict constraint specifies for a set of tasks, whict
state combinations are allowed. The number of conflict con
straints is calculated by taking pl percentage of all possibli 10
conflict constraints. Then, this number of conflict constraints
is generated by randomly selecting sets of tasks (while pre-

% of solved problems

Figure 8: Results of experiment.
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Figure 8 illustrates typical results of our experiments. Thea probabilistic model (inspired by Markov Decision Models)
figure shows for a series of settings of conflict-constraint pain which the probabilities that a disruption event will occur in
rameters {0 < pl < 100 and10 < p2 < 100), the aver- the future are taken into account. This will improve the con-
age percentage of problems solved and the average numbertablling power of the agents, in which they can anticipate on
messages on domain changes that were sent duripighe  unhealthy situations in a much earlier stage.
execution health repaiprotocol. The other parameter set-
tings for these specific experiments are: number of agents References

5; number of tasks per agent or subplan = 5; number of states, . :
per task = 5; number of tasks per constraint = 2; number of thEL%rItO and Meseguer, 2003. Brito and P. Meseguer. Syn-
chronous, asynchronous and hybrid algorithms for disc-

possible repair events per state = 2; number of executed dis- sps. InNinth International Conference on Principles and

ruption events = 10; number of runs per constraint-parameter : ; :
setting = 1000. Practice of Constraint Programmin@003.

The results show that problems with high constraint densitfCassandras, 199Lhristos G. Cassandradiscrete event
are unsolvable with health repair, as was to be expected since Systems: modeling and performance analysifksen
increasing the constraint density causes a decrease in the so-aSsociates series in electrical and computer engineering.
lution space. Given the settings of the experiments described, Homewood: Irwin, 1993.
the phase transition from solvable to unsolvable problems liefdesJardingt al., 2000 M.E. desJardins, E.H. Durfee, Jr.

roughly around the boundapl + p2 = 100. The ridge in C.L. Ortiz, and M.J. Wolverton. A survey of research
the bottom figure shows that problems situated at the phase in distributed, continual planningdl Magazine 4:13-22,
transition need the largest amount of messages. 2000.

. [Ghallabet al, 2004 M. Ghallab, D. Nau, and P. Traverso.
8 Conclusion and future research Automated planning. Theory and practiddorgan Kauf-

In this paper, we presented a model that enables agents to mann Publishers, 2004.

maintain plan-execution health. With help of the predict-[\ailler and Lesser, 2004R. Mailler and V. Lesser. Using

ing capabilities of the model, agents can control the plan-  cooperative mediation to solve distributed constraint satis-
execution health and regain health by correcting the plan ex- ta¢tion problems. IAAMAS 2004.

ecution. The protocols for health control and health repair, . . . .

together with their implementations demonstrate the applicalMoZetic, 1992 I. Mozetic. Model-based diagnosis: an

bility of the model in a multi-agent system. Within the exper- ~ OVETVIEW. InAdvanqed Topics in Artificial Intelligence

imental settings, we have shown that a substantial proportion P29€s 419-430. Springer-Verlag (LNAI 617), 1992.

of unhealthy situations are solvable by small corrections ifRajaet al, 2000 A. Raja, V. Lesser, and T. Wagner. To-

plan execution with a reasonable amount of communicative wards robust agent control in open environmentsPrior

costs. In view of the observations presented in section 7, we ceedings of 5th International Conference of Autonomous

may conclude that health repair is best applicable in problems Agents 2000.

with constraint density con_side_rably lower than the transitior[ReeCe and Tate, 19p45.A. Reece and A. Tate. Synthesiz-

area. Our overall cqnclu_slon is that a generally reasonable ing protection monitors from causal structure. APS

range of unhealthy situations can be_solyed adequately by a pages 146-151, Chicago, IL, 1994

well-thought correction in plan execution instead of perform-_ )

ing a replanning procedure. [Witteveenet al, 2009 C.  Witteveen, N.  Roos,
There are three topics we wish to examine in the near fu- M. de Weerdt, and R. van der Krogt. Diagnosis of

ture. First, the efficiency of the protocols can be increased single and multi-agent plans. IAAMAS (to appear)

to reduce communication overhead. Second, the balance 2005.

between health repair and replanning can be examined inforokoo and Hirayama, 2000M. Yokoo and K. Hirayama.

more detail to gain a better insight into which unhealthy sit-  Algorithms for distributed constraint satisfaction: A re-

uations should be solved by plan-execution corrections, and view. Autonomous Agents and Multi-Agent Systems

which by replanning. Third, the model can be extended to 3(2):185-207, 2000.
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