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Recent developments in multiagent systems (MAS) have been promising by achieving
autonomous, collaborative behavior between agents in various environments. However,
most of the agents, both software agents and physical agents, still have problems if the
environment is dynamic and the agents have to act in real time. Examples are obstacle
avoidance with moving obstacles or world models which are composed from egocentric
views of numerous agents. Another aspect is the need for quick responses. In an en-
vironment where a number of agents build a team and both single agent decisions and
team collaborative decisions have to be made methods have to be fast and precise. This
workshop addresses various problems that occur with respect to these issues.

The main focus of this workshop deals with methods from various areas such as world
modeling, planning, learning, and communicating with agents in real-time and dynamic
environments. Within this general theme we aim to bring together researchers to discuss
the following topics:

• World modeling (quantitative, qualitative)

• Coaching (one agent gives advice to a group of agents)

• Planning with resources (especially time)

• Learning (both offline and online)

• Cooperation between agents (robot and/or humans)

• Communication between agents (implicit, non-verbal, or verbal one)

• Real-time systems software issues (often ignored but important if serious about
real-time issues in robotics)

• Scalability and robotics interfacing issues (demands a great deal of support from
the initial design of the system)

In the last decade, a lot of effort has been invested to develop methods that can be
used with multi-agent systems. The language development in the area of communication
between agents (ACL) might act as the first example. Speech acts serve as the basic
principle and various protocols have been invented (e.g. auctions, contract-nets, etc.).
Can we transfer these results to environments where quick decisions have to be made?
Consider planning as another example: there are promising methods for path planning,
but do they still hold if the observed obstacles are moving? Learning is another example:
we need on-line learning in a real-time scenario to give agents the option to learn more
about their environment. Usually, learning takes a fair amount of time but sometimes
this time is not available. Can we find methods which will consider these restrictions?

This workshop addresses researchers from various areas in AI who want to discuss the
mentioned issues from their point of view. How can we develop new methods or adapt
existing methods to meet these demands?
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13 contributions have been selected for oral presentation at the workshop. These
proceedings contain all papers, which can be roughly categorized with the help of the
following sketch of a general multiagent architecture. Please note that this is only a
rough categorization and that there are a number of papers that belong to more than one
component.
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Figure 1: A general multiagent systems architecture. The papers are roughly categorized

Two papers can be categorized into the world modeling component. Fichtner &
Thielscher discuss the importance of establishing and maintaining the correspondence of
high-level symbols or concepts and the actual sensor signals. Their approach is based on
the Fluent calculus and allows to anchor symbols to percepts using definite and indefinite
references. Among other advantages, it also supports reasoning over object properties
during planning. Anchoring is also the topic that is the focus of the contribution by
Williams et al.. They provide a framework for evaluating groundedness of representations
in systems. This framework provides means to measure how well a system is grounded,
i.e. how well the high-level symbol correspond to the entities they represent.

Two papers are closely related to sensor data and thus the sensor component. Utz
et al. state that a robot vision architecture needs to encapsulate the constraints of the
application domain in order to keep a vision application flexible. Their approach intro-
duces a video image processing (VIP) framework for multi threaded control flow modeling
in robot vision. The authors discuss the VIP design and implementation as well as an
experimental evaluation of its performance in parallel image processing tasks. Kornienko
et al. present research results in the field of perception for a real micro robotic swarm.
The proposed hardware and software solution uses IR-based reflective measurements for
individual perception and a Dampster-Shafer evidential reasoning method for hypothesis
refinement in collective perception. The authors focus their paper to a reliable identifi-
cation of encountered geometries and to a reduction of local communication. This paper
can also be categorized in the coordination/collaboration component.
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Three papers can be categorized into the monitoring component. Zaki et al. demon-
strate an approach that diagnoses faults in an analogue electrical circuit. This kind of
circuit is an example for a dynamic continuous non-linear and time invariant system.
The paper shows how the type of system has an impact on the choice of the modeling
techniques. Gehrke et al. propose a vocabulary for a qualitative representation for a
traffic scenario. The authors present and evaluate a prototype that does the qualita-
tive abstraction for knowledge-based behavior control. Moratz et al. propose a relative
orientation algebra which features an adjustable granularity. The key idea behind this
approach is to find an appropriate granularity for an applied calculus in order to reason
about space for orientation. It turned out that their approach is feasible for robots in
real-time conditions as a reactive component when deploying constraint-based reasoning
methods. The granularity of the calculus allows to select only relevant feature changes in
dynamic environments. The paper also fits into the reactive component.

Four contributions touch the areas of behavior modeling. Behavior modeling (for a
single agent) is divided into reactive components and planning. Hoffmann et al.
discuss how negative information such as the absence of expected sensor signals and
proprioception (a quality measure for an actual odometry comparing target and current
robot joints) can be used to localize robots. They incorporate negative information into
a known Monte-Carlo-Localization method and do fine-tuning using the proprioceptive
information. The contribution of Hecht et al. focuses on a learning task that aims to
train robots in a team using static game situations in diagrams that has been drawn by
a human coach. The network learns to generalize and give advice for the best option
for a player. The authors claim that the method improved their control method for five
small size robots within the RoboCup domain significantly and that the method can be
adopted to various other domains. The outcome of this approach has been successfully
used in robot soccer games at the RoboCup German Open 2005. This paper also fits
into the coordination/collaboration component. Obst et al. propose an approach
that coordinates the behavior of a multiagent team using an HTN planning procedure.
They formalized domain knowledge (the RoboCup domain in the experiments) and used
this within the planning methods in order to subdivide the given tasks. The hierarchical
structure helps to speed up the planning task significantly. This paper also fits into the
coordination/collaboration component. The fourth paper is from Moratz et al. that
has already been discussed above.

Among the two mentioned papers that also deal with team behavior or coordina-
tion/collaboration, Reimann & Vachtesevanos propose a game-theoretic approach to
solve a differential pursuit-evasion game which involves multiple pursuers and a single
evader. Their idea consists of a computational algorithm which is developed to deter-
mine a suboptimal control strategy that a swarm of pursuers can use to intercept a single
evader. The authors use a solution that is based on simulated annealing to reduce the
complexity of the task and show in an experiment that their approach is feasible. The
contribution of Maldonado et al. focuses on using auctions for real-time scheduling. They
implemented their methods in the ARTIS (Architecture for Real-Time Intelligent Sys-
tems) agent architecture and conclude with promising results.

Two contributions can be categorized into the execution component. Stulp & Beetz
propose a novel computation model for the execution of abstract action chains. A robot
first learns situation-specific performance models of abstract actions and then uses these
models to automatically specialize the abstract actions for their execution in a given
action chain. The authors state that this specialization results in refined chains that are
optimized for performance. The central idea behind this approach is that actions can
be tailored to the task context by adapting action parameters. de Jonge et al. present
an approach that enables agents to control their plan execution health and to regain
health if necessary. The agents can utilize the model to predict consequences of occurring
disruptions and thus detect unhealthy situations. With the help of the models predictions,
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agents can correct the execution of tasks within the plan in such a way that conflicts will
be avoided and health is regained. This paper can also be categorized in the prediction
component.
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Anchoring Symbols to Percepts in the Fluent Calculus

Matthias Fichtner Michael Thielscher

Department of Computer Science
Technische Universität Dresden

Dresden, Germany

Abstract

For an autonomous agent operating in a real, dy-
namic environment it is crucial to assure that sym-
bols and signal-level models refer to the same phys-
ical object. The problem of establishing and main-
taining the correspondence between a high-level
symbol and sensor data is called the anchoring
problem. Here we present preliminary results on
an approach to the anchoring problem based on the
Fluent Calculus. While properties of objects are
used to distinguish between different objects, rea-
soning about knowledge supports to identify the
particular object in mind. An example shows how
the approach can deal with multiple hypotheses for
correspondences.

1 Introduction and Related Work
Modern control architectures for autonomous robots often
comprise a signal level and a symbolic level. Although pro-
viding a rich expressiveness, knowledge representation at the
symbolic level causes a severe problem: A symbol that refers
to a real-world entity lacks direct, unmediated connection
and hence its reference may be wrong.Anchoringof sym-
bols to percepts aims at providing this link and is defined
as “the process of creating and maintaining the correspon-
dence between symbols and sensor data that refer to the same
physical objects[Coradeschi and Saffiotti, 2003].” The an-
choring problem denotes how to perform anchoring in an au-
tonomous artificial system. It is a special case of the symbol-
grounding problem: ”How is symbol meaning to be grounded
in something other than just more meaningless symbols[Har-
nad, 1990]?”

As a matter of fact, any cognitive system facing the real
world somehow has to solve the anchoring problem. Most
systems implement an ad-hoc approach to the anchoring
problem which is hidden in the implementation. Only since
recently explicit approaches arise.

We claim that object recognition alone is insufficient to
solve the anchoring problem, because it only helps todistin-
guishbetween different (kinds of) objects. Besides discrim-
inating, cognitive agents need to describe, manipulate and
most importantly toidentify objects of interest in real envi-
ronments. Moreover, without anchoring symbols to percepts

autonomous agents like mobile robots cannot cope with dy-
namic worlds in which objects may appear, move and disap-
pear. In such environments, the agent has to face uncertainty
in action execution and significant noise involved in recogni-
tion. The agent might know little about an object’s properties,
too.

In our approach, both sources of valuable information are
used, top-level knowledge and signal-level recognition. Aim-
ing at robust anchoring, correspondences between symbols
and percepts are maintained in both directions, top-down and
bottom-up: On the one side, knowledge and constraints about
object properties are used in an expressive reasoning system;
on the other side, an object recognition and tracking system
extracts useful perceptive information describing real-world
objects.

In [Coradeschi and Saffiotti, 2000] one of the first formal
approaches to the anchoring problem was described. There,
correspondences between symbols and percepts of objects are
based on the object’s properties. Given a description of the
desired object symbol, a correspondence is considered possi-
ble if each predicate of the description matches the perceived
values. This basic principle is common to most formal ap-
proaches to anchoring including our’s.

An important aspect of the anchoring approach in general
is to be able to use definite as well as indefinite references,
as has been suggested in[Coradeschi and Saffiotti, 2000] be-
sides others. Definite and indefinite references are integral
aspects of our approach.

In [Coradeschi and Saffiotti, 2002] it has been recognised
that perceptive ambiguity requires to maintain multiple hy-
potheses of anchoring symbols to percepts. As opposed to
[Coradeschi and Saffiotti, 2000] and [Chella et al., 2004]
which lack this functionality, our anchoring approach main-
tains multiple possible hypotheses.

[Saffiotti, 1994] proposed to use context-dependent infor-
mation for anchoring objects like “the large one”. Being
based on the Fluent Calculus, our approach to anchoring sym-
bols can make use of the expressivness of reasoning about
knowledge. In this way, much more than context-dependent
information alone can be exploited for anchoring.

The document is organised as follows. In Section 2 we will
introduce the basic notions of the Fluent Calculus, which is
the underlying theory of this work. Next, Section 3 describes
our approach on anchoring in detail. The example in Sec-
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tion 4 is meant to illustrate it. A comparison between our
and other’s approaches as well as future work can be found in
Section 5. We conclude in Section 6.

2 Preliminaries: The Fluent Calculus
The Fluent Calculus is an axiomatic theory of actions that
provides the formal underpinnings for agents to reason about
their actions[Thielscher, 1999]. Formally, it is a many-
sorted predicate logic language which includes the two stan-
dard sortsFLUENT (i.e., an atomic state property) andSTATE.
States are built up from fluents (as atomic states) and their
conjunction, using the binary function◦ : STATE× STATE 7→
STATE along with the constant∅ : STATE denoting the empty
state.1

A fundamental notion is that of a fluentf to hold in a
state z. For notational convenience, the macroHolds(f, z)
serves as an abbreviation for an equational formula which
says thatz can be decomposed intof and some statez′ :

Holds(f, z) def= (∃z′) z = f ◦ z′

This definition is accompanied by the following foundational
axioms of the Fluent Calculus, which ensure that a state can
be identified with the fluents that hold in it.

Definition 1 Assume a signature which includes the sorts
FLUENT and STATE such that FLUENT is a sub-sort of
STATE, along with the functions◦, ∅ of sorts as above. The
foundational axiomsΣstate of the Fluent Calculus are2

1. Associativity and commutativity,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)
z1 ◦ z2 = z2 ◦ z1

(1)

2. Empty state axiom,

¬Holds(f, ∅) (2)

3. Irreducibility and decomposition,

Holds(f1, f) ⊃ f1 = f (3)

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2) (4)

Axioms (1)–(4) essentially characterize “◦” as the union op-
eration with ∅ as the empty set of fluents. Associativity al-
lows us to omit parentheses in nested applications of “◦”.

The Fluent Calculus employs the standard sortsACTION
and SITUATION (i.e., sequence of actions) as in the Situa-
tion Calculus[McCarthy, 1963]. The initial situation is de-
noted by the constantS0 , and Do(a, s) denotes the situation
reached by performing actiona in situation s. As a deno-
tation for the state in situations, the pre-defined function
State(s) allows to define what it means for a fluent to hold in
a situation thus:

Holds(f, s) def= Holds(f, State(s))
1Throughout this paper, the function “◦” is written in infix nota-

tion. Free variables in formulas are assumed universally quantified.
Variables of sortsFLUENT and STATE are denoted by the lettersf
and z , respectively.

2The full axiomatic foundation of the Fluent Calculus contains
two further axioms[Thielscher, 1999].

Representing State Knowledge
The knowledge that an agent has of its environment can be
represented in the Fluent Calculus via the notion ofpossi-
ble states[Thielscher, 2000]. The predicateKState(s, z) has
the intended meaning that, according to the knowledge of the
agent,z is a possible state in situations.

3 Anchoring in the Fluent Calculus

Our approach to the anchoring problem is based on percep-
tive as well as symbolic descriptions of properties of objects
in the world. Such a perceptive description can be obtained
from an object recognition and tracking system by extracting
a number of distinctive features from each percept.

High-level knowledge of an object’s properties as well as
certain conditions to be met by some of its properties form a
symbolic description. Regarding object properties, a number
of perceptive features (attributes) is useful. To this end, the
set a specifies essential attributes for a particular object cate-
gory o by means of predicateAttributes(o,a). For instance,

Attributes(Cup, {Colour, Location, Width, Height}) (5)

denotes perceptive attributes of objects of the categoryCup.

3.1 Representation

Numerical estimates maintain the current knowledge about
the object’s properties. The more precise the estimate be-
comes, the better it allows to distinguish the object at hand
from other objects. For each attributea ∈ a , the estimate
γ=(a, (b1, b2)) represents the possible range of values in the
bounds[ b1, b2), while its extent shows uncertainty in this at-
tribute. By this, uncertainty in the sensor model isexplicitly
represented, while its representation is still very concise.

Following previous formal approaches on symbol anchor-
ing, a structure calledanchor is used to represent informa-
tion about a symbol-percept correspondence[Coradeschi and
Saffiotti, 2000]. To this end, the Fluent Calculus signature is
extended by the fluentAnchor(x,Γ, o, π). It comprises sym-
bol x, estimateΓ, object categoryo, and percept IDπ. We
use “⊥” to denote the symbol argument of an anchor if the
anchor is not associated with an object symbol, and to de-
note the percept argument of an anchor if the anchor is not
associated with a valid percept.

At any time, the meaning of fluentAnchor(x,Γ, o, π) wrt.
the correspondence between symbolx and perceptπ takes
one of the following forms:

1. If both x and π are defined, i.e.x 6=⊥ ∧ π 6=⊥, then
a complete correspondence between symbolx and per-
cept π has been established.

2. If x is defined butπ is not, i.e. x 6=⊥∧π=⊥, then no
appropriate percept has been identified and assigned to
symbol x yet.3

3. If x=⊥ and π 6=⊥, then the corresponding symbol for
perceptπ has not yet been found.

3We use ⊥ to say that something is not defined.
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We define and maintain an anchor only for those symbols that
denote objects of interest.

The following constraints rule out states that are impossible
regarding the fluentAnchor.

(∀s, z)(KState(s, z) ⊃ φ1(z) ∧ φ2(z)) (6)

φ1(z) def=
(
Holds(Anchor(x,Γ1, o1, π1), z)∧
Holds(Anchor(x,Γ2, o2, π2), z) ∧ x 6=⊥
⊃ Γ1 =Γ2 ∧ o1 =o2 ∧ π1 =π2

) (7)

φ2(z) def=
(
Holds(Anchor(x1,Γ1, o1, π), z)∧
Holds(Anchor(x2,Γ2, o2, π), z) ∧ π 6=⊥
⊃ x1 =x2 ∧ Γ1 =Γ2 ∧ o1 =o2

) (8)

Condition (7) for statez says that if an anchor for a valid
symbol x exists, then it is the unique anchor of this symbol
in this state. (Universal quantification of variables is assumed
in this article if not specified.) Note that a statez repre-
sents a single hypothesis regarding possible correspondences
for anchoring, while multiple hypotheses are considered in
Section 3.4.

The object recognition system is required to assign unique
percept IDsπ to each individual percept. We simply as-
sign a running natural number for each new percept which
is recognised. Accordingly, formula (8) conditions a statez
to contain anchors with unique perceptsπ if the anchor forπ
exists andπ is defined.

Together, both conditions form the basic representational
requirement for a state to be consistent:

Consistent(z) def=φ1(z) ∧ φ2(z) (9)

The test of the correspondence relation is based on com-
paring the properties of the object pointed at and will be ex-
plained next.

3.2 Matching as Definite Reference
The term definite reference is used if a particular entity is
in question, e.g., “my cup”. Anchoring a definite reference
tries to associate a specific object symbol with appropriate
percepts by means of the object’s properties and knowledge
about it. In general, this process may yield a number of hy-
potheses for possible correspondences according to the infor-
mation available at that time. Then, intelligent techniques
should allow to determine the correct one sooner or later, as
pointed out in Section 3.4.

Anchoring a definite reference employs the predicate
MatchDef. Given a symbolx and a percept with proper-
ties Γ′ in statez it checks for all required attributes whether
the estimate ofx matches that ofΓ′ :

MatchDef(x,Γ′, z) def=(∃Γ, o, π,a)(
Holds(Anchor(x,Γ, o, π), z) ∧ Attributes(o,a)∧
(∀a ∈ a) (∃γ ∈ Γ, γ′ ∈ Γ′, i1, i2)[

γ = (a, i1) ∧ γ′ = (a, i2) ∧ Intersect(i1, i2)
])

where Intersect is true iff the intersection of the intervals
[ c1, c2) and [ b1, b2) is not empty:

Intersect((c1, c2), (b1, b2))
def=

|c2 − c1| > 0 ∧ |b2 − b1| > 0∧
((b1 ≤ c1 < b2) ∨ (b1 < c2 ≤ b2) ∨ (c1 ≤ b1 < c2))

Notice, that the direction of anchoring at this level of detail
can be considered bottom-up — given an object specification
in terms of estimates of perceptive features, appropriate per-
cepts are retrieved. Because this results in multiple possible
instances in general, the strategy of anchoring will use knowl-
edge and constraints in order to determine valid hypotheses in
top-down fashion.

3.3 Matching as Indefinite Reference
In contrast to the definite reference, an indefinite reference
considers objects that meet certain conditions in terms of per-
ceptive properties. For instance, one might simply look for “a
white cup”. Anchoring an indefinite reference tries to estab-
lish a complete correspondence between symbol and percept,
both representing an object that meets given conditions.

A symbolic reasoning system appeals for intuitive symbols
as a convenient specification of object properties. We define
Groundedwhich relates predicates to ranges of attribute val-
ues. For instance,

Grounded(Cup, Height, Regular, (8, 11)) (10)

specifies a regular height of cups between 8 cm to 11 cm.
Together with

GroundingVal(o, a, p, v) def=
(∃b1, b2)(Grounded(o, a, p, (b1, b2)) ∧ (b1 ≤ v < b2))

GroundingInt(o, a, p, (c1, c2))
def=(∃b1, b2)(

Grounded(o, a, p, (b1, b2)) ∧ Intersect((c1, c2), (b1, b2))
)

these predicates allow to compare a symbolic description with
an estimate comprising values or intervals of values.

PredicateMatchIndef provides the tool to check whether
the percept at hand meets a given object description. It de-
termines whether the symbolic descriptionΣ and the anchor
for symbol x′ match, based on whether the estimate of at-
tribute a of this anchor coincides with the perceptive range
denoted by each predicatep of Σ:

MatchIndef(Σ, x′, o, z) def=(∃Γ′, π′,a)
(
Attributes(o,a)∧

Holds(Anchor(x′,Γ′, o, π′), z)∧
(∀σ ∈ Σ)(∃γ′ ∈ Γ′, a ∈ a, p, i′)[

σ = (a, p) ⊃ γ′ = (a, i′) ∧GroundingInt(o, a, p, i′)
])

Notice the bottom-up direction of anchoring in
MatchIndef — given a particular percept (in terms of
attribute values), appropriate symbols denoting objects in
question are retrieved.

As in the case of a definite reference, the anchoring strat-
egy will have further means for determining which ones of
several possible instances are “appropriate” given high-level
knowledge and constraints. The formal account of the an-
choring strategy is part of our future work.

3.4 Space of Hypotheses
As has been pointed out above, several correspondences be-
tween a symbol and a percept may be possible in general. All
of them have to be taken into consideration in order for the
anchoring approach to be sound, i.e., not to neglect potential
solutions and thus yielding wrong correspondences eventu-
ally. In our approach, multiple hypotheses are represented
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by a knowledge state in the Fluent Calculus (see Section 2).
While a single statez specifies one hypothesis regarding cor-
respondences for all considered objects,KState(s, z) asso-
ciates several possible states with a certain situations. For
example, starting in the initial situationS0 where the agent
knows of the cupC , the knowledge state of situationS2 af-
ter recognising two cups and anchoringC could be this:

KState(S2, z) ≡ (∃z1, o, Γ1,Γ2, π1, π2)
[z = Anchor(C,Γ1, o, π1) ◦ Anchor(⊥,Γ2, o, π2) ◦ z1 ∨
z = Anchor(⊥,Γ1, o, π1) ◦ Anchor(C,Γ2, o, π2) ◦ z1]∧
o = Cup∧ Consistent(z)

This formula describes that either the perceptπ1 is related to
symbol C and perceptπ2 has no correspondence to a sym-
bol, or vice versa. Moreover, for both possible hypotheses the
object categoryCup applies.

4 Example
Now we will illustrate the computational framework for an-
choring presented above in an example. Figure 1 depicts the
evolution of knowledge states of a mobile delivery robot dur-
ing the course of action.

In the initial situationS0 , Mike has requested the mobile
robot to bring his cupCM from the kitchen to his place. The
robot has learned further that Mike’s cup is white and should
be located on the table in the kitchenTk , as usual on the left
hand side just next to a green cup. Both cups are of regu-
lar size. Consider the corresponding knowledge state (11).
The robot starts at the location near Mike’s table,At(TM ).
In this knowledge state, constraints on the given properties
of cup CM are derived from the symbolic descriptionΣ of
the object’s properties.4 Notice the incomplete state specifi-
cation by means ofz1 , which allows other fluents to hold in
state z, except another fluentAnchor for symbol CM due
to the domain constraint (9).

After moving to the table in the kitchenTk in situationS0 ,
model-based object recognition regarding cups is performed.
The knowledge state of situationS2 is described in (13).
Three additional anchors have been added to the previous
knowledge state representing three cups which were recog-
nised in the current sensory data, each bearing a unique per-
cept ID. While the object recognition system extracted in-
dividual values of attributes for each of them, no correspon-
dences between symbols and the new percepts have been es-
tablished yet, as indicated by⊥ for each symbol argument
in the anchor representation. For the sake of readability, the
estimatesWhite, Green and on Tk abbreviate perceived
(ranges of) attribute values like those forHeight.

Notice the formula in brackets in (13). Since the knowl-
edge statez is incomplete, as indicated by state variablez1 ,
and since the list of current percepts of cups withπ 6= ⊥
listed in z is complete, the restriction in brackets conditions
statez1 to contain no more anchors for percepts of this kind.

Which one of the three recognised cups is the one that sym-
bol CM refers to? According to knowledge state (13), two of

4For the sake of readability, the locationTk is specified in this
way, too. Considering a location in the world to be a vector, this
mechanism could be easily extended to ranges in space.

them match Mike’s description wrt. immediate object proper-
ties — the two white cups of regular size on tableTk . Both
percepts render potential correspondences with symbolCM

and have to be considered as possible hypotheses.
Next, action AnchoringDef tries to establish the corre-

spondence with the definite reference to symbolCM and
yields the knowledge state (15). Anchoring has determined
that either the anchor withπ=1 corresponds to symbolCM ,
or the anchor withπ=3 does so. In both cases, the other an-
chor must not correspond toCM , too, which can be inferred
from (9). Formula (15) demonstrates that the anchoring strat-
egy fuses two anchors referring to the same object, where
the symbol is undefined in the one anchor and the percept is
undefined in the other one, if both match. Recall from Sec-
tion 3.1 that a complete correspondence between a symbol
and a percept is represented by a uniqueAnchor fluent in the
state at hand. The resulting perceptive estimateΓ of such
a fusion of two anchors is obtained from the intersection of
both attribute value ranges for each attribute, such that a more
precise estimateΓ is gained.

Part of the knowledge of this example task was that the
desired cupCM can be found next to a green cup on its left
hand side. The last two lines of (15) specify this high-level
knowledge. Given this constraint, the ambiguity regarding
correspondences of symbolCM with the correct percept can
be solved and knowledge state (16) can be derived.

Besides sensory information concerning the colour and
height of cup CM , its location is actually known as well.
Hence, the preconditions of the action to grab the desired ob-
ject should be fulfilled and the robot can continue solving the
given task.

5 Discussion and Future Work
In the anchoring approach of[Coradeschi and Saffiotti, 2000],
predicates like “small” are related to ranges of values. The
work of [Chellaet al., 2004] extended and adapted this frame-
work to so-called conceptual spaces. Apparently the concep-
tual space introduces an intermediate representational level
for referring to the underlying domain of values for attributes
of objects. While yielding modularity on the one side of this
intermediate level, it seems that domain-dependent defini-
tions again have to refer to specific properties of attributes on
the other side. Our approach also requires domain-dependent
definitions; e.g. in (5) or (10).

In [Coradeschi and Saffiotti, 2002] a context-dependent
meaning of predicates describing object properties wrt. per-
ceptive attributes was proposed. Our approach is designed for
this independency by always referring to a given object cate-
gory, e.g. inMatchDef and MatchIndef. Hence, predicates
like “small” become comparable wrt. this category. The ob-
ject category is used to restrict the object recognition system
to this object model at the same time, gaining computational
efficiency.

Multiple hypotheses for possible correspondences of an-
choring symbols to percepts must be maintained in case of
perceptive ambiguity, as was pointed out in[Coradeschi and
Saffiotti, 2002] for instance. The approach described in[Lang
et al., 2003] allows to represent multiple hypotheses by as-
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KState(S0, z) ≡ (∃z1,ΓM ,ΣM )
(
z = Anchor(CM ,ΓM , Cup, ⊥) ◦ At(TM ) ◦ z1 ∧ Consistent(z)∧

ΣM = {(Height, Regular), (Colour, White), (Location, on Tk)} ∧MatchIndef(ΣM , CM , Cup, z)
) (11)

S2 = Do(Sensing(Cup), Do(Goto(Tk), S0)) (12)

KState(S2, z) ≡ (∃z1,ΓM ,ΣM )
(
z = Anchor(CM ,ΓM , Cup, ⊥) ◦ At(Tk) ◦

Anchor(⊥, {(Colour,White), (Height, (8.5, 9.5)), (Location, on Tk)}, Cup, 1) ◦
Anchor(⊥, {(Colour,Green), (Height, (9.0, 10.0)), (Location, on Tk)}, Cup, 2) ◦
Anchor(⊥, {(Colour,White), (Height, (7.5, 8.5)), (Location, on Tk)}, Cup, 3) ◦ z1 ∧
Consistent(z) ∧ ΣM = {(Height, Regular), (Colour, White), (Location, on Tk)}∧
MatchIndef(ΣM , CM , Cup, z) ∧ ¬(∃x′,Γ′, π′,Σ′)

[
Holds(Anchor(x′,Γ′, o, π′), z1)∧

π′ 6=⊥ ∧ Σ′ = {(Height, Regular)} ∧ o = Cup∧MatchIndef(Σ′, x′, o, z1)
])

(13)

S3 = Do(AnchoringDef(CM ), S2) (14)

KState(S3, z) ≡ (∃z1, x1, x2, x3, lM , o)
(
z = At(Tk) ◦

Anchor(x1, {(Colour,White), (Height, (8.5, 9.5)), (Location, L1)}, o, 1) ◦
Anchor(x2, {(Colour,Green), (Height, (9.0, 10.0)), (Location, L2)}, o, 2) ◦
Anchor(x3, {(Colour,White), (Height, (7.5, 8.5)), (Location, L3)}, o, 3) ◦ z1 ∧
o = Cup∧ x2 =⊥ ∧

[
x1 = CM ∧ x3 =⊥ ∧ lM = L1 ∨ x1 =⊥ ∧ x3 = CM ∧ lM = L3

]
∧

(∃x′,Σ′,Γ′, γ′ ∈ Γ′, l′, π′)
[
Holds(Anchor(x′,Γ′, o, π′), z) ∧ Σ′ = {(Colour,Green), (Location, on Tk)}∧

x′ 6= CM ∧MatchIndef(Σ′, x′, o, z) ∧ γ′ = (Location, l′) ∧ LeftNextTo(lM , l′)
]
∧ Consistent(z)

)
(15)

⇒ KState(S3, z) ⊃ (∃z1)
(
z = Anchor(CM , {(Colour,White), (Height, (8.5, 9.5)), (Location, L1)}, Cup, 1)◦

At(Tk) ◦ z1 ∧ Consistent(z)
) (16)

Figure 1: Example: knowledge states of a delivery robot during the course of action.

signing scores to individual anchor components regarding
different sensory modalities. It seems that multiple hypothe-
ses are only maintained temporarily until sensory information
is collected. Moreover, the scores are based on a single at-
tribute only. In our approach, the more perceptive attributes
are used for anchoring, the better two objects can be told apart
based on their perceptive properties.

The tagged-behaviour approach described in[Horswill,
2001] achieves anchoring of symbols to percepts by means
of a number of object trackers running at high frequency and
specific programs associated with input rules. Since there ex-
ists virtually no symbolic representational level, its expres-
siveness is strictly limited in comparison to our approach.

In future work we will axiomatise the strategy of anchor-
ing in form of knowledge update axioms in the Fluent Cal-
culus. Specifying domain-dependent attribute values used for
grounding predicates may not be the desired way. Learning of
these values as well as deriving properties from an ontology
of object categories seem to be interesting directions. We also
want to investigate reasoning over time with object properties.
By that, one could specify “the cup that I held recently”, for
instance.

6 Conclusion
Anchoring symbols to percepts is crucial for autonomous
agents in real and dynamic environments. We have pre-
sented an approach to the anchoring problem based on the

Fluent Calculus. Its powerful expressiveness lies in repre-
senting multiple hypotheses for possible correspondences as
well as reasoning about knowledge and object properties. Our
approach allows to anchor symbols to percepts using defi-
nite and indefinite references. Besides other advantages, the
proposed anchoring technique supports reasoning over object
properties during planning on the one hand, and establish-
ing and maintaining correspondences during run-time on the
other hand. Thus the robustness of an agent control system in
terms of possible failures when performing in realistic envi-
ronments can be increased significantly.
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Abstract
In order for a system to achieve its objectives it
mustgroundits representations: a grounded repre-
sentation is one where the entities in the represen-
tation correspondmeaningfullyto the entities they
represent.
In this paper we develop the first framework for
analysing grounding capabilities in systems. The
framework can be used at a theoretical level to anal-
yse grounding capabilities in systems, and it also
offers a practical guide to assist the design and con-
struction of systems with more effective grounding
capabilities.

1 Introduction
This paper addresses the issue of grounding representations
which is an important, fundamental and challenging problem
in Artificial Intelligence. Grounding involves building and
maintaining coherent representations that correspondmean-
ingfully to the entities they represent. We develop an inno-
vative framework for evaluatinghow well system represen-
tations are grounded, and then demonstrate the framework’s
usefulness and impact.

We build on a wide variety of pioneering and impor-
tant work on grounding[2; 3; 5; 12; 13; 18; 19; 20; 21;
22] by developing a new understanding of grounding and the
first framework for analysing and evaluating grounding capa-
bilities.

Systems from airline reservations to autonomous mobile
robots rely ongroundedrepresentations. Grounded systems
possess grounded representations. An airline reservation sys-
tem must manage information about flights and passengers in

a way that corresponds to real flights and real passengers over
time. An autonomous mobile robot that navigates a physi-
cal space will be more effective in acheiving its objectives if
its internal representations of physical barriers correspond to
real physical barriers in its environment. A sound grounding
capability provides basic infrastructure for cognition and in-
telligence. Consequently,how, andhow well, internal states
and representations are grounded is of significant interest and
crucial importance in AI.

Grounding capabilities are system specific, domain spe-
cific, and context specific. Our framework strongly supports
the idea that when it comes to assessing grounding capabil-
ities there are few absolute measures. Typically grounded-
ness1 of a system is measured relative to the groundedness of
other systems, e.g. it is common to evaluate the grounding ca-
pabilities of systems relative to human grounding capabilities
often coupled with additional sensors and instruments. The
framework we develop can be used to understand grounding
capabilities in existing systems and to support the design and
implementation of intelligent systems whose representations
need to be grounded in order for them to achieve their respec-
tive design goals.

In section 2 we describe our broad notion of representa-
tion. In section 3 we describe grounding capabilities of sys-
tems and provide a set of principles that guide the grounded-
ness framework which is developed in section 4. The frame-
work is designed to measure the quality of grounding capa-
bilities. In section 5 we illustrate the power of the framework
by demonstrating its use in (i) analysing a specific system, (ii)
comparing the grounding capabilities of several systems, and
(iii) developing a quality ranking for the system development

1Groundedness is a noun and it refers to the property possessed
by grounded systems.
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lifecycle. Finally in the last section we highlight the major
benefits and applications of the framework.

2 Representations
The value of representations has been hotly debated in the
literature, for example according to Brooks[3] “the world is
its own best representation2”. Regardless of the debate sur-
rounding the need for representations the unassailable fact is
that the better system representations are grounded, the more
effectively the system will acheive its goals.

Representations for our purposes come in all shapes and
sizes. They range from low level sensorimotor representa-
tions all the way up to high level logic and linguistic expres-
sions. A grounded representation does not require that every
entity in the representation belinkedto a corresponding phys-
ical manifestation, but a meaningful relationship should exist
between the entities in the representation and the entities be-
ing represented. Maintaining a correspondence between rep-
resentations of physical objects and the objects themselves is
important but so too are representations of object functionali-
ties and relationships between objects, as well as descriptions
of ways to interact with specific objects, etc.

For the purpose of understanding grounding it is insightful
to classify representations using the hierarchy of Gärdenfors
[10], illustrated in Figure 1, which describes the crucial rela-
tionships between three key representational entities: sensa-
tions, perceptions, and imaginations. Representations in the
hierachy can take two forms: cued and detached.Cued rep-
resentationsare based on the perception of things that are
present, and detached representations focus on entities that
are not currently perceived. Cued and detached representa-
tions may or may not be grounded.

Sensationsare immediate sensorimotor impressions,per-
ceptionsare interpreted/processed sensorimotor impressions,
and imaginationsare detached representations. Sensations
provide systems with an awareness of the external world and
their internal world. They exist in the present, are localised in
the body/system, and are modality specific, e.g. visual, audi-
tory, not both. Perceptions encapsulate more information than
raw sensorimotor information. They can represent accumu-
lated sensorimotor information and sensorimotor information
reinforced with simulations[2]. Sensations involve signals
from sensors or from inside the system itself, but perceptions
require additional information derived from previous experi-
ences and/or outcomes of learning. In contrast to sensation,
perception is cross-modal, and perceptions can generate per-
manence, e.g. object permanence.

Figure 1:Cued and Detached Representation Hierarchy.
2Future world states in general, however, are not a feature of the

current world state consequently systems that need to plan effec-
tively and anticipate future world states require representations.

Representations in our framework include low level senso-
rimotor information such as YUV or RGB values of pixels
in a digital image through to information about entities that
can no longer be experienced like dinosaurs and melted ice
cubes and imaginary entities like hobbits3. Detached repre-
sentations of objects exist as well as detached representations
of relationships, actions, events, and processes.

Representations can be derived from information that has
been gathered from a wide range of sources e.g. internal
and external sensors, internal and external effectors, exter-
nal instruments, external systems, etc. In addition they can
result from fusing sensorimotor information with high level
representations such as perceptions, concepts and linguis-
tic expressions. Consider a doctor who not only grounds
his own sensorimotor information, but information from col-
leagues, books, lab tests, instruments such as thermometers,
and equipment used to visualise heart beat, and to measure
blood pressure and oxygen content of the blood.

We illustrate several kinds of representations in Figure 2
based on a Robot Soccer System[1] which are constructed
from raw robot camera data. Figure 2(a) is a 2D visualisation
of the raw camera data, and Figure 2(b) is a processed ver-
sion of Figure 2(a) where specific colours (YUV values) of
pixels are used to determine if theybelongto specific objects
of interest - a ball, a beacon and a goal are clearly identified.

The information represented in Figure 2(b) can be used
to find the distance, heading and elevation, from the robot’s
camera, of the various objects of interest which in turn can be
used to calculate the pose of the robot in a global reference
frame. Information represented in Figure 2(b) can be com-
bined with a relational representation of robot location, i.e.
robot(id, x, y, φ)4, to create a relational representation of the
location of objects, i.e.object(o, r, φ, θ)5. The set ofobject
relations can be visualised for ease of interpretation as soccer
objects such as goals, robots, ball in specific locations on a
simple 2D representation of soccer field.

Figure 2:(a) a digitial image derived from a robots camera,
(b) a perceptual representation of the ball, a beacon and a
goal.

Detached representations are extremely powerful. They
can be manipulated independently of the external world, i.e.
can be conceived and do not need to be perceived. Some ex-
amples of detached representations are absent objects, past
and potential future world states, etc.

3Tolkien, J.R.R. The Hobbit, Ballantine Books, 1937.
4id is a robot’s identifier,x andy are coordinates of the robot

andφ is the heading of the robot in a predefined world coordinate
system

5o can be one of [ball, beacon, goal, team-mate, opposition-
robot, obstacle], r is the distance from the camera of the robot to
the object,φ is the heading to the object andθ is the elevation to the
object relative to the robot’s camera system
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3 Grounding Capabilities

Grounding plays an important role and provides critical in-
frastructure for cognition and intelligence. Groundedness is
intimately related to, but not the same as, cognition and intel-
ligence and as a result the framework we develop in the next
section does not make judgements about the quality of spe-
cific representations, e.g. whether one representation is better
than another, nor does it directly measure how well a system
exploits its representations.

Instead, the framework focuses on the grounding capabil-
ity, namely, the ability to maintain relationships between en-
tities in representations and the entities themselves where the
entities can be physical, abstract, sensed, perceived, or fanci-
ful.

A grounding capability can capture information and man-
age information exchanges to and from the external world, it
can also create, interpret, manage and maintain internal and
external world representations.

Grounding capabilities support system goals and objec-
tives, and therefore measuring the quality of a grounding ca-
pability should be conducted with respect to the system goals
and objectives. The purpose of a grounding capability is to
construct and maintain coherent internal representations that
correspond meaningfully to the things being representated so
that the system can achieve its aims and objectives. Clearly
the quality of a system’s grounding capability will have an
crucial impact on the success of the system, and on what it
can achieve.

3.1 Grounding in Traditional System Development

The correspondence between representations and the entities
represented in a wide range of artificial systems is often es-
tablished and maintained over the system’s life time by the
human designers. As a result it is fair to say that the systems
produced are (partially) grounded externally via the human
mind. In other words, the human mind plays a role in cre-
ating, subsequently interpreting, and maintaining the corre-
spondence between entities in representations and the actual
entities themselves throughout a systems lifetime.

Systems are, typically, reviewed by (a team of) human re-
viewers during the various phases of the system development
lifecycle and through those reviews the groundedness of the
system is evaluated.

Depending on the level of sophistication of the system un-
der review once humans have established the correspondence
between entities in the “external world”and the internal sys-
tems representations such as a database conceptual schema,
systems such as Database Management Systems can man-
age the correspondence relationship over time but only in re-
stricted ways. For example, a DBMS can add, remove, mod-
ify and validate relational tuples via application programs
without human intervention, but should database conceptual
schema require modification due to changes in requirements
then a human will likely determine how best to accommodate
the changes and ensure that the database remains grounded,
i.e. in appropriate correspondence with itsexternal world.

Changes to grounding requirements due to changes in the
environment and/or systems goals, for example, result in
changes to the system and those changes are typically deter-
mined by human designers, not the system itself for simple
applications like database management systems.

3.2 Principles for Grounding and Groundedness
In this section we present the principles that will be used
to guide the development of our groundedness framework in
section 4.

• Grounding is a capabilitywhich involves the creation,
management and maintenance of the associations be-
tween entities in representations and the entities them-
selves. It can involve a single system or extend beyond
the boundaries of the system, e.g. rely on components
beyond the system such as external sensors, resources,
tools, instruments, other systems, etc.

• Groundedness is a property of a grounding capability,
and it should be measured relative to system goals.

• Systems can ground their representations in a variety
of different ways: top-down via the process of design;
bottom-up via sensors, effectors, and interfaces, and
through information obtained via external objects (e.g.
physical tools), external sensors (e.g. radar), and ex-
ternal systems (e.g. medical monitoring system); or a
complex combination.

• Groundedness is graded and multidimensional.A sys-
tem is not simply grounded or ungrounded. There are
degrees of groundedness. Furthermore, since ground-
edness should be measured relative to system goals the
salient dimensions will vary depending on what is deter-
mined to be important for the purposes of the grounding
analysis at hand.

• Measures of groundedness can be qualitative or quanti-
tative, continuous or discrete. A groundedness frame-
work should not impose restrictions on the form and
measure of assessment, only its capacity to support the
systems goals.

• A groundedness framework should not place restrictions
on what could or should be grounded. Anything can
be grounded: physical things, abstract things, nonexis-
tent things, and things that have never been experienced.
Things can include: objects, relationships, states, ac-
tions, processes, events, etc.

• A groundedness framework should cater for a wide
range of systems from artificial to biological.

4 Our Groundedness Framework
Our framework is motivated by the need to understand and
build sophisticated systems that do (some of) the grounding
themselves rather than systems that are completely grounded
with the assistance of human grounding capabilities. It com-
prises five essential elements which can be as detailed as re-
quired for the purpose of the analysis:

1. System Objectives
2. Architecture of Grounding Capability
3. Scope of the Analysis
4. Nature of the Grounding Capability
5. Groundedness Qualities.

All five components are related, e.g. the objectives and the
scope will often determine how the qualities of groundedness
are chosen, interpreted, and assessed.

4.1 System Objectives
The first part of the framework involves developing a descrip-
tion of the system(s) objective, goals, tasks and activities. The
level of detail will be determined by the nature of the system
grounding analysis being undertaken.
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4.2 Architecture of Grounding Capability
The second component of the framework is a description of
the underlying system architecture that supports or imple-
ments the grounding capability.

An architecture defines the structure and organisation of
the main system components and their channels of communi-
cation. There are a wide range of potential architectures e.g.
layered, embedded, cognitive, etc. Furthermore, a grounding
capability can be described in terms of a number of differ-
ent architectures. The architecture should be described so as
to maximally expose the grounding capability. The descrip-
tion of the underlying system architecture should focus on
the components and processes involved in systems’ ground-
ing activities.

If systems are being compared then it is desirable to de-
scribe the architectures using similar concepts and compo-
nents. Often representations are translated from one form
to another. Details about the relationships among the repre-
sentations can also be given including details of elements of
representations that are perserved and those that are changed
during such transformations.

4.3 Scope of the Analysis
The third component of the framework is a detailed descrip-
tion of the scope of the analysis. For example, the scope of
the analysis might be restricted to a specific component of the
system, a specific set of interfaces or system activities, or spe-
cific grounding activities such as the creation of associations
between representations and external entities. An example is
given in section 5.1.

4.4 Nature of the Grounding Capability
The fourth component describes the nature of the grounding
capability under analysis. A useful approach to describing the
nature of the grounding capability is with respect to the un-
derlying architecture. Important charactistics of a grounding
capability are described in the example given in section 5.1.

4.5 Groundedness Qualities
The fifth component of the framework includes a description
of the pertinent groundedness qualities, and an assessment of
them relative to each architectural component of the ground-
ing capability where appropriate. The instruments for mea-
suring the qualities should also be identified. It is important to
be able to compare and contrast grounding capabilities in dif-
ferent systems, consequently lower level features of ground-
edness need to be determined in order to evaluate grounding
capabilities in systems.

Grounding is multi-dimensional and graded. The compo-
nents of a grounding capability, and the dimensions/qualities
of groundedness need to be identified in order to better under-
stand and ultimately evaluate groundedness. In order to eval-
uate groundedness we identified a set of important features
that can be used as key performance indicators for assessing
the quality of a grounding capability.

In what follows we describe some groundedness qualities
which are appropriate for assessing an intelligent agent. For
any particular groundedness analysis we envisage that a set
of appropriate qualites will be identified based on the objec-
tives of the system(s) under analysis, as well as the scope and
nature of grounding analysis. Some of the qualities in the
example, below, are so fundamental to the grounding endeav-
our that they could be used as candidate qualities for almost
all grounding analyses.

Expressiveness: is the breadth of objects, relationships, pro-
cesses, actions, events, states, etc that are representable in-
ternally and require grounding. Expressiveness measures the
richness of representations.
Relevance: determines the degree of relevance of the entities
that are represented by a system. Relevance is related to, but
different from, expressiveness. It focuses on issues related
to those aspects of the world that are important for a system
to achieve its goals. For example, a robot soccer player may
not perceive the audience, or field lines painted on the field
because they are not relevant to its tasks or it can achieve
its goals without specifically representing them. Changes in
task, goals and environment are considered elsewhere and so
in the assessment of relevance we only consider current goals;
not potential or future goals. Representations are selective in
terms of what they can represent - a representation cannot
capture every feature or aspect of the world. Choices have to
be made with regard to the entities that are important, rele-
vant, and necessary for the system to complete its tasks and
achieve its goals.
Faithfulness: is the relationship between entities in internal
representations and the entities themselves, e.g. the relation-
ship between an internal world model and the world itself.
Faithfulness is a matter of degree and the pertinent question is
howcloselydoes a system’s representations correspond to the
entities being represented. Determining the degree of faith-
fulness is sometimes achieved by measuring the ability of the
system to model the world states and world state transitions
in terms of prediction and explanation.
Correctness: is the ability of a system to represent informa-
tion in accordance with its specification. For example, a robot
soccer player’s ability to determine the location of the ball on
the field would be an example of a task which has a well de-
fined specification and whose correctness could be measured.
The correctness of the task could be context dependent. For
example, a robot’s ball location ability may be better when it
is stationary than when it is in motion.
Accuracy/Precision: is related to faithfulness and correct-
ness and involves the degree of fidelity of information being
represented. For example, the robot soccer players percep-
tion of its position and the ball’s position on the field might
be required to be measured to different degrees of accuracy,
e.g. to the nearest millimetre or meter.
Robustness: is the ability of a system’s representations to
behave appropriately to unexpected or abnormal conditions.
For example, the ability of a robot soccer player to han-
dle changes in the environment such as changes in lighting,
changes in background noise, changes in playing surface tex-
ture. More dramatic environmental changes would include a
change of ball, e.g. different size, different colour, different
degree of hardness, and/or different density.
Adaptability : is the ability of representations to adapt to task
and goal changes. For example task changes might involve
a robot’s ability to change soccer positions e.g. from De-
fender to Striker. More dramatic changes involve changes to
the rules of robot soccer or a change in the number of robots
on a team. Adaptabilty can be measured by determining the
nature/difficulty of the changes that the system can tolerate
[17]. To what extent the system can change itself, and when
does it require human assistance if we introduce new objects,
new relationships between objects, new actions, new events,
etc.
Timeliness: is the ability of representations to respond (ap-
propriately) to the environment in a timely fashion. For ex-
ample, a robot soccer player’s ability to dive for a ball as the
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ball approaches rather than after it has passed it by.
Efficiency: is the ability of a representation to place as (few)
demands as possible on hardware resources such as processor
time, communication bandwidth, internal and external stor-
age, sensors, effectors, and actuators.
Self-Awareness: Since systems with self-awareness are typ-
ically embedded or embodied the degree of self-awareness
is of interest. For example, the question of whether a robot
is aware of the state of its body parts such as its forearm is
cocked at a45o angle, will be important when assessing a
grounding capability. Self-awareness is a representation that
is graded from physical awareness up to intention awareness.
It also raises issues concerning the role of trust in grounding,
e.g. being aware of one’s own sensor limitation can impact
grounding capabilities.
Awareness of Others: Awareness of others is graded: the
spectrum of awareness of others spans from the existence of
others to the awareness of the intention of others. The de-
gree of awareness about the grounding capability of others
and the intentions of others is important for communication
and collaboration because such an understanding facilitates
the sharing of information in meaningful ways. The issue of
trust is also important, e.g. awareness of other’s limitations
and biases can impact grounding capabilities.
Functionality : involves identifying the system abilities that
require grounding. For example, some basic functionality of a
robot soccer player includes the ability to recognise the ball,
move to the ball, grab the ball, and kick the ball. Differ-
ent robot players may have different abilities, for example a
goalie may be able to dive for the ball whilst a forward may
not.
Transparency: is the ability of a system to represent its inter-
nal information and knowledge in a way that is assessible to a
human or other system. For example, is the representation of
information explicitly represented or implicit, clearly deriv-
able or buried in a black box processor. Transparency is a
crucially important quality for some systems. A strong trans-
parency quality allows a system to be compared with other
systems across a wide range of dimensions with confidence.
Testability: is the ease of testing system grounding capabil-
ities and associated activities such as behaviour and decision
making. Building more effective systems in the future will be
advanced by learning from grounding capabilities in existing
systems, and clearly more will be learned from transparent,
easily understood and testable systems.
Uncertainty Management: It can be important to identify,
qualify and quantify uncertainty in the grounding capabil-
ity. This will involve determining the strategies used by the
system to address the uncertainty. The focus is on how the
system reduces the uncertainty of information gathering and
internal information mangement rather than what techniques
are used to manage uncertainty in representations.

Important interrelationships exist among the qualities de-
scribed above such as faithfulness, correctness and accurracy.
Transparency and testability are also clearly related. Other
qualities may be dervied from those listed above such as re-
liability which could be the probability of an agent to mal-
function or the probability that a system will behave similarly
in similar situations, flexibility which is related to robustness,
and adaptability, and performance which captures the respon-
siveness of a grounding capability which could be measured
by the time required to respond to stimulus or the number of
events processed in some interval of time. Performance is
related to a number of qualities including efficiency, expres-

sivity, timeliness, faithfulness and relevance.

4.6 Evaluating Groundedness Qualities
In order to assess the quality of grounding it is helpful if the
entities to be grounded are identified. Such entities might
include objects, relationships, actions, states, events, plans,
and other processes. Objects can be physical e.g. a ball, or
abstract e.g. a penalty, and internal e.g. a forearm angle, or
external e.g. teammate. They can be permanent, temporary
or ephemeral. Relationships typically exist between objects
such as the ball is on the field; the ball is located in the yellow
half; the goalie has possession of the ball; the ball is out of
bounds; the ball is in the goal area; the ball is dead.

Our approach to evaluating groundedness is to assess
and/or measure constituent quality dimensions relative to sys-
tem goals and architecture. A wide range of instruments can
be used in concert to assess and measure specific qualities
including:

• Direct observation and analysis of working system be-
haviour.

• Design of test cases and scenarios that push the limits of
system grounding capabilities.

• Analysis of artifacts produced by and for the system
should they exist, e.g. design documents, software code.

• Development of formal measures e.g. theclosenessof
a soccer field configuration to the actual field configu-
ration can be measured using techniques developed in
[14].

Some evaluation methods for certain systems are external
such as direct observation, others involve internal analysis.
Some qualities can be evaluated via external methods, others
need to be measured internally, whilst others measured using
a combination of a both modes.

4.7 Benefits of using Logic Driven Systems
Logic-driven systems from database applications to more so-
phisticated knowledge systems form an important, privileged,
and well studied class of systems. Major benefits flow from
the possession of clear semantics in particular building, man-
aging, testing, and measuring grounding capabilities can be-
come straightforward when the representations have a fully
specified semantics. For example, the faithfulness quality of-
ten collapses to an evaluation of truth/falsity, and as a result
properties of the methods and algorithms used to determine
truth/falsity are at focus. A clear semantics can also enhance
the qualities of expressiveness, relevance, correctness, accu-
racy, timeliness, understandability, transparency and testa-
bility. Typically accounts of robustness, adaptability, self-
awareness, awareness of others can also be given.

Many types of logical representations and systems have
been developed to enhance standard logics’ ability to rep-
resent more complex, imprecise, incomplete, uncertain, and
dynamic information such as nonmonotonic reasoning[16],
possibility logic[6], belief revision[8; 26], and languages for
action and change[18].

5 Power of the Groundedness Framework
In this section we highlight the power of the framework by
demonstrating how it can be used to (i) measure the ground-
edness of the UTS Unleashed! 2003 Robot Soccer System
[1], (ii) compare the groundedness of the UTS Unleashed!
2003 Robot Soccer System with the UTS Unleashed! 2004
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Robot Soccer System[4], and (iii) develop a grounding qual-
ity ranking for use in systems design.

5.1 Measuring a Systems Groundedness
In this section we illustrate the use of the framework by out-
lining an analysis of a sophisticated robot soccer system’s
grounding capability, i.e. robots can perceive the ball, search
for it when it is not in view, chase it, kick it, etc. The robots
build and maintain a representation of the state of the soccer
field from their sensors and internal body data, and then use
that representation to make decisions about the best action to
perform. The system is based on the classicalsense-think-act
processing cycle[7].
1. System Objective: To play soccer in the RoboCup 4-
Legged League6 at an internationally competitive level.
2. Architecture of Grounding Capability:

The system is the UTS Unleashed 2003 robot team[1]. It
is composed of four SONY AIBOs which are 4-legged mo-
bile autonomous robots7. Each robot has a camera, and only
uses visual cues to communicate. The architecture of the sys-
tem is illustrated in Figure 3 where the grounding capabil-
ity is viewed as involving four major subsystems: interac-
tion, perception, conception, and problem solving.Interac-
tion involves the exchange of information across interfaces,
sensors, and actuators.Perceptioninvolves the creation, ac-
quisition, management and maintenance of sensorimotor and
other cued representations.Conceptioninvolves the creation,
acquisition, management and maintenance of concepts.Prob-
lem Solvinginvolves the creation, acquisition, management
and maintenance of high-level representations such as declar-
ative, procedural, and tacit knowledge used for problem solv-
ing, reasoning, and decision making activities.

Figure 3:2003 UTS Unleashed! Robot Soccer Architecture.
All interaction between the outside world and the inter-

nal representations takes place via theinteraction subsystem.
The conception subsystemand theproblem solving subsys-
temare embedded in theperception subsystem. The concep-
tion, problem solving, and perception subsystems can com-
municate with each other directly. Overall robot behaviour
is driven by the problem solving subsystem which commu-
nicates to the actuators in the interaction subsystem via the
perception subsystem.
3. Scope of the Analysis:The analysis will focus on the
representation of visual and actuator information. All the ar-
chitectural subsystems will be involved in the analysis. Only
activities related to grounding within the robot are to be con-
sidered, i.e. the human designers role in grounding is outside
the scope of the analysis.
4. Nature of the Grounding Capability: The world model
(field configuration) representation of the problem solving

6See http://www.tzi.de/4legged for details
7See http://www.sony.net/Products/aibo/ for details.

subsystem is grounded through visual information aquired via
the robots’ camera and a high level model of the robot body.
The world model representation can be visualised via a 2D
picture of the field with objects identified place in their per-
ceived location, and subsequently evaluated.
5. Groundedness Qualities:Due the lack of space we briefly
describe a few of the more pertinent groundedness qualities
from section 4.5 below.
Expressiveness: The robots interact with the environment

through sensors and actuators. The sensor under anal-
ysis is the camera which uses YUV values for each
pixel. Parameters for motion are sent and received from
motors in the robot’s body. Perception for the pur-
pose of this analysis involves vision and control of ac-
tuators to achieve bodily movements such as walking
and kicking. Conception creates and maintains the fol-
lowing concepts:physical objects[ball, beacons, goal,
team mates, opposition robots],abstract objects[player
positions, attack, defend, strategy],physical relation-
ships[behind, inside penalty area],actions[search, kick,
walk], events[game start, game restart, game end, kick-
off]. The problem solving subsystem constructs a rep-
resentation of the location of objects such as the ball,
team mates, opposition robots, and based on it the robot
determines its next action.

Relevance:Only relevant soccer related entities are repre-
sented.

Faithfulness:Each robot builds and maintains a represen-
tation of the field configuration. The extent to which
the field configuration representation is faithful to the
real configuration can be measured using the similarity
measure developed in[14] which measures thedistance
from one field configuration to another, and it provides
a means to explicitly measure the distance/similarity be-
tween thereal configuration of the field and its represen-
tation built by the robot as it moves its body and analyses
its raw camera data.

Timeliness:The robots are fairly responsive to changes in
field configurations and in particular to changes of ball
locations. Robot response times can be easy measured
and quantified using a wide range of methods at many
levels of granularity.

Transparency:is low due because almost all representation
management is buried in C++ code.

Robustness:The grounding capability is robust to field sur-
faces, but not robust to minor changes in lighting. Spe-
cific measurements can be made regarding the lighting
levels and the roughness of playing surfaces to deter-
mine the range of tolerance.

Adaptability: The grounding capability is not adaptable. It
cannot make any changes to itself.

Self-Awareness:the grounding capability is aware of some
of its internal settings such as neck angles, appendages,
touch button states, motor parameters. It can recognise
its own body parts if it perceives them, i.e. it can recog-
nise its own feet.

Awareness of Others:is achieved through visual cues only.

5.2 Comparing Systems Grounding Capability
In this section we briefly compare the UTS Unleashed! 2003
System described above with the UTS Unleashed! 2004 Sys-
tem[4]. The 2004 System is built on the 2003 System and it
possesses the same overall objectives and underlying ground-
ing infrastructure with a few important extensions. The scope
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of the analysis is the same as for section 5.1 and the nature
of the grounding capability of the 2004 System has been ex-
tended to include sharing vision information about field con-
figurations among the robots via a wireless network.
Groundedness Qualities:
Expressiveness: The 2004 system can represent all the enti-
ties representable in the 2003 verison as well as the following:

Interaction :- Robots share information from their world
models via a wireless network, in other words full field con-
figurations are represented in the interaction subsystem. In
addition improvements were made to the walking engine so
that machine learning techniques such as reinforcement learn-
ing with self detection and correction could be applied to im-
prove walking speeds.

Perception:- Major improvements in the 2004 Systems in-
clude (i) the relationship between YUV values of pixels and
symbolic colours can be one to many, rather than one-to-one
as in the 2003 system which allows for overlapping colours
and more flexibility in identifying objects[23], (ii) the veloc-
ity of the ball is perceived which supports new high level
skills such as passing, catching, and diving, and (iii) field line
recognition by perception subsystem.

Conception:- new object recognition for field lines, new
skills conceived [dodge, dive, catch, pass] and new strate-
gies that exploit the new skills and perception grounding ca-
pabilites.

Problem Solving:- Robots in the 2004 System canshare
information derived from their world model representation
such as the location of the ball and the location other
robots[15]. Robots on the team who cannot percieve obects
directly can be alerted to their location from team mates. In
addition, using the shared information they can localise using
the ball’s location and their internal body sensors.

For the purposes of illustration we make brief comments
about some of the other qualities. Allrelevantentities are
represented in both the 2003 and 2004 systems.Faithfulness
is measured using the visualisation of the world model rep-
resentation build by each robot. The similarity measure de-
veloped in[14] which measures thedistancefrom one field
configuration to another, allows us to explicitly measure the
distance between thereal configuration of the field and the
configuration represented by the robot. Based on our experi-
mental testing the 2004 system was more faithful than 2003.
The 2004 System also turned out to be significantly more
accurate, responsive, transparent, and robust to changes in
lighting conditions (due to the one-to-many relationship be-
tween pixels and symbolic colours) than the 2003 System.
The 2004 System wasawareof its internal power levels and
the 2003 system was not, and furthermore it had a height-
enedawareness of othersbecause high level representations
regarding the configuration of the field were communicated
between robots directly via the wireless network, and as a re-
sult it was moreadaptablebecause if a robot was unable to
“see”the ball then his teammates could broadcast the ball’s lo-
cation via the wireless network. In addition in the 2004 Sys-
tem the robot’s movements were more adaptable due to the
incorporation of machine learning techniques in the walking
engine.

5.3 Measuring Groundedness in System Design
Quality rankings can be generated from the framework by
attaching levels of priority to the groundedness qualities.
The resultant priority rankings can then be used to evaluate
grounding capabilities during system designs. Tailored rank-

ings can be developed for each system and used to develop
system requirements.

Design decisions should respect the priority ranking.
Clearly design and implementation decisions will impact on
various qualities in different ways and the key idea is to
ensure that high priority qualities are maintained in pref-
erence to lower ranked qualities whenever faced with a
choice. Given the interrelationships that can exist between
the groundedness qualities, sometimes trade-offs will be nec-
essary. Increasing efficiency is well-known to negatively im-
pact most other qualities regardless of how we choose to rank
them. Identifying a priority ordering of qualities is standard
practice in software quality assessments. Some groundedness
qualities could be identified as so crucial that they must be
part of the design and should not be sacrificed for the sake of
improving other qualities.

Dimensions of grounding can be graded according to their
importance. A ranking that reflects the importance of the
qualities determined in requirements allows system develop-
ers to understand and evaluate grounding capabilities. A typ-
ical Grounding Quality Ranking is illustrated below:
Rank 1: Essential - Failure to meet the stated degree of qual-
ities will result in complete failure of the system.
Rank 2: Important - Failure to meet the stated degree of qual-
ities will result in a system with certain kinds of problems.
Rank 3: Desirable - Failure to meet the stated degree of qual-
ities will result in less flexibility than desired.

Different rankings for different systems will reflect the de-
sign goals. Different design goals will lead to different pri-
orities. For example we would expect that a robot soccer
system designed for winning would have a different ranking
of grounding qualities that a system designed for innovative
play!

6 Discussion
Grounding of representations is an important capability for
intelligent systems. Despite its importance there has not been
a practical way up to now to measure the groundedness of
systems. In this paper we develop a novel framework for mea-
suring how well a system is grounded. The framework sup-
ports the identification and articulation of important similari-
ties and differences in grounding capabilities across systems,
and can be used to demonstrate how and why one system is
groundedbetter than another. For the purpose of designing
more effective intelligent systems it is important to be able
to articulate that one system has a better grounding capabil-
ity than another, or to say things like if system A’s grounding
capability had certain properties then it would have an equiv-
alent or better grounding capability than system B.

The framework has lead to a deeper and richer understand-
ing of grounding capabilites. Furthermore, it provides guid-
ance on how to evalute grounding capabilites, to compare
grounding capabilites across several systems, and to build
more effective grounding capabilities. Moreover, by devel-
oping a better understanding of grounding the framework has
allowed us to isolate new research problems, challenges, and
directions. For example the framework raises the following
research questions: (i) Tarski[25]developed a powerfulThe-
ory of Truthbut what should aTheory of Referencelook like?
(ii) Is there a relationship between the hierarchy of represen-
tations in section 2, the qualities of groundedness in section 4,
and consciousness?, and (iii) How can we build systems ca-
pable of reasoning about their own grounding capability and
that of other systems?
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Robot soccer offers a standard and rich domain that would
benefit from a comprehensive analysis of grounding capabil-
ities. In future work the framework will be used to analyse,
compare and contrast the grounding capabilities of the top 10
teams in the RoboCup Legged League. The analysis will in-
clude a survey for developers, as well as direct observation of
running systems.
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Abstract

Vision is one of the most valuable sensors of an
autonomous mobile robot, but advanced robot
vision systems are still rare. A major obsta-
cle in applying advanced computer vision to
robotics are the additional constraints, that
need to be fulfilled in the domain of robot vi-
sion.

We propose that in order to make computer vi-
sion applicable to robotics, it needs thorough
support from the robot’s software architecture.
A robot vision architecture needs to encapsu-
late the constraints of the application domain
to keep a vision application flexible and main-
tainable.

This paper introduces the video image process-
ing (VIP) framework, a software framework for
multi threaded control flow modelling in robot
vision. It discusses its design and implemen-
tation as well as an experimental evaluation of
its performance in parallel, priorised image pro-
cessing.

1 Introduction

Vision is one of the most valuable sensors for autonomous
mobile robots. Cameras are relatively low cost and offer
a huge and diverse set of information that can be used
for very different sensing tasks. Unfortunately, there is
a severe lack of advanced vision processing methodolo-
gies applied in todays robotic applications. Especially
in highly dynamic environments and predominantly re-
active scenarios, research is still focused on model based
colour blob detection. In consequence, vision processing
in robotics lacks flexibility and scalability, which makes
it impossible to use such a vision system for different
tasks and multiple scenarios. This hinders advances in
the scientific view on the problem domain.

Applying advanced vision processing methodologies to
autonomous mobile robotics is difficult, as the require-
ments of this application domain add a whole set of
additional complexity to the original task of image un-
derstanding. For instance, image processing binds a lot

of computational resources and most higher level image
processing operations are difficult to apply within the
timeliness constraints of a real-time reactive autonomous
system. Addressing such issues for a robotics vision sys-
tem requires extensive architectural support, which is
not available in currently available image processing sys-
tems.

This paper introduces the video image processing
(VIP) framework. A software architecture for real time
oriented video image processing for autonomous mo-
bile robots. We show how the framework enables and
facilitates the use of computer vision methodologies
within the heavily time-constraint environment of an au-
tonomous mobile robot within a highly dynamic environ-
ment, like the RoboCup mid-size league.

The remainder of this paper is organised as follows. In
the next section the challenge of doing computer vision
on autonomous mobile robots and related work in this
area is discussed. Our solution approach is then intro-
duced in section 3 and illustrated by a short example
in section 4. An assessment of the real-time oriented
features of the VIP framework is presented in section 5
before the paper ends with application examples, con-
clusions and the indication for future work.

2 Image Processing on Autonomous

Mobile Robots

Vision systems for mobile robots bring together the two
very challenging problem domains of image processing
and autonomous mobile systems. E.g. most of the state
of the art computer vision algorithms are computation-
ally rather expensive, even when efficiently implemented.
So a very careful assessment of their individual applica-
bility is necessary. This on the other hand often dis-
courages experts in computer vision to work on robot
vision, as most of the advanced algorithms seem to be
ruled out per se by timing constraints. In consequence
solutions in robot vision are often: (1) hard coded quick
hacks, that try to enable micro optimisations by doing
multiple operations at once, (2) heavily model based or
heuristic, exploiting special circumstances with little va-
lidity despite the one scenario they are targeted for, (3)
in consequence hardly maintainable and little flexible.
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So to mediate between the partially contradictory re-
quirements of advanced vision processing in a real-time
constraint environment, proper conceptual support from
the vision processing architecture is necessary, to encap-
sulates the vision application within this application do-
main. In order to better understand the different re-
quirements that need to be supported, we first take a
brief look at the two problem domains.

2.1 Computer Vision and Image
Understanding

The basic concept of computer vision is the application
of operators to image data, such as the conversion of a
colour image into gray-scale, or filtering the image for
edges. Often operations transform more then one input
image into a new output image as e.g. a Canny edge de-
tector [Canny, 1986] usually needs two images which are
convolved using a horizontal respectively a vertical So-
bel operator. Other operators may use the same image
result from different time stamps as for example a oper-
ator using two timely consecutive images to detect the
optical flow [Horn and Schunck, 1980].

More sophisticated operations do not only cover filter-
like processing steps, but all possible input-output map-
pings in general. So the result of a computer vision op-
eration don’t have to be again an image but can be ev-
ery possible data as e.g. a colour histogram, a similarity
value between two images or any other image statistic
measure.

Sequences of such image operators reveal features
within the image that can be used to identify regions
of interest (ROIs). So filter don’t need to work on the
whole image but only on parts of the image. This is
done either to speed up the processing loop or to be sure
not to tamper the result with unwanted image structures
from outside the region. Further operators derive image
features from these ROIs that enable a reliable object
recognition. Various feedback loops such as integration
over time [Kalman, 1960] can speed up processing and
improve classification results.

2.2 Robot Vision

Performing the above sketched operations on an au-
tonomous mobile robot on the video image stream of the
robots camera(s) within a medium sized robotics appli-
cation adds a whole bunch of additional challenges to the
problem set.

Efficient organisation of control and data flow.
Video image processing on a mobile robot is usually sen-
sor triggered and is started as soon as a new image is
available to the robot as an image taken one second be-
fore does not necessarily resemble anymore the actual
situation in a dynamic environment. At the same time,
the performed processing needs to be demand driven, to
not misspend the available computational resources.

Parallel and asynchronous evaluation. More and
more robots are equipped with multiple cameras for
stereo vision, or to extend their field of view. Multi-
ple image sources, but also dual CPU boards as well as
the upcoming hyper-threading and multi-core processor
technologies call for asynchronous, parallel processing
capabilities. Multiple image sources allow for interleav-
ing processing, and the true parallelism of the advanced
hardware features stay unused by single-threaded appli-
cations. The actual challenge however, lies in the proper
synchronisation between different image processing tasks
for the fusion of their results.

Timeliness and resource management. Due to the
computational cost of most image operations, and the
fact that the CPU is also used by other concurrent tasks
of the system, the available processing power will usu-
ally not be enough, to perform all possible evaluations on
every single image. In order to still meet the timeliness
constraints of the reactive systems, different perceptual
tasks (e.g. obstacle avoidance and face recognition) need
to be properly priorised. E.g. the data for obstacle avoid-
ance needs to be evaluated as often as possible, while the
face recognition for greeting known pedestrians can be
evaluated whenever some CPU cycles are left. Addition-
ally, not all image processing tasks have to be performed
over the whole time. The robots’ situatedness enforces
the use of special vision routines for different purposes.

Communication of results. Last but not least, im-
ages as well as extracted symbolic information of ob-
jects need to be accessible to the other modules of the
robot software. Interfacing is an issue in the context of
image processing on autonomous robots, as the infor-
mation requested by client modules usually determines
which information needs to be extracted from the im-
age in a given situation. Robot applications, e.g. multi
robot scenarios are most often distributed and therefore
support for communication in a distributed environment
has to be available, too.

2.3 Related Work

Common vision related architectures and publications
can be roughly divided into three types: subroutine li-
braries, command languages and visual programming
languages.

Subroutine libraries are the most commonly used ones.
They mostly concentrate on the efficient implementation
of image operators. Therefore they consist of normal
functions, each responsible for a different image pro-
cessing operation. Classical examples are e.g. the well
known SPIDER system [Tamura et al., 1983] or NAG’s
IPAL package [Carter et al., 1989] written in C or For-
tran. More recent approaches are e.g. LTI-Lib [lti, ] or
VXL [vxl, ] which both are open-source, written in C++
and consist of a wide range of operations, ranging from
image processing methods, visualisation tools and I/O
functions. The commercial Intel Performance Primitives
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[ipp, ] are an example for highly (MMX and SSE) opti-
mised processing routines with a normal C-API. What
they all have in common is there lack of support for
some kind of flow control support. Yet another collec-
tion of mutex or semaphore helper classes and some kind
of thread abstraction is the maximum of assistance for
this.

More advanced command languages for image process-
ing are mostly implemented as scriptable command line
tools, that a developer can use to direct the vision pack-
age. In case of the imlib3d package [iml, ], the image
processing operators can be called from the Unix com-
mand line, the CVIPtools [Umbaugh, 1998] are delivered
with an extended tcl command language. So both pack-
ages have the ability to include conditional and looping
facilities. But again the programmer not only has a flexi-
ble way of complete control over the system, but also the
full liability over the processing cycle. Additionally the
scripting approach makes it hard to meet the required
performance constraints of this application domain.

The most sophisticated solutions are the visual pro-
gramming languages. They allow the user to connect a
flow-chart of the intended processing pipeline using the
mouse. They combine the expressiveness and the flexi-
bility of both above groups. Often they contain not only
a real mass of image processing functions and statistical
tools, but also a complete integrated development envi-
ronment. Most of these systems are commercial prod-
ucts. One of the most advanced one is VisiQuest (for-
merly known as Khoros/Cantata). According to there
web site, it supports distributed computing capabilities
for deploying applications across a heterogeneous net-
work, data transport abstractions (file, mmap, stream,
shared memory) for efficient data movement and some
basic utilities for memory allocation and data structure
I/O.

To the best of our knowledge, there is no image pro-
cessing framework, that combines all of our above de-
scribed features like processing on demand of complete
parts of the filter tree in a flexible yet powerful way,
making the system suitable for a wider range of image
processing tasks, like e.g. active vision problems on au-
tonomous mobile robots.

3 Solution Approach

The principal idea of the VIP framework is to manage
the control flow and organise the data flow of the vision
application, for a clean separation of the two problem do-
mains. That is, the vision application programmer only
needs to implement the individual image operations (if
not already available in form of a library) and direct the
data flow for the target application. The VIP framework
then executes the implemented code as the execution
logic implies.

The basic processing unit is called a filter. This de-
notes not only a (non-)linear image transformation func-
tion like a Sobel operator, but every input-output map-
ping such as a neural classificator on image features.

While the control flow is evaluated in a tree in depth
first order, the data flow is much more flexibly organised
as a directed acyclic filter graph (DAG). The framework
ensures the correct evaluation order. Freely definable so-
called meta-information, such as a list of regions of in-
terest, histogram values etc. can also be passed through
the DAG to successor filters. This actually extends each
filter instance to a general image processing node.

Support for the intrinsic problems of robotic vision is
supplied on the basis of the configurability and adap-
tivity of the framework and its execution logic, by spe-
cial purpose filters and also by additional development
tools. VIP is currently implemented as a C++ white
box framework for Linux platforms.

3.1 Robotics Support

To prevent excessive polling or context switching be-
tween waiting threads the framework performs sensor
triggered evaluation of filters. In order to maximise
performance in this highly time constraint environment,
VIP keeps track of which filters are actually queried by
client modules. Based on this connection management,
a dynamic graph pruning is performed to process only
the minimal required filter tree. If a client module con-
nect to a new filter, the filter is guaranteed to be part of
the processing tree, as soon as the next image becomes
available. The integration of the VIP framework into
the middleware Miro [Utz et al., 2002] provides support
for network transparent as well as co-location optimised
access to images or higher level sensory results from the
filter DAG to client applications. For co-located image
queries a shared memory based approach is used with
zero-copying.

3.2 Source Nodes of a Filter DAG

Video devices are also modelled as filters within the
framework and form the root node of a processing tree,
that is source nodes in data flow graphs. The framework
supports various camera connections such as BTTV,
IEEE 1394 and USB-cameras and also multiple cam-
eras in parallel. Each processing tree its executed within
its own thread and is processed in parallel with other
source nodes, while the data flow can stay connected.
The framework then ensures appropriate synchronisation
between the image streams. Note that, as the framework
takes care of synchronisation, developers do not need to
worry about locking issues and the right usage of syn-
chronisation primitives.

Additional processing trees can be added to decou-
ple time-consuming image operations (a slow path), that
can not be performed at the full frame rate of the input
source, from fast image evaluations, needed at full frame-
rate for reactive tasks in the robotics application.

3.3 Real-time Constraint Image Processing

As one of the dominant features of robot vision is the
timeliness constraint, VIP integrates multiple concepts
for real-time processing. Each processing tree can be ex-
ecuted with its own thread priority and scheduler choice,
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Figure 1: Original image, intermediate processing steps (blurred, grayed and convolved images) and resulting edge
detection. The thick, solid lines denote the data flow, the thinner, dashed lines the control flow.

which is directly mapped on the OS-native process sched-
uler by the framework. This is necessary to minimise jit-
ter and ensure correct priorisation, especially under high
load situations. Additionally detailed timing statistics
are provided for each filter. Different models for syn-
chronisation of filters between different processing trees
can be used to either optimise synchronisation of image
sources (stereo vision) or minimise locking overhead and
context switching between threads (slow/fast path pro-
cessing).

3.4 Development Support

Applications in robot vision require extensive testing and
tuning of filter configurations. Therefore VIP provides
various concepts to ease the development process. The
extensive use of the middleware provided configuration
management support allows to specify meta-information
about newly developed filters for various means, espe-
cially the flexible specification of filter graph configura-
tions by the help of an XML-based description language.
Such configurations can be built conveniently under a
graphical user interface, as illustrated in section 4. Also,
every filter, and therefor every intermediate result, can
be queried (e.g. for visualisation) by simple assigning it
a name for the according interface. The middleware in-
tegration also enables to change filter parameters on the
fly from client applications in reaction to changes in the
environment. By exchanging the physical video device
for an image file set based virtual device that replays
a stored image stream, the whole processing tree can
equally used on- and offline.

4 Example Configuration

The above described feature set of the VIP framework is
best understood by a small illustrative example. Figure 1
illustrates the derivation of an edge image from the clas-
sical test image of computer vision. The original image
is Gaussian blurred and transformed into a grey image.
Then a horizontal and vertical Sobel operator is applied
and in the last step the Canny operator is applied. The
screenshots are taken from the generic inspection tool.
Meta-information is not provided by these simple filters.
The data flow and control flow is are illustrated in fig-

ure 1. The thick, solid lines denote the data, while the
dashed lines illustrate the control flow.

Figure 2: Graphical user interface illustrating the pro-
cessing steps for a simple edge detection (lower window).
The upper dialog shows the parameter configuration win-
dow for the Canny filter.

In Figure 2, this configuration is shown in the graph-
ical user interface for the filter graph configuration. In
addition of the control- and data-flow also the parame-
ters (such as the threshold for the canny operator) can
be edited in typesafe dialog fields. The parameter man-
agement framework provided by the underlying robotics
middleware Miro allows to add user defined filters with
their specifications for filter parameters and filter meta-
information for use by the configuration editor and the
runtime-inspection tools.
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5 Performance Assessment

A critical part of robot vision is the timely processing of
image data. The VIP framework does not try to provide
faster implementations for standard image operations,
as sufficient libraries for this purpose exist. These can
be easily utilised for the use by VIP, as done for IPP in
our applications. Instead this framework concentrates
on improving the responsiveness of a vision application,
by allowing for proper priorisation and synchronisation
of image processing tasks with parallel and asynchronous
control flow.

A typical use case for the processing of multiple fil-
ter trees, is the combination of a fast path with an
asynchronous slow path of vision processing, which then
needs correct priorisation. We therefor assess in this sec-
tion the capabilities of the framework to correctly pre-
serve processing priorities under high-load situations.

The typical scenario would be one camera-
synchronous processing tree that runs at full frame rate
and extracts sensory information for the reactive control
module and one or more asynchronous processing trees,
that are connected to the data flow of the first tree and
perform time-consuming computations not possible at
full frame rate, extracting information for higher level
cognitive processes with relaxed timing constraints.

The configuration of
Camera Worker 1

low priority

high priority

Worker 2Asynch

Figure 3: The filter configu-
ration of the experiment.

the VIP module for this
experiment consist there-
fore of one high prior-
ity tree with the camera
as source node, running
with a round robin real-
time scheduler (the fast
path) and one, resp. two
low priority asynchronous processing trees that are con-
nected to the camera tree, running with default priority
(the slow paths). The configuration is illustrated in fig-
ure 3. The low priority load is increased incrementally
in the experiment. In the first run, the synchronous pro-
cessing tree is run alone. In the second run one low pri-
ority processing tree is added to the configuration, but
still all processing threads can be completed at frame
rate (30Hz). In run three a second low priority tree is
added and the system load reaches saturation. The re-
sults are compared against the equivalent setup without
priorisation.

Table 1 shows statistics on the overall time, the differ-
ent processing trees need for completion. In the unpri-
orised configuration, the completion time of the camera-
synchronous tree drops significantly in the third config-
uration, as the thread is preempted before completion to
perform work on the other processing trees. This would
cause significant delay for the consumers of this sensor
information (e.g. the reactive control unit).

Figure 4 illustrates this effect by plotting the individ-
ual timings for 100 runs of the fast path. While the pri-
orised processing three still runs with predictable com-
pletion time, the timings of the unpriorised configuration

Priorised UnpriorisedProcessing tree
Mean Std. Dev. Mean Std. Dev.

Fast path only
fast path 7,17 0,035 7,18 0,052

Medium load
fast path 7,22 0,017 7,26 0,479
slow path 1 30,46 25,197 8,32 10,000

High load
fast path 7,22 0,025 8,55 3,192
slow path 1 53,31 69,921 60,77 94,601
slow path 2 57,66 5,065 56,84 5,240

Table 1: Different timing statistics for the individual
processing tree in both, the priorised and unpriorised
case. The values are stated in milli-seconds.

worsen significantly under high load.
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Figure 4: Timings of the fast path with none, one and
two slow paths running concurrently. The left plot shows
the unpriorised case, whereas the right plot shows the
fast path running with enabled real-time scheduling.

Another visualisation of these preemptions is shown
in figure 5. From the third setup a small section of the
interleaving processing of the three processing trees is
plotted. Each tree is assigned a different colour. Yellow
was chosen for the fast path, the slow paths are coloured
read and blue. To fit into the column, a new line is added
each time the processing of both slow paths is finished.
The completion of a processing tree is marked with a
black box at the end of the coloured bar. While the
real-time scheduled fast path always runs to completion
before its processing stops, it is occasionally interrupted
without priorisation. Additional load on the system will
worsen this effect. A medium complex robotics appli-
cation performs many other tasks in parallel to image
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processing, which will contribute to the latencies in high
load situations.

Priorised fast path:

Unpriorised fast path:

Figure 5: Illustration of alternation between the different
running processes with a priorised resp. unpriorised fast
path.

6 Application

The VIP framework is successfully in use in different
robotic scenarios, such as biologically motivated neural
learning and object classification [Fay et al., 2004] and
reliable high speed image processing in the RoboCup
mid-size league [Kaufmann et al., 2004][Mayer et al.,
2004] . It also provides the basis of a large filter library
shared between the different scenarios.

It’s application in RoboCup consists of a dual cam-
era setup, combining a directed camera for object clas-
sification with an omni-directional camera for obstacle
avoidance and near range ball tracking. The application
combines 66 filters with 108 connections. One of the
fastest path, a simple colour based football goal detection
takes around 4 msec to complete, while one of the slow-
est paths (a complete neural robot classification) needs
around 20 msec on average when seeing one robot per
image (measured on a 1.4GHz Pentium M processor).

Currently, priorisation of and synchronisation between
processing trees is not yet used by the RoboCup appli-
cation. The use of an omni-directional camera as well as
the real-time features of the framework were both added
fairly recently. But the promising results of section 5 will
definitely encourage their prompt application.

7 Conclusions and Future Work

This paper discusses the difficulties of meeting the re-
quirements of th application domain, when applying ad-
vanced computer vision to autonomous mobile robots
in dynamic environments. The VIP framework is intro-
duced, which was designed to facilitate the application of
computer vision in robotics, by managing the additional
challenges of robot vision in this domain. The middle-
ware based framework approach especially enables to
support roboticists with the non-functional aspects like
configuration, priorisation and performance assessment.
Extensive development support is provided in the form of
parameter management, GUI-based configuration as well
as generic inspection of images and meta-information.

The performance assessment confirmed the suitability of
the design for real-time constraint processing, as manda-
tory in highly-dynamic environments.

Future work will be directed in two different directions.
The first is to assess carefully the optimisation potential
for used system resources, especially memory consump-
tion. Improving cache hit rates for instance can tremen-
dously increase the performance of image algorithms and
control flow and memory management have a significant
impact on it. One possibility is to switch to in-place
processing of filters, if the filter and the filter graph con-
figuration allow it. The other direction is to connect the
priorisation of the image processing tasks with the real-
time capabilities of the underlying distributed systems
middleware (RT-CORBA), to ensure end to end quality
of service between sensory and actuatory processes.
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Abstract

In this paper we present the research results in the
field of perception for real microrobotic swarm.
The proposed hardware and software solution uses
IR-based reflective measurement for individual per-
ception and the Dampster-Shafer evidential reason-
ing for hypothesis refinement in collective percep-
tion. Especial attention is paid to a reliable identi-
fication of encountered geometries and a reduction
of local communication. Based on the experimental
results we make a conclusion about cognitive ca-
pabilities of individual microrobots and the whole
swarm.

1 Introduction
Miniaturization represents now a very important trend in
many areas of research. Molecular-scale or nanotechnolog-
ical devices jumped from science-fiction novels to research
papers. Even the today’s technology allows creating complete
autonomous systems, such as robots, in the size of 1 mm3. As
demonstrated by a progress in the I-Swarm project[I-Swarm,
2003 2007], the swarm of thousand such microrobots gets re-
ality as well as come into the reality impressive applications
of this technology.

The scaling down of the hardware influences almost all
important parameters of microrobots, as e.g. running time,
communication distance and channel capacity, computational
power, movement and so on. However we ask ourselves about
”intelligence” of such a microrobot; is it also scaled down so
that we get finally some ”stupid moving thing”[Kornienko
et al., 2004] ? Since many years there exists in the sci-
entific literature the opinion that ”artificial intelligence” for
very small systems drifts towards ”collective artificial intel-
ligence”, like those in social insects[Bonabeauet al., 1999].
For collective systems the ”individual intelligence” getssome
pre-intelligence form. The question iswhich minimal degree
of individual intelligence does allow growing ”collectivein-
telligence”?

In this paper we consider such an aspect of cognitive in-
telligence as perception. In a microrobotic swarm the size of
a robot is essentially smaller than the size of most environ-
mental objects. The recognition of these objects is primarily
done in collective way. However here we encounter the same

question about ”individual aspects” of collective perception.
Is a microrobot able to provide enough sensory information
for the collective perception ? Which sensing and processing
steps should be done individually and which collectively ?

For answering these questions we designed and proto-
typed a sensor system for our own test microrobot. This
is is actually larger as envisioned in I-Swarm project how-
ever is very cheap and easy to reproduce without specific
equipment. Based on this prototype we can investigate ques-
tions about ”individual/collective intelligence” so thatthe re-
sults, e.g. principles, methods, algorithms can be later imple-
mented in the 1mm3 robot. The size of the sensor system is
23×23×5mm. It uses the Megabitty board (23×23×2mm)
with Atmel AVR Mega 8 microcontroller, having 8 kB ROM
and 1 kB RAM [Megabitty, 2005]. Besides perception,
the board supports 6-directional robot-robot and host-robot
communication, with the average communication radius 0-
140mm (with special solution for deadlock reduction) and a
maximum of 300mm. The sensors are also used for prox-
imity sensing in navigation. The communication subsystem
for a large microrobotic swarm is described in[Kornienkoet
al., 2005]. In this paper we present the development of the
perception system for the sensor board and the problems of
individual and collective perception in microrobotics.

The rest of paper is organized as follows. In the next two
sections the problem of individual perception and the devel-
opment of IR-perception system are described. Then, we dis-
cuss the nonlinearities of this perception and the algorithms
of feature extraction and surfaces classification. The lasttwo
sections are devoted to the problem of collective classification
and preliminary experiments.

2 Problems of individual perception in
microrobotic swarms

As mentioned before, the recognition of large objects by
small microrobots is primarily performed in a collective way.
However the prerequisite for collective perception is the sur-
face identification and classification that is performed by each
microrobot. We name further this process as individual per-
ception. From the collective perception point of view the fol-
lowing types of surfaces are required to be identified:
1) infinite-size surfaces(from a robot’s viewpoint), as huge
objects or borders;

33



2) finite-size surfaces(a microrobot has to calculate the visi-
ble size of a surface) which are classified, at least, into small,
medium and large;
3) convex and concave corners;
4) 2-side and 3-side concave surfaces;
5) one-surface/many-surfaces geometry.
Additionally, the microrobots have to be able to perform the
following activities:
1) detection of holes (gangways) in surfaces;
2) classification of the perceived surfaces into defined classes
and providing a probability of correct classification;
3) recognition of robot’s own position in relation to a corner
(left/right from a corner) or even its own slope to a surface.
When each robot identifies the surface in its own sensing
areal, further collective processing consists in fusing individ-
ual observations into many hypotheses and collective identifi-
cation of most probable hypothesis about the observed object
(see also[Ye et al., 2002]).

Returning to the issue of individual perception, we identi-
fied the following implementation possibilities:
1) vision-basedway by e.g. using some small micro(faced)-
cameras;
2) reflection-basedway by using laser or infra-red light,
ultra-sound etc.;
3) wavelength-basedway such as color sensing;
4) by usingspecificchemical, temperature, vibration, mag-
netic and so on sensors (we do not consider them here).

The vision-based way represents the most information in-
tensive mode. However its application in microrobotics has
several difficulties caused by very limited computational ca-
pabilities and small memory. Algorithms of image process-
ing are difficult to be implemented in this hardware. More-
over due to very small size we prefer to use the same sen-
sors for navigation (proximity sensing and obstacle detec-
tion) and communication (robot-robot and host-robot) pur-
poses as well. Finally, the geometrical features from deep im-
ages are essentially more useful for collective perceptionthan
edges and regions from camera’s grey-value images. Thus,
the vision-based as well as wavelength-based ways, although
they have found a large application in mini- and usual robot-
ics, unfortunately are less useful here. The reflection-based
perception uses the principle of sending and receiving a sig-
nal, that can be also used for navigation and communication.

Considering different alternatives for reflection-
based perception we focus primarily on laser, electro-
magnetic/inductive and infra-red systems. Ultra-sound
systems do not satisfy the size limitation. Though the laser
provides the most exact measurement and long range, there
are several technical difficulties to use it with the microrobot.
So, choosing between electro-magnetic/inductive and infra-
red systems, we prefer the last ones due to their simplicity,
relative long working range and small energy consumption.

Generally, the IR-systems are recently dominant in so-
called small-distance-domain, as e.g. for communication be-
tween laptops, hand-held devices, remote control and others.
The IR-solution is not new in robotic domain, see e.g.[Kube,
1996], [Suzuki et al., 1995]. There are many approved
schemes or even industrial sensors for IR-communication.

However the fusion of perception and communication using
IR-devices does not find too many applications, perhaps be-
cause of a high nonlinearity of IR-based perception and avail-
ability of more appropriate solutions in the domain of usual
robotics. Therefore the microrobotic domain of integratedIR-
solution (perception, communication, navigation) is moreor
less unexploited.

The IR-based perception consists on sending an IR radia-
tion beam and receiving the reflected light. The intensity of
this light contains information about the geometry of reflect-
ing surface (primarily a distance between IR-recever/emitter
and surface). As mentioned, the IR-based perception is
highly nonlinear. The most large influence on accuracy of
perception exerts the resolution of the distance sensor. Inthe
center of radiation ray, the intensity of IR radiation is high-
est. Closely to the bounds of this ray, this intensity becomes
gradually degraded (Figure 1). The main component of a re-
flecting light consists of the energy of the central radiation
stream. However low-intensity ”secondary streams” spread
the reflecting light so that object’s edges and gaps between
objects get non-recognizable. With a poor resolution of dis-
tance sensor, small geometrical elements cannot be perceived
and so cannot be used as features for recognition. Therefore
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Figure 1:Perception by using the IR beam,Rmax recognition dis-
tance,Dres, Ores distance/object resolution.(a) Thickness of radi-
ation beam and influence on the size measurement;(b) Nonlinearity
in the identification of many-surfaces geometry.

for perception are suitable only such IR-emitters that havean
as small as possible opening angle of the beam.

Secondly, the accuracy of measurement depends on the dis-
tance to a reflecting surface1. In Figure 2(a) we demonstrate
this effect for the developed sensor system. Nonlinear accu-
racy essentially influences the further recognition of features.

The reflecting light is also very sensitive to the color of re-
flection object. In Figure 2(a) we show the distance measur-
ing values for white and gray objects. Further in experiments
we use only white color objects. The distance measuring also
depends on the object’s slope to a radiation ray. In Section 4
we discuss in detail these nonlinearities and suggest some ap-
proaches to absorb them.

Since we did not found a suitable integrated IR-solution
for the microrobot, we decided to develop our own required
hardware and the corresponding processing algorithms. In
the next sections we describe them.

1The dependence between reflecting light and distance is also
nonlinear however this problem can be easily solved by a look-up
table or some approximation functions.

34



only
proximitywhite surface

gray surface

o
n
ly

 p
ro

x
im

it
y

mm1=D

mm5=D

mm15=D

Distance, mm

V
al

u
es

 a
ft

er
A

D
C

0

50

100

150

200

250

0 50 100 150 200 250 300

(a)

0

10

20

30

40

50

60

70

-60 -40 -20 0 20 40 60

d

a

l
g

r
g

l
S r

S

Rotation angle

V
al

u
es

 a
ft

er
A

D
C

nonlinearity:
"fuzzy edge"

nonlinearity:
"too close"

peak intensityangle to
surface

(b)

d=70 mm

r=100 mm

r=70 mm

r=50 mm

r=30 mm

Rotation angle

V
al

u
es

 a
ft

er
A

D
C

0

5

10

15

20

25

30

35

-60 -40 -20 0 20 40 60

(c)

Figure 2:(a) Dependency between ADC values of emitter voltage on phototransistor andthe distance to reflecting object. Shown are values
for the white reflecting object (white paper) and the grey reflecting object (grey cardboard);(b) The used features of IR-diagrams relevant
for identifying the surfaces;(c) The ”thickness effect” of radiation beam by scanning a gap with different size r. The distance between a
microrobot and the gap is 70 mm.

3 Development of the IR-based perception
system

The main requirement on the IR-perception is given by as
small as possible opening angle of the radiation ray. Addi-
tionally, IR-emitter has to provide a high energy beam, being
able to get good deep images. Finally, IR-emitter and receiver
should be able to work in a communication mode.

The perception system of the microrobot is a part of IR-
system used for proximity sensing, obstacle detection, dis-
tance measurement and communication, as well (Figure 3).
For the perception and objects recognition we use only the

(a) (b)

Figure 3: (a) The megabitty board and the sensors board used in
the prototype of a microrobot;(b) The 6-directional sensor system
for directional communication and proximity sensing.

distance measuring sensor, so that only this sensor is fur-
ther considered. This sensor consists of a receiver with a
wide opening angle (used also for communication and prox-
imity sensing) and an emitter with as small as possible beam
angle (used for perception and long-range communication).
We utilize the Si phototransistor TEFT4300 (60o, peak sen-
sitivity 950 nm) and the high power GaAs/GaAlAs emitter
TSAL6100 (radiant intensity>80 mW/sr, 20o, the real open-
ing angle is of 18-22o, 950 nm). This combination is a result
of many experiments with different sensors (over 30 pairs),
with integrated receiver/emitter like SFH9201, as well as
non-integrated ones. The TEFT4300-TSAL6100 pair demon-
strated the best spectral coupling, the longest sensing distance

and the acceptable nonlinearity of sensing. Although the IR-
emitter is relatively large for the microrobot (8xφ5 mm), the
specific construction of the chassis allows to hide it insidethe
robot.

Since IR-emitter and receiver are non-integrated and are
placed side by side in the chassis, they have to be optically
isolated. The optical isolation of the emitter allows also re-
ducing the opening angle of the beam up to 10-15o (it reduces
also a perception distance). However the main problem here
is to provide similar optical characteristics of isolationfor a
large number of different microrobots in a swarm (to avoid
later the problem of individual calibration of each microro-
bot).

The principle of object recognition is the following. As
soon as a robot detects (by means of proximity sensors) an
obstacle in front of itself, it switches on the high power IR-
emitter and after 1ms delay (needed to get reliable reflecting
light) measures voltage on the emitter of phototransistor.The
dependence between emitter voltage (after ADC) and the dis-
tance to an object is shown in Figure 2(a). Generally, this
sensor perceives distances up to 300 mm. However accuracy
of measurement is different. For the pairdistance-accuracy
where∆ is the accuracy, we obtained the following values:
30-100 mm→ ∆=1 mm, 100-150 mm→ ∆=3-5 mm, 150-
200 mm→ ∆=10-15 mm and after 200 mm→ ∆=30-50
mm. Therefore, the reasonable measuring distance for object
recognition lies within 30 mm-100 mm (with the accuracy of
1-2 mm).

Not only the resolution of the IR-sensor is important for
scanning the objects. During scanning, a microrobot turns
on some degrees. The more exact is this turning, the more
precise is the spatial resolution of sensor data. Microrobot
does not possess any devices allowing to measure positions
and orientation of chassis or wheels. Therefore there is only
one way to rotate a robot, namely to turn the motors on and
after some delay turn them off. This delay has to be so cho-
sen, that a robot rotates on some fixed degree. The motors
are controlled through the H-bridge SI9988, that can change
a polarity of supplying current. Choosing normal polarity for
one motor and inverse polarity for the second motor, the ro-
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Figure 4:”Jasmine”, the prototype of the microrobot, scans different surfaces,whered is the distance to surfaces.(a) Scanning of the finite-
size surface, object 48 mm;(b) Scanning of the convex surface;(c) Scanning of the 3-concave surface;(d) The IR-diagram for finite-size
surface;(e)The IR-diagram for convex surface;(f) The IR-diagram for 3-concave sides surface of 95×95×95 mm;

bot can rotate without changing its own position. In this way
we get relatively shift-errorless deep images. After some tests
we achieved the resolution and accuracy of rotation 1o (tak-
ing into account different friction between weels/chassisand
floor surface).

In our experiments, when a robot detects an obstacle on
the distance of 70 mm± 10 mm, it stops and then rotates
60o left. After that it scans the obstacle with the distance
sensor by rotating 120o right. During this scanning it writes
the obtained values of distances each 1 degree into an integer
array. In this way we have 120 values describing a visible
geometry of the encountered obstacle. In Figure 4 and 5 we
demonstrate some geometries of encountered obstacles and
the scanned surfaces.

4 Features extraction from IR-deep images
After performing the first experiments, we faced the follow-
ing challenge: which features of the obtained IR-diagrams
are relevant for identifying the geometry of the surfaces ? By
analyzing the IR-diagrams in Figure 4 and 5, we find the fol-
lowing features as representative and useful in the IR-based
individual perception (Figure 2(b)):
1. The angleα, which represents the scanning angle between
the first visible edge and the last visible edge of the surface;
2. The peak intensity of the diagram, Imax. This corresponds
to the maximal intensity of reflecting light and, in turn, to the
minimal distanced between the surface and the microrobot.
For the most types of surfaces (beside convex corners) this

minimal distance is measured as a perpendicular to a surface.
This feature allows calculating the visible size of a surface by
using trigonometric relations;
3. The left and right slopes, denoted asγl andγr are use-
ful for identifying the size-type of the surface (unlimited, big,
medium, small). They are calculated as slopes of the approx-
imation linesSl, Sr. The slope denotes also the ”degree of
a distance decreasing” and enable us to identify the so-called
”convex surfaces” that cannot be recognized in the trigono-
metrical way;
4. The position of the ”center” of the IR-diagram, Pimax

in relation to the scanning angle (”0”, origin point on the X
axis). Displacement of the center points to a slope between
the front of robot and surface. In this way we can identify a
directional orientation of the microrobot.

Now we formalize the nonlinearities mentioned in Sec-
tion 2 and present their impact on the corresponding features:
1. Nonlinear thicknessof the IR radiation ray and so differ-
ent distribution between high-energy beam and low-energy
beam. The first effect of this nonlinearity consists in spread
edges (Figure 2(b)). This nonlinear effect can be absorbed
by calibration. The second effect is shown in Figure 2(c).
At scanning many-surfaces geometry (a gap between objects)
a robot cannot reliable differentiate between 2-concave sur-
faces and surfaces that belong to different objects;
2. Nonlinear measurement for small distances. As known
from other IR-distance measurement systems (e.g.[Caprari
and Siegwart, 2003]), the maximal intensity of measurement
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Figure 5:IR-diagrams for different types of surfaces,d is a distance to surfaces.(a) ”Infinite-size” surfaces with flat geometry;(b) Convex
round (external diameter 125 mm) surface;(c) Many-surfaces geometry (1st convex corner 122×60 mm and 2nd concave corner 60×95
mm), robot positioned 70 mm before the middle part.

lies in 10-25% before the front of IR-receiver, after that the
intensity goes down (therefore small distances cannot be mea-
sured by these systems at all). Due to the specific restric-
tion and the application of high-power GaAs/GaAlAs emit-
ter, we removed this effect. However the surfaces that lie less
then 40 mm away from a robot are represented only by val-
ues 245-250. In this way, for close measurement ( 30 mm)
we get a flat horizontal diagram. Another undesired effect
in small-average distances (40-70 mm) consists in a sponta-
neous decreasing of peak intensity (this is observable in all
IR-diagrams in Figures 4 and 5). We cannot identify the na-
ture of this nonlinearity and assume multiple IR-reflections as
a reason for them;
3. Nonlinear accuracyof distance measurement. This re-
quires nonlinear correction (it is done as a look-up table) of
trigonometric relation in dependence of distance. However
this nonlinearity is very ”tricky”. Even when a robot starts
a measurement in the ”good” area of 40-120 mm, a part of
geometry can lie over 150 or 200 mm away. The effect of
this nonlinearity appears in unreliable identification of many-
surfaces geometry (Figure 5(c) ”left to 1st. corner”);
4. Nonlinear rotationof the robot. This can lead to different
left γl and rightγr slopes even for symmetric surfaces. The
most easiest solution here is to calibrateγl andγr;
5. Nonlinearity in measuring convex surfaces. The identifi-
cation of all types of convex geometries is performed byγl

andγr. The difference between slopes for e.g. round objects
(Figure 5(b)), convex corners (Figure 4(b)) and finite-sizeflat
objects (Figure 4(a)) is small, moreover due to a nonlinear
intensity diagram, these slopes change with distances. This
problem has some basic character and we hardly belief that
with all nonlinearities of IR-perception we are able to reli-
able identify the type of convex surfaces.
The main problem of these nonlinearities represents the ne-
cessity to maintain many look-up tables for corrections. This,
in turn, is limited by a small memory of Atmel microcon-
troller. The assumption is that this problem can be solved
in collective way. We can reduce the accuracy of individ-
ual recognition (so that to satisfy all hardware constraints) till
such a degree which still allows a reliable collective recogni-

tion. Now, based on the discussed features and nonlinearities,
we can briefly analyze the types of surfaces.

1. Surfaces with flat geometry.The flat type of geometry
is primarily characterized by only one peak value on the IR-
diagram. Finite-size surfaces are also characterized by large
left and right slopes and scanning angleα ≪ 120◦, Fig-
ure 4(a). The sizeLvis can be calculated as2d tan (α/2),
taking into account the ”fuzzi edge” nonlinearity.

”Infinite-size” surfaces (Figure 5(a)) have small slopes of
IR-diagrams andα ∼ 120◦. To absorb the nonlinearity of
slopes for small and large distance, we apply the polygonal
approximation[Pitas, 1993] and use in calculation the rela-
tion γ{r,l}/S{r,l} instead of simpleγ{r,l}, whereS{r,l} is the
length of approximating line. In the performed experiments
the probability of correct identification is very high and the
accuracy of size calculation is of 5 mm (15 mm in the worst
case).

2. Surfaces with convex geometry.Surfaces with con-
vex geometry possess also only one peak value, however
larger slopes then flat geometries. This type of geometry
has to be identified before the calculation of size, which has
no sense in this case. There are several types of convex
geometry: convex corners and convex round surfaces (Fig-
ure 4(b)), convex many-surface geometry (can be recognized
only collectively)(Figure 4(f)). We identify this geometry
by γ{r,l}/S{r,l} in the IR-diagrams. The difference between
them points to a position in relation to a corner (left to a cor-
ner, right to a corner). The probability of correct identifica-
tion of convex round geometry is very high, however convex
corners are often classified as flat geometry. One approach to
avoid this problem is the so-called ”active exploration” (sim-
ple move towards the surface and scan again induces the ap-
pearance of a large ”flat region” in the peak intensity which
points to the flat type of geometry).

3. Many-surfaces and concave geometries.Concave
geometries manifest primarily as multiple peaks in IR-
diagrams. Based on the number of peaks we can differenti-
ate between 2-concave (concave corners) and 3-concave sides
geometry (Figure 4(c)). Concave many-surfaces geometries
(Figure 4(b)) can be also classified by one robot. They have
one peak value, however multiple left or right slopes. Many-
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Figure 6: (a) Distributed architecture for collective observation;(b) Spatial distribution of the robots around the observed object;(c)
Geometries for matching and objects classes.

surfaces geometry can also be composed from surfaces that
belong to different objects. Generally, concave geometries
can be identified with high reliability, however some fine dif-
ferentiation between them is not always possible.

4. Estimation of probability. Since the robot cannot reli-
able classify the type of surfaces, it calculates a probability of
correct classification. The calculation is done in the following
way. We measure the possible values ofα, d, γ{r,l}/S{r,l},
Pimax and estimateLvis for all types of surfaces. The robot
uses last square metrics to calculate the relation between the
measured values and these presaved types. For collective per-
ception a robot sends all possible classifications that havethe
probability over 30%.

Through the presented features of the IR-deep image we
tried to classify several surfaces and to identify the classifica-
tion probability as well, as base steps or components required
for the individual perception.

5 Collective Perception
The described in the previous sections individual percep-
tion provides the sensor input for the collective perception.
The approach for collective perception presented here pro-
poses that each robottalks to its neighbors to exchange
information about the surrounded object. In this task we
limit ourselves only to the problem ofcollective classifica-
tion [Pradier, 2005]. The robot possesses the objects models
and have only to order the collective sensor input to one of
the presaved model.

The distributed architecture for collective perception is
shown in Figure 6(a). There is no privileged agent with a
special role: all robots perform the same operations. The sug-
gested method is homogeneous, i.e. all robots act the same
and there is no need for a leader. Due to the homogeneous
architecture the approach is robust, scalable, moreover new
robots can join the team dynamically without any need to
readjust any task assignment. Figure 6(b) shows how robots
are deployed during collective observation. There are two
possible implementations for the propagation of hypotheses:
a single agent collects the information needed to identify an
object by moving around it and performing the sensing oper-
ations; a single agent acquires local evidences and propagates

hypotheses for the further fusion.

5.1 Object model
Given the limitations on the sensing capabilities of the robots,
object classes can only be defined in terms of their geome-
tries, as mentioned in Section 4. Figure 6(c) shows the 2D
geometries of the four object classes which will be used sub-
sequently. Once robots are situated around the object, they
can estimate the local properties of the object as seen from
their current positions calledviewpoints. The actual mea-
surement obtained from a viewpointv can be noted asS(v);
S : V 7→ feature vector and represents the output of the
distance sensors. Given an object class, it is possible to es-
tablish the expected sensor outputs for a number of views.
A number of viewpointsnKi

V for each object classKi are
chosen, along a trajectory situated in the center of the mea-
surement domain, and noted asV

Ki =
(

vKi
n

)

. The corre-
sponding expected measurements for objects of classKi are

S
(

V
Ki

)

=

(

S
(

vKi

1

)

, . . . , S

(

vKi

n
Ki
V

))

. Therefore, the ob-

ject model for a classKi incorporates an ordered sequence of
views for differentsuccessivepositions around objects of that
class. The starting position is arbitrary: only the ordering is
relevant. The direction — clockwise or counterclockwise —
can be chosen arbitrarily, but must be the same for all object
models.

Additionally, object models include information about the
reachability of different viewpoints, taking into accountboth
geometrical constraints and the limitations imposed by the
communication capabilities of the robots. It is noted as

WKi =
{ (

vKi

j , vKi

k

)
∣

∣

∣
vKi

k reachable fromvKi

j

}

. Fi-

nally, the corresponding distances between viewpoints in
WKi are added to the object model, asdV : V

Ki×V
Ki → R.

The set of all canonical measurements — corresponding to
sets of observable features, calledaspects— in the model

is notedA =
{

S
(

v
Kj

i

)}

and its cardinality can be re-

duced by clustering the expected measurements. In that
case, a sequence of canonical views could match several
(identity, position) pairs.

The goal of collective classification in a swarm of robots is

38



to estimate that classKi the object being observed belongs to.
Whennr robots are situated in an area surrounding the object
(measurement domain) in positionsw1, . . . , wnr

, they are or-
dered implicitly depending on their position around the object
as the perimeter of the latter is explored in a given trigonomet-
ric direction. Given these positions, the robots will measure
(S (w1) , . . . , S (wnr

)). The proposed collaborative classifi-
cation method will try to estimate the corresponding canoni-

cal viewpoints
(

vKn

n(1), . . . , v
Kn

n(nr)

)

given the above measure-

ments; the end result, namely the classKn the object belongs
to, is implicit. This means that not only the class of the ob-
ject, but also the relative positioning of each robot can be
obtained.

Without any other a-priori information, and based only on
the features observed by a robot, the latter can already gener-
ate an hypothesis regarding its current viewpoint, and implic-
itly which object it is observing, if the matched view is only
present in that object model. If the observed features match
closely the features corresponding to a view that is unique to
an object class, the latter can be retained as a likely hypothesis
for the whole object.

5.2 Hypotheses fusion

By observing the object from a given position, a robot can
only generate local, basic hypotheses. Generally this is not
enough to determine the class the object belongs to. The in-
formation obtained from different measurements should be
fused via exchange of hypotheses between different robots.
Amongst the many fusion processes introduced in the liter-
ature[Abidi and Gonźalez, 1992; Hall, 1992; Klein, 1999],
the Dempster-Shafer (DS) formalism[Hutchinson and Kak,
1992] was retained because it does not require a-priori class
probabilities and is able to capture the notion of uncertainty.
The often-cited drawback of the DS method is that its com-
plexity grows exponentially with the cardinality of the prim-
itive hypothesis set. However, due to the way hypotheses
are generated from the object models, the complexity can be
proven to be polynomial[Hutchinson and Kak, 1992].

Dempster-Shafer (DS) evidential reasoning[Shafer, 1976]
is an extension to Bayesian inference that allows each source
of information to contribute only to the evidence it has gath-
ered, without overcommitting or trying to make hasty choices
based on incomplete information. The Dempster-Shafer ap-
proach allows to express the lack of information by separating
belief for a proposition from its mere plausibility, assigning
probability masses to sets of propositions in such a way that
the latter is free to move to any subset.

Probability mass assignment. Information sources can
distribute probability masses among subsets ofΘ, whereΘ
is the set of all statements about the possible outcomes of a
random experiment. It is represented by theframe of dis-
cernment(FOD). The FOD is a set of mutually exclusive and
exhaustive statements namedsingletons. When a probability
mass is assigned to a set of singletons, it is free to move to any
subset. Consequently, assignment of probability mass toΘ
represents ignorance, since the probability mass can move to
any element ofΘ. When a source of evidence cannot differ-
entiate between two propositions, it can assign a probability

mass to a set including both.
The probability mass assignmentfunction associates a

probability mass to the sets in the power-set2Θ of Θ; it is
therefore a functionm : 2Θ −→ R verifying the following
propertiesm (∅) = 0, 0 ≤ m(X) ≤ 1,

∑

x∈2Θ m (x) = 1.
The subsets{xi} of Θ such thatm (xi) > 0 are calledfo-
cal elements; the union of those subsets is termedcoreof the
probability assignmentm.

Dempster’s orthogonal sum. Two different sources
of information will yield different mass distributionsm1

and m2. Dempster’s rule of combination, or orthogo-
nal sum, can combine them if they are relative to the
same FODΘ, according tom = m1 ⊕ m2, m (X) =
K

∑

X1∩X2=X m1 (X1) m2 (X2). K is a normalization term

defined asK =
1

1 −
∑

X1∩X2=∅ m1 (X1) m2 (X2)
, which

normalizes the new probability masses so that their sum
is still unity. It can be seen as a measure of the degree
of conflict between the two sources of information. When
∑

X1∩X2=∅ m1 (X1) m2 (X2) = 1, the information is com-
pletely inconsistent and it is impossible to integrate it: the
orthogonal sum is then undefined.

Hypothesis refinement. General, non-basic hypotheses
are notedH level = { (ak, . . .)| ak ∈ A}. It is important to
note thatak could correspond to the output from several
canonical viewpoints. The set of all possible hypotheses is
notedH. Clearly the sequences of canonical measurements
can only correspond to valid view sequences in some object
model; impossible sequences, such as those having views that
cannot belong to the same object, will not be generated.

In general, a robot will propagate its current beliefs about
the object to the “next” neighboring robot along the perimeter
of the object — initiallym

(

H0
)

. When this information is
sent, the receiving robot can access the following:
- belief of the previous robotm1 (Hn);
- distance to the robot whose message is being receiveddpre;
- its own beliefs about the observing part of the object
m2

(

H0
)

.
The Dempster-Shafer combination rule for two hy-
pothesis sets in a compatible frame of discernment

m (Hn) =

∑

Hi∩Hj=Hn
m (Hi) m (Hj)

1 −
∑

Hi∩Hj=∅
m (Hi) m (Hj)

is slightly

modified to use the information about the relative
positions of the robots as follows. Given an hy-
pothesis set Hn, the refined hypotheses will be
Hn+1 = {U (h ⊕ a)|h ∈ Hn, a ∈ A, h ⊕ a ∈ H},
where the last condition means that the new view se-
quence must be possible for at least one object class.
The operation⊕ : H × A 7−→ H is defined as
h ⊕ x =

(

h1, . . . , hn, . . . , am1
, . . . , amp

, x
)

, where the
views am1

, . . . , amn
are a “filler”, andx is the view that is

to be added to the sequence. An additional restriction can
be imposed to the⊕ operation, namely that the filler has
to be no longer than some arbitrary number of viewpoints
k with p < k in the above expression. The output of the
functionU(h) is defined as the shortest hypothesis equivalent
to h, that is, an hypothesis that corresponds to the same
(object, offset) matches.
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Algorithm 1 Hypothesis refinement (pseudocode).
functionnew hypotheses(incomingmessage)
in hypotheses = decode(incomingmessage)
new hypotheses ={}
for hypothesis in inhypothesesdo
for feature in initialfeatureestimatesdo
if existssuccessor(hypothesis, feature)
for succ in successors(hypothesis, feature)
pm = hypothesis.pm * feature.probability *
distancefactor(incomingmessage.distance, succ.dist)
if succ not in newhypotheses
add succ to newhypotheses with p.m. pm

else
add pm to the probability mass of succ in newhypotheses

end endfor endif endfor endfor
trim hypotheses(newhypotheses)
total pm = sum of all prob. masses in newhypotheses
for hypothesis in newhypotheses
hypothesis.pm /= totalpm endfor

returnnew hypotheses
endfunction

The new probability mass assignment is calculated with
m′ (hn+1

i

)

=
∑

hn⊕x=h
n+1

i
m1 (hn) m2 (x) ξ (dpre, dmodel),

m
(

hn+1
i

)

=
m′(h

n+1

i )P
k m′(h

n+1

k )
, where an additional normaliza-

tion is required due to the usage of the distance term
ξ (dpre, dmodel). The latter reuses the known distances
between the last canonical viewpoint ofhn and the view-
point that is chosen to matchx. ξ is taken as the normal

distributionξ (dpre, dmodel) = 1√
2πγdmodel

e
− (dpre−dmodel)

2

2γ2d2
model

whose standard deviation depends on the expected distance,
to cope with the increasing inaccuracy as the latter grows;
in practice, values aroundγ ∼ 0.5 yield good results. The
overall process is described in Algorithm 1.

5.3 Hypothesis encoding and compression

Once a number of robots have acquired information about the
object they are observing, hypotheses can be refined through
exchanges. The associated communication cost is propor-
tional to the volume of data being communicated. It is pos-
sible to bound the cost of the communication associated to
collective classification as follows. It can be seen that there
can only be at mostnV =

∑

i nKi

V hypotheses being consid-
ered at any point in time, representing the number of differ-
entiable object identities and poses. The information about
the hypothesis to be transmitted can be encoded either by ex-
plicit encoding on a per-hypothesis basis, or by factoring out
information common to multiple hypotheses and using im-
plicit information (like ordering) across message fragments.

Per-hypothesis encoding. A unique identifier for each
hypothesis can be encoded using only

⌈

log2

∑

i nKi
v

⌉

bits.
Due to memory constraints, hypotheses can be encoded al-
ternatively ash = 〈i, l, o〉, whereKi is an object model,l
is the number of aspects of the hypothesis ando is the off-
set in the canonical views sequence. Thus, each hypothesis

can be encoded in at most⌈log2 |Ki|⌉ +
⌈

2 log2 maxi nKi

V

⌉

bits. The amount of information transmitted fork hy-
pothesis is directly proportional to the latter, resultingin
k

(⌈

log2

∑

i nKi
v

⌉

+ cpm

)

bits normally, wherecpm is the
amount of bits needed to encode the probability mass itself.

Implicit encoding. Only hypothesis selectorcan be sent,
indicating which hypotheses are actually transmitted and ase-
quence of probability masses. It consists ofnV bits: then-th
bit specifies if the probability mass of the hypothesis whose
identifier isn is attached to the message. In order to trans-
mit k hypotheses

∑

i nKi
v + kcpm bits are needed. Therefore

this encoding approach is only practical whenk ≫ 1, that is,
when a large number of probability masses are to be transmit-
ted, so the overhead is amortized.

Linear encoding. If a simple linear, fixed-point scheme
is employed, and the resolution is chosen to be a fraction of
the average probability massm

k
, as many as

⌈

log2

(

k
m

)⌉

bits
would be needed. For a reasonable value ofk = 10 andnV =
60, a fixed-point encoding would require⌈log2 (10 × 60)⌉ =
10 bits per probability mass.

Dynamic range compression.ITU-T G.711[ITU, 1988]
introduces twocompressionalgorithms based on the follow-
ing key idea: the signal is compressed according to a log-
arithmic expression. The simplest one,µ-law, applies the
transformy = sign (x) ln(1+µ|x|)

ln|1+µ| ,−1 < x < 1 whereµ is
chosen according to the desired output resolution; for 8 bits,
µ = 255. The similarity with probability mass encoding is
striking. Indeed, based on theµ-law expression, probability
values can be encoded usingE(m) = 2n ln(1+(2n−1)m)

n ln(2) so
that the encoded probability mass fits inn bits, and the dis-
tortion ratio is minimal. Figure 7(a) shows the minimal rep-
resentable probability mass for different encoding lengths.

Hypothesis set compression.Regardless of the method
used to encode the hypothesis set, the cost, in terms of amount
of information to be transmitted, grows with the number of
hypotheses propagated. It is thus desirable to minimize the
cardinality of the hypothesis set before transmission. This
can be performed either bytrimming (discarding hypotheses
whose probability mass is comparatively or in absolute terms
small) or by coalescing(grouping several hypotheses into
one corresponding to the union of the corresponding proposi-
tions).

Trimming. The cardinality of an hypothesis set can be re-
duced by simply ignoring unlikely hypotheses. The simplest
way is retaining only hypotheses whose probability mass is
higher than some absolute threshold. Figure 7(b) shows the
cardinality of the hypothesis set when the latter is trimmedac-
cording to different absolute thresholds. The hypothesis can
also be made smaller by removing all the hypotheses whose
probability mass is below a threshold relative to the most
likely hypothesis, i.e. those that satisfypm < r ×maxi pmi,
wherer is the relative threshold andpmi are the probabil-
ity masses. The performance of this method is illustrated in
Figure 7(c).

Coalescing. It is possible to further minimize the cost of
transmitting an hypothesis set by transferring only some hy-
potheses. Those not specified explicitly can be coalesced into
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Figure 7:(a) Minimal representable probability mass using dynamic range compression; (b) Number of hypotheses with reduction based on
absolute threshold;(c) Number of hypotheses with reduction based on relative threshold.

a more general hypothesis carrying the sum of the probabil-
ity masses usingm(X) =

∑

Y ⊆X m(Y ). This scheme also
makes the overall communication more robust, since it can be
interrupted without adverse consequences at any point during
the transmission of the probability masses.

Termination. When information fusion is successful, the
whole group of robots will converge as a whole towards a
common decision regarding the nature of the object. The final
decision of each robot can be taken as the hypothesis with the
highest associated probability mass. It is therefore necessary
to know when a given hypothesis set can be considered as
”refined enough”. The key idea is that hypothesis refinement
can be considered finished when enough evidence has been
collected, i.e. the ambiguity of a set of hypotheses is larger
than a given threshold.[Hutchinson and Kak, 1992] defines
the ambiguity of an hypothesis set, closely related to the con-
cept of entropy in information theory, as follows:A (Ω) =

−K
∑

θ∈Ω p (θ) log p (θ), p (θ) =
P

θ∈H m(H)

|H| . This defini-
tion takes into account the fact that an hypothesis might cor-
respond to several individual statements or singletons. Itcan
be seen than the ambiguity measure of the probability mass
assignment{Ω =⇒ 1}, i.e. complete ignorance, corresponds
to the entropy of an equiprobable distribution over|Ω| possi-
ble outcomes.

6 Preliminary experiments and discussion
Preliminary experiments have been performed with 10 pro-
totypes of the microrobots Jasmine in the field of individual
and collective perception. In experiments we measured the
feature extraction and surface’s recognition, as described in
Section 4 and collective hypothesis refinement, as described
in Section 5. The robots are placed in the situations like those
depicted in Figures 4, 5. Table 1 contains the probability mass
assignments for the three stored patterns “flat surface”, “con-
cave area” and “M concavity”, represented in Figure 6 (c).
The calculated probabilities from experimental scans confirm
the results predicted by the simulation. The collective clas-
sification process was tested in hybrid approach, where the
real scan data are taken from the microrobots, however the
hypothesis fusion was performed in the host computer. The
reason is a lack of bidirectional communication in the proto-
types, that is currently under improvement. Figure 8(a) shows

Feature Distances Probability masses
Flat Concv. M Flat Concv. M

Conca- 1020 543 1096 0.26 0.49 0.24
vity 765 872 1359 0.41 0.36 0.23

664 764 1251 0.42 0.36 0.22
1275 861 995 0.27 0.39 0.34
702 215 1105 0.20 0.67 0.13
1020 1020 1418 0.37 0.37 0.26

Flat 258 812 1864 0.69 0.22 0.10
surface 259 954 1846 0.71 0.19 0.10

510 872 1862 0.54 0.31 0.15
M 1785 1785 1646 0.32 0.32 0.25

conca- 1530 1343 789 0.25 0.28 0.48
vity 1436 1288 1190 0.30 0.34 0.36

1444 1331 895 0.27 0.29 0.44
1530 1376 1053 0.28 0.31 0.41
1624 1570 1312 0.31 0.32 0.38
1457 1294 861 0.26 0.29 0.44
1275 1061 559 0.22 0.27 0.51

Table 1: Probability mass assignments according to Jasmine’s
scan data.

the belief of a robot after its initial estimation, which is based
only on the information obtained via distance sensors, and af-
ter reception of messages from other robots. The belief values
converge quickly towards the correct value.

Figure 8(b) illustrates the evolution of robots placed around
a “T shaped” object. The curves “correct”, “wrong class” and
“wrong pose” indicate respectively the fraction of robots that
took the correct decision, those which made a mistake in the
class of the object, and finally those which were able to deter-
mine the class of the object correctly but could not estimate
their relative positions accurately. The graphs corresponds to
an average value for several successful processes.

Figure 8(c) shows the success rate for different conver-
gence rates. It can be interpreted as follows: a pair

(

x
100 , y

100

)

in the curve means that iny percent of the runs the rate of
correct decisions remained stable atx percent or higher af-
ter thirty message exchanges. We can therefore see that in
around 66% of the processes all robots took the right deci-
sion regarding the object identity and their relative position
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Figure 8: (a) Evolution of the classifying estimations of a robot. The belief value evolves asthe robot obtains information from its peers,
while observing an object of class “T shape”;(b) Convergence in successful collective classification processes (T);(c) Success rate for
different convergence thresholds.

(the rate for a convergence equals to or greater than 80% ex-
ceeds 82%), more than one half of the robots reached correct
decisions regarding both object identity and position in over
90% of the classification operations. The group of microro-
bots converged towards a wrong decision regarding the iden-
tity of the object in around 5% of the classification processes.
Around 10% of the classification processes end up with less
than one robot out of ten with correct identity but wrong posi-
tional decisions. Around 15% of the classification processes
failed to converge to either a correct decision within a 20%
rate or to an erroneous decision.

Summary. In this paper we addressed the specific prob-
lem of perception in a swarm of microrobots. We investigated
the process of individual perception by designing and imple-
menting the IR sensory system. We researched also the prob-
lems related to IR-based perception and developed/tested the
hardware and the corresponding algorithms allowing sensing
and classifying the geometry of the surfaces. The collective
classification was performed by fusing local hypotheses by
using a formalism based on the Dempster-Shafer evidential
reasoning. Communication needs were analyzed. Experi-
ments demonstrated that, the size of robot is scaled down
(over 20 times in comparison with the middle-size league
in RoboCup), however the microrobot still possesses cogni-
tive features. However we also observe that the smaller the
size (the more reduced capabilities) of a separate robot is,the
more functionalities can be achieved only in collective way.
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Abstract 
This paper demonstrates the use of Multi Agent 
Systems (MAS) to model a real-time dynamic 
system. The specific goal here is to diagnose faults 
in an analogue electrical circuit. This modelling 
represents a layer from the seven layers 
architecture described on [Zaki et al, 2005]. The 
design is described and the implementation is 
carried using the Jade – Multi Agent toolkit.    

1 Introduction 
An analogue electrical circuit is an example of a dynamic 
continuous non-linear and time invariant system. Certain 
faults diagnosis approaches can fit better for different types 
of systems. For instance, while a rule-based system and 
Modal-Based Diagnosis MBD are suitable for a system 
involving complicated interactions and whose outcomes are 
hard to predict, they are not yet effective for a real-time 
continuous system [Sampth, 1995].  
 
This paper shows that how the type of system has impact on 
the choice of the modelling techniques and that modelling is 
a crucial phase when building diagnostic tasks. It also 
demonstrates the effective use of Bond Graphs to model 
dynamic systems. Similarities and commonality is drawn 
between Bond graphs and agents. The seven diagnostic 
layers, where each layer is represented by one or more 
dedicated software agents, are revisited. Emphasis, 
however, is on two of the middle layers: modelling and 
controlling. Many of the design issues for those two layers 
are explained, such as threading and behaviours, transferring 
effort and flow between agents, agents’ relationships, 
controlling the agents, and the automatic creation of the 
model. 

1.1 Models and Modelling 
The characteristics of the system will impose on the 
modelling techniques used, for example Automata and 
Petri-Nets are suitable for discrete event systems (known as 
Active Systems), but not for a dynamic continuous systems. 
In this paper a MAS is used to model a real-time dynamic 
system, an analogue electrical circuit.   

 
Modelling is a crucial phase when building diagnostic tasks 
[Console, 2001]. Modelling may be accomplished at 
different level of abstraction. Models can be classified into 
two main categories quantitative models (sometimes 
referred to as analytical models) and qualitative model 
(sometimes referred to as conceptual models). MAS provide 
a suitable suite to utilize both types of modelling. 

1.2 Faults and Failure 
Component life-time can rarely be estimated accurately. 
Hardware can be viewed at three different levels: 
component level, board level, and system level (i.e. 
detecting the replicable unit). Failure in one of the 
components or broken links (wires) can lead to an open-
circuit or a short circuit. The fault diagnostic process is 
broken into three steps:  1) fault detection, 2) fault isolation 
and 3) fault diagnosis. In some cases the fault diagnosis 
includes fault recovery. While detecting faults can be 
accomplished by a real-time inspection of the system, 
isolation and diagnosis requires a reasoning mechanism. 
Faults can be classified into different classes: 1) based on 
the time taking to occur (abrupt and incipient faults), 2) 
based on the period of time they occur (intermittent and 
permanent faults), 3) based on the number of faults (single 
and multiple faults), and 4) based on failure coverage 
(complete and partial). MAS, intuitively, can cope with 
most type of faults. 

1.3 Diagnostic Techniques 
Diagnostic tasks are mostly offered by the two 
communities; FDI (Fault Detection and Isolation) and DX 
(Based on Intelligent techniques). Both methods use an 
explicit model, which is known as model-based diagnosis 
(MBD) to predict normal behaviour. The process 
(algorithms) detects faults from inconsistencies between the 
observed (from real physical system) and the predicted 
behaviour by the model. Then they interlink a set of 
components with the detected inconsistencies to isolate the 
faults. But techniques and hypothesis are different. FDI uses 
Analytical Redundancy to expresses a constraint among 
possible observations that hold when the system is working 
correctly. The Analytical Redundancy builds quantitative 
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mathematical models. Quantitative models require 
knowledge of differential equations, transfer functions, 
signals and pattern estimation.   The DX approach uses 
consistency-based logic and logical inference to determine 
the symptoms, then determines the minimal conflicts, and 
hence determines the minimal diagnoses. The DX approach 
builds qualitative models for the systems. There were 
common agreements among researchers from both 
communities that a bridge can be made between the 
techniques. Studies showed that major parts of the two 
theories fits into a common framework. As a result, 
technology such that OBD II (on-board diagnosis), which 
make use of both quantitative and qualitative modelling 
[Struss, 2001].  
 
Because of the nature of the diagnostic tasks – uncertainty 
and incomplete data probabilistic and fuzzy methods may be 
used. Incipient faults, in particular may require the use of 
probabilistic models.  

2 Related Work - Diagnosis Using Agents 
A multi agent system was developed to monitor industrial 
turbine start-up sequences. It was also used for data 
interpretation in electrical plant monitoring [Mangina et al., 
2001; Hossack et al., 2003]. Zeus (an agent building toolkit 
from BT) was used. 
 
Schroeder [Schroeder, 1998] proposed an architecture for 
autonomous model-based diagnosis agents. He developed a 
logic programming approach for model-based diagnosis and 
introduced strategies to deal with more complex diagnosis 
problems, and then embedded the diagnosis framework into 
the agent architecture of agents. Two algorithms were 
developed; a bottom-up algorithm to remove contradiction 
from extended logic programs and top-down evaluation of 
extended logic programs. PVM-Prolog was used to 
implement the algorithms. Both algorithms are evaluated in 
the circuit domain including some of the ISCAS85 
benchmark circuits. Many diagnosis problems were 
modelled such as: digital circuits, traffic control, and 
integrity checking of a chemical database, alarm-correlation 
in cellular phone networks, diagnosis of an automatic mirror 
furnace, and diagnosis of communication protocols.  
 
Multi-Agents-based Diagnostic Data Acquisition (MAGIC) 
project was funded by the European Commission [Köppen-
Selige et al., 2001]. One of the main goals of MAGIC is the 
on-line detection and diagnosis of incipient or slowly 
developing faults in complex systems.  The MAGIC basic 
architecture was based on multi-level approach. The idea is 
that the task of the complex embedded system's diagnosis 
and operator support is distributed over a number of 
intelligent agents, which perform their individual tasks 
nearly autonomously and communicate via the MAGIC 
architecture. The tasks of the six levels are as follows:  
process specification, information acquisition, diagnosis, 
diagnosis monitoring, decision, and operator support. 
Because agents allow you to model the device, the process 

and the topologies in one shot, a MAS approach is adopted 
to perform diagnostic tasks. The strengths and advantages of 
MAS architecture allow us to integrate different diagnosis 
tools and techniques. It would also support heterogeneous 
distributed systems. It was suggested to separate between 
different tasks of diagnostics using what it was called the 
Seven Diagnostic layers [Zaki et al., 05].  
 
The work in this paper is advancements in the state of the 
art in the area of fault diagnosis. The idea is new and the 
approach is interesting.  No similar work was reported 
before. 

3 Agents and Bond Graphs 
Bond Graphs are widely used for modelling dynamic 
systems [Mosterman and Biswas, 1998]. Similarities and 
commonality can be drawn between Bond Graphs and 
agents 
 
Bond Graphs is a modelling language and it is domain 
independent. The Bond is the connection to enable Energy 
transfer among components. Two components A and B will 
have link between them with two associated values e (effort) 
and f (flow). Bond Graphs force you to make explicit 
assumptions about the physical system and it is based on 
small number of primitives: dissipative elements, energy 
storage elements, source elements and junctions. Physical 
system can be mechanics, electricity, hydraulic and 
thermodynamic. 
 
In an electrical system, the effort e is the voltage and the 
flow is the current. While in a mechanical system, the effort 
e is force and the flow is velocity. The product of the effort 
and the flow is power and integration of power is the energy. 
The state of the system is determined by the energy transfer 
between components, more accurately, the rate on energy 
transfer.  
 
For passive 1-port elements (energy storage elements); 
resistor R, e = R � f, e (t) = R (t) � f (t). For capacitor C, e = 
1/C � f dt. Other 1-ports are Effort Source (Se) and Flow 
Source (Sf). To connect elements together, for 2-ports, 
transformers for examples, e2 = (b/a) � e1 and f1 = (b/a) � f2. 
This leads to e1 � f1 = (a/b) � e2 (b/a) � f2 = e2 � f2.  
 
For 3- ports there are 1-junction (Common flow junction), 
which enforces Kirchhoff’s voltage law, and 0-junction 
(Common effort junction), which enforces Kirchhoff’s 
current law. The Common flow junction is equivalent of 
series junction where there is no loss of energy at junction 
and net power in is equal to net power out, all flows is equal 
to 0. The Common effort junction is equivalent of parallel 
junction where there is no loss of energy at junction and net 
power in is equal to net power out and all efforts is equal to 
0. Figure 1 shows Bond Graph for a circuit consists of 
battery, capacitor and resistor. 
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Causality relations are usually used with Bond Graphs to aid 
the generation of equations among system variables. As 
described above a Bond Graph considers variables as 
interacting variables pairs. The cause effect relation 
considers the effort as push and the flow as response. There 
are various types of causality relation these are: necessary 
causality, restricted causality, integral causality, derivative 
causality, and arbitrary causality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: Bond Graph representation for a simple 
circuit 
 
All of these causal relations are based on algebraic relations. 
Figure 2 shows Bond graph with causality relationship for 
electrical circuit with voltage source, inductor and resistor 
(R1) in series connected with capacitor and resistor (R2) in 
parallel. In the Bond Graph diagram, the relation between 
Se, L, and R1 is restricted causality.  The relation between 
1, C, and R2 is also restricted causality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Bond Graph with causality relations for 
electrical circuit 

 
Agents are a suitable implementation environment for Bond 
Graphs where many of the features and concepts in a Bond 
Graph can be adopted easily by agents. For example 
messages exchange between agents can be viewed as the 
energy transfer (the arrow) between the elements on the 
electric circuit. Direct mapping can be drawn between the 
agents and the nodes on the electric circuit. Causality 
relations can be also represented on agents as it will be 
described in the next section. 

4 Overall Architecture 
The overall architecture is composed of 7 layers, called the 
Seven Diagnostic layers. Each layer of the Seven Diagnostic 
layers receives data and depends on the lower layer. 
Practically each layer can be represented by one or more 
dedicated software agents. The Seven Diagnostic layers 
depict both; hardware and software.   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3: The middle three levels – the core 
 
At the first level is the physical hardware: board, device or 
systems (e.g. a dynamic electrical circuit contains a battery 
and two resistors). The second level includes both hardware 
and software for data acquisition purpose, reading on-line 
real-time data from the device. This would include analogue 
to digital conversion. The third level - the communication 
level – is responsible for preparing, formatting and 
packetisation of the data to be ready for the diagnostic 
engine at higher levels. Levels 4, 5 and 6 are the core of this 
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research and they represent the diagnostic engine.  Figure 3 
shows these three levels in more details. 
 
At the fourth level, Figure 3, the modelling level, we try to 
use the dynamistic of the agents to be used as a modelling 
language for dynamic systems. A qualitative Model-based 
diagnosis is implemented using the agent's architecture.  
Bond Graphs are used for modelling dynamic systems. 
Similarity and commonality was drawn between Bond 
Graphs and Agents in the previous section. At this level 
also, a Transform agent will be used to transform 
quantitative models (developed by third software package, 
e.g. Matlab) into the qualitative Model-based diagnosis 
agents. However, mathematical models will be still used 
inside the agents.  At the fifth level, the diagnostic engine 
level, there is the main agent which monitors and controls 
the overall mechanism of diagnostic tasks. At this level 
there are also agents that host different tools, such as an 
agent for neural networks (NNs) and other for genetic 
algorithms (GAs) and etc. 
 
At the sixth level, there are two agents. One agent is to 
make the final decision and select among different 
hypothesis. The other agent is to produce a suitable 
explanation to the end-user. At the higher level, there is a 
user friendly interface to interact with the user 

5 Design and Implementation Issues 
In the rest of this paper the focus is on some design and 
implementation issues for levels 4 and 5. Figure 4 shows the 
two layers out of the complete architecture: the lower layer, 
in Figure 4, is the modelling layer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4: Diagnostic layers architecture 
 
The dynamics of the agents allow to perform the modelling. 
A qualitative model based diagnosis in implemented using 

the agent’s platform. The upper layer, in Figure 4, is the 
diagnostic engine level - one agent which monitors and 
controls the overall mechanism of diagnostic tasks. 
 
For each single component on the electrical circuit there is 
an agent to represent it and monitor it. In a real-time each 
agent reads two values; current and voltage (flow and 
effort), at different nodes on the electrical circuit. These 
nodes of measurements are pre-selected near the monitored 
components. The real-time observed values are compared 
with the expected values which are stored inside the agent. 
Expected values are taken from the numerical model that 
was already built by one of the electronics design tools, e.g. 
PSpice and it was transformed to the agents by the 
Transform agent.  
 
Each dual reading (the energy transfer which is discussed in 
the previous sections) determines the status of the 
component. The status of the component can be either: 
GOOD, FAULTY, DEGRADING, UNKNOWN, and 
UPNORMAL. The status of the components are different 
form the actual status of the agents, Jade (agent 
toolkit/library) provides the following status for the agents: 
INITIATED (agent build, not registered, and has neither 
name nor address), ACTIVE (registered, has a regular name 
and address), SUSPENDED (agent is currently stopped, no 
agent behaviour is being executed, internal thread of agent 
is suspended), WAITING (agent is blocked, waiting for 
something, its internal thread is sleeping, wake up when 
message arrive), TRANSIT  (mobile agent is migrating to 
new location), and DELETED (agent is definitely dead) 
 
There is no direct mapping between the status of the 
components and the status of the agents. This means that 
when the component is FAULTY it doesn’t necessarily 
mean that the agent is DELETED.  
 
The dual readings allow capturing the open and short circuit 
failures on the electrical circuit. Here we assume that the 
data acquisition software is embedded into the agent itself. 
In the complete architecture, this would take place at layers 
1 and 2. Values should be read at milliseconds intervals.  
Current sensors should be fitted into the circuit. The 
accuracy of data read depends on the efficiency of the 
hardware and software used for data acquisition. A good 
data acquisition tool should have precision timing and high-
speed sample buffer.  There are two modes for data logging 
from the electrical circuit: stream and burst.  Software timed 
acquisition (also called command/response) allow the PC to 
send a command to the device and it responds with data in 
either modes; stream or burst. In burst mode, for a typical 
device, up to 1,024 samples per channel will be acquired 
and then stored in a buffer. In stream mode, 300 
samples/second per channel will be acquired and then stored 
in the buffer. Simultaneously the data is transferred from the 
device buffer to the PC buffer. The device should also have 
reasonable numbers of analogue and digital I/O channels. 
For I/O digital up to 50 Hz per bit is needed. 
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Inside each agent, there is one or more fault model which 
describes the expected energy transfer values; current and 
voltage when the named component fails. For example, a 
simple circuit consists of a DC battery and two resistors, 
shown in Figure 5, demonstrates how agents can be used to 
model and then detect a fault in a real-time manner for as an 
example for a dynamic system. 

 
 
 
 
 
 
 
 
 

 
 
Figure 5: A simple circuit consists of DC battery and two 
resistors 
 
For this simple circuit we would have three agents to model 
the circuit: V1 agent, R1 agent, and R2 agent. Each agent 
monitors one single component. Three positions (a, b, and c 
are selected to acquire the energy transfer values, flow and 
effort. This means we six values will be available as 
follows: IR1 and VR1 at point a, IR2 and VR2 at point b, 
IV1 and VV1 at point c. For this circuit, I = 50mA and P = 
0.5 watt.  The agent which is representing and monitoring 
R1, named A_R_R1, will be reading the IR1 and VR1 
values from the circuit, and among other data the following 
fault model:           
  
R1 is faulty when:   

IR1= 0  VR1= 10 
 IR2= 0  VR2= 0 
 IV1= 0  VV1= 0 
 
The observed values are compared with the expected values 
and these are: IR1= 50mA and VR=10.  If the values are not 
matching the agent, as one of the task to do among other 
tasks, is to investigate the fault models. 
 
The agent which is representing and monitoring R2, named 
A_R_R2 observes the IR2 and VR2 values and compares 
them with the expected values and then investigate 
following fault model: 
 
R2 is faulty when:   

IR1= 0  VR1= 10 
IR2= 0  VR2= 5 

 IV1= 0  VV1= 0 
 
The agent which is representing and monitoring V1, named 
A_R_V1 observes the IV1 and VV1 values and compares 
them with the expected values and then investigates the 
following fault model: 

 
V1 is faulty when:   

IR1= 0  VR1= 0 
 IR2= 0  VR2= 0 
 IV1= 0  VV1= 0 

5.1 Creating the Model/Agents Automatically 
The transform agent which will be used to transform 
quantitative models into the qualitative Model-based 
diagnostic agents can create the agent model automatically. 
This can be done by parsing the Netlist file (the output of a 
design package, such as PSpice) and creates agent for each 
node in the electrical circuit. For example, the following 
part of the Netlist file for circuit in Figure 5 when modelled 
with PSpice is as follows: 
 
Name  +Node  +Node  Value 
R_R1  $N_0002 $N_0001 100R 
R_R2  $N_0001 0  100R 
V_V1  $N_0002 0  10V 
 
The transform agent can parse the Netlist file and creates 
agents (the model) automatically. This eases the 
implantation of the model, adds extra flexibility to the 
architecture, and allows integration with different packages. 

5.2 Controlling Agents 
There are three ways to make agents communicate together. 
The interest here is on the communication at the abstract 
level. The low level communication (interaction protocols) 
is handled by the agent toolkit as it will be described in the 
next sections. These are: 
 

• Agents communicate together using an external 
controller (a control agent as in Figure 2). 

• Agents communicate together using a build-in 
controller inside each agent. 

• Agents communicate using external and build-in 
controllers. 

 
When acquiring the values from the dynamic systems and 
when communicating between agents, time slices is a 
crucial issue and this should be handled carefully by the 
implementer and the by actual agent toolkit.  

5.3 Using a Rule-Based Engine to Control Agents 
It is recommended to use an agent-reasoning engine to 
control the behaviours (activation and deactivation) of 
agents. Reactive-deliberative agent architecture can be built. 
The agent-reasoning engine plays the deliberative role and 
agent behaviours play the reactive role. The external control 
agent in our architecture embeds JESS – a rule-based 
engine. However, the architecture allows the agents to also 
have reactive relations among themselves without the 
interference of the external control. This is because we have 
decided to use both external and internal controllers at the 
same time. 
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5.4 Agent Relationships 
Each agent will have more than one thread (task) to deal 
with all sorts of communications coming from or going out 
to the outside world. One or more thread read the values 
from the dynamic system. Others threads communicate with 
neighbour agents. More threads communicate with related 
(relative) agents. And other threads communicate with 
related (relative) neighbour agents. This adds more work on 
the agent to handle all these type of traffics. Neighbour 
agents are those that are directly connected to the named 
agent Relative agents are those that have relation with the 
current agent. Relative neighbour agents are those that have 
relations and they are directly connected to the named agent. 
 
This social arrangement of the agents into: neighbour, 
relative, and relative neighbour agents, allow the agent to 
deal with the incoming and outgoing information 
(messages) in prioritized manner. In this way the priority of 
communications should be classified into the following 
classes: 
 

1.  Controller (external) 
2.  Self-control 
3.  Relative-Neighbour 
4.  Relative 
5.  Neighbour 

   
Therefore, each thread running inside the agent should 
belong to one of these classes. For, example, the thread 
which is communicating with the Controller agent is of type 
Controller thread and this one has the highest priority. And 
the thread that is communicating with the dynamic system is 
of type Self-control which has priority 2. This is somehow 
maps with the casualty relations in Bond Graph.  

5.5 Threading and Behaviours 
In Jade toolkit threads are implemented in what is called, 
behaviours. Behaviours are of two types: primitive and 
composite. Primitive behaviours can be one of three 
choices: 1) Simple behaviour which models simple atomic 
behaviour, 2) OneShot behaviour which is executed only 
one, 3) Cyclic behaviour which is executed forever.  
 
The Composite behaviour is made up by composing a 
number of other behaviours, called children. This means 
that the actual operation of the composite agent is defined 
inside its children. The composite agent its job is to 
schedule its children. Three types of composite classes are 
defined:  1) Sequential behaviour which executes its 
subclasses sequentially and terminates when all sub-
behaviours are done, 2) Parallel behaviour which executes 
its sub-behaviours concurrently and terminates when a 
particular condition on its sub-behaviours is met, or when 
any one of its sub-behaviours are terminated. Or when a 
user defined number N of its sub-behaviours have finished. 
3) Finite State Machine behaviour which executes its 
children according to a user defined Finite State Machine. 
The activity of its child performed within a state of the 

FSM. When state Si (one of its child) completes, its 
termination value is used to select transition to fire and new 
state Sj is reached. This goes on until the final state is 
reached. For our problem Parallel is most appropriate 
because the threads executes concurrently.  

5.6 Transferring Effort and Flow between Agents 
Effort and flow in the electrical circuit are mapped as 
messages in the agent environment. The form of message 
exchanged between agents is defined in the FIPA 
communicative act and the Coder/Decoder classes for the 
Semantic Language for messages. The FIPA standards ease 
the communications between different agents written in 
different languages and running on different platforms.  
 
The message is composed of content and auxiliary parts. 
The actual content can be encoded in different ways 
according to the Agent Communication Language (ACL). 
Content can be encoded as Strings, Java objects, or ontology 
objects.   
The most basic way consists of using strings. It is 
convenient for atomic data but not for structured data or 
object. The meaning of the String is application dependent. 
The second way to code content as serialized Java object 
(not readable). This method is useful when all agents are 
written in Java. The third method is to define ontology (own 
vocabulary and protocols). This method can be used if more 
flexibility is required. At this stage for our application, 
String is sufficient to transfer the energy elements: effort 
and flow information between objects.  
 
The auxiliary parts of the message (specific to Jade) are: 
sender (agent ID), message type (performative), Recipients 
(agent ID), Protocol type, ReplyWith, InReplyTo, ReplyBy, 
and ConversationID (which is useful when having parallel 
negotiation with several other agents). Message types can be 
for example: INFORM (agent gives another some useful 
information), QUERY (agent asks question), PRPOSE 
(agent starts bargaining). Answers to performative include 
AGREE and REFUSE. 
 
Jade provides Template messages. Template messages are 
useful to our application since it allows us to filter messages 
and set up distinct behaviours to handle messages from 
various agents or various kinds of messages.  

5.6 Inside the Agents 
Each agent contains two Parallel behaviours; controllers and 
listeners. Listeners are implemented as sub-behaviours. 
Listeners listen to incoming messages. Four listeners are 
implemented; ObserveVaules (listens to data from the 
hardware), ListenToAllRN (listens to Relative-Neighbour 
agents), ListenToAllR (listens to all Relative agents), and  
ListenToAllN (listens to all Neighbour agents). Agents, 
behaviours and sub-behaviours all work in parallel. 
Controllers are also implemented as sub-behaviours. Two 
controllers are used; ControltaskInt (manages the internal 
communications between the different behaviours) and 

48



ControltaskExt (manages the external communications 
between the agents). A UML can be used to describe the 
contents of each agent. More tools and notations need to be 
added to UML to complement the extra features in agents. 

5.7 An Example and Results 
The hardware for the DC circuit described on Section 5 was 
built. The circuit consists of a DC battery and two resistors. 
The software agents were also implemented - using Java and 
Jade. A simple scenario was prepared for testing. The 
scenario is using the build-in controller which resides inside 
each agent (no external controller was used and therefore no 
rule-based engine was used to control the agents). Also no 
fault models were presented inside the agents. 
 
For this scenario three software agents were designed 
manually (no automatic creation of agents). Faults were 
injected into the circuit to different components. To speed 
and ease the testing procedures, faults were injected directly 
into the software. Assume an incorrect reading (or null 
reading) was inspected by the ObserveVaules sub-
behaviour. The ObserveVaules informs the ControltaskInt 
via internal communications. The ControltaskInt sub-
behaviour send messages to all related agents (Relative-
Neighbour, Relative and Neighbour) and terminates the 
agent who is monitoring the faulty component. When other 
agents receive the messages from the agent who is 
monitoring the faulty component, they communicate with 
their own internal controllers and then these agents 
terminate too, because they would have been affected by the 
faulty component/agent. 
 
The system was able to detect all type of faults which were 
injected to different nodes on the circuit. Although, this 
simple electrical circuit and the scenario give indication of   
the success of the approach more complex examples are 
needed. At the time of writing more complex electrical 
circuit was built which consists of about 115 components. 
To create the software agents for all these components 
manually is complex and can led to errors. For this reason, 
investigation is carried out to find possible ways to 
implement the agents automatically and to find out whether 
the automatic creation of the agents is sufficient to solve the 
problem of a big electrical circuit. 

Conclusion  
The use of a Multi Agent Systems (MAS) to model a real-
time dynamic system has been described, specifically for 
use with an analogue electrical circuit. The described design 
and implementation was carried out using the Jade – Multi 
Agent toolkit. It was shown that there are similarities and 
commonality between Bond Graphs and agents. A number 
of agents at the modelling layer (of the Seven layers 
architecture) were used to model the circuit (in other words, 
to implement the Bond Graph). It was shown that the model 
can be created automatically via a transform agent. Parallel 
behaviours for the threads (tasks) inside each agent were 
suggested. Each task inside the agent has priority 1 to 5, 

tasks are prioritized. It was decided that Template messages 
are useful to transfer energy (effort and flow) between 
agents, since it allows us to filter messages down to the 
threads. It was found that both type of controls: external (in 
which a rule-based engine can be used) and build-in 
controlled are needed to manage the activation and 
deactivation of the agents.  The architecture was tried out 
with a simple electrical circuit using three agents. The 
preliminary results from these tests were good, with the 
system being able to detect all type of faults that were 
injected to different nodes on the circuit. This is to be 
extended to more complex systems to further investigate the 
agents’ behaviour.  
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Abstract

Recent advances in the field of intelligent vehi-
cles have shown the applicability and utility for
driver assistance systems, or even letting a car
drive autonomously on highways. Usually these
approaches are on a rather quantitative level. This
hampers their capability to cope situations of great
complexity in which humans need a lot of knowl-
edge to act safely, for instance in city traffic. A
qualitative representation of traffic scenes allows
for formulating and using common sense knowl-
edge in a human-comprehensible and machine-
processable way. A vocabulary for such a repre-
sentation is proposed and a prototype that does the
qualitative abstraction for knowledge-based behav-
iour control is presented and evaluated. Experi-
ments in a simulation environment show the ap-
plicability of the approach for intelligent vehicles.

1 Introduction
Recent developments in the field of Intelligent Vehicles (IV)
address driver assistance systems like lane departure warn-
ings, adaptive cruise control, and lane change assistance
[Bertozzi et al., 2000; Dagli et al., 2004; Dickmanns, 2002;
Rüder et al., 2002; Weiss et al., 2004] or efforts to let-
ting a car drive completely autonomously as, e.g., in the
DARPA’s Grand Challenge1 in 2004 where IVs had to drive
autonomously through the Mojave dessert. In the 2004 com-
petition the vehicle who came farthest – “Sandstorm” from
Carnegie Mellon University – only managed to drive 7.5 of
the 160 miles route.

Intelligent Vehicles perceive information about their envi-
ronment through sensors like CCD cameras, radar, laser range
finders, and GPS. Based on this sensory information a world
model has to be created. The “belief” of the IV about its envi-
ronment is then used for situation assessment and behaviour
decision. The selection of the behaviour finally leads to actual
control of the vehicle.

The interpretation and evaluation of traffic scenes demands
for sophisticated knowledge representation and reasoning

1See http://www.darpa.mil/grandchallenge/

techniques. If it is aimed to create cognitive abilities simi-
lar to those of human beings a lot of information about traffic
situations, traffic rules and common sense knowledge, e.g.,
about traffic participants must be available. In order to man-
age complex situations like those in cities background knowl-
edge must be accessed. Setting up behaviour directly on
quantitative data acquired by sensors is very difficult as the
environment might vary a lot in different situations and com-
mon sense knowledge had to be formulated in a quite unnat-
ural way.

We claim that a qualitative description in combination with
background knowledge can be used for a concise and compre-
hensible representation of traffic scenes and allows for han-
dling complex situations. Humans also abstract from con-
crete quantitative information of continuous movements in
time and space, e.g., by dividing directions and velocities into
equivalence classes. Such an abstraction allows for describ-
ing similar situations which – on a quantitative level – ac-
tually are not identical by reducing the representation to the
relevant information.

Objects in dynamic environments move in four dimen-
sions: three spatial dimensions and one temporal dimension.
Spatiotemporal information can thus be represented quantita-
tively by different spatial coordinates at certain time points.
Qualitative representations abstract from these concrete coor-
dinates. In the literature many different approaches for tem-
poral, spatial, and motion (spatiotemporal) descriptions have
been proposed.

Famous representations for the temporal dimension are
Allen’s temporal logic and Freksa’s semi-intervals [Allen,
1983; Freksa, 1992a]. Allen defines a set of disjoint relations
between time intervals. He distinguishes the relations before,
equal, meets, overlaps, during, starts, and finishes and their
inverse relations. A composition table can be used to infer
which temporal relations between two intervals are possible
by knowing the relations of both to a third interval.

Freksa introduces the concept of semi-intervals where rela-
tions between start and end points of intervals are described.
This allows for making statements about intervals even if one
of the time points is not known (e.g., older and survives).

Spatial representations can be classified into approaches
that describe ordinal, topological, or metric information.
[Clementini et al., 1997] present a framework for the qual-
itative representation of 2D positional information. In their
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work they describe how orientation and distance information
can be discretised into qualitative classes (e.g, front, back,
left, right and close, far).

The best-known approach to spatial representations based
on topological information is the Region Connection Calcu-
lus (RCC) by Randell, Cui, and Cohn [Randell et al., 1992].
RCC can be used to describe connectivity and overlap rela-
tions of regions. RCC-8 distinguishes between disconnected,
externally connected, partial overlapping, tangential proper
part (and its inverse), equal, non-tangential proper part (and
its inverse).

Freksa presents an approach where orientation information
based on a direction vector is used to qualitatively describe
the position of other points relative to this vector [Freksa,
1992b]. Three lines – one covering the vector and two or-
thogonal lines at the start and end point of this vector – divide
the space into six regions. Including the positions which lie
on at least one of the three lines, i.e., which lie on one of
the region borders, 15 qualitative orientation relations can be
distinguished.

Schlieder’s panorama approach defines an ordinal arrange-
ment of objects in the order how they are perceived by look-
ing around from a viewpoint (panorama). More detailed in-
formation can be achieved if the opposite position of objects
is also acquired in the panorama. The panorama was recently
extended by metric information and qualitative directions and
distances [Wagner et al., 2004].

A qualitative motion description was introduced by Miene
[Miene et al., 2003; Miene, 2004]. In this approach move-
ments and positions are abstracted to different direction, dis-
tance, and velocity classes. Intervals are created from time-
series based on monotonicity and threshold criteria. Such in-
tervals are created for properties of single objects or for re-
lations between object pairs (e.g., speed of object x is slow,
distance between x and y is very close).

In the next section our representation for traffic scenes is
introduced. The subsequent section presents how the quali-
tative abstraction of the quantitative data is performed. The
evaluation section shows results on simulated traffic scenes
including performance measures of the mapping cycles. The
last section presents our conclusions.

2 Traffic Scene Representation
The qualitative representation of traffic scenes proposed here
is an explicit and comprehensible representation that allows
for knowledge-based situation assessment based on back-
ground knowledge and situation patterns.

The basic approach is to describe traffic scenes as a com-
bination of the static road network configuration and the in-
volved dynamic objects in spatiotemporal relations. Each net-
work region and object is assigned to a type and for each ac-
tive object we describe its motion in relation to other objects
or regions. For this purpose we established a taxonomy of ob-
jects and regions relevant in the road traffic domain and devel-
oped a symbolic vocabulary of predicates describing motions
of actors. The vocabulary consists of qualitative actor prop-
erties and qualitative relations between actors or between ac-
tors and traffic regions. Additionally, there is a formalism to

describe the spatial relations between road regions like road-
ways, lanes and junctions called Road Network Configuration
(RNC). RNC is discussed in [Gehrke, 2005].

The actual dynamic traffic scene is represented with tem-
poral predicates as introduced by Allen [1984] indicating the
interval where a specific property or relation holds. Situation
patterns are realised as logic formulae of road scene and ob-
ject descriptions in connection with abstract intervals of qual-
itative relations and their temporal relations using Allen’s in-
terval logic [1983].

2.1 Object taxonomy
There are many objects in road traffic with characterising
properties and capabilities. There are traffic participants like
vehicles, pedestrians and bicyclist, and also static objects like
traffic signs, any obstacles, and the road and its subregions.

To formulate the conceptual knowledge on objects in road
traffic we developed a domain model as a taxonomy of ob-
jects with properties describing their relations and capabili-
ties forming an ontology for road traffic. Actor’s capabilities
include, e.g., maximum possible speed, maximum allowed
speed, and allowed traffic regions. The taxonomy incorpo-
rates 20 object types like pedestrian, vehicle, animal, and bus
The other part of the taxonomy are 14 region types such as
roadway, lane, junction, and footway. The ontology may be
extended easily if need for other object types or properties
should arise.

2.2 Motion Vocabulary
The qualitative motion vocabulary is the basis to formu-
late actor motions in the road network. A motion proposi-
tion consists of the predicate symbol (e.g., space distance),
the primary object (if necessary), the reference object,
and a qualitative value for non-binary propositions (e.g.,
medium distance). In the following each motion predicate
is described respectively.

velocity: an actor’s longitudinal velocity in relation to its
current lane or roadway. Qualitative values for veloc-
ity are zero speed, very slow, slow, medium speed, fast,
and very fast.

acceleration: the development of an actor’s longitudinal ve-
locity. Qualitative values for acceleration are decreas-
ing speed, constant speed, and increasing speed.

relative speed: the relative speed of a primary object w.r.t.
a reference object with the qualitative symbols slower,
same speed, and faster.2

space distance: the spatial distance between a primary and
a reference object. Qualitative classes are zero distance,
very close, close, medium distance, far, and very far
following the well-known abstraction of [Hernández et
al., 1995].

time distance: Because distances are very speed-dependent
in safety perspective, this additional predicate is intro-
duced. It expresses the speed-relative temporal distance

2The relative speed abstraction may be refined to further classes
if it should turn out necessary.
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of vehicles driving on the same roadway or of actors to
regions, e.g., the next junction. The symbols of qualita-
tive classes correspond to those of space distance.

distance trend: the trend of spatial distance between ob-
jects. Currently we distinguish three classes: decreas-
ing distance, constant distance, and increasing dis-
tance.

lateral position: the lateral position of a vehicle w.r.t. its
current lane. Qualitative values are left in lane, cen-
tral in lane, and right in lane.

lateral motion: the trend of a vehicle’s lateral position with
qualitative values moving left, constant lateral position,
and moving right.

driving direction: the driving direction of a vehicle or a lane
w.r.t. a reference object. This predicate is only applica-
ble for actors on the same roadway and differentiates be-
tween same direction and opposite direction.

relative direction: the direction where a primary object is
located w.r.t. a reference object’s orientation, e.g., a
vehicle’s front direction. Like in [Hernández, 1994;
Clementini et al., 1997], qualitative values are front,
front right, back right, back, back left, left, and left -
front in cyclic order.

roadway relative direction: like relative direction but
w.r.t. the roadway. Qualitative values are front on -
roadway, right on roadway, back on roadway, and
left on roadway. This predicate is only applicable for
vehicles on the same roadway.

relative lane: the relative lane of vehicles on the same road-
way. Distinguished qualitative classes are: same lane,
direct right lane, direct left lane, outer right lane, and
outer left lane. The last two values incorporate all lanes
being no direct neighbours of the reference object.

in region: indicates whether an object’s reference point
(e.g., its centre) is inside a region.

rcc relation: The topological relation between a region and
a reference object (treated as region). We use RCC-
5 [Randell and Cohn, 1989; Randell et al., 1992]
as formalism. The corresponding qualitative symbols
are not overlapping, partially overlapping, proper part,
proper part inverse, and equal.

The above vocabulary allows for motion descriptions in
consideration of special characteristics in road traffic and
does not need any absolute reference system. It is based on
egocentric perspectives of actors in road traffic as reference
objects. More sophisticated motion predicates may be created
by composition in logic formulae, e.g., proposed in [Miene,
2004]. A moment of two vehicles v1 and v2 in short time dis-
tance nearing each other in opposite directions on the same
lane could be represented with the following predicates:

time distance(v1, v2, close) ∧
distance trend(v1, v2, decreasing distance) ∧
relative direction(v1, v2, opposite direction) ∧
relative lane(v1, v2, same lane)

The above simple formula just describes an arbitrary single
moment (not saying which moment actually). To describe sit-
uations over time we need a temporal extension as described
below.

2.3 Motion Description
Following the approach of Allen [1984] and its appli-
cation to qualitative motion description and analysis in
RoboCup [Miene et al., 2003; Miene, 2004] and in Intelligent
Vehicles domain [Miene et al., 2004; Lattner et al., 2005], the
actual motion is represented by association of motion predi-
cates with time intervals they hold in.

HOLDS(p, i) describes the continual validity of predicate
p during time interval i. The time line consists of discrete
ticks. Time intervals are defined by their first and last tick
(both inclusive). A development of two actors’ relative spatial
distance could be expressed with the following predicates:

HOLDS(space distance(v1, v2, close), 〈0, 15〉)
HOLDS(space distance(v1, v2, very close), 〈16, 25〉)
HOLDS(space distance(v1, v2, zero distance), 〈26, 30〉)
Thus, the combination of HOLDS predicates for motion

predicates and their validity intervals represents a dynamic
scene. As opposed to approaches like Musto’s Qualitative
Motion Vectors [Musto, 2000; Musto et al., 1999] this allows
for flexible addition or omission of motion predicates in road
traffic depending on necessity or availability.

2.4 Pattern Description
In order to utilise qualitative motion descriptions for knowl-
edge-based situation assessment in road traffic, actual scenes
are checked against situation patterns. Traffic situation pat-
terns are realised as logic formulae of road scene and object
descriptions in connection with abstract validity intervals of
qualitative motion predicates and their temporal relations us-
ing Allen’s [1983] and Freksa’s [1992a] interval logic.

Patterns may be made up of a simple conjunction of motion
predicates that have to hold in one interval or they may define
sequences of intervals in qualitative interval relations. The
most complicated kind of patterns describe temporally ex-
tended events with semantically defined start and end points,
e.g., an overtake manoeuvre as a whole. These patterns
are defined by the temporal predicate OCCURS as introduced
in [Allen, 1984].

The above simple example of two mutually approaching
vehicles in collision course would be expressed as follows:

HOLDS(collision course(v1, v2), i) ⇐
∃ dist :

HOLDS(distance trend(
v1, v2, decreasing distance), i) ∧

HOLDS(relative direction(
v1, v2, opposite direction), i) ∧

HOLDS(relative lane(v1, v2, same lane), i) ∧
HOLDS(time distance(v1, v2, dist), i) ∧
dist ≤ medium distance

In [Gehrke, 2005] and [Lattner et al., 2005] we used the
qualitative scene description and background knowledge on
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Figure 1: System architecture

traffic rules to recognise right of way at junctions and let
cars stop if the situation should arise. Thereto, patterns
are checked automatically during runtime using background
knowledge on temporal logic and a Prolog-based inference
engine. This requires online-mapping of quantitative sensor
data to the qualitative representation.

3 Qualitative Mapping
Qualitative mapping is the abstraction process from quantita-
tive sensory data to qualitative motion descriptions. There are
four major challenges in qualitative mapping for traffic scene
representation for intelligent vehicles:

1. Acquisition of the needed sensory data from the intelli-
gent vehicle’s environment

2. Definition of adequate qualitative equivalence classes (in
terms of amount, symbols, and value bounds) for the re-
spective motion predicate

3. Online-mapping for many objects and predicates with
bounded resources in real-time.

4. Online-segmentation of quantitative data time series
considering smoothing and threshold-based tolerance
corridors for monotony segmentations, e.g., for trends
of relative distances.

The three latter challenges are in the main focus of this pa-
per. The first one is an important requirement for real-world
feasibility but has been postponed for the time being because
the main motivation is knowledge-based situation assessment
and behaviour decision. Accordingly, the current testbed is
a simulation environment without incomplete or noisy sensor
data.

3.1 System architecture
The qualitative mapping of sensor data is embedded in the
software prototype developed for knowledge-based situation
assessment and behaviour control in intelligent vehicles. Fig-
ure 1 depicts the architecture of the system and its application
for knowledge-based behaviour decision.

The prototype works with simulated quantitative sensor
data on vehicle positions, extensions, orientations, and ve-
locities. The mapping module generates the qualitative scene

representation and stores it into a knowledge base (KB). The
KB also contains background knowledge on the road net-
work, on object and region types and their properties, and
spatiotemporal knowledge. The representation language is F-
Logic [Kifer et al., 1995] in the variant of FLORA-2 [Yang
et al., 2003]. FLORA-2 uses the Prolog-like inference engine
XSB [Sagonas et al., 1994]. Background knowledge also al-
lows for spatial and temporal inference. Currently this infer-
ence is barely used due to complete knowledge in the sim-
ulation prototype. Background knowledge on the semantics
of the HOLDS predicate is necessary to recognise patterns in
actual scenes. Within the patterns applied so far spatial infer-
ence is reduced to partonomy relations.

The qualitative scene representation in the KB is queried
by a pattern matching module that checks situation patterns
specified in an XML file. Query resolution is done by XSB.
The patterns are used for situation assessment and behaviour
generation depending on the situation.

3.2 Time Series Segmentation
Each possible motion predicate with its participating objects
(i.e., actors and regions) is created by analysing the corre-
sponding time series of quantitative sensory data. In a seg-
mentation process the incoming sensory data that is recorded
in a time series is divided into validity intervals of qualitative
classes. This has to be done at runtime. Incoming values are
added to the current interval if they belong to the same qual-
itative class, otherwise a new interval is started and the old
one is finally closed. New intervals, their extension or end
are written to the knowledge base perpetually.

Our approach of time series segmentation follows the
work of Miene [2004]. Miene differentiates two segmen-
tation modes: threshold-based segmentation and monotony-
based segmentation. The first is applied to motion predi-
cates like velocity or spatial distance, where changes over
time are not relevant for qualitative classification. The lat-
ter is applied to motion predicates like acceleration and dis-
tance trend that are derivatives of the time series for velocity
or spatial distance respectively and therefore need to regard
the previous values to determine the current qualitative class.
Figure 2 gives an example for threshold and monotony seg-
mentation.

The whole segmentation and mapping is done in mapping
cycles that cover sensor data of a minimum of 50 ms and 100
ms in general in our tests. The duration of a mapping cycle
determines the time granularity of the qualitative representa-
tion. A cycle must not endure longer than the time scope of
its handled sensor data to allow for real-time application. Fur-
thermore, due to real-time requirements, smoothing of time
series may only be done within the current mapping cycle.

To be handled properly and efficiently in pattern recogni-
tion and by the temporal background knowledge, intervals
formed during the segmentation process need to be maxi-
mal, i.e., a following interval of the same series (in Allen
relation meets) has to belong to another qualitative class.
This is ensured by interval extension. The current interval
icur = 〈scur, ecur〉 with qualitative value qcur extends the
interval icur−1 = 〈scur−1, scur − 1〉 with qualitative value
qcur−1 to a combined interval icur−1 = 〈scur−1, ecur〉 iff
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Figure 2: A fictional quantitative data time series with
monotony and threshold segmentation.

qcur−1 = qcur. This is done automatically as a knowledge
base operation.

For instance, if the space distance of two vehicles was close
in the previous interval and is still close in the time scope of
the current mapping cycle from 11 to 15 the knowledge base
would contain

HOLDS(space distance(v1, v2, close), 〈0, 10〉)
before the update and afterwards

HOLDS(space distance(v1, v2, close), 〈0, 15〉)

3.3 Mapping to Qualitative Classes
In order to determine the valid qualitative classes of motion
predicates, the quantitative sensory data needs to mapped by
an abstraction function for each qualitative information. The
function for a motion predicate has to be applied for each ob-
ject or object pair (i.e., primary object and reference object).

In the implementation of our approach the task of mapping
is done by ”mappers”. A mapper is responsible for one or
more qualitative motion predicates and all associated objects.
Some motion predicates share a mapper because they analyse
the same time series of sensor data, e.g., spatial distance and
distance trend (cf. sec. 3.2). In the following we describe the
realised mappers and their particular abstraction functions.

SpeedMapper
This mapper does the mapping of actor velocities (predicate
velocity) and accelerations (acceleration) to the correspond-
ing qualitative classes as both predicates use the same sensor
data.

We interpret velocity depending on actor’s type and con-
text. For instance, a pedestrian with normal speed is signif-
icantly slower than a passenger car with normal speed and a
fast passenger car on a freeway is faster than one on a normal
road in town. Because we have an object taxonomy, objects
are instances of multiple classes and thus their velocity may
be interpreted in different object type contexts, e.g., as a pas-
senger car, as a vehicle, or as an actor in general. So qual-
itative representation of velocity needs to state which object
class is the reference for its interpretation. In general, we treat
qualitative velocities in the object context of actor. Reference
for actor is object type passenger car as the standard object
type in road traffic.

Situation context is taken into account in terms of maxi-
mum permitted speed for the object type in the current situa-
tion. The qualitative class medium speed covers those veloc-
ity values being moderate and appropriate in the situation.
For this reason the range of medium speed is rather small
whereas range of class slow is rather big in comparison to
classical class separations, e.g., for distances. Figure 3 de-
picts the schema for qualitative classes in velocity.

very_slow slow

medium_speed

fast very_fast

Figure 3: Schema for qualitative classes of actor velocities.

DistanceMapper
The DistanceMapper is responsible for the predicates spa-
tial distance and distance trend as the monotony segmenta-
tion of relative distance. The spatial distance is determined
for pairs of actors or an actor and a region. Objects are han-
dled as rectangle regions and the minimal region distance is
calculated to get reasonable values. Distance of actors to
regions is currently restricted to nearby junctions to reduce
computational complexity.

For spatial distance qualitative classes the well-known
approaches of Hernández [Hernández et al., 1995] were
adapted. Every distance below 5 metres (slightly more than
a vehicle’s length) is considered very close or zero distance
in case of contact. Distances beyond 250 metres are cate-
gorised as very far. Within this distance even a vehicle of 200
km/h is able to stop. The intermediate qualitative classes are
partioned homogeneously with respect to monotonicity and
range restrictions constraints as introduced in [Hernández et
al., 1995].

The distance trend motion predicate expresses the mono-
tony property of distance changes by applying the monotony-
based time series segmentation method.

Since distance and distance trend are symmetric the map-
per only has to calculate one qualitative relation per object
pair.

TimeDistanceMapper
The module maps the temporal distance of a pair of actors
or an actor and a region to qualitative abstraction (time -
distance). As for spatial distance, junctions are currently the

55



Figure 4: Matrix to determine qualitative time distances. The
interval limits are stated in seconds. Symbols q0 to q5 denote
the six qualitative classes.

only considered regions. In contrast to spatial distance this
predicate is not symmetric.

Temporal distance combines time to collision (TTC,ro) and
net-time-gap (TN,ro) of a reference object ro to a primary ob-
ject. Both objects need to be on the same roadway. TTC,ro

is the time to a collision or encounter of both objects with re-
spect to the roadway regarding their current spatial distance,
speed, and acceleration. TN,ro is the time the reference ob-
ject would need to reach the primary object’s current position
assuming constant acceleration.

According to [Dagli et al., 2002] they are defined by

TN,ro =
−vro ±

√
v2

ro + 2∆x · aro

aro

and

TTC,ro =
−∆v ±

√
∆v2 + 2∆x ·∆a

∆a

∆x denotes the spatial distance of both objects, ∆v and
∆a are their relative velocity and acceleration in perspective
of the reference object. Some cases of undefined values need
special handling, e.g., if ∆a = 0.

In order to determine the qualitative time distance we use a
matrix that maps the combination of both values to the corre-
sponding class as depicted in figure 4. The matrix describes a
simple function that uses the lesser distance as the one to con-
sider. The interval limits are motivated by cognitive aspects
analysed for collision avoidance systems (cf. [van der Horst
and Hogema, 1993]), reaction time, and safe distance.

LateralPositionMapper
This mapper examines the lateral position of a vehicle in its
lane (lateral position) and its development (lateral motion)
as monotony segmentation. If the vehicle’s centre is located
less than 30 cm remote to the lane’s centre it is considered
central in lane, otherwise left or right respectively.

Figure 5: Relative directions between actors (disregarding the
roadway context).
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Figure 6: Topological relations between an actor and a sur-
face region in RCC-5.

RelDirectionMapper
The RelDirectionMapper calculates the angle of a reference
objects’s front vector to another objects’s position and maps
the angle to a qualitative direction class (relative direction).

The partitioning of angles is pictured in figure 5. Front,
back, left, and right direction have a range of 30◦, the other
classes comprise 60◦. The well-known qualitative classes and
their mapping function were proposed in [Hernández, 1994].

The mapper presupposes an orientation vector for the ref-
erence object to determine the front direction.

InRegionMapper
This mapper determines whether the motion predicate
in region holds between an actor and a surface region. An
actor is considered in region iff his reference point is situated
inside that region. Currently all pairs of actors and regions are
checked. Due to performance issues this might be restricted
to certain region types, e.g., lanes. Notice that some relations
may be inferred through sub-region relation.

TopologyMapper
The TopologyMapper determines the topological relation of
an actor (as rectangle region) to a surface region in RCC-5
model (rcc relation). Figure 6 shows the relations and possi-
ble transitions between them over time.

Other Motion Predicates
Some of the motion predicates described in section 2.2 are not
covered by the above mappers. This is because some predi-
cates are not yet implemented in the prototype (relative speed
and driving direction). Other predicates are not handled by
mappers but inferred from qualitative motion predicates. This
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Figure 7: Relative directions and positions in relation to a reference vehicle, its roadway, and lane.

concerns roadway relative direction and relative lane. Fig-
ure 7 illustrates the use of roadway relative predicates.

4 Evaluation
The evaluation of the presented approach takes two aspects
into account: the application of qualitative scene represen-
tation for knowledge-based behaviour control for intelligent
vehicles and the runtime performance regarding real-time re-
quirements. In this paper we focus on performance of quali-
tative mapping.

The basis for both is the developed prototype that com-
prises the qualitative mapping through mappers and a rather
simple behaviour decision based on traffic scene patterns
checked at runtime. The traffic scene is simulated based on
a scenario script setting the behaviour of all actors but the
intelligent vehicle. The running scenario is visualised in a
graphical user interface that also shows the recognised pat-
terns.

Our behaviour decision module controls the intelligent ve-
hicle’s speed depending on the situation. With a small set
of patterns a rule-conform autonomous behaviour was shown
when turning off left at a junction with oncoming traffic and
children running across the street. Figure 8 shows a snap-
shot of that scenario. Also other scenarios were tested with
encouraging results [Gehrke, 2005; Lattner et al., 2005].

4.1 Mapper Performance
The aim of knowledge-based behaviour decision for intelli-
gent vehicles is in proactive control to ensure safe and rule-
conform driving. Humans have a reaction time of about 1 sec-
ond and are capable of safe driving nevertheless. Of course
an intelligent vehicle should act faster.

The challenge is to do all: qualitative mapping, pattern
recognition, situation assessment, and behaviour generation
within an adequate decision cycle. Qualitative mapping cy-
cles from 50 to 250 milliseconds time granularity were sur-
veyed. All mappers have to complete their work within the
scheduled time or the qualitative scene representation will get
more and more dated, i.e., the reaction time increases.

In order to evaluate the approach different measures were
extracted from log files created by the prototype. Six traf-
fic scenarios with different characteristics were tested and re-
peated five times. The six scenarios, in turn, were modified
in reference to the amount of participating actors and time
granularity of mapping.3

Figure 9 shows that up to seven actors can be handled
within 150 milliseconds on average. Numbers above have
proven critical in the current implementation. However, there
is no substantial influence on duration of pattern matching
cycles when the amount of actors is increased.

It is important to note that the development of mapping du-
ration for one time slot has to be considered. As mentioned
above, the mapping time will increase more and more if not
all sensor values could be processed within the intended slot.
This is depicted clearly in figure 10. If there are ten actors, the
duration of a mapping cycle increases enormously over time.
Interestingly, it also increases after some cycles for seven ac-
tors, although it seems to be processed within time before.
This is not because of unprocessed old sensor data but owing
to increasing duration of single knowledge base operations
over time. The problem is currently analysed and has no rea-
son in the prototype’s software design.

To get more information on performance issues, the map-
pers were examined separately. Table 1 gives a review of the
average mapping cycle duration for each mapper type. The
DistanceMapper is by far the most expensive one. It has to
handle distance and distance change for all object pairs. Ad-
ditionally, the calculation of correct region distances – by an
external library – turns out to be costly which should provide
some possibilities for improvement.

The current main issue is the increasing time for single
knowledge base modifications which should be addressed
with highest priority. On the other hand, real-time algorithms
have to be applied that adapt precision, considered motion
predicates and objects with respect to their importance and
available processing time.

3 Experiments were run on a Pentium M 1.6 GHz system with
512 MB RAM and Microsoft Windows XP as operating system.
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Figure 8: Test scenario with an intelligent vehicle stopping on a junction due to oncoming traffic to turn off after the traffic
passed. The triangle going off from the vehicle iv indicates the direction of its camera sensor.
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Figure 9: Duration of mapping and pattern matching at grow-
ing number of objects and a time slot for mapping of 100 ms.
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with time slot of 100 ms.
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Mapper Duration Commands
in ms

SpeedMapper 0.46 ± 2.10 7.96 ± 0.93
TimeDistanceMapper 2.97 ± 4.53 3.13 ± 0.98
DistanceMapper 14.52 ± 8.04 19.90 ± 0.98
RelDirectionMapper 6.01 ± 5.83 12.00 ± 0.00
LateralPositionMapper 5.10 ± 5.10 7.96 ± 0.39
InRegionMapper 1.63 ± 3.73 2.86 ± 2.08
ObjectTopologyMapper 3.28 ± 4.84 3.25 ± 2.52

Table 1: Average duration of a mapping cycle with transmit-
ted knowledge base manipulation commands. Test runs were
made at a mapping time slot of 100 ms and with 4 actors and
1 junction.

5 Conclusion
In this paper we presented a qualitative representation for the
description of traffic scenes. In order to create such a rep-
resentation quantitative data as it might be supplied by sen-
sors must be mapped to the symbolic vocabulary which is
based on a number of existing qualitative spatial and tempo-
ral representations. We have shown how this mapping and a
matching of traffic patterns can be performed and presented
evaluation results with simulated traffic scenes. It is beyond
doubt that many real-world challenges were left out by the
simulation, e.g., real-time image processing, object tracking,
and handling noisy data.

The evaluation results indicate the feasibility in principle.
Knowledge about traffic participants, networks of streets and
relevant segments, motion of dynamic objects, relations be-
tween objects and between objects and ground regions can
be stored in the knowledge base. In experiments up to seven
dynamic objects could be managed by the system without ef-
ficiency problems when the mapping interval was set to 100
- 150 ms. However, experiments with a growing number of
objects show that there actually is a problem with complex-
ity. As some mapping modules compute relations between
all pairs of dynamic objects the growth of the duration of the
mapping cycles is approximately quadratic.

In our experiments the mapping cycles took too much time
when more than seven objects were moving in the scenes. It
should be considered that the number of relevant objects for
behaviour decision on a high level usually is not that large.
The most time-consuming part during mapping are the inter-
actions with the knowledge base. Thus, here is some poten-
tial for improving the efficiency. In our current implementa-
tion intervals are extended in each cycle, i.e., interaction with
the knowledge base happen all the time. If we introduced
open intervals, interactions with the KB could be reduced
enormously because interaction would only be necessary if
a monotonicity criterion is not valid any longer or some other
property switches to another qualitative class. Another way
to improve performance is to perform the mappings of the
single mapping modules concurrently. This was not possible
earlier because XSB just allowed for sequential processing of
queries and commands. In recent XSB versions concurrent
interactions are supported.

Future work could address different directions. So far in
our experiments for actual vehicle control just the speed of the
IV was controlled by the behaviour decision module. It would
be interesting to set up more patterns for situation assessment
and implementing a more complex behaviour. Another re-
search direction could address the prediction of the behaviour
of other traffic participants based on our qualitative represen-
tation, e.g., by probabilistic approaches like Bayesian Net-
works and their extensions. In this work we assumed that
there is just one value per time step in the time series (e.g.,
just one value for the velocity of an object). It would be in-
teresting to investigate impact on time series segmentation if
probabilistic distributions are taken into account instead of
single values.
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Abstract

The granularity of spatial calculi and the resulting
mathematical properties have always been a major
question in solving spatial tasks qualitatively. In
this paper we present the Oriented Point Relation
Algebra (OPRAm), a new orientation calculus
with adjustable granularity. Since our calculus is a
relation algebra in the sense of Tarski, fast standard
inference methods can be applied. One of the ma-
jor problems—depending on the environment, the
robots’ capabilities and the tasks to be solved—is
the choice of the granularity of an applied calculus.
To present, granularity had to be chosen at the start
and could not be changed on the fly. In a dynami-
cally changing environment under real time condi-
tions it is necessary to choose a coarse but still ade-
quate granularity of the spatial representation: only
in that case irrelevant feature changes fail to trigger
unnecessary inference steps. A qualitative, coarse
abstraction suppresses tiny changes in the environ-
ment and leads to fast computation.

1 Introduction
Most robots currently used for research issues are equipped
with a broad variety of fairly reliable sensors. Edutainment
robots however often have only low quality sensors. Despite
this, they have become increasingly popular and must be able
to solve complex spatial tasks even when accurate distance
and orientation information is not obtainable. Qualitative rea-
soning may allow them to do so.

Qualitative Reasoning about space abstracts from the phys-
ical world and enables computers to make predictions about
spatial relations, even when a precise quantitative informa-
tion is not available[Cohn, 1997]. The two main trends
in Qualitative Spatial Reasoning are topological reasoning
about regions[Cohn, 1997; Renz and Nebel, 1998] and po-
sitional reasoning about point configurations[Freksa, 1992;
Schlieder, 1995]. Positional reasoning, i.e. distance and orien-
tation, in particular is important for robot navigation[Musto
et al., 1999].

Calculi dealing with such information have been well inves-
tigated over recent years and provide sound reasoning strate-
gies, e.g. about topological relations between regions as in

RCC-8[Randell and Cohn, 1989; Randellet al., 1992], about
the relative position orientation of three points as in Freksa’s
Double Cross Calculus[Freksa, 1992] or about orientation of
two line segments as in the Dipole Calculus[Moratz et al.,
2000; Schlieder, 1995]. Standard constraint-based reasoning
techniques can be applied for reasoning with calculi such as
the above mentioned ones. For example, Schlieder[1995]
sketched how a qualitative calculus like the Dipole Calculus
might be applied to robot navigation.

One of the major problems is the choice of the granular-
ity of an applied calculus according to the environment, the
robots’ capabilities and the tasks that have to be solved. To
present, this granularity had to be chosen in the beginning
and could not be changed on the fly. In a dynamically chang-
ing environment under real time conditions it is necessary to
choose a coarse yet adequate granularity of the spatial repre-
sentation: only in that case will irrelevant feature changes fail
to trigger unnecessary inference steps. A qualitative, coarse
abstraction suppresses tiny changes in the environment and
results in fast computation.

With the Oriented Point Relation AlgebraOPRAm we
present a calculus whose granularity is scalable with a pa-
rameterm ∈ N. The parameter can be adjusted according
to perception and motion capabilities. The reasonable maxi-
mum, i.e. the finest reasonable granularity, correlates to the
resolution and error of perception and motion. Yet, it would
be unwise to use the finest resolution possible just to an-
swer a question whether an object is to the left or right. We
present an integration schema where data represented in dif-
ferent granularities can be mixed when deriving new relations
from prior observations. The rest of the paper is organized
as follows: After a brief introduction of related qualitative
spatial calculi and their according properties, we will intro-
duce theOPRAm calculus. First we will give a definition
for the coarsest type (m = 1), followed by the model for ar-
bitrary m ∈ N including the rules for composition of base
relations. In the end we will give an example with linguis-
tic commands and coarse perceived configuration information
that have to be integrated by constraint propagation to achieve
survey knowledge.

2 Related Work
Qualitative Spatial Reasoning (QSR) is an abstraction that
summarizes similar quantitative states into one qualitative
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characterization. From a cognitive perspective the qualitative
methodcomparesfeatures of the domain rather thanmeasur-
ing them in terms of some artificial external scale[Freksa,
1992]. The two main directions in QSR are topological rea-
soning about regions, e.g. the RCC-8[Randell and Cohn,
1989; Randellet al., 1992], and positional (distance and ori-
entation) reasoning about point configurations. An overview
is given in[Cohn and Hazarika, 2001]. We will concentrate
on the most important positional calculi for our work.

The Double Cross calculus[Zimmermann and Freksa,
1996] is an approach based on fundamental knowledge about
human spatial reasoning. In contrast to previous approaches
the base relations do not only describe a relative point posi-
tion wrt. a single point, but wrt. a vector. In other words,
an observer tries to relate to a pointC while he is walking
from positionA to B. In [Scivos and Nebel, 2001] it was
shown that the calculus is not closed under permutation and
composition, and that reasoning with a set of base relations is
NP-hard. A further application driven development based on
the scheme above is the Ternary Point Configuration Calculus
(TPCC)[Moratzet al., 2003]. We will describe this calculus
in more detail in section 4.1.

Schlieder[1995] proposed a calculus with 14 basic re-
lations based on line segments with clockwise or counter
clockwise orientation of generating starting points. Isli and
Cohn[1998] presented a ternary algebra for reasoning about
orientation containing a tractable subset of base relations.
Schlieder’s approach was extended for robot navigation tasks
in [Moratzet al., 2000; Dylla and Moratz, 2005], resulting in
relation algebras in the sense of Tarski[Ladkin and Maddux,
1994] at different levels of granularity.

Clementiniet al. [1997] introduced a binary approach for
dealing with qualitative relations at an arbitrary level of gran-
ularity. The angles are not necessarily equidistant. Their ap-
proach did not provide a general and restrictive schema for
reasoning with multiple position expressions. Also no con-
cept for combining relations at different levels was given.

In [Renz and Mitra, 2004] the Star Calculus, a qualitative
direction calculus with arbitrary granularity, was introduced.
The relation of two points in the plane with respect to one
global reference direction is expressed, which leads to4m+1
basic relations. These basic relations form a relation algebra
for the cases with uniform angles. The authors claim that
when using a Star Calculus with more than two reference
lines, the boundary between qualitative and quantitative repre-
sentation disappears. The main disadvantage of the Star Cal-
culus is its need for a global reference direction which must
always be available at each point in space.

The extended panorama approach was presented in[Wag-
neret al., 2003]. The representation is based on the cyclic or-
dering information of a 360◦ view within the reference frame
of an observing agent and on qualitative distance information.
It can be interpreted as an ordered set of relations between
an oriented object and the according observed point. Due to
this structure it is rotational and translational invariant. Up-
dating the model due to changes in a dynamic environment
can simply be done by changing the order. Different levels
of granularity were also introduced. No formal method for
granularity switches or composition of local observations into

survey knowledge was given.

3 The Oriented Point Relation Algebra
(OPRAm)

Objects and locations are represented as simple, featureless
points in aforementioned approaches on orientations. In con-
trast, our paper presents a positional calculus which uses
more complex basic entities: It is based on objects which are
represented as oriented points. It is closely related to a pre-
viously designed calculus which is based on straight line seg-
ments (dipoles)[Moratzet al., 2000]. In [Dylla and Moratz,
2005] the dipole approach was extended for modeling behav-
ior in dynamic environments. Conceptually, our new calculus
can be viewed as a transition from oriented line segments with
concrete length to line segments with infinitely small length.
In this conceptualization the length of the objects no longer
has any importance. Thus, only the direction of the objects is
modeled.O-points, our term for oriented points, are specified
as pair of a point and a direction on the 2D-plane.

FrontBack

Left

Right

Figure 1: An oriented point and its qualitative spatial relative direc-
tions

3.1 Reasoning with Coarse O-Point Relations

In the coarsest representation a single o-point induces the sec-
tors depicted in figure 1. “Front” and “Back” are linear sec-
tors. “Left” and “Right” are half-planes. The position of the
point itself is denoted as “Same”. A qualitative spatial rela-
tive orientation relation between two o-points is represented
by the sector in which the second o-point lies with respect to
the first one and by the sector in which the first one lies with
respect to the second one.

For the general case of the two points having different posi-
tions we use the concatenated string of both sector names as
the relation symbol. Then the configuration shown in figure 2
is expressed with the relationA RightLeft B. If both points
share the same position the relation symbol starts with the
word “Same” and the second substring denotes the direction
of the second o-point with respect to the first one as shown in
figure 3.

Altogether we obtain 20 different atomic relations (four
times four general relations plus four with the o-points at
the same position). These relations are jointly exhaustive and
pairwise disjoint (JEPD). The relation SameFront is the iden-
tity relation. We useOP1 to refer to the set of 20 atomic re-
lations, andOPRA1 to refer to the power set ofOP1 which
contains all220 possible unions of the atomic relations.
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A
B

Figure 2: Qualitative spatial relation between two oriented points at
different positions. The qualitative spatial relation depicted here is
A RightLeftB (which reads:B is to the right ofA, andA is to the
left of B).

A

B

Figure 3: Qualitative spatial relation between two oriented points
located at the same position. The qualitative spatial relation depicted
here isA SameRightB (which reads:A and B are at the same
location, andB is heading right with respect toA).

For reasoning about the o-point relations we apply
constraint-based reasoning techniques which were originally
introduced for temporal reasoning[Allen, 1983] and also
proved valuable for spatial reasoning[Renz and Nebel, 1998;
Isli and Cohn, 2000]. In order to apply these techniques to
a set of relations, the relations must form a relation algebra
[Ladkin and Maddux, 1994], i.e. the atomic relations must
be jointly exhaustive and pairwise disjoint and they must be
closed under composition (◦), intersection (∩), complement
(.), and converse (̂ ). There must also be an empty rela-
tion, a universal relation, and an identity relation. While the
converse, the complement, and the intersection of relations
can be computed from the set-theoretic definitions of the re-
lations, the composition of relations must be computed based
on the semantics of the relations. The compositions are usu-
ally computed only for the atomic relations and then stored in
a composition table. The composition of compound relations
can be obtained as the union of the compositions of the cor-
responding atomic relations. The compositions of the atomic
relations can be deduced directly from the geometric seman-
tics of the relations (see section 3.4).

O-point constraints are written asxRy wherex, y are vari-
ables for o-points andR is a OPRA1 relation. Given a
set Θ of o-point constraints, an important reasoning prob-
lem is deciding whetherΘ is consistent, i.e., whether there
is an assignment of all variables ofΘ with dipoles such that

all constraints are satisfied (asolution). We call this prob-
lem OPSAT. OPSAT is a Constraint Satisfaction Problem
(CSP)[Mackworth, 1977] and can be solved using the stan-
dard methods developed for CSPs with infinite domains (see,
e.g.,[Ladkin and Maddux, 1994]).

A partial method for determining inconsistency of a set
of constraintsΘ is the path-consistency method, which en-
forces path-consistency onΘ [Mackworth, 1977]. A set of
constraints is path-consistent if and only if for any two consis-
tent variable instantiations, there exists an instantiation of any
third variable such that the three values taken together are con-
sistent. It is necessary but not sufficient for the consistency of
a set of constraints that path-consistency can be enforced. A
naive way to enforce path-consistency is to strengthen rela-
tions by successively applying the following operation until a
fixed point is reached:

∀i, j, k : Rij ← Rij ∩ (Rik ◦Rkj)

wherei, j, k are nodes andRij is the relation betweeni and
j. The resulting set of constraints is equivalent to the original
set, i.e. it has the same set of solutions. If the empty relation
occurs while performing this operation,Θ is inconsistent, oth-
erwise the resulting set is path-consistent.

3.2 Finer Grained O-Point Calculi
The design principle forOPRA1 can be generalized to cal-
culi OPRAm with arbitrarym ∈ N. Then an angular resolu-
tion of 2π

2m is used for the representation (a similar scheme for
absolute direction instead of relative direction was recently
designed by Renz and Mitra[2004]).

2

3

4

5 7

6

1

0

Figure 4: OPRA2 granularity

To formally specify the o-point relations we use two-
dimensional continuous space, in particularR2. Every o-
point S on the plane is an ordered pair of a pointpS repre-
sented by its Cartesian coordinatesx andy, with x, y ∈ R
and and a directionφS .

S = (pS , φS) , pS = ((pS)x, (pS)y)

We distinguish the relative locations and orientations of the
two o-pointsA andB expressed by a calculusOPRAm ac-
cording to the following scheme. We use the symbolϕAB for
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Figure 5: OPRA4 granularity

tan−1 (pB)y−(pA)y

(pB)x−(pA)x
(tan−1 has two arguments, the numera-

tor, and the denominator, and maps to the interval[0, 2π]).
Figures 4 and 5 show the resulting granularity form = 2 and
m = 4. According to the cyclic order of the directions it is
appropriate to enumerate them by using the4m elements of
the cyclic groupZ4m.

If pA 6= pB the relationA m∠j
i B (i, j ∈ Z4m) reads like

this: Given a granularitym, the relative position of B with
respect to A is described byj and the relative position of A
with respect to B is described byi.

Formally, it represents the following set of configurations:

((
(i ≡2 1) ∧

(
2π i−1

4m < ϕAB − φA < 2π i+1
4m

))
(1)

∨
(
(i ≡2 0) ∧

(
ϕAB − φA = 2π i

4m

)))
∧

((
(j ≡2 1) ∧

(
2π j−1

4m < ϕAB − φB < 2π j+1
4m

))
∨

(
(j ≡2 0) ∧

(
ϕAB − φB = 2π j

4m

)))

a ≡2 b stands fora mod 2 = b mod 2. Using this notation,
a simple manipulation of the parameters yields the converse
operation(m∠i

j)
^ = m∠j

i .
If pA = pB , the relationA m∠i B represents the follow-

ing set of configurations:

(
(i ≡2 0) ∧

(
φB − φA = 2π i

4m

))
(2)

∨
(
(i ≡2 1) ∧

(
2π i−1

4m < φB − φA < 2π i+1
4m

))

Hence the relation for two identical o-pointsA = B for
arbitrarym ∈ N is Am∠0B. Using this notation a simple
manipulation of the parameters yields the converse operation
(m∠i)^ = m∠(4m− i). The composition tables for the
atomic relations of theOPRAm calculi can be generated us-
ing a schema which is based on the parametersm, i, j of the
corresponding relations (analogous to the generating scheme
for the converse operation). We describe the schema for the
composition operation in section 3.4.

To clarify the notation above we will give examples here.
The configuration in figure 1 withm = 1 for example results
inA 1∠1

3 B. Front in this schema is denominated with0, Left
is 1, Back is2 and Right is3. In figure 6 the same config-
uration is shown with the reference frame form = 2. This
results in relationA 2∠1

7 B. Thus we can say thatB lies in
segment 7 regardingA andA lies in segment 1 relative toB.
Form = 4 (figure 6) we getA 4∠3

13 B.

B
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Figure 6: Two o-points in relationA 2∠1
7 B
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Figure 7: Two o-points in relationA 4∠3
13 B

3.3 The Triangle Constraint
Besides the composition we have an additional source for spa-
tial knowledge. The following scene is given: An agent is at
positionA and perceives objectC including the view angle
relative to the current heading. Then the agent turns towards
positionB, moves there and perceives the relative angle to
objectC again. We now are able interpret this setting as a
triangle (compare figure 8).α is defined by the difference of
the original heading, the view angle and the heading towards
B. β is determined accordingly after the perception. Due to
general knowledge about triangles (α + β + γ = π) we are
able to deriveγ.

With AB we denote the o-point positioned atA and orien-
tated towards positionB. In the following, i, k and the ac-
cording arithmetic operators are still defined inZ4m. Within
OPRAm, α now may be described as

AC m∠k AB
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and respectivelyβ as

BA m∠i BC .

AssumingA,B,C being ordered in mathematically posi-
tive orientation andk ≡2 0 ∨ i ≡2 0, we can conclude angle
γ:

CB m∠(2m− k − i) CA .

Thus we can generate additional relations forC with two
prior perceptions.

AB

AC BA

BC

CB
CA

β

γ

A B

C

α

Figure 8: A triangle defined by the o-points A,B and C

3.4 Composition of Relations
Throughout this section we assume that three o-pointsA, B,
C and the relationsAm∠j

iB andBm∠l
kC are given. First we

also assume thatpA 6= pB 6= pC .
In the case of uneveni, j, k andl they correspond to open

angular intervals according to (1).m∠j
i is called atotally pla-

nar relation, if i ≡2 1 ∧ j ≡2 1. If (i + j) ≡2 1, m∠j
i is

called asemi-planarrelation. m∠j
i is called alinear relation,

if i ≡2 0 ∧ j ≡2 0.
First we will describe the composition procedure for the

special case of totally planar relations, because it is rather
straight forward. In the next section we will generalize to a
common procedure for arbitraryOPRAm relations. In the
end we point out how to compose the so-called “same” rela-
tions, where two o-points share the same location.

i j
kA

B

C

Figure 9: Composition of twoOPRA4 relationsA4∠j
iB and

B4∠l
kC. In this example the values arei = 13, j = 5 andk = 11

(see figure 5). Because the direction ofC is not depicted in this ex-
ample, no value ofl is given. As a result of the composition,C may
lie in sectors 9 to 13 with respect toA.

Composition of Totally Planar Relations

Composition of two totally planar relationsAm∠j
iB and

Bm∠l
kC is mainly a composition of angular intervals. If we

want to describe the relative position ofC with respect toA,
we need to combine the angular intervals which correspond
to i, j andk. The first possible sector which can containC
is eitheri or i − j + k − 2m − 2, depending on which one
is “first” in a circular order.1 The last possible sector is either
i or i − j + k − 2m + 2. To determine this, we define a
minimum and a maximum relation within a cyclic groupZn

(n ∈ N) with a, b ∈ Zn:

minZ(a, b) =


min(a, b) |b− a| < n

2

max(a, b) |b− a| > n
2

b |b− a| = n
2

(3)

maxZ(a, b) =


max(a, b) |b− a| < n

2

min(a, b) |b− a| > n
2

b |b− a| = n
2

(4)

For the sake of simplicity we assume thatmin(a, b) is the
minimum of the corresponding natural numbers toa and b.
maxZ(a, b) is defined analogously tominZ(a, b).

All sectors and linear relations between the first (s1) and
the last possible one (s2) may containC. Analogously, we
also get a first and a last sector aroundC which can contain
A:

s1 = minZ(i, i− j + k − 2m− 2) (5)

s2 = maxZ(i, i− j + k − 2m+ 2)
t1 = minZ(l, l − k + j − 2m− 2)
t2 = maxZ(l, l − k + j − 2m+ 2)

We get all possible directions (a full circle) ifs1 = s2 or
t1 = t2, because a composition of totally planar relations can
never result in a single sector:

s′1 =
{
s1 s1 6= s2
0 s1 = s2

s′2 =
{
s1 s1 6= s2
4m− 1 s1 = s2

t′1 andt′2 are derived analogously.
We achieve a disjunction of relations in whichC can be

with respect toA and a disjunction of relations in whichA
can be with respect toC. The overall result is a disjunction
of all possible combinations:

A m∠j
i B ◦B m∠l

k C =
s′
2∨

a=s′
1

t′2∨
b=t′1

A m∠b
a C (6)

1This notation, of course, is simplified: We need to considerm
an element of the cyclic group as well, but we did not want to intro-
duce another symbol for this purpose.
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Composition of Arbitrary Relations
In this section we present a generalized schema for determin-
ing the composition of arbitraryOPRAm relations. The only
cases to be excluded are the “same” relations, which are de-
scribed in the following section, and those resulting in a linear
sector or a disjunction of two linear sectors:

((j = k + 2m) ∨ (j = k)) ∧ j ≡2 0 ∧ k ≡2 0 (7)

The solution for these few cases can be constructed fairly eas-
ily. For all other cases the procedure is as follows:

A linear part of anOPRAm relation can be seen as an
angular interval[α1, α2] with α1 = α2. According to the
second and fourth line of (1) the composition formula must be
adapted for the cases of even values ofi, j, k andl. Therefore
a linearity correction term

ψ(i, j, k) =
∑

a∈{i,j,k}

((a+ 1) mod 2) (8)

is incorporated to the equations in (5).ψ counts the number
of linear relations. Simply adding (or subtracting)ψ, however,
may deliver (half) closed intervals in the case ofi or l being
even; but this cannot happen. So we can make sure to achieve
open intervals by using modified minimum and maximum re-
lations forZn (n = 4m in this case):

min′Z(a, b) =



min(a, b) |b− a| < n
2 ,min(a, b) ≡2 1

min(a, b) + 1 |b− a| < n
2 ,min(a, b) ≡2 0

max(a, b) |b− a| > n
2 ,max(a, b) ≡2 1

max(a, b) + 1 |b− a| > n
2 ,max(a, b) ≡2 0

b |b− a| = n
2 , b ≡2 1

b+ 1 |b− a| = n
2 , b ≡2 0

max′Z(a, b) =



max(a, b) |b− a| < n
2 ,max(a, b) ≡2 1

max(a, b)− 1 |b− a| < n
2 ,max(a, b) ≡2 0

min(a, b) |b− a| > n
2 ,min(a, b) ≡2 1

min(a, b)− 1 |b− a| > n
2 ,min(a, b) ≡2 0

b |b− a| = n
2 , b ≡2 1

b+ 1 |b− a| = n
2 , b ≡2 0

We now get

s1 = min′Z(i, i− j + k − 2m− 2 + ψ(i, j, k))
s2 = max′Z(i, i− j + k − 2m+ 2− ψ(i, j, k))
t1 = min′Z(l, l − k + j − 2m− 2 + ψ(l, j, k))
t2 = max′Z(l, l − k + j − 2m+ 2− ψ(l, j, k)) .

In contrast to the totally planar cases, a single sector is a
possible result when composing semi-planar relations. For
discriminating a full circle from a single sector, we need to
consider the linearity of the relations given byψ:

s′1 =
{

0 s1 = s2 ∧ ψ(i, j, k) = 0
s1 else

s′2 =
{

4m− 1 s1 = s2 ∧ ψ(i, j, k) = 0
s1 else

and analogously fort′1 andt′2.
The resultingOPRAm relation is

A m∠j
i B ◦B m∠l

k C =
s′
2∨

a=s′
1

t′2∨
b=t′1

A m∠b
a C . (9)

Composition with “Same” Relations
Compositions of cases where eitherpA = pB or pB = pC ,
is rather simple, because it can be seen as an addition of inter-
vals, or, ifi ≡2 0 ∧ k ≡2 0, vectors.

m∠i ◦ m∠l
k =

{∨s2
a=s1

m∠l
a i ≡2 0 ∧ k ≡2 0

i+ k else
, (10)

s1 = i+ k − 1 + ψ(i, k, 1)
s2 = i+ k + 1− ψ(i, k, 1)

ψ again denotes the linearity term given in (8). The third
argument is 1 because we only need two arguments here.

The compositionm∠j
i ◦m∠k works analogously. Composi-

tion of two “same” relations is trivial.

3.5 Integration of Relations with Different
Granularity

Sometimes it is reasonable to perceive or act using different
degrees of accuracy depending on context or time constraints.
Therefore we have relations at different levels of granularity,
i.e. varyingm. It is not reasonable to represent such infor-
mation at a very precise level, because a large disjunction
with many literals would emerge. We call the chosenm a
context dependent granularity. Inconsistencies arising due to
imprecise or faulty perception or movement can be solved by
adding even more uncertainty to draw a reasonable conclu-
sion.

Given two relations with granularitym1 and m2, it is
no problem to integrate relations withm1 = n ∗ m2 with
n ∈ N > 0 andm1 > m2. If the values are not a multi-
ple of each other, naive and fast methods for integrating the
knowledge are e.g. the least common multiple (LCM) or the
greatest common divisor (GCD). Information loss is minimal
with the LCM, but again a large disjunction might be gener-
ated. In contrast, combining the relations with the GCD of
m1 andm2 results in a greater loss of information, but the
result consists of fewer relations compared with the LCM ap-
proach. Currently, we choose a method where the relations
are combined according to their algebraic semantics and a
suitable granularity is chosen depending on the result.

4 Qualitative Spatial Reasoning in Robotics
We will now give a detailed example on how to integrate local
knowledge into survey knowledge with the presented TPCC
calculus. Afterwards we will show how the given problem
can be solved withOPRAm as well. The example we use
here has already been introduced in[Dylla and Moratz, 2004].

The basis of the example is a robot system able to perceive
colored cubes. The system only measures the direction to-
wards perceived objects. It cannot measure their distance.
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Furthermore the system is able to perform discrete motion
steps. The task is to “move to the red object behind the blue
cube”. The initial situation is shown in figure 11(a). For bet-
ter differentiation we visualize the two ambiguous red objects
B1 andB2 as circles. First we will give a short recap of
TPCC[Moratzet al., 2003]. Then we show how to solve the
given task with TPCC, followed by a solution withOPRAm.

4.1 The Ternary Point Configuration Calculus
(TPCC)

TPCC[Moratz et al., 2003] deals with point-like objects in
the 2D-plane. It is an application oriented variant of the Dou-
ble Cross calculus[Freksa, 1992], which allows for finer dis-
tinctions of positional information than most calculi for con-
straint based reasoning presented before. The partition of the
calculus is shown in figure 10.

sam

relatumorigin
dsf csf

crf

dfr

csr

dsr dbr

csb dsb

dsl

csl
dfl

dlf
clf clb

drf
cfr cbr

drb
crb

dlbcblcfl

dbl

Figure 10: The reference system used by TPCC

The letters f, b, l, r, s, d, c stand for front, back, left, right,
straight, distant, and close, respectively. The terms front,
back, etc. are given for mnemonic purposes only. The use of
TPCC relations in natural language applications is shown in
an article by Moratzet al. [2002]. In this application TPCC
relations are used for natural human robot interaction. The
configuration in which the referent is at the same position as
the relatum is calledsam(for ”same location”). The two spe-
cial configurations in which origin and relatum have the same
location (dou, tri ) are also base relations of this calculus.

For a formal and precise definition of the relations the corre-
sponding geometric configurations on the basis of a Cartesian
coordinate system represented byR2 were described. For ex-
ample, the special cases for the three pointsA = (xA, yA),
B = (xB , yB) andC = (xC , yC) are defined as follows:

A,B dou C := xA = xB ∧ yA = yB ∧
(xC 6= xA ∨ yC 6= yA)

A,B tri C := xA = xB = xC ∧ yA = yB = yC

For the cases withA 6= B a relative radiusrA,B,C and a

relative angleφA,B,C must be defined2:

rA,B,C :=

√
(xC − xB)2 + (yC − yB)2√
(xB − xA)2 + (yB − yA)2

φA,B,C := tan−1 yC − yB

xC − xB
− tan−1 yB − yA

xB − xA

Then we have spatial relations as the examples shown be-
low. All relations are named in figure 10 except the special
casesdou and tri . For a complete list of the definitions we
refer to[Moratzet al., 2003].

A,B sam C := rA,B,C = 0

A,B clb C := 0 < rA,B,C < 1 ∧ 0 < φA,B,C ≤
1
4
π

A,B dlb C := 1 ≤ rA,B,C ∧ 0 < φA,B,C ≤
1
4
π

A,B cfl C := 0 < rA,B,C < 1 ∧ 1
2
π < φA,B,C <

3
4
π

A,B dsr C := 1 ≤ rA,B,C ∧ φA,B,C =
3
2
π

TPCC is not closed under transformations (intersection,
complement and converse), i.e. a transformation might gen-
erate a proper subset of base relations. It is as well not closed
under strong composition (◦):

∀A,B,D : A,B(r1◦r2)D ↔ ∃C : A,B(r1)C∧B,C(r2)D

Therefore 4-consistency cannot be enforced directly when in-
ferring with TPCC. Instead a weak composition (~) was de-
fined:

∀A,B,D : A,B(r1~r2)D ← ∃C : A,B(r1)C∧B,C(r2)D

The composition table for the weak case was already pre-
sented in[Moratzet al., 2003]. The weak operations are still
sufficient to solve a task as shown in our example in the next
subsection.

4.2 A Solution with TPCC
With the relations defined in TPCC the task “move to the red
cube behind the blue cube” can be described such that one
of the relationsclb, csb or crb must hold for(C,R1, B1) or
(C,R1, B2). We will refer to the disjunction of the three
relations asc?b. We visualize the initial situation in fig-
ure 11(a). Figure 11(b) integrates the initially perceived con-
straints about what is known aboutB1 andB2. To deduce
the desired knowledge the agent has to move. How to choose
the most reasonable action for a maximum of information
gain goes beyond the scope of this paper. Therefore we ap-
ply the heuristic: ”Move straight forward until the first object
is passed and get new perceptions there”.

We will use a simple path-based scheme of constraint prop-
agation, where the two last relations of a path are composed

2Here we refer to the arcus tangent function with two arguments
mapping all four quadrants (atan2).
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and then the reference system is incrementally moved to-
wards the beginning of the path to demonstrate reasoning effi-
ciently.

In the example the robot moves towards a position to the
right of the blue cube (fig. 11(c)–11(d)). In figure 11(e) it
reaches the desired position (R2). Relation 3 just describes
the fact that the agent’s move to the right of the blue cube
relative to the starting pointR1. The agent’s perception gives
additional knowledge onB1 andB2 relative to(C,R2)3. In
order to make a composition we have to transform relation 3
with the SC transformation leading to relation 3’ (fig. 11(f)).
Now 3’ can be composed with 5 leading to the fact thatc?b
is not valid for(R1, C,B2) (fig. 11(g)). Composing 3’ and 4
showsB1 being somewhere behind the blue cube relative to
(R1, C) (fig. 11(h)). Although according to constraint propa-
gationB1 might be somewhere left of the reference axis,B1
is the only red object having a chance of fulfilling the given
constraint (c?b).

Solving general constraint satisfaction networks on the ba-
sis of Double Cross relations isNP -hard[Scivos and Nebel,
2001]. TPCC has not yet been proven to beNP -complete.
Anyway, in the case of many real world problems the desired
knowledge can be gained in polynomial time without the need
to solve the whole constraint system. The solution can be ob-
tained via a path-based constraint propagation as presented in
[Dylla and Moratz, 2004]. All the algorithms given there are
in P .

4.3 OPRAm— Reasoning about Perceptions
At first the agent perceives basic relations between the ob-
jects of the environment. Then the agent moves, gets new
perceptions, and can combine these perception using qualita-
tive spatial reasoning using the previously defined operations
of OPRAm. We now relate to the example in figure 11. Ac-
cording to the granularity of TPCC we assumem = 4. AB

denotes the o-point at positionA with orientation towardsB.
In contrast,BA denotes the inverting, i.e. pointA looking
away from objectB.

The initial task (figure 11(b)) may be expressed as

R1C 4∠0
0 CR1 ∧ CR1 4∠{0−15}

{7−9} BX∗ ?

withX ∈ {1, 2} and withA m∠{k−l}
{i−j} B denoting the disjunc-

tion
j∨

a=i

l∨
b=k

A m∠b
a B .

The∗ stands for the set of all available points in our setting.
We do this, because the orientation ofBX is of no interest
for the given task.

The initial perceptions (figure 11(b)) are:

(1) R1R2 4∠1 R1C → R1R2 4∠0
1 CR1

(2) R1R2 4∠1 R1B1 → R1R2 4∠0
1 B1R1

(3) R1R2 4∠15 R1B2 → R1R2 4∠0
15 B2R1

3Perhaps more relations are perceivable, but we concentrate on
the relations relevant for this example.

R1

B2

C

B1

R1, C (c?b) BX ?

(a) The initial situation
and task

R1

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

(b) Initially perceived
relations

R1

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

(c) Moving to gain addi-
tional knowledge

R1

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

(d) ... still moving

B2

C

B1R2
R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B1    (1)

C, R1 (dlf, clf)  B2    (2)

R1, R2 (csl, dsl)  C  (3)

C, R2 (clb, dlb)  B2  (5)

C, R2 (dfl,  cfl)   B1  (4)

(e) The agent reaches
a position where new
knowledge can be
perceived

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R2
R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

R1, C (crf, cfr)  R2    R1, R2 (csl, dsl)  C  (3)

C, R2 (clb, dlb)  B2  (5)

C, R2 (dfl,  cfl)   B1  (4)

(f) Transformation of re-
lation3 with SC to 3′

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R2
R1

R1, C (c?b)  BX ?
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R1, C (drf, crf, dfr, cfr,

R1, R2 (csl, dsl)  C  (3)

C, R2 (dfl,  cfl)   B1  (4)

            csr, dsr, cbr, dbr)  B2C, R2 (clb, dlb)  B2  (5)

(g) Path-based integration
of 3′ with 5, resultingB1
being to the right ofC
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C, R1 (dlf, clf)  B1    (1)
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R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

R1, C (crf, cfr)  R2    

R1, C (dbl, cbl, clb, dlb,

R1, R2 (csl, dsl)  C  (3)

C, R2 (clb, dlb)  B2  (5)
            csb, dsb, crb, drb)  B1

C, R2 (dfl,  cfl)   B1  (4)

(h) Integration of3′ with 4
resulting inB2 being some-
where behindC

Figure 11: Solving the task: “Go to the red object (circle) behind
the blue cube!” with TPCC
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So farR2 is just an abstract point in the direction of the
robot’s current orientation. For additional knowledge the
agent moves to the real positionR2, which is the rectangu-
lar point of intersection of a straight move and the first object
passed according to our heuristics.

(4) R1R2 4∠8
0 R1R2→ R1R2 4∠0

0 R2R1

At R2 the Aibo perceives (figure 11(e))

(5) R1R2 4∠4 R2C → R1R2 4∠0
4 CR2

(6) R1R2 4∠1 R2B1 → R1R2 4∠0
1 B1R2

(7) R1R2 4∠13 R2B2 → R1R2 4∠0
13 B2R2

From (5) follows

(5’) R2R1 4∠12 R2C → R2C 4∠4 R2R1

Applying the triangle constraint to (1) and (5’) we now are
able to derive

(8) CR1 4∠3 CR2

Again we must transform (5) to

(5”) CR2 4∠4
0 R1R2

Now we can compose (5”) and the ”same” relation (8) result-
ing in

(9) CR1 4∠4
3 R1R2

Deriving the relative position ofB1 needs the composition
of semi-planar relations (9) and (6), and with (7) forB2 re-
spectively.

(10) CR1 4∠{11−15}
{3−9} B1R2

(11) CR1 4∠15
{3−5} B2R2

In (11), compared to our initial task, one can see thatB2
is definitely being positioned somewhere to the left ofC1 re-
garding the orientation towards our starting positionR1. Al-
thoughB1 might also be somewhere to the left regarding the
same reference system, it is the only red object having the
chance to fulfill the initial constraint.

5 Conclusion
We presented a calculus for representing and reasoning about
qualitative relative orientation information. Oriented points
serve as the basic entities since they are the simplest spatial en-
tities that have an intrinsic orientation. We identified systems
of atomic relations on different granularity levels between o-
points and identified a scheme for computing the calculi’s op-
eration tables based on their geometric semantics. It turns out
that our calculus is a relation algebra in the sense of Tarski.
Therefore fast standard constraint-based reasoning methods
can be applied under real time conditions. The granularity of
the calculus allows to suppress irrelevant feature changes in
dynamically changing environments.

Potential applications of the calculus are demonstrated by
a robotics scenario. In the scenario, linguistic commands
and coarse perceived configuration information have to be in-
tegrated by constraint propagation to get survey knowledge.
The accuracy of the calculus permits robotics applications, in
particular in cognitively driven scenarios featuring linguistic
communication and approximate visual perception.
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Abstract
This work explores how extended modeling of sen-
sors and robot motion can be used to improve
Markov localization by monitoring deviations of
actual measurements from expected sensor read-
ings. By comparing target and actual motions of
robot joints, proprioception is achieved yielding a
quality measure for the current odometry. a quality
measure for odometry that helps differentiate peri-
ods of unhindered motion from periods where ro-
bot motion was impaired for whatever reason. By
negative information we denote the absence of an
expected sensor reading. Negative information is
seldom used in localization because it yields less
information than positive information (i.e. sensing
a landmark) and a sensor often fails to detect a land-
mark, even if it falls within its sensing range. We
address these difficulties by carefully modeling the
sensor to avoid false negatives. In real world exper-
iments, we are able to demonstrate that a robot is
able to localize in positions where without the use
of negative information it could not.

1 Introduction
The estimation of position and orientation of a mobile robot
is a cruical task in mobile robotics. One of the most success-
fully applied approaches is called Monte-Carlo-Localization.
This method is used in numerous robot navigation applica-
tions, such as office navigation [3], museum tour guides [22],
RoboCup [14] [9], as well as outdoor or less structured envi-
ronments [16]. We propose 2 extensions affecting the sensor
model as well as the motion model.

1. We show how negative information can be incorporated
into Monte Carlo localization. The sensor model is
extended by modeling the probability of non-detection
events.

2. The motion model is improved by modeling of proprio-
ceptive information. The resulting model is incorporated
into the action update of the particle filter.

The presented adjustments and changes improve the gen-
eral ability to localize and also allow the robot to localize in
areas where it was previously unable to do so. They enable

the robot to quickly recover its belief after collision events
and to adjust quickly to large displacements (kidnapped ro-
bot).

Negative information denotes the ascertained absence of
expected sensor readings. This is incorporated into the cur-
rent belief much like an additional sensor. Proprioception is
based on the comparison of actual motion to intended mo-
tion. This information is used to enhance the influence of
action commands onto the belief.

This work is motivated by the desire to improve the lo-
calization of robots that compete in the RoboCup Sony Four
Legged League. In this league, two teams of four robots com-
pete on a field of green carpet sized 6 m x 4 m. There are
two colored goals and white field lines which define the di-
mensions of the field. There is also a center line, a center
circle and penalty areas near each goal. To help the robots
localize there are four cylindrical landmarks at the side of
the field. These beacons have a simple two color code that
uniquely identifies them. The Aibo robot itself has a camera
with a field of view of 55o and a resolution of only 208× 160
pixels YUV. It is built into the robot’s head which has 3 de-
grees of freedom. The robot’s legs have 3 degrees of freedom
each. Due to their small size and low power requirements the
robots have rather limited computational power (576 MHz
processor). This somewhat limits the sensory capabilities of
the Aibos compared to robots that are equipped with laser
range finders, sonars and a possibly high end notebook and
requires for efficient algorithms and attention control. The
nature of the soccer games in RoboCup Sony Four Legged
League makes the localization task even more challenging.
The robots have little evidence whether desired movements
were successful or not. Odometry data is of poor quality as
the robots often slip on the ground or run into each other.
Furthermore, the robots are required to track the ball which
makes localization even more difficult as landmarks are only
seen infrequently and may be occluded by other robots. In
the following sections we will present ways to address these
challenges.

2 Monte Carlo Localization
The Monte Carlo Localization method is a probabilistic
method, utilizing Bayes law and the Markov assumption. The
robot maintains a set of samples, called particles. The parti-
cles approximate the belief of the robot’s position, a prob-

71



ability distribution over the possible positions of the robot.
The current belief of the robot’s position is modeled as parti-
cle density, allowing for multi-modal probability distributions
and beliefs. Each particle represents a hypothetical position
of the robot. The belief Bel(st), the localization estimate at
time t, to be at position st is determined by all previous ro-
bot actions ut and observations zt. Using Bayes law and the
Markov assumption, Bel(st) can be written as a function that
only depends on the previous belief Bel(st−1), the last robot
action ut−1, and the current observation zt:

Bel−(st) ←−
∫

p(st|st−1, ut−1)︸ ︷︷ ︸
motion model

Bel(st−1)dst−1(1)

Bel(st) ←− η p(zt|st)︸ ︷︷ ︸
sensor model

Bel−(st) (2)

with normalizing constant η. Equation 1 shows the a priori
belief Bel−(st) which takes into account the previous belief
and propagates it using the motion model of the robot. It is
the belief prior to the measurement. The measurement is then
incorporated into the belief as described in (2) using the sen-
sor model (‘sensor updating’). In Markov localization, given
an initial belief Bel(s0) at t = t0, the robot updates its belief
using odometry and then incorporates new sensor informa-
tion. Each time new information arrives the robot updates
its particle distribution using the previous motion command,
the resulting distribution is updated using the gathered sensor
information. This 2 step operation requires 2 models. The
motion model p(st|st−1, ut−1) tries to model the effect of
motion commands on the hypothetical positions. The sen-
sor model incorporates environment and sensor information
regarding this environment into the current belief. The parti-
cle filter employed for our work is based on the method de-
scribed in [19]. Here particles consist of a robot pose and
a probability (x, y, θ), p. The robot pose (x, y, θ) represents
the position and orientation of the robot (x,y coordinates on
the field in mm and orientation in radians). The likelihood p
is a measure of the plausibility of the hypothesis being at the
specified robot pose. The approach first moves all particles
according to the motion model of the action chosen. After-
wards the probabilities of the particles are adjusted using the
sensory input and the sensor model. In a third step, called
resampling particles are moved, deleted from the particle set
or injected from observation, based on their probability.

The RoboCup uses a color coded environment. The dis-
tance and bearing to landmarks and the goals are used for sen-
sor update. Other features of the domain are field lines which
are also used by some approaches [19]. Goals and landmarks
are identified by the camera located in the robot’s head. The
color pattern of the features is used to identify landmarks.
The sensory input of the leg and head joints is used to deter-
mine gaze direction, field of view, as well as the direction of
identified features. The motion model is usually determined
before the game by measuring the effect of motion commands
on the actual displacement of the robot (see next section).

3 Proprioceptive Motion Modeling
Many research efforts in mobile robotics aim at enabling the
robot to safely and robustly navigate and to move about both
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Figure 1: Sensor and actuator data (shoulder joint FL1) for
a freely walking robot. The corresponding difference func-
tion shows discrepancies between actuator and sensor data,
caused by walking motions (peaks in the curve).

known and unknown environments (e.g. the rescue scenar-
ios in the RoboCup Rescue League, planetary surfaces [24]).
While wheeled robots are widely used in environments where
the robot can move on flat, even surfaces (such as office envi-
ronments or environments that are accessible to wheelchairs
[13]), legged robots are generally believed to be able to deal
with a wider range of environments and surfaces. There are
many designs of legged robots varying in the number of legs
used, ranging from insectoid or arachnoid with 6, 8 or more
legs (e.g. [1]), 4-legged such as the Sony Aibo [5], humanoid:
2-legged (e.g. [17]).

Obstacle avoidance is often realized using a dedicated
(360◦) range sensor [23]. Utilizing vision rather than a dedi-
cated sensor is generally a much harder task since a degree
of image understanding is necessary. For the special case
of color coded environments, straight forward solutions exist
that make use of the knowledge about the robot’s environment
(such as the color of the surface or the color of obstacles [15],
see also previous section). If, however, obstacle avoidance
fails, robots are often unable to detect collisions since many
designs, like the robot used in this work, lack touch sensors
or bumpers. Such robots run into walls and continue to do so
since they have no way of telling that they are in a fatal sit-
uation. Apart from the current action failing (e.g. the target
position not being reached), collisions and subsequently be-
ing stuck have severe impact on the robot’s localization. This
is due to the motion update step in Bayesian filtering where
the current motion of the robot is incorporated into its belief
(cf. 1). This updating is usually limited to incorporating the
robot’s own motion which is commonly referred to as odom-
etry. While calculation of odometry is straightforward in a
wheeled robot (counting turns of the wheels), the task is much
more complex for a legged robot. Forward kinematic can be
used to a certain extent [18], but this requires well defined gait
patterns. Since gait optimization is often done using genetic
optimization, patterns tend to be highly complex and a phys-
ical simulation of the robot would be necessary to adequately
predict its motion. Such gaits require calibration for them to
be used in actual robotic applications [2]. However well the
odometry is calibrated, robot locomotion remains a stochas-
tic process and is never quite reproducible. In the RoboCup
domain, there is an additional source of errors: other robots
competing for the ball. Robots often push each other or in-
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Figure 2: Bottom: The collision sensor - values greater than
4 are interpreted as a collision. Top: The entropy of the belief
(represented by the sample set) with and without (thin line)
improving the motion model. When the enhanced model is
used, the entropy increases during collisions, because noise
is added to the distribution.

terlock their legs causing motions to have erratic outcome.
The following approach is based on work dealing with colli-
sions detection for a Sony Aibo using the walking engine and
software framework described in [7]. The approach uses the
servo motor’s direction sensors for the task of estimating the
quality of the odometry data gathered by the walking engine.
In analogy to biology we call this proprioception because in-
ternal sensors are used to determine the state of the robot’s
body.

3.1 Motion Model
The motion model consists of consecutive acquired odometry
data incorporated into the belief, as well as a random error
∆error, which is related to the distance traveled and the angle
rotated. Every particle is updated using the odometry offset
accumulated since the last update.

posenew = poseold + ∆odometry + ∆error (3)

Where ∆error is defined as

∆error =

( 0.1d× random(−1 . . . 1)
0.02d× random(−1 . . . 1)

(0.002d + 0.2α)× random(−1 . . . 1)

)
(4)

3.2 Collision Detection
The Aibo is not equipped with sensors to directly perceive the
contact with obstacles. We have shown ways of detecting col-
lisions using the sensor readings from the servo motors of the
robot’s legs in [7]. The comparison of motor commands and
actual movement (as sensed by the servo’s position sensor)
can be used to detect collisions (see fig.1). This comparison
has to compensate for the phase shift between the two signals
and has to cope with arbitrary movements and accelerations
produced by the behavioral layers of the robot. The method
provides a virtual collision sensor that can be used to improve
the motion model.

1) 2)



Figure 3: Belief distribution without (1) and with (2) odom-
etry quality used after a collision (marked by the star on the
robot’s path).

3.3 Extended Motion Model
The extended motion model accounts for the supplementary
information provided by the collision detection module, by
changing ∆error as well as affecting the accumulated odom-
etry update data in a random way. The binary decision of
the collision sensor has a static impact on the motion noise.
This means that ∆error is no longer dependent on the dis-
tance traveled and the angle rotated, but rather is a uniform
noise, within an interval expected to be a possible outcome
of collisions. But also odometry data can not be fully re-
lied upon, which is accounted for by randomly updating par-
ticles through the gathered odometry information, with the
assumption that the robot most probably ends up somewhere
between the requested destination and the starting point. The
noise tries to account for the severe and unforeseeable impact
of the collision. If collisions are detected, every particle is
updated by:

posenew = poseold + random(0...1) ·∆odometry + ∆error

Where ∆error is

∆error =

( 40× random(−1 . . . 1)
40× random(−1 . . . 1)
0.5× random(−1 . . . 1)

)
(5)

Otherwise, when no collision was detected, the motion model
is not extended and the update is performed as usual(3). The
effect of the changes can be seen in fig.2 and 3.

Entropy We use the expected entropy H as an information
theoretical quality measure of the position estimate Bel(st)
[4]:

Hp(st) = −
∑
st

Bel(st) log(Bel(st)) (6)

The sum runs over all possible states. The entropy of the par-
ticle distribution becomes zero if the robot is perfectly local-
ized in one position. Maximal values of H mean that Bel(st)
is uniformly distributed.

Fig. 3 illustrates the effect of the described motion model-
ing on the particle distribution. A robot is walking from the
center circle in the direction of the goal when a collision oc-
curs. It then continous towards the goal and turns left before
reaching the penalty area. When the collision is modeled, the
uncertainty in the belief is clearly visible and can be used to
trigger appropriate robot behavior.
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Figure 4a: (t = t0) Illustration of a robot localizing in an of-
fice hallway. The robot has a sensor to detect doors. At the
beginning, the robot does not know its position in the hall-
way (uniform belief distribution Bel?(st)). At this time, no
sensing of the world takes place.
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Figure 4b: (t = t1) The robot has moved down the hallway
and now senses a door p(zt|st) which results in the shown
belief Bel?(st). It has two peaks since the robot could be
standing in front of either door. The previous distribution is
illustrated by the dashed line.

4 Exploiting Negative Information
The classic example of negative information was described in
the Sherlock Holmes case “Silver Blaze.” In this case, a house
has been broken into. Under such circumstances, one would
expect the watch-dog to bark. The curious incident of the
non-barking of the dog in the nighttime provides Holmes with
the information that the dog must know the burglar, allowing
him to solve the case. Applied to mobile robot localization,
this means that conclusions can be drawn from expected but
actually missing sensor measurements [10]. Markov local-
ization methods, in particular Monte Carlo localization, have
proven their power in numerous robot navigation tasks, e.g.
in office environments [3], in the museum tour guide Min-
erva [22], in the highly dynamic RoboCup environment [14],
and outdoor applications in less structured environments [16];
an evaluation of the various algorithmic approaches is given
in [6].

Our work is focussed on localization based on landmarks.
Whenever a robot senses a landmark, the localization esti-
mate is updated using the sensor model. This sensor model is
acquired before the actual run. It describes the probability of
the measurement z given a state s (position, orientation, etc.)
of the robot. Sensor updates only occur when landmarks are
detected. If no landmark is detected, the state estimation is
updated using (only) the motion model of the robot.

p(zt*|st)

≈Bel(st)
Bel*(st-1)

s

s

Bel*(st)

Figure 5a: (t = t3) The robot moves on. There are no doors
nearby so the “door sensor” does not sense a door. The sensor
update distribution is shown in p(z?

t |st). This negative infor-
mation is of negligible use at this position: it does not help
differentiate between the peaks.

Bel*(st)

negative info. used

negative info. not used

p(zt*|st)

s

s

Bel(st)

s

Figure 5b: (t = t4) The robot moves on and the door sen-
sor still does not sense a door. Bel?(st) shows the belief if
negative information is taken into account, whereas Bel(st)
shows the belief without using negative information to bet-
ter illustrate the case. As can be seen from the diagram, using
negative information allows the robot to rule out the left peak.

Example. Consider a robot driving down a corridor as
shown in fig. 4a-5b. The robot has a sensor to detect doors
when it is standing in front of one. Let us assume further that
the robot is moving to the right but is oblivious of its starting
position. As it starts to move to the right it passes and senses
a door. Given this information, it could be standing in front
of either of the doors (states sleft and sright). As it moves on,
it does not pass another door for some time. At time t = t3,
if sleft had been the true position, the robot would have had
passed another door by now. Using the negative information
of not perceiving a door, the belief based on sleft can be ruled
out. As Thrun, Bugard, and Fox put it quite graphically, “not
seeing the Eiffel Tower in Paris implies that it is unlikely that
we are right next to it” [21].

We present a localization approach that incorporates such
negative information. To our knowledge, no explicit study
of using negative information in Markov localization has
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Figure 6: Probability of not sensing a landmark for a robot on
a RoboCup soccer field. For a robot located around the center
of the field, it is hard to miss landmarks.

been published. One difficulty is brought about by the fact
that, generally speaking, sensing a landmark constitutes a
greater information gain than not sensing one simply because
there are many positions within the robot’s environment from
where the landmark cannot be perceived. A landmark is, by
definition, something that stands out in an environment.

The other difficulty in implementing a system that uses
negative information on a real robot is that there are two main
reasons for the absence of an expected sensor reading: the tar-
get may not be there or the sensor may simply be unable to
detect the target (due to occlusions, sensor imperfections, im-
perfect image processing, etc.). Differentiating the two cases
is not a trivial task and requires careful sensor modeling. We
address this problem by considering the field of view of the
robot and by using obstacle detection to estimate occlusions.

Negative information modeling has been applied to ob-
ject tracking (see [20] for an introduction and [10] for an
overview). The event of not detecting an object is treated
as evidence that can be used to update its probability density
function [11]. In the RoboCup domain, not seeing the ball on
the field can be used to delete Monte Carlo particles in that
region as long as occlusions are considered [12]. Negative
information is also mentioned in the context of simultaneous
localization and mapping (SLAM) where it is used to adjust
the confidence in landmark candidates [16].

4.1 The Notion Of Negative Information
Negative information describes the absence of a sensor read-
ing in a situation where a sensor reading is expected given the
current position estimate.

To integrate negative information, imagine a binary sensor
being added that fires whenever the primary sensor does not
detect a particular landmark l. Its probability of it firing is
given by:

p(z?
l,t|st) (7)

This sensor model can be used to update the robot’s belief
whenever it fails to detect a landmark, i.e. when negative evi-
dence is acquired. Fig. 6 shows the probability p(z?

t |xt, yt) of
not sensing a landmark on a RoboCup field at position (xt, yt)
summed over all possible robot orientations. This figure also
shows that it is most likely for the robot to sense a landmark
when it is standing in the middle of the field. The likelihood
of not sensing a landmark is highest for positions at the edge
of the field as the robot may be facing outwards.

Algorithm 1 Iterative Bayesian updating incorporating nega-
tive evidence

1: Bel−(st)←−
∫

p(st|st−1, ut−1)Bel(st−1)dst−1

2: if (landmark l detected) then
3: Bel(st)←− ηp(zt|st)Bel−(st)
4: else
5: Bel(st)←− ηp(z?

t,l|st, rt, ot)Bel−(st)
6: end if

This rather coarse way of incorporating negative informa-
tion can be refined by taking into account the sensing range rt

of the robot’s sensors and possible occlusions ot of land-
marks. The sensing range is the physical volume that the sen-
sor is monitoring. In case of a stationary robot, rt = r0 is
constant, for a mobile robot with a pan-tilt camera it is not.
By ot we denote a means of detecting whether or not occlu-
sions have occurred. In practice, this can be calculated from a
map of the environment, directly sensed by a sensor such as a
laser range finder, or derived from a model of moving objects
in the environment.

Combining the two yields the probability of not sensing an
expected landmark l:

p(z?
t,l|st, rt, ot) (8)

Whenever a landmark is not detected, it can be used in the
sensor update step of the Iterative Bayesian Updating (see Al-
gorithm 1).

4.2 Sensor Modeling For The Sony Aibo
Field of View
The ERS-7 is a legged robot with a camera mounted in its
head. The camera has a horizontal opening angle of 55o

and the robot’s head has 3 degrees of freedom (neck tilt,
head pan, head tilt). We abbreviate gaze direction by ϕ =
(ϕtilt1, ϕpan, ϕtilt2). The sensing range is calculated by consid-
ering the field of view (FOV) of the robot:

Occlusion
In order to account for occlusions, we opted for an approach
that has been used successfully for detecting obstacles, re-
ferred to as ‘visual sonar’ [8; 15]: The camera image is
scanned in vertical scan lines and unoccupied space in the
plane of the field is detected since it can only be of green or
white color (field lines). Scanning for these colors tells the ro-
bot where obstacles are and where there is free space which
in turn can be used to determine if the visibility of the land-
mark is impaired, i.e. if it is occluded by other robot or some
other obstacle. More specifically, if the expected landmark
lies in an area where the robot has detected free space, the
likelihood of the corresponding pose estimate is decreased. If
it lies outside of the detected free space, no inference can be
made.
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Taking FOV and occlusion into account, the sensor model
for not perceiving an expected landmark is given by:

p(z?
t |st, zt,obs) (9)

Where st = (xt, yt, ϑt, ϕt) describes the robot state that
consists of the robot pose (position xt, yt, and orientation ϑt)
and the current gaze direction ϕt.

4.3 Experimental Results
In the following experiments, unless otherwise stated, only
landmarks were used for localization to emphasize the effect
of using negative information.

Monte Carlo Localization, Implementation
This work is based on the Monte Carlo localization described
in [19] which also serves as a base line implementation. Sen-
sor updating was extended to account for FOV and occlusion
as described. This also requires sensor updating to be trig-
gered by new camera images regardless of whether or not
there was a percept. Before re-sampling, the weight of an
individual particle is calculated as follows: Of all landmarks
L, the subset of landmarks L′ is detected, the subset L? is
expected but not detected, and lastly the subset L� is not de-
tected but was also not expected: L = L′ ∪ L? ∪ L� and
L? ∩ L′ = ∅. The probability of a particle pi is calculated by
multiplying all the likelihoods of all gathered evidences:

pi =
∏
l∈L′

sl(αmeasd, αexpd)︸ ︷︷ ︸
detected

·
∏

l∈L?

s?
l (ϕ, αexpd)︸ ︷︷ ︸

expected and not detected

(10)

The function sl is an approximation of the sensor model
and returns the likelihood of sensing the landmark l at angle
αmeasd for a particle pi that expects this landmark to be at
αexpd. Function s?

l models the probability of not sensing the
expected landmark l ∈ L? given the current sensing range as
determined by ϕ, the robot pose associated with pi, and the
obstacles percept zobs.

Preliminary Experiment
For illustration purposes, we conducted a preliminary exper-
iment in simulation. In this experiment, the robot starts out
being well localized and is then displaced to a position where
it is not able to get any new sensor information (fig. 7). It
is similar to the kidnapped robot problem, but here we em-
phasize the moment right after the robot is displaced rather
than investigating how fast it can recover. The effect of the
displacement on the Monte Carlo particle distribution is the
following: particles which represent the previous belief be-
come less likely when negative information is taken into ac-
count (i.e. the information that the landmark is not detected
where it is expected). The distribution diverges towards par-
ticles which were less likely prior to the displacement. Parti-
cles representing the previous belief are eventually eliminated
from the distribution because they are inconsistent with the
current (negative) sensor data. Particles which differ from the
previous belief just enough to be compatible with the current
sensor data are favored; particles remain close to where the
robot was last able to localize. This does, in most cases, bet-
ter represent what has happened to the robot than distributing
the particles uniformly over the entire field.

1) 2)
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Figure 7: Incorporating negative information. White (out-
lined) arrows denote particles that receive negative informa-
tion and that are therefore less likely than others. In (1), the
effect of using negative information is shown for a robot that
is well localized and frequently sees landmarks. (2) Distrib-
ution shortly after the robot has been displaced (kidnapped):
particles facing the goal are less likely and will eventually be
eliminated from the distribution.

4.4 Localization Experiment
The following experiment is a localization task using the real
robot. The robot is placed on the field at the location indi-
cated in fig. 9, facing outwards. The robot performs a scan-
ning motion with its head (pan range [−45o, 45o]) but does
not move otherwise. From its position, it can only see one
landmark. A panorama composed of actual robot camera im-
ages is shown in fig. 8. The a priori belief is assumed uni-
form. This position was chosen because it is a particulary
difficult spot for the robot to localize given the limited sensor
information. Two quantities can be used when a landmark is
seen: its size in the camera image can be used to estimate the
distance to the landmark dl and the relative angle to the land-
mark (bearing, αl) can be calculated from its position within
the image. In practice we only use the bearing because the
distance measurement is error prone. Using just the bearing,
only the orientation of the robot can be inferred. Note that
this differs from triangulation where distances are used.

In the following paragraphs, the basic localization not us-
ing negative information and localization incorporating nega-
tive information are compared. We first qualitatively analyze
the particle distribution and then show how the entropy of the
distribution decreases when negative information is consid-
ered.

Particle Distribution
The basic experiment was conducted using 100 particles for
Monte Carlo localization. It was repeated on a log file con-
taining camera images, robot joint angles, and odometry data
using an increased particle count of 2000 to get a better rep-
resentation of the probability distribution.

Not using negative information. Without using negative
information, the robot is unable to localize (fig. 10). Only
the orientation of the particles is adjusted according to the
sensor readings. The apparent clustering in the small sample
set in fig. 10 is not stable and, even after considerable time,
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Figure 8: A panorama view generated from actual camera
images, single camera image highlighted. The robot can only
see one landmark.

Figure 9: Experimental setup: Robot is standing at the posi-
tion shown in the photo. It performs a scanning motion with
its camera.

the particles do not converge. The distribution for the larger
sample set is uniform (w.r.t. position).

Note that the distribution is not circular because the dis-
tance to the landmark was not used. Instead, only the bearing
to the landmark was used. This results in a radial distribution
resembling magnetic field lines.

Incorporating negative information. The negative infor-
mation gained in this experiment is not seeing but one land-
mark within the pan range (pardon the double negation).
Incorporating this information, the robot is able to local-
ize quickly. On average, the robot is reasonably well lo-
calized after about 10 secs with a pose error of less than
∆p = (25 cm, 25 cm, 20o).

Entropy
Entropy is considered for the localization task as defined in
equation 6. Fig. 12 shows the progression of the distribution’s
entropy over time for the above localization experiment cal-
culated from the 100 particle distribution.

Not using negative information. The run starts with a uni-
form particle distribution which equals to maximum entropy.
When the landmark comes into view, a decrease in entropy
is observed. This information gain is due to the robot being
able to now infer its relative orientation w.r.t. the landmark.
Since there are no constraints on the robot’s position, the en-
tropy remains at a relatively high level. This is easily seen
by separately calculating the entropy of the angle and posi-
tion distributions. Note that even though there is a drop in

Figure 10: Particle distribution not using negative informa-
tion, initial uniform distribution and distribution after 10s.
Solid arrows indicate Monte Carlo particles (100). The ex-
periment was repeated using 2000 particles (shaded lines) to
better represent the actual probability distribution. The actual
robot position is indicated by the white symbol, the estimated
robot pose by the solid symbol. Not using negative informa-
tion and only using the bearing to the landmark, the robot is
unable to localize. Some clusters of particles form but they do
not converge. As one would expect, the position distribution
is almost uniform but the relative angle is quite distinct.

entropy, the pose estimate itself is still highly uncertain.
Incorporating negative information. When using negative

information, the entropy decreases even before the first sen-
sor reading. The information gain is much smaller than that
caused by perceiving a landmark but nevertheless noticeable.
As soon as there is a percept, the negative information in com-
bination with the knowledge of the robot’s orientation results
in a quick convergence towards the actual robot pose. This is
remarkable since without using negative information, local-
ization was not possible.

Using field lines for localization. The previous experi-
ment was repeated using field lines for localization in addi-
tion to landmarks. This enables the robot to localize quickly
at the actual robot pose even when using the basic localiza-
tion (fig. 12, right). Adding negative information, however,
greatly increases the rate of convergence and the overall level
of entropy is reduced even further. The decrease of entropy
when incorporating negative information is not obscured by
the usage of lines for localization although field lines offer a
much greater information content than negative information.

Kidnapped Robot. The kidnapped robot problem is a com-
monly used benchmark for the flexibility and robustness of
localization algorithms [6]: a localized robot is displaced and
the time for it to recover is measured. Our kidnapped robot
experiments underlined and confirmed the already stated find-
ings. The robot is able to recover from displacements with-
out using negative information as soon as it successively sees
three landmarks. In regions where this is not guaranteed, the
case is different. Whereas without using negative informa-
tion, the robot does not have enough evidence to update its
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Figure 11: Particle distribution when negative information is
incorporated, initial uniform distribution and distribution af-
ter 10s. When incorporating negative information, the robot
is able to localize quickly.

belief, incorporating negative information allows the robot to
localize quickly and reliably in such regions.

The ability to localize more quickly using negative infor-
mation is highly beneficial in real world applications where
the robot is trying to actually perform a task rather than to
localize perfectly. Such tasks often require the robot to focus
its attention on objects other than landmarks and the sensing
strategy may keep it from seeing as much of the world as it
potentially could. Integrating negative evidence thus allows
for more efficient sensing and improves overall robot perfor-
mance.

5 Conclusion
In this paper we demonstrated how integrating negative infor-
mation as well as information about collisions into Markov
localization can be used to achieve significantly better local-
ization performance for a mobile robot.

An odometry-based motion model is improved using the
knowledge about collisions with obstacles yielding a quality
measure for the odometry data. This knowledge is obtained
by comparing the motor commands and the sensor readings
of the leg joints. In the case of a collision, the influence of the
odometry on the motion model is reduced and extra noise is
added that models the impact of an obstacle.

Incorporating negative information into the sensor model
makes localization more stable even in areas where land-
marks are rarely visible. Because sensors are more likely to
overlook observable landmarks than hallucinate ones that are
not visible, extra care has to be taken in designing the sen-
sor model. To avoid false negatives, the model needs to take
into account the sensor’s sensing range and possible occlu-
sions of landmarks. We have presented how such modeling
can be achieved for a Sony Aibo robot in the RoboCup envi-
ronment. In real robot experiments, we have shown that using
negative information, a robot is able to localize in positions
where it otherwise would not. The entropy of the distribution
is greatly reduced when negative information is incorporated
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Figure 12: Expected entropy of the belief in the localization
task with (?) and without (thin line) using negative informa-
tion. 1) At first the robot does not see the landmark. As soon
as the landmark comes into the robot’s view (indicated by the
dashed vertical line), the entropy drops. Using negative infor-
mation, the quality of the localization is greatly improved and
the entropy continues to decrease over time. 2) Additionally
using field lines for localization enables the robot to localize
even without negative information. Incorporating negative in-
formation, however, yields a higher rate of convergence and
the entropy is significantly lowered.

and the rate of convergence towards the estimated position is
increased.

The additional information that is being incorporated into
the belief makes it more responsive. This improves local-
ization in areas where there are few landmarks visible and,
on the other hand, leads to a quick degradation of the belief
when collisions occur. The latter is often the case when two
robots fight over a ball and one tries to shot the ball; such ac-
tion often fails because the robot is unaware of being badly
localized and then shoots the ball in an undesirable direction.
Incorporating collision detection into the belief allows the ro-
bot to recognize such situations and act accordingly.

Future work will focus on how negative information can
be used for other types of landmarks (e.g. field lines) and
other sensors. Performance evaluation will be continued in
more complex situations and the possibilities of reducing the
number of particles necessary for robust Monte Carlo local-
ization will be investigated. The increased responsiveness of
the probability distribution will allow for active vision ap-
proaches that take the current belief into account.
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Abstract

In this paper we show how to train soccer robots
using static game situations in diagrams arranged
by a human coach. Rather than programming every
detail by hand, we let the robots learn from strate-
gic examples sketched by the coach. With our ap-
proach, the coach defines new game positions and
indicates to the players how to react to them, like
in real soccer. We have implemented a manage-
ment tool to collect and organize all the game po-
sitions entered by the coach. The game situation is
encoded as a feature vector, which is used to train
a neural network. The network learn to general-
ize and give advice on the best option for a player.
The general method is illustrated with the specific
case of robots learning to pass. The method can be
generalized to other tasks and to several networks
encoding different game strategies.

1 Motivation
RoboCup robots are usually programmed by hand. There
has been work done to set parameters graphically like[Ydren
and Scerri, 1999], but learning techniques for abstract behav-
iors are widely missing. Different techniques, such as rein-
forcement learning, have been used for several years in the
simulation league[Lauer and Riedmiller, 2004], whereas in
the robotic leagues it is more difficult to automatically learn
high-level skills. Therefore learning has been mostly usedto
allow robots to automatically adapt the parameters of low-
level skills [Fidelman and Stone, 2004]. It is also clear why:
we cannot let real robots play against themselves hundreds of
times, so that they learn to behave successfully.

An alternative could be a simulation, but an exact model of
the robots is never so exact that a simulation could be used as
a complete substitute[Gloyeet al., 2004]. On the one hand, it
is hard to have an errorless prediction of the driving behavior
of real robots. On the other hand, very small changes in hard-
ware can lead to significantly different characteristics, such
as more or less ball control when driving.

In this paper we investigate a second option. We want to
supply our small-size robots with our own human knowledge
about soccer. Until now, we have achieved respectable ro-
bot behavior mostly using manual hard coding and tuning the

code in long and difficult “training” sessions. We would like
to teach the robots in the same way a human coach explains
plays to human players: using static diagrams of what con-
stitutes a good and what constitutes a bad move. What we
propose is that a human coach draws interesting game situ-
ations, for example for passing[Kok et al., 2003], and then
assigns them a “good” or “bad” grade. The computer should
then learn to generalize from such examples to new and un-
seen game situations.

Entering enough examples into the system, it is then pos-
sible to train a neural network which can achieve the desired
generalization. The coach trains the robots with examples,
and the robots learn to do the right thing. Moreover, by keep-
ing separate databases of offensive or defensive strategies, it
is possible to train several neural networks for different styles
of play. We then can integrate an external agent (a coach,
as in the simulation league), which can provide advice on
the best strategy for the current adversary[Kuhlmannet al.,
2005]. The robots can then switch their strategy dynamically
according to this advice.

2 Setting up Training Examples of Game
Situations

The first step for training the robots with our approach is to
set up some examples of possible game situations. For this
we can use our simulator for the small-size robots. From now
on, let us assume that we want robots to learn how to pass the
ball (and receive it). The player with the ball will be calledthe
“passer”, and the player receiving the ball will be called the
“receiver”. Figure 1 shows a scene in which player 0 should
pass the ball to player 1, which is waiting for the pass. With
our simulator, the user can set up such a game situation by
dragging players from each team to the desired position.

In what follows, we focus only on a passer and a single
available receiver. Later on, we generalize our techniquesto
take all other field players into account.

Once an example has been entered by the coach, we save
all relevant information in an XML-file. In the experiments
described in this paper, we have used static situations, where
the speeds of all robots and the ball are zero. However, the
same general approach can be applied to dynamic situations.
For every stored game situation, we associate with it infor-
mation that reflects our belief on the correct decision for the
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Figure 1: A static game situation entered by the human coach

the potential passer (giving the pass or not). In the case of
the passing game, we store a real numberx ∈ [−1; 1]. In our
system, we apply the convention that whenx ≤ 0.0 dribbling
is desirable, and that whenx > 0.0 passing is desirable.

3 Encoding Relevant Features
In order to generalize from the stored examples, it is crucial to
look not at the coordinates of the robots, but to some features
of the game situation. If we would just encode the coordinates
of the robots on the field, and would give this information to a
neural network, the net would have extreme difficulties trying
to generalize to new game situations. A barrier of players, for
example, is a feature that looks similar in almost all places
in the field, although the coordinates are of the robots can be
very different.

We need to encode the field using a numerical feature vec-
tor. For example, a possible feature is the free space around
the ball receiver. This feature is very relevant because it does
not pay to give a pass to a player which will be trapped.

By encoding the game situation with a feature vector, we
necessarily lose information because we cannot reconstruct
all robots’ positions from the features, but we obtain a more
abstract view of the field. The information given to the net
has a better format, since important field aspects are encoded
numerically.

Back to our passing example. Conceptually, the features
we use are split up into two parts, the features having to do
with dribbling (that is, driving with the ball), and the features
having to do with ball reception. The features are independent
from the training method used.
The features associated with dribbling are:

1. Dribbling freedom
This parameter describes the space available for drib-
bling with the ball, before an opponent appears (in the
direction of the opponent’s goal). This parameter re-
flects the time that it would take the nearest opponent
to interfere with the dribbling path of my robot.

2. Dribbling angle
This is the angle defined by the position of the passer,
the middle of the opponent’s goal line, and the nearest
corner of the field. A robot positioned at an opponent’s

corner, for example, has a dribbling angle of zero. A
robot in the middle of the field, has a dribbling angle of
90 degrees. A larger dribbling angle means that more
space for dribbling is available.

3. Dribbling distance to the goal
This is the just distance from the passer to the goal line.

The next five features describe the reward obtained from
passing. We can visualize these features in the following way:
The player on the left has the ball, and ponders whether to
give a pass. The player on the right is only a symbol for a
receiver at one position. In fact, we displace the pass receiver
over a grid of17x21 points covering the field, and calculate
at each vertex the features. The results are illustrated in the
following figures.

4. Space available
This parameter encodes the distance from the receiver up
to the nearest opponent. It is large when the opponents
are far away, it is small when an opponent is near. Fig.
2 shows, with a white marker, those portions of the field
where there is much space available, and with black the
space dominated by opponents.

Figure 2: Space available: White areas of the field are rela-
tively opponent-free, dark areas are not

5. Passing angle
This is the same feature we had above (dribbling angle),
but now for the receiver. A high passing angle means
that it is good to receive passes, for example in the mid-
dle of the field. A low passing angle means that it is not
so good to receive a pass, for example, at the corners or
near the sides of the field. Fig. 3 shows with a white
marker those positions in the field which offer a good
passing angle, and in dark those positions with a worse
passing angle.

6. Minimal tangent distance
This value is the shortest distance an opponent has to
move in order to block a pass. Fig. 4 shows, in black,
those field areas where a pass can go through. The white
areas can be blocked by the opponents. In the example,
the receiving robot (lower right) is too near to an oppo-
nent. It would be better if the receiving robot was lo-
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Figure 3: Passing angle: White areas of the field provide a
good passing angle, dark areas do not

cated at some point in the diagonal corridor going from
the middle of the field to the upper right.

Figure 4: Minimal tangent distance: In dark areas of the field
the distance to block a pass is large, in white areas not

7. Waiting time during passing
This feature is the time elapsed after an opponent has
moved to a new position, where a pass can be blocked,
and the instant where the ball arrives. An opponent with
a large waiting time can block a pass easily. An oppo-
nent with negative waiting time cannot reach the ball.
Fig. 5 shows an example where the dark areas cannot be
easily reached by the opponents to stop a pass, while the
white or gray areas can be reached easily. This is proba-
bly one of the main criterions which need to be used for
deciding to give a pass or not.

8. Dribbling freedom for the receiver after a pass
This is the same parameter as ”dribbling freedom” for
the robot with the ball, but now for the robot receiving
the pass. Fig. 6 shows the regions of the field where
receiving a pass provides high reward (in black) and low
reward (in white).

It is worth noting that all these features encode symmetri-
cal field positions with the same numbers. If we had stored
the coordinates of the robots, we would have to store all the

Figure 5: Waiting time: Opponent robots in white areas can
wait longer for the ball when a pass is coming

Figure 6: Dribbling freedom for the receiver. Dark areas indi-
cate much free space, bright areas are covered by opponents

symmetrical cases every time we enter an example. The fea-
tures described above take care of encoding all symmetrical
field positions with the same feature vector. The classifier has
an easier task, once the symmetries of the learning problem
have been incorporated in the encoding.

4 Training neural networks
We have written a tool to keep track of all the examples of
game situations defined by a human coach (or several human
coaches). We can group the examples in several categories to
have a better overview of them and to activate and deactivate
particular example groups.

By activating and deactivating groups, we can train differ-
ent neural networks to encode different behaviors. For exam-
ple, if an opponent has the ability to block long passes across
the field, we can deselect all examples where long passes are
considered “good”, and we can train a network which behaves
essentially as the original one, except for its reluctance now
to propose long passes across the field.

We achieved good classification results using a three-layer
feed forward network[Rojas, 1996]. The network has 8 input
nodes - the features seen in section 3 - and a hidden layer,
whose dimension can be set arbitrarily. Right now, we usu-
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Figure 7: This is the output of a trained neural coach. If a
teammate stands in one of the 2 bright areas, the left player
with the ball should pass.

ally have 14 hidden nodes. The output node emits a value
that indicates the action that should be taken. An output in
the interval(−∞; 0] is interpreted as “Do not pass”, while an
output in(0;∞) as “Do pass”. The neural network we use,
has already reached a size where it is questionable whether
it would be good to let it grow further. One would need too
many examples to cover all degrees of freedom of the net-
work. Right know, we have stored around 100 examples in
our system. The effort is worth it: game situations are created
quickly with our simulator, and the results we obtain have
good quality.

The trained networks can be saved, and it is possible to use
them for behavior control. In our current system, the eventual
passer first ponders shooting a goal. This behavior inhibits
all others. If shooting is unfeasible or not so good, the robot
considers whether to dribble or to pass. The system iterates
over all team mates (as possible receivers of a pass), and asks
the coach whether it would be good to pass or not. If there
are more than one well positioned receivers, the passer robot
selects the one for which turning towards it is easier.

We have succesfully used this system in the robocup chal-
lenge ”German Open 2005”. It is hard to compare the results
empirically to other methods, but we hope that a video that
shows the output of the net in dynamic gameplay can con-
vince you. Please take a look at it at http://robocup.mi.fu-
berlin.de/videos/NeuralCoach/index.html.

In our robocup domain, it is possible to use this system in
real-time. In a whole compution cycle we not only evaluate
the quality of a pass to 3 different team mates, but also cal-
culate the grid seen in 7 every frame using a resolution of
16 ∗ 10. Then this grid is used for player positioning. To eva-
lute these 160 imaginary passees, 2ms are needed. The largest
part of the 2ms is used to evaluate the exponential function
that is used by the activation function of the neural net. One
could further reduce the computation time by either having
the exponential function in hardware or by parallelising the
calculations.

Figure 8: The topology of the neural network used as passing
coach

Figure 9: Our management tool saves static examples of
game situations. The examples can be deleted, or organized
in groups which correspond to alternative offensive strategies.

5 Application to other domains
In this section we show a posible use of this approach in an
other domain. Let us consider a mars rover that wants to
travel to a specific destination. Further let us have a system
that suggests different routes. What route is considered best?
This is an offline problem that could be tackled with our ap-
proach. For every obstacle type one or more problem specific
values are calculated. For example:

• Planes

1. How many meters do we have to traverse?

• Mountains

1. How many meters do we have to traverse?
2. What is the summarized attitude difference?
3. What is the steepest rise?

• ...

With these features, engineers can now use the neural
coach to determine the best route. They can create an ex-
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ample where it is advantageous to go over an additional 10
meter height of a mountain rather than taking a 100 meter
detour on a plain if the rise is gradual enough. On the other
hand is a mountain with a height of only 5 meter but a rise of
40 degrees not acceptable.

This is a very comfortable procedure to define the desired
behavior. If the neural coach has a well written flexible frame-
work for taking and managing examples, the only important
and creative task is to find the right problem specific features
to calculate.

6 Conclusion
We have developed a “neural coach” for our small-size ro-
bots. The coach is a neural network which accepts game situ-
ations encoded as a feature vector, and which provides as out-
put a number reflecting the best alternative: dribbling withthe
ball or passing. The robot with the ball can periodically ask
the neural network which is the best strategy, and can apply
it.

Our behavior control system has grown with the years and
contains many parameters which must be tuned by hand. It
is difficult to modify them when the hardware changes, also
because the many programmers work with our system. Our
coaching tool is a decisive step towards abandoning such
hand-tuned implementations, in favor of a more general ap-
proach.

Many other game decisions could be modelled in the way
described in this paper, like for example the team formation,
or individual behaviors of a robot (”I am the goalkeeper and
see a opponent dribbling to my goal. My defenders are far
away. Shall I come out of my goal to decrease the shooting
angle or not?”).If the behavior control system can also learn
the low-level skills, such as driving, or dribbling with theball,
using reinforcement learning or other machine learning al-
gorithms, one obtains a more versatile robotic platform, and
code which is easier to manage and maintain.

References
[Fidelman and Stone, 2004] Peggy Fidelman and Peter

Stone. Learning ball acquisition on a physical robot.
In 2004 International Symposium on Robotics and
Automation (ISRA), August 2004.

[Gloyeet al., 2004] Alexander Gloye, C. Goektekin, Anna
Egorova, Oliver Tenchio, and Raul Rojas. Learning
to drive and simulate autonomous mobile robots. In
RoboCup-2004: Robot Soccer World Cup VIII. Springer-
Verlag, 2004.

[Kok et al., 2003] Jelle R. Kok, Matthijs T. J. Spaan, and
Nikos Vlassis. Multi-robot decision making using co-
ordination graphs. InProceedings of the 11th Interna-
tional Conference on Advanced Robotics, pages 1124–
1129, Coimbra, Portugal, 2003.

[Kuhlmannet al., 2005] Gregory Kuhlmann, Peter Stone,
and Justin Lallinger. The UT Austin Villa 2003 cham-
pion simulator coach: A machine learning approach. In
Daniele Nardi, Martin Riedmiller, and Claude Sammut,

editors, RoboCup-2004: Robot Soccer World Cup VIII,
pages 636–644. Springer Verlag, Berlin, 2005.

[Lauer and Riedmiller, 2004] Martin Lauer and Martin Ried-
miller. Reinforcement learning for stochastic cooperative
multi-agent-systems. InThird International Joint Confer-
ence on Autonomous Agents and Multiagent Systems - Vol-
ume 3 (AAMAS’04), 2004.

[Rojas, 1996] Raul Rojas. Neural Networks - A Systematic
Introduction. Springer-Verlag, New York, 1996.

[Ydren and Scerri, 1999] Johan Ydren and Paul Scerri. An
editor for user friendly strategy. Robocup Simulation
League, Team Description Headless Chicken, pages 44–
47, 1999.

85



.

86



HTN Planning for Flexible Coordination Of
Multiagent Team Behavior

Oliver Obst and Anita Maas and Joschka Boedecker
AI Research Group, Universität Koblenz

Universitätsstr. 1,
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Abstract

Coordination of agents in a dynamic and non-
deterministic environment is a difficult task.
There are many approaches to this problem
where agents are controlled reactively. In this
paper we present an approach to coordinate the
behavior of a multiagent team using an HTN
(Hierarchical Task Network) planning proce-
dure. To coordinate teams, high level tasks
have to be broken down into subtasks which is a
basic operation in HTN planners. We are using
planners in each of the agents to incorporate
domain knowledge and to make agents follow
a specified team strategy. With our approach,
agents coordinate deliberatively and still main-
tain a high degree of reactivity. In our imple-
mentation for use in the RoboCup Simulation
League, first results were already very promis-
ing. Using a planner helps to maintain a clear
agent design, separating the agent code from
the expert domain knowledge.

1 Introduction
Coordination among different agents and the specifica-
tion of strategies for multiagent systems (MAS) is a chal-
lenging task. For a human domain expert it is often very
difficult to change the behavior of a multiagent system.
This is especially true when not only general tasks should
be specified, but also the way in which tasks are to be
executed. Due to interdependencies simple changes in
one place of the code may easily affect more than one
situation during execution.

In this work, we suggest to use Hierarchical Task Net-
work (HTN) planners in each of the agents in order to
achieve coordinated team behavior which is in accor-
dance with the strategy given by the human expert. The
expert knowledge should be separated from the rest of
the agent code in a way that it can easily be specified
and changed. While pursuing the given strategy, agents
should keep as much of their reactiveness as possible.
HTN planning explicitly supports the use of domain spe-
cific strategies. To coordinate groups of agents, tasks
usually have to be broken down into subtasks, which is

one of the basic operations of HTN planning. Different
levels of detail in the description of strategies further
facilitate the generation of useful information for debug-
ging or synchronization.

In classical planning, operators are deterministic and
the single planning agent is the only reason for changes
in the environment under consideration. We show how
it is possible to use an HTN planner in the domain of
robotic soccer, even though the robotic soccer environ-
ment is very different from classical planning domains.
For our approach, we have chosen a team of agents
for the RoboCup 3D Soccer Simulator [Obst and Roll-
mann, 2005] that was introduced at RoboCup-2004 in
Lisbon [Lima et al., 2005].

The following section describes our approach to coor-
dinate the behavior of a multiagent team using an HTN
planner. Section 3 contains the description of an imple-
mented example. We present and discuss the results of
our first tests, and give a review of relevant related work.
Finally, Section 6 concludes the paper.

2 HTN Planning for Multiagent Teams

The usual assumptions for HTN planning, like for clas-
sical planning approaches, are that we plan for a sin-
gle agent who is the only cause for changes in the do-
main. When the plan is executed, all actions succeed
as planned. Executing an action in a classical planning
framework is instantaneous, it takes no time, and there-
fore the world is always in a defined state.

To plan for agents in a team and in a real-world do-
main, we have to relax some of these assumptions and
find a way to deal with the new setting. The definition
below is a way commonly used to define nondeterministic
planning domains. An approach to deal with these kinds
of domains is to use model checking (see for instance
[Cimatti et al., 2003]). Depending on the problem and
the desired properties of the results, the planner tries to
compute solution plans that have a chance to succeed or
solution plans that succeed no matter what the results
of the nondeterministic actions of an agent are.

Definition A nondeterministic planning domain is a
triple Σ = 〈S, A, γ〉, where:

• S is a finite set of states.
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• A is a finite set of actions.

• γ ⊆ S ×A× S is the state-transition relation. 2

When the number of different possible results of γ is
high, computing a plan can easily become intractable for
domains where decisions have to be made quickly. Nev-
ertheless, using a planner could still be useful to achieve
high-level coordination for a team of several agents in
a dynamic environment without using communication
and without a centralized planning facility. For our ap-
proach, all planning should be done in a distributed fash-
ion in each of the autonomous agents. The task of the
system is to automatically generate individual actions
for the agents in accordance with those plans during ex-
ecution. Despite using plans, agents should still be able
to react to unforeseen changes in the environment. A
further goal of using a planner is that team behavior can
easily be specified and extended, which is supported by
the separation of agent code and expert domain knowl-
edge.

2.1 Multiagent Team Behavior with HTN
Plans

In Hierarchical Task Network (HTN, see Definition be-
low) planning, the objective is to perform tasks. Tasks
can be complex or primitive. HTN planners use methods
to expand complex tasks into subtasks, until the tasks
are primitive. Primitive tasks can be performed directly
by using planning operators.

Definition A task network is an acyclic directed graph
w = 〈N,A〉, where N is the set of nodes, and A is the set
of directed edges. Each node in N contains a task tn. A
task network is primitive, if all of its tasks are primitive,
otherwise it is nonprimitive. 2

Our approach of interleaving planning and acting, and
also of handling nondeterministic actions, is similar to
the one described in [Belker et al., 2003] where an HTN
planner is used for navigation planning of a single robot.
Here, like in most realistic environments, it is not enough
to initially create a plan and blindly execute it, but af-
ter execution of each action the state of the world needs
to be sensed in order to monitor progress. As a con-
sequence, for generating HTN plans it is not absolutely
necessary to generate a primitive task network from the
beginning. Instead, an HTN where the first tasks are
primitive is sufficient, if we interleave planning and act-
ing. Future tasks are left unexpanded or partially ex-
panded until the present tasks are done and there is
no other task in front. In dynamic and complex envi-
ronments, creating a detailed plan can be considered as
wasted time, because it becomes virtually impossible to
predict the state of the world after only a few actions
already.

Rather than expanding complex tasks completely, our
planner generates what is called plan stub in [Belker et
al., 2003], a task network with a primitive task as the
first task. As soon as a plan stub has been found, an
agent can start executing its task. The algorithm in

Fig. 1 expands a list of tasks to a plan stub, if it is
not already in that form. The notation of our algo-
rithms is similar to the one used in [Ghallab et al., 2004]:
〈t1, ..., tk〉 is a set of tasks, O is the set of operators, M
is the set of methods, subtasks(m) stands for the set of
subtasks of a method m, and the dot (’.’) used in the
algorithms denotes a concatenation.

Function: plan(snow, 〈t1, ..., tk〉, O, M)
Returns: (w, s), with w an ordered set of tasks, s a

state; or failure

if k = 0 then return (∅, snow) // i.e. the empty
plan

if t1 is a pending primitive task then
active← {(a, σ) | a is a ground instance of an

operator in O,
σ is a substitution such that
a is relevant for σ(t1),
and a is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (a, σ) ∈ active;
return (σ(〈t1, ..., tk〉), γ(snow, a));

else if t1 is a pending complex task then
active← {m | m is a ground instance of a

method in M ,
σ is a substitution such that
m is relevant for σ(t1),
and m is applicable to
snow};

if active = ∅ then return failure;
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(〈t1, ..., tk〉);
set all tasks in front of t1 to pending, set t1 to
expanded ;
return plan(snow, w, O, M);

else
// t1 is an already executed expanded task

and can be removed
return plan(snow, 〈t2, ..., tk〉, O, M);

Figure 1: Creating an initial plan stub.

In classical planning, executing an action takes no
time. This means that immediately after executing a
planning operator, the world is in the successor state. In
our approach we have to consider that actions are not
instantaneous and might not even yield the desired re-
sult. The first problem is when to regard operators as
finally executed: Depending on the actual domain agents
are acting in, actions can be regarded as finished after
a given amount of time or when a specified condition
holds. This domain specific solution to this problem is
not part of the algorithms in this paper.

A second problem is the computation of the successor
state: as defined above, for nondeterministic environ-
ments γ is a relation with possibly several results for the
same state-action pair. For our algorithms, we expect
γ to be a function returning the desired successor state,
more precisely a subset of the desired successor state.
The returned state should describe those properties of
the environment that are deliberately changed by an ac-
tion. Likewise, the effects of an operator describe the
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desired effects. The underlying assumption is that oper-
ators have a single purpose so that the desired successor
state can be uniquely described. The desired effects can
be used by the operators to coordinate actions of team-
mates during the same plan step. For this, we introduce
multiagent operators, which is effectively a shortcut for
defining a set of combinations of operators. Actions that
are executed simultaneously but which do not contribute
to the desired effects of the multiagent operator are sim-
ply not included. This makes it easy for the developer
of a multiagent team to create team operators, but the
disadvantage is that agents not modeled as part of the
multiagent team cannot be regarded with our approach.

Definition (Multiagent Operator) Let o1, ..., on be
operators, effects−(o) and effects+(o) the negative and
positive effects of an operator o, respectively, and
effects−(oj) ∩ effects+(ok) = ∅ for all j, k ∈ {1, ..., n}.
p is a new operator with name(p) = name(o1) while
〈name(o2), ...,name(on)〉. The preconditions and effects
of p are defined as unions over the preconditions and
effects of all oi, respectively:

pre(p) =
⋃

i=1,...,n

pre(oi), and

effects(p) =
⋃

i=1,...,n

effects(oi)
2

The multiagent operator describes the actions of sev-
eral agents; the operator in front of the while is the one
actually executed by the agent, and the operators after
it are used to determine the collective preconditions and
effects of the team action. In the algorithms, a multi-
agent operator is treated as regular operator with the
difference that at execution time only the operator in
front of the while leads to an action by the respective
agent.

The desired successor state is used to check the success
of the last operator application in the second algorithm
(see Fig. 2). Both algorithms treat plans as a stack,
tasks on this stack are marked as either pending or as
expanded. Pending tasks are either about to be executed,
if they are primitive, or waiting to be further expanded,
if they are complex. Tasks marked as expanded are com-
plex tasks which already have been expanded into sub-
tasks. The function step removes executed tasks from
the plan, it is called whenever a step was finished. If the
task was successfully executed, only the finished task is
removed from the stack – and possibly also parent tasks
if there are no further pending child tasks. If execution
of the task failed, all subtasks of the parent task have
to be removed. In this case, it is checked if the parent
complex task can be tried again. Function plan from
Fig. 1 is used to create an initial plan stub by calling the
function with an initial task. It is also used to create an
updated plan stub when called from step.

Function: step(sexpected, snow, 〈t1, ..., tk〉, O, M)
Returns: (w, s), with w a set of ordered tasks, s a

state; or failure

if k = 0 then return (∅, snow) // i.e., the empty
plan

if t1 is a pending task then
if sexpected is valid in snow then

i← the position of the first nonprimitive task in
the list;
return plan(snow, 〈ti, ..., tk〉, O, M);

else
// t1 was unsuccessful; remove all pending

children of our parent task
return step(sexpected, snow, 〈t2, ..., tk〉, O, M);

else
// t1 is an unsuccessfully terminated

expanded task, try to re-apply it
active← {m | m is a ground instance of a

method in M ,
σ is a substitution such that
m is relevant for σ(t1),
and m is applicable to
snow};

if active = ∅ then
// t1 cannot be re-applied, remove it from

the list and recurse
return step(sexpected, snow, 〈t2, ..., tk〉, O, M);

else
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(〈t1, ..., tk〉);
set all tasks in front of t1 to pending, set t1 to
expanded ;
return plan(snow, w, O, M);

Figure 2: Remove the top primitive tasks and create a
new plan stub.

3 Robotic Soccer Sample
Implementation

To give an example, we take the simulated soccer do-
main [Kögler and Obst, 2004; Obst and Rollmann, 2005].
In [Dylla et al., 2005], we formalized soccer domain
knowledge as it can be found in soccer theory books [Luc-
chesi, 2001]. Based on the diagrams in this book (see for
example Fig. 3), we created HTN methods for the sim-
ulated soccer domain.

Figure 4 shows that part of the plan stack which
contains the team plan for the situation depicted in
Fig. 3. All pending tasks in this plan stack are still
complex tasks on the team level, so that this stack
could be part of any of the agents on the field. It was
created by expanding the top level task play soccer
into offensive phase. The task offensive phase
was expanded to build up play, final touch and
shooting. In the current situation, only the first
task of this sequence, build up play, was already ex-
panded to build up play long pass, which in turn
was expanded to diagram-4. Finally, diagram-4 ex-
panded to the sequence pass(2,9), pass(9,10) and
leading-pass(10,11).
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Figure 3: Diagram #4 from [Lucchesi, 2001]

To create a plan stub so that an action can be exe-
cuted, the planner needs to further expand the top pend-
ing task, in this case pass(2,9). When team tasks get
further expanded to agent tasks, each agent has to find
its role in the team task: the HTN methods contain
variables that need to be unified with actual uniform
numbers. In our soccer example, the role finding is done
via preconditions on the current formation, position and
function of the respective players in the formation. This
also means that symmetric situations are handled au-
tomatically (provided the formation of the team is also
symmetric).

Further expanding the abstract plan, agent #2 will
expand pass(2,9) to do pass(9), agent #9 has to do
a do receive pass for the same team task. The other
agents position themselves relatively to the current ball
position with do positioning at the same time. The de-
sired effect of pass(2,9) is the same for all the agents,
even if the derived primitive task is different depend-
ing on the role of the agent. That means each agent
has to execute a different action, which is realized as
C++ function call in our case, and at the same time an
operator has to update the desired successor state in-
dependently. To express that an agent should execute
the do positioning behavior while taking the effect of
a simultaneous pass between two teammates into ac-
count, we are using terms like do positioning while
pass(we,2,9) in our planner. Figure 5 shows methods
reducing the team task pass(A,B) to different primitive
player tasks.

In different agents, the applicable methods for the top
team task pass(2,9) lead to different plan stubs. This is
an important difference to the work presented in [Belker
et al., 2003]. The plan stubs created as first step for
agent 9 and agent 11 are shown in Fig. 6 and 7. When
a plan stub is found, the top primitive tasks are passed
to the C++ module of our agent and executed. A ’step’
for a plan in our agents can consist of more than a sin-
gle action, for example, we do not want the agent who
passes the ball to stop acting while the ball is already
moving to a teammate, but instead after the kick the

pending-pass(2,9)
pending-pass(9,10)
pending-leading-pass(10,11)
expanded-diagram-4
expanded-build_up_play_long_pass
expanded-build_up_play
pending-final_touch
pending-shooting
expanded-offensive_phase
expanded-play_soccer

Figure 4: Plan stack during planning.

method pass(A,B)
pre [my_number(A)]
subtasks [do_pass(B) while pass(we,A,B),

do_positioning].

method pass(A,B)
pre [my_number(B)]
subtasks [do_receive_pass while pass(we,A,B)].

method pass(A,B)
pre [my_number(C),#\=(A,C),#\=(B,C)]
subtasks [do_positioning while pass(we,A,B)].

Figure 5: Different methods to reduce the team task
pass(A,B) to agent tasks.

agent should adjust its position relative to the ball until
the ball reached its destination and the step is finished.
If possible, the agent has to execute all pending primitive
tasks until the next step in the plan starts. If there are
pending primitive tasks after one step is finished, these
agent tasks are simply removed from the plan stack and
the next team task can be expanded. Figures 8 and 9
show the plan stub for the second step from the diagram
in Fig. 3. For player 11, the expansion leads to a plan
stub with two primitive tasks in a plan step while for
player 9 there is only one task to be executed.

What we did not address so far was the point in time
when the transition from one plan step to the next step
takes place. Here, the basic idea is the following: each
step in plans for our team stops or starts with an agent
being in ball possession. If any of the agents on the
field is in ball possession, we can check for the desired
effect of our previous action. If the action succeeded,
the right agent possesses the ball and the planner can

pending-(do_receive_pass while
pass(we, 2, 9)),

expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,
...

Figure 6: Step 1: Player 9 receives the pass.
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pending-(do_positioning while
pass(we, 2, 9)),

expanded-pass(2, 9),
pending-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram-4,
...

Figure 7: Step 1: While players 2 and 9 pass, player 11
stays in the formation.

pending-(do_pass(10) while
pass(we, 9, 10)),

pending-do_positioning,
expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,
...

Figure 8: Step 2: Player 9 passes to 10.

continue planning by generating the next plan stub. If
an adversarial agent intercepted the ball, the last action
failed and the planner needs to backtrack. For dribbling,
the planner needs to check if the dribbling agent still
possesses the ball and arrived at the desired destination
in order to start with the next step.

4 Results and Discussion

For our approach of generating coordinated actions in a
team we implemented an HTN planner in Prolog which
supports interleaving of planning and acting. Our plan-
ner supports team actions by explicitly taking the effects
of operators simultaneously used by teammates into ac-
count. The planner ensures that the agents follow the
strategy specified by the user of the system by generat-
ing individual actions for each of the agents that are in
accordance with it. The lazy evaluation in the expan-
sion of subtasks which generates plan stubs rather than
a full plan, makes the planning process very fast and en-
ables the agents to stay reactive to unexpected changes
in the environment. The reactiveness could, however, be
increased by adding a situation evaluation mechanism
that is used prior to invoking the planner. This would
improve the ability to exploit sudden, short-lived oppor-
tunities during the game.

We implemented a distributed planning system in
the sense that each of the agents uses its own plan-
ner. This was, however, somewhat facilitated by the

pending-(do_positioning while
pass(we, 9, 10)),

expanded-pass(9, 10),
pending-leading_pass(10, 11),
expanded-diagram_4,
...

Figure 9: Step 2: Player 11 stays in the formation while
player 9 passes to 10.

fact that agents in the RoboCup 3D Simulation League
are equipped with sensors that provide them with a full
(though possibly inaccurate) view of the world, similar
to Middle-size League robots using omni-vision cameras.

To truly evaluate the approach we presented, it would
be necessary to measure the effort it takes to create a
team and compare it to other approaches to create a
team exhibiting the same behavior. We strongly believe
that our approach leads to a modular behavior design
and facilitates rapid specification of team behavior for
users of our agents, but we cannot present numbers here.
A comparison to the results of other teams is not helpful
here, because better results do not necessarily mean that
the planning procedure is the reason for differences in the
performance: in many cases, careful engineering can lead
to implementations that perform well without using AI
techniques.

Our plans can describe plays as introduced in [Bowling
et al., 2004], which have shown to be useful for synchro-
nization in a team. There are some important differences
to plays, however. First, our approach supports differ-
ent levels of abstraction in plans. That means there are
different levels of detail available to describe what our
team and each single agent is actually doing, from very
abstract tasks down to the agent level tasks. A second
important difference is that the planner can find alter-
native ways to achieve tasks. This is possible if plays
are specified in terms of player roles or properties rather
than fixed player numbers. The approach in [Bowling
et al., 2004] was used for Small Size League, where the
numbers of players and the number of alternative ways
of doing plays is low. That means in Small Size League,
a plan is either applicable or not. For Simulation League
or larger teams in general, more opportunities are possi-
ble for which an approach using fixed teammates seems
to restrictive. On the other hand, the approach in [Bowl-
ing et al., 2004] supports adaptation by changing weights
for the selection of successful plays. In our approach, the
corresponding functionality could be achieved by chang-
ing the order in which HTN methods are used to reduce
tasks. At this point in time, our approach does not sup-
port this yet. As soon as we do have an adaptive compo-
nent in our approach, it makes sense to compare results
of our team with and without adaptation.

The way our plans are created and executed, we as-
sume synchronous actions for all our agents. Our team
actions are geared to actions of the player in ball posses-
sion, so this simplification can be made. There are a few
situations in soccer, where more detailed reasoning over
the time actions take would be useful. This includes
for instance all situations where a ball receiver should
appear at the receiving position just in time to surprise
the opponent. In our approach, we make this possible by
synchronizing the behavior of two agents in the current
step by using both ball and agent velocity to estimate
interception times, in the operator implementations out-
side of the planning procedure. Inside our planning pro-
cedure, we do not reason about durations, which would
be useful to make asynchronous actions possible.
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Although more detailed evaluations have to be carried
out, the first tests using the planner seem very promising
and indicate that our approach provides a flexible, easily
extendable method for coordinating a team of agents
in dynamic domains like the RoboCup 3D Simulation
League.

5 Related Work

Several approaches that use a planning component in a
MAS can be found in the literature.

In [Dix et al., 2000], the authors describe a formalism
to integrate the HTN planning system SHOP [Nau et
al., 1999] with the IMPACT [Subrahmanian et al., 2000]
multiagent environment (A-SHOP). The preconditions
and effects used in SHOP are modified so that precondi-
tions are evaluated using the code-call mechanism of the
framework, and effects change the state of agents. While
the environment of this work clearly is a multiagent sys-
tem, the planning is carried out centralized by a single
agent. This is a contrast to our approach, which uses a
planner in each of the agents to coordinate the agents
actions.

Planning in each of the agents in the RETSINA mul-
tiagent system [Paolucci et al., 2000] is also HTN based.
Additionally to the planning module, RETSINA agents
consist of a scheduler, a communicator and an execution
monitor. The architecture of the system is targeted to-
wards agents that interact by exchanging informations,
in contrast to our approach where agents basically coop-
erate by physical actions. RETSINA uses a special mech-
anism to suspend tasks that need to wait for information
gathering processes. To decide if the execution of a task
failed, RETSINA uses sets of constraints describing con-
ditions that should hold during or after the execution.
The basic planning algorithm in RETSINA returns par-
tial solution plans, then they are scheduled for execution
and finally executed by the execution monitor. In our
approach, the planner returns plan stubs where the first
task is already executable.

A general HTN planning framework for agents in dy-
namic environments has been presented in [Hayashi et
al., 2004]. The authors show how to integrate task de-
composition of HTN planning, action execution, pro-
gram updates, and plan modifications. The planning
process is done via abstract task decomposition and is
augmented to include additional information such as the
history of action execution for the plans to enable their
incremental modification. Rules are given for plan mod-
ifications after having executed certain actions or after
program updates. In the robotic soccer domain, how-
ever, the results of actions like e.g. kicking the ball can-
not be undone. Thus, the plan modification mechanism
given in [Hayashi et al., 2004] does not apply and could
not easily be used for our purposes.

HTN planning has also been studied in the context of
creating intelligent, cooperating Non-Player Characters
in computer games. In [Muñoz-Avila and Fisher, 2004],
an HTN planner is used to enable agents in the highly

dynamic environment of the Unreal Tournament game to
pursue a grand strategy designed for the team of agents.

Bowling et al. [Bowling et al., 2004] presents a strat-
egy system that makes use of plays (essentially being
multiagent plans) to coordinate team behavior of robots
in the RoboCup Small Size League. Multiple plays are
managed in a playbook which is responsible to choose
appropriate plays, and evaluate them for adaption pur-
poses. The plays are specified using a special language
designed with ease of readability and extensibility in
mind. Preconditions can be specified that determine
when a play can be executed. Furthermore, plays contain
termination conditions, role assignments and sequences
of individual behaviors. While the use of preconditions
resembles a classical planning approach, the effects of
individual plays are not specified due to the difficulties
in predicting the outcome of operators in the dynamic
environment. This is in contrast to our approach, as we
use desired effects of the operators in our plans. Another
difference is that in [Bowling et al., 2004] the planning
component is also centralized.

A centralized planner is also used in [Riley and Veloso,
2002] to generate team plans for distributed execution.
A coach agent observes the opponents agents and uses
opponent models in the planning process. It communi-
cates the plan to the agents periodically and the agents
use this information to maintain consistency in their
cooperating behavior. The team plans are represented
as Simple Temporal Networks which are essentially di-
rected graphs describing the temporal constraints be-
tween events. Using this representation, the specification
of parallel events is facilitated and can also be used for
monitoring purposes. Despite those appealing features
of Simple Temporal Networks for multiagent plan specifi-
cation, we used a rather more traditional representation
without any explicit modeling of execution times for the
operators for the sake of easier integration into the plan-
ner. They might, however, be beneficial for a more fine
grained control over the parallelism in our plans.

Other approaches towards multiagent collaboration
like [Cohen et al., 1998; Grosz, 1996] are based on negoti-
ations between the agents in a multiagent system. How-
ever, as pointed out in [Stone and Veloso, 1999], this kind
of complex communication might take too much time or
might even be infeasible in highly dynamic real-time do-
mains like robotic soccer.

The work in [Murray et al., 2002; Murray, 2003] de-
scribes the approach to creating our agents so far: We
used UML statecharts to specify behaviors for agents in
a multiagent system. The agents were designed in a top-
down manner with a layered architecture. At the highest
level global patterns of behavior are specified in an ab-
stract way, representing the different states the agent can
be in. For each of these states, an agent has a repertoire
of skeleton plans in the next layer. These are applicable
as long as the state does not change. Explicit specifi-
cation of cooperation and multiagent behaviors can be
realized. The third and lowest level of the architecture
encompasses the descriptions for the simple and com-
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plex actions the agents can execute, which are used by
the scripts in the level above.

This hierarchical decomposition of agent behaviors is
similar to the HTN plans described in this work. How-
ever, the separation of domain description knowledge
and the reasoning formalism accomplished through the
use of the HTN planner within our agents provides us
with much greater flexibility in respect to the extensibil-
ity of methods and operators, compared to the amount
of work needed to change the state machine description.

6 Conclusion and Future Work

We presented a novel approach that uses an HTN plan-
ning component to coordinate the behavior of multiple
agents in a dynamic MAS. We formalized expert domain
knowledge and used it in the planning methods to sub-
divide the given tasks. The hierarchical structure of the
plans speeds up the planning and also helps to generate
useful debugging output for development. Furthermore,
the system is easily extensible as the planning logic and
the domain knowledge are separated.

In order to use the system in the RoboCup competi-
tions, we plan to integrate a lot more subdivision strate-
gies for the different tasks as described in the diagrams
in [Lucchesi, 2001]. A desirable enhancement to our
work would be the integration of an adaption mech-
anism. Monitoring the success of different strategies
against a certain opponent, and using this information in
the choice of several applicable action possibilities, as e.g.
outlined in [Bowling et al., 2004], should be explored.
The introduction of durative actions into the planner
(see for instance [Coddington et al., 2001]) would give
a more fine grained control over the parallelism in the
multiagent plans. Simple Temporal Networks as used in
[Riley and Veloso, 2002] seem to be well suited for this
purpose. Furthermore, a situation assessment will be
added to the agents to be able to exploit unforeseen sit-
uations in a more reactive manner. Finally, we want to
restrict the sensors of the agents to receive only partial
information about the current world state, and address
the issues that result for the distributed planning pro-
cess.
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Abstract 
In this paper, an approach to solving the 
differential pursuit-evasion game involving 
multiple pursuers and a single evader is presented. 
To reduce the computational complexity of the 
problem, a simulated annealing type optimization 
scheme is used to arrive at a sub-optimal solution. 
An example is used to show the efficiency and 
potential shortcomings of the approach. 

1 Introduction 
In recent years, the problem of improving the autonomy of 
Unmanned Aerial Vehicles (UAVs) has received much 

attention. As outlined in the
Roadmap [OSD, 2002] sho
research is to enable swarm
collaborate to achieve a comm
 
Such technology has in 
applications, the potential o
search and rescue operations
UAVs coordinate their ef
individuals. Moreover, swa
deployed to effectively p
merchandize to cross intern
the transport vessels. 

However, replacing human pilots is a very difficult task 
especially in adversarial situations when the UAVs have to 
react intelligently to scenario changes imposed by an 
intelligent opponent.  An example of such a scenario is 
shown in Fig. 2, in which multiple ground targets located in 
an urban warfare environment are attempting to evade the 
UAVs deployed in the area. The evaders have the ability to 
coordinate their actions and intelligently attempt to escape 

pt 

the targets at some minimum cost. 
The problem of having UAVs intercept evading targets, also 
known as the multiplayer pursuit-evasion game, is of high 
dimensionality and complexity. The strategy needed to 
intercept the evading targets is dependent not only on the 
dynamic properties of the UAVs and their ability to 
cooperate, but also on the intelligence and agility of the 
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the UAVs, and it is the objective of the UAVs to interce

Fig. 2.  Urban warfare scenario with four UAVs attempting to 
intercept two evading targets 
evading targets. 
In this paper, a computational algorithm is developed to 
determine a suboptimal control strategy that a swarm of 
pursuers can utilize to intercept a single evading target. By 
only considering a single evading target, the problem 
complexity can be reduced significantly since it is possible 
to rewrite the game in the evading target’s reference frame. 
 To further simplify the problem, it is assumed that the 
differential game considered is a so-called complete 
information game, that is, as the game is being executed all 
the players in the game are aware of the other players’ 
current states such as position and heading. 
 



2 Related Work  
The problem of solving multiplayer pursuit-evasion 
differential games has been studied intensively from both a 
theoretical and a numerical perspective.  In order to derive 
real-time strategies, the approach to solving multiplayer 
differential games has been to consider probabilistic 
solution methods [Sastry. et al, 2002]. The approach 
normally used in such solution methods is to generate a 
probability map of the game space, and then command the 
pursuers to head toward the points at which there is a high 
probability of finding the evaders. The advantage of such a 
technique is that complete information about the evaders’ 
states is not required to find a solution. However, several 
advantages that a swarm of pursuers has when dealing with 
an intelligent evading opponent is also disregarded. The 
pursuing swarm has the ability to shape the probability map 
if the pursuers collaborate, that is, the pursuers can deploy a 
herding-type pursuit strategy in which the evaders are 
forced to commit to unfavorable evasion strategies.  
An overview of solution techniques presented from a 
theoretical perspective is provided in [Bardi and Falcone, 
1999] and [Stipanovic et al., 2004]. However, the 
approaches to solving the differential games in general 
relies either on using mathematical insight into the 
particular game considered, and hence is not applicable to a 
wide range of differential games, or a decomposition is 
performed by introducing multiple value functions. 
In contrast to these approaches, we introduce a solution 
technique used to solve the complete information 
differential game by determining a single value function. 
Strategies are derived using numerical optimization schemes 
and will therefore include blocking and herding of the 
evader.  

3 The Minimum Time Differential Game 
Problem 

In this problem the vehicles are governed by the following 
dynamics, 
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where upi and ue is the control input of pursuer i and the 
evader respectively. The functions fe() and fpi() are 
considered to be smooth but potentially nonlinear functions. 
The objective of the game is to intercept the evading 
vehicles as fast as possible, that is, 
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where the parameter T is a part of the functional to be 
minimized.  In order to determine the time-optimal 
trajectory, the following equality has to hold, 
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where f(x,up,ue)=fp(x,up) - fe(x,ue), and V(x) is the value 
function. The condition expressed in (3) is the Hamilton-
Jacobi-Bellman equation, which is a sufficient condition 
used to generate a time optimal solution given that the value 
function V(x) is zero upon game termination and positive 
otherwise [Sundar and Shiller, 1996]. 
 Finally, a termination condition will have to be introduced, 
 
 0))(( =Ψ Tx . (4) 

 
For the multipursuer game with only a single evading 

target, the collection of possible termination points becomes 
quite substantial, since in many instances capture is 
achieved by only a small subset of the pursuers. Hence, the 
final position of the pursuers not directly involved in the 
actual interception of the evading target is not specified. 
However, it should be noted that even though some of the 
pursuers will not intercept the target, they are still able to 
influence the evading target’s escape strategy. 
Consequently, the strategies of all the pursuers have to be 
included in the optimization process. 

4 The Value Function Problem 
As mentioned in the previous section, the termination 
condition Ψ(x(T)) = 0 does not in general reduce the 
possible final states of the pursuers to only a small set of 
points.  The significance of having a large set of termination 
points arises when considering the value function V(x). The 
standard approach for determining the value function is to 
propagate the set of termination points backwards in time. 
However, since the termination condition is not exclusive 
enough, this process proves to be very time consuming. The 
approach considered in this paper to reduce the problem, is 
to use a Guiding Value Function (GVF). The purpose of the 
GVF is to derive an estimate of the final state of the 
pursuers. Based on the estimate of the final state of the 
pursuers, it is possible to generate the value function 
associated with the time-optimal problem. However, since 
the final state is only an estimate arrived at using a GVF, the 
estimated final states are not likely to be the actual final 
states of the time-optimal problem. Consequently, when 
propagating the set of termination points backwards, a ε-
neighborhood around the set of final positions is included.  
The following equation is used to construct the value 
function: 
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The partial derivative of the value function is approximated 
using a standard two-point first order approximation.  
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Once the value function associated with the termination 

conditions has been determined numerically, the solution is 
propagated forward again. If the new final states are within 
a δ-neighborhood of the previous solution where δ << ε, the 
solution is considered to be a suboptimal solution and the 
process is terminated. Otherwise, the process will have to be 
repeated with the new termination points. Naturally, the 
number of iterations needed to arrive at an acceptable result 
is dependent on how well the GVF is constructed. 

5 Overview of the Solution Technique 
A flow chart of the algorithm is shown in Fig. 3. The 
initialization step provides an estimate of the final states of 
the players using the Guiding Value Function (GVF).  
The final states of the solution is then passed to the Value 
Function Module, which determines the value function used 
to solve the problem of reaching a neighborhood around the 
final states in minimum time. The new value function is 
then passed to the Forward Propagation Module, which in 
turn will generate a new solution. The new solution is 
passed back to the Value Function Module for as long as it 
is not close to the previous solution. 
 

6 Optimization Algorithm 
To reduce the complexity of propagating the solution 
forward the search for up and ue is done using a simulated 
annealing type search algorithm. The outline of the 
algorithm used is as follows: 
 

1) Generate a random initial guess and set initial 
Temperature T to 1. 

2) Insert guess into HJB equation and determine the 
value which ideally should be 0. 

3) Save the value of the minimax term and the value 
of the HJB equation. 

4) Perturb the initial guess by temperature bounded 
random disturbance. 

5) If the new guess is better than the initial guess save 
the new guess and reduce temperature. 

6) If the new guess is not better than the initial guess 
generate a random number on the interval [0,1]. If 

the random number is less than T
vv highlow

e
−

, the new 
guess is saved where vhigh and vlow are the values of 
the minimax term1. 

7) Repeat steps 4-7. Stop when the value does not 
improve after a set number of iterations or when 
the user terminates process. 

 
By applying the above algorithm, the total amount of time 
spent searching for the pursuers’ and the evader’s control 
strategy is reduced significantly since only a small subset of 
the control space is searched. However, it should be noted 
that the solution in general is suboptimal.  In addition to the 
ability to limit the time spent searching for a solution the 
algorithm, as opposed to a gradient descent type algorithm, 
is capable of escaping a locally optimal solution. 

7 Example Problem 
As an example, consider the 2-dimensional game in which 
three pursuers are attempting to capture one evader. The 
motion of each vehicle is described by the following 
differential equations, 
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where Vpi,Wpi,Ve and We are the players’ controls and i = 1, 
2 and 3. The termination condition will be 
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where ri is the distance from pursuer i to the evader. The 
initial value function guess will be the same as the 
termination condition, since it appears reasonable that the 
closer the pursuers are to the evader the lower the 
interception time becomes. It should be noted that the GVF 
derived from distance considerations is generally not 
equivalent to the time-optimal value function. The classical 
homicidal chauffeur problem [Isaacs, 1965] is an example 

                                                 
1 The best solution is always saved separately. Hence, if the 

process is terminated early, the current solution, which may not be 
the best solution, is not returned. 
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of a scenario in which a pursuer has to move away from the 
target to be able to intercept it.  
In constructing the value function a simple rectangular grid 
is superimposed on the game space. Linear interpolation is 

used to determine the value of V(x) at the grid points. 
It should be noted that the solution arrived at with infinite 
computational resources may only be a locally optimal 
solution. That is, the starting point of the algorithm arrived 
at by using an initial value function guess, could result in a 
local optimal solution due to the gradient descent type 
approach used to determining the time-optimal final states. 

8 Results 
The solution used to initialize the optimization process is 
shown in Fig. 4. The pursuers’ trajectories are marked by 
o’s while the evader’s trajectory is marked by x’s. The 
bounds used to limit the control are shown in Table 1.  
 Notice, that the players can turn very rapidly but not move 
very fast. The values were chosen in this fashion to show 
that the optimal solution to this multiplayer game is not a 
bang-bang type control strategy often encountered in 

o
a
 
C
i
a

However, once the simulated annealing algorithm has run 
through a couple of iterations, the near optimal solution is 
found. The initial solution was found within a few minutes 
using a Matlab routine. However, constructing the value 
function is much more computationally demanding due to 
the interdependence of the pursuers’ control efforts. For 
instance, if at some particular step in determining the value 
function 100 possible states of each of the three vehicles are 
considered, the total number of points propagated 
backwards is approximately 1,000,000. Consequently, each 
time the value function is constructed a significant amount 
of processing time has to be allocated due the non-
polynomial complexity of multiplayer differential games. 
The optimization algorithms used to simplify the problem 
only reduces the coefficients of the exponential growth; 
consequently, if a large number of players or very high 
dimensional resolution is required, the timeframe needed to 
solve the problem approaches infinity. 
The solution after two iterations of the time-optimization 
algorithm is shown in Fig. 5. The time required to intercept 
the target was reduced by approximately 8%, however to 
obtain this improvement the algorithm had to run several 
hours.  
  

9 Future Work 
Since advanced optimization techniques do not appear to be 
able to provide a real-time implement able solution 
technique to the non-polynomial complexity multiplayer 
differential games even in simple cases, another approach 
relying on reducing the problem complexity from non-
polynomial to polynomial appears to be required. 
Such an approach will have to decouple the pursuers’ 
Fig. 4.  Initial simulation used to determine estimated final 
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Fig. 5.  Time Optimized Solution 
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Control Bounds 

Vpmax 0.6 distance per time 
unit 

Wpmax +/- 0.5 radians per time 
unit 

Vemax 0.5 distance per time 
unit 

Wemax +/- 0.4 radians per time 
unit 

Table 1. Control Bounds 
rategies by possibly decomposing the p
o-player differential games with obstac
A possible simplification process is sh

rediction algorithm is used to estimate t
ach of the evaders.  To arrive at
ultiplayer pursuit-evasion game is 
ultiple two-player pursuit-evasion dif

onsidering all combinations of pursuers
roblem into smaller 
les.  
own in Fig. 6. The 
he cost of capturing 
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decomposed into 
ferential games by 
 and evaders. 



Once the interception cost has been determined, the 
pursuing players are each assigned an evader by applying a 
Greedy-type matching algorithm. 
Finally, the interception can be executed by solving the 
much simpler two-player pursuit evasion problem.  
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uch an approach will naturally arrive at a suboptimal 
olution to the multiplayer differential game due to the 
ecoupling of the pursuers control strategies, however the 
roblem can be solved in polynomial time which is 
esirable when attempting to implement a solution 
echnique in real-time. The decoupling of the pursuers’ 
ontrol strategies has to be done such that a level of 
ooperation between the pursuers is maintained, which is a 
roblem we are currently investigating.  

0 Conclusion 
n this paper, a solution technique used to solve the 
ifferential pursuit-evasion game consisting of multiple 
ursuers and one evader is presented. A simulated annealing 
ype solution technique is introduced to reduce the problem 
omplexity and thereby reducing the computation time 
equired to solve the problem significantly. A simple 
xample is used to highlight potential complexity problems 
ith the solution technique. Finally, a problem 
ecomposition approach is suggested to reduce the problem 
o one of polynomial complexity. 
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Abstract
Nowadays, artificial intelligence (AI) techniques
are being used by real-time designers, as a means
to soften their systems.
In this paper, we propose to use auctions as tasks
scheduling policies of an agent working in hard
real-time environments.
These techniques have been implemented in the
ART IS (Architecture for Real-Time Intelligent
Systems) agent architecture because agents imple-
mented with this architecture are able to handle
hard real-time restrictions while showing agent fea-
tures (believes, social conducts, ...). In this paper,
we have also detailed the needed conditions and
processes to apply these methods in the ART IS
agent.
Finally, we show the results obtained of the batter-
ies of critical conditions tests and the comparison
of these results with the ones applying the same
tests to the methods used currently by the ART IS
agent.

1 Introduction
A multi-agent system working in a real-time environment, not
only must have good working, but also must be efficient in
its execution. This variable (time) will must be taken into
account when implementing the tasks of the agents forming
such multi-agent system.

In this paper, we propose some studies, comparatives, and
implementations of negotiation methods as auctions in multi-
agent systems working in real-time environments. Specifi-
cally, in the ART IS agent architecture [Botti et al., 1999;
Carrascosa et al., 2003a].

Section 2 of this paper presents a brief review of negoti-
ations among agents. In section 3, we show two different
points of view to describe ART IS agents (user model and
system model), along with the scheduling policies used by
these agents. After that, in section 4, we describe the way ne-
gotiation between ART IS agents was carried out; the pur-
poses of each negotiation and the different implementations

∗Auspices for Universidad de Magallanes – Punta Arenas (Chile)

that have been done. In section 5, we present the different the-
oretical and real results obtained in the different implemented
tests. Lastly, we show some conclusions and references in
section 6.

2 Negotiation among agents
The application of negotiation methods to conflict-solving in
multi-agent systems is becoming more common. The nego-
tiation strategy to be followed by the agents (buyers, sellers)
depends on the type of conflict existing between them. These
strategies will help them to reach agreements and to obtain
mutual benefits. The benefit that each partner obtains is deter-
mined by a value called “reserved price”. The farther away
or the closer the agreement is to the “reserved price”, the
higher or lower the benefit will be [Raiffa, 1982], depending
on whether it is the buyer or the seller. The negotiation strat-
egy will also specify steps that have to be followed during the
negotiation.

We can find several works on negotiation among agents in
the literature: [Zlotkin and Rosenschein, 1992; Weinberger
and Rosenschein, 2004] identify three domain types for the
negotiation between agents, these are:

• Task-Oriented Domains (TOD), where agent actions are
determined by the tasks it has to carry out. In these do-
mains, the agent has all resources it needs available for
its tasks.

• Worth-Oriented Domains (WOD), where the agent as-
signs a value to each possible state depending on its de-
sire to reach it, and determining its actions evaluating
these values at each moment.

• State-Oriented Domains (SOD), where agent actions
consider other agents present in the system, because they
share plans to reach their objectives.

[Kraus et al., 1998] presents a negotiation model that com-
bines reasoning and optimization. [Kraus and Lehmann,
1995] develop their works based on ’Game Theory’ using
’diplomacy’ to reach agreements. [Parsons et al., 1998]
presents a negotiation model, among independent agents so
that they reach agreements by using arguments in order to
offer or obtain certain services.

Other approaches to negotiation are auction-based meth-
ods. Auction is a useful choice when there are many agents
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interested in limited resources. There are, mainly, two differ-
ent kind of auctions: “one-to-many” and “many-to-many”. In
both cases, it is necessary to determine beforehand the proto-
col type that will be used (for example, FIPA protocols [FI-
PASpec, FIPA]). Usually, in “one-to-many” auctions agents
don’t use a mediator, whilst in “many-to-many” auctions they
use it. The auctions protocols used by agents are First-Price
Sealed-Bid Auctions, English Auctions and Dutch Auctions.

In this work, we have applied “one-to-many” auctions
among ART IS agent entities. Before explaining the nego-
tiation, we will present the ART IS agent architecture.

3 ART IS Agent
ART IS is the acronym of an Architecture for Real-Time
Intelligent Systems [García-Fornes, 1996]. The main feature
of this agent architecture is to guarantee the fulfillment of
temporal restrictions for critical components and to support
the execution of optional components, both kinds of compo-
nents are user-defined.

An ART IS Agent (AA) is able to perceive informa-
tion from the environment in which it is situated, to cal-
culate fast answers (and to refine them), and finally to act
over the environment. These actions can be physical ac-
tions or message passing. The architecture of an AA can be
viewed from two different perspectives[Terrasa et al., 2002;
Carrascosa et al., 2003a]: the user model (high-level model)
and the system model (low-level model). The user model of-
fers the developer’s view of the architecture, while the system
model is the execution framework used to construct the final
executable version of the agent.

3.1 User Model
The User model is a high-level model in which the AA is
composed of sub-entities that model its behaviours, environ-
ment, etc. These are:

1. A group of sensors and effectors allowing the agent to
interact with the environment with time restrictions (de-
mand for Real-Time Environments).

2. A group of behaviours, each one composed by a group
of in-agents. Each in-agent solves a part of the problem
of the AA, activating itself in a periodic way so that all
of them cooperate to solve the whole problem. There are
two kinds of in-agents:
Critic in-agents which are characterized by a period and
a deadline. Its execution is guaranteed during execution
time. They have two layers: the reflex layer that ensures
an answer to the problem of the AA with the minimum
quality in a guaranteed execution time; and a real-time
deliberative layer which tries to improve the quality of
the answer reached by the reflex layer.
Non-critic in-agents which are part of the AA’s deliber-
ation. This kind of in-agents don’t have their execution
guaranteed, but the agent tries to execute as many non-
critic in-agents as possible with the aim of maximizing
the global quality of the solution to its problem.

3. Set of believes forming a mental state of the in-agent
including: a model of the world and its internal state.

4. A control module which is responsible of the execution
of the in-agents forming the current behaviour of the
AA. Since the in-agents have two layers, reactive and
deliberative, to manage them the control module is di-
vided into two sub-modules: Reflex Server (RS) and De-
liberative Server (DS).

3.2 System Model
The System Model is the low-level model of the AA. This
model is the translation of the AA’s user model, so every part
is translated into an equivalent low-level entity in the AA’s
system model (see figure 1):

1. The sensors and effectors of the user model correspond
with a library in order to access to the different hardware
devices.

2. Each behaviour is translated into a working mode [Car-
rascosa et al., 2004], and their in-agents into low-level
tasks.

(a) In the system model. This way, every task can have
three parts:
i. An initial part. This is the reflex part of the in-

agent; it must always be executed obtaining a
first reflex answer to the problem of the AA with
a low quality. This initial part includes the per-
ception part of the in-agent.

ii. An optional part. This is the deliberative part
of the in-agent. These optional components in-
crease the quality of the answer calculated in the
initial part establishing the cognitive process of
the in-agent. For this, artificial intelligence tech-
niques are used and are executed between the ini-
tial and final parts of the correspondent in-agent.

iii. A final part. This part executes the answer which
was generated in the previous parts (initial and
optional parts) of the in-agent. This part is in
charge of the actions of the in-agent.

3. The set of believes is translated into a shared memory
(frame-based blackboard) that is accessible from all the
tasks [Barber et al., 1994].

4. The two parts of the Control Module of the user model
are translated into:

(a) The Reflex Server: includes First-Level Scheduler
(FLS) for the real-time tasks. The FLS uses real-
time policies at execution time to decide what task
to execute at every moment. This planning helps
the AA to adapt to the changes of its environment,
and how to execute the tasks using less time than
the estimated for its worst-case execution.

(b) The Deliberative Server is formed from two sub-
modules: the Event Manager (EM) and the Second-
Level Scheduling (SLS). The EM activates when
receiving events and reacts to them; the SLS is
in charge of distributing the available slack time
among the optional components of the in-agent.
This improves the global quality of the agent’s an-
swer. To do this distribution, the SLS needs to know
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the mean-case execution time (mcet) of the deliber-
ative parts (optional components) of the in-agents.
Currently the ART IS agents use the following
policies:

• EDF (Earliest Deadline First). It chooses those
tasks that with lowest deadlines.

• HSF (High Slope First). It tries to get the biggest
possible quality, by selecting first those tasks with
smallest execution time.

• BIF (Best Importance First). It executes first the
most important tasks of the system.
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Figure 1: System Model of the AA

Previous to the work here presented, SLS is the only one
in charge of selecting the active in-agent’s optional parts to
execute.

We propose to extend the SLS whit the capacity of using
auctions as negotiation techniques with in-agents about their
possible execution.

So, we try to soften how the SLS selects and schedules the
optional tasks by means of including on these processes auc-
tions taking into account the agent current situation, believes
and desires.

4 Auctions in the ART IS Agents
In order to implement these auctions we consider the time-
restrictions fundamentals in an architecture of an Artificial
Intelligence System in Real-time (AIS-RT – [Musliner et al.,
1995; Terrasa et al., 2002]) such as ART IS. Due to these
restrictions, the duration of the auctions and of the offerings
proposals creation by the involved in-agents must be limited.

Recalling the structure of AA (section 3), the deliberative
part of the agent is represented by the deliberative parts of the
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Figure 2: Negotiation in ART ISAgent architecture.

in-agents that form the current behaviour of the agent. So,
these parts are translated into optional components which are
dealt on the DS. Once the EM generates the list of active in-
agents, the SLS distributes the time to execute the optional
parts of the in-agents. The SLS must decide which in-agent to
execute so that the best possible solutions are produced. On
the other hand, there are the AA entities, in-agents, which
have the answers to their problem and each of them is associ-
ated to a pre-determined quality and execution times.

The goal of our auctions is to allow both parts, SLS and in-
agents (see Figure 2), reach their goals which are compatible
with the goals of the system they belong to, AA. In this way,
the SLS will be the seller and the active in-agents will be the
buyers of the available time (or slack) that the SLS has for
executing optional parts.

We have decided to use auction for all the possible negoti-
ation processes due to the following features of our problem:

• The negotiation process must be time-limited. It will
depend on the available slack.

• The best available answer must be produced in this lim-
ited time, so that the SLS is able to execute something.

• The best answer is selected from a group of participant
offers from the active in-agents. The offer is their con-
tribution to the global agent quality.

So, the SLS must consider the following to decide what in-
agent to execute in every moment:

• The quality of the answers that are offered by each one
of the active in-agent.

• The time of calculations that is estimated in each in-
agent to obtain its solution.

• The importance that each in-agent has assigned.

To summarize, there is a resource in conflict which is the CPU
time that must be distributed by the SLS under the previously
mentioned conditions; and there are many clients, the active
in-agents, that desire to acquire this resource. However, this
process of awarding will have to be fast and advantageous for
both parts. Considering all the exposed so far, the best option
to this domain is to use auctions as negotiation techniques.
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Since the aim of auctions is to award the product to the par-
ticipant giving the best offer based on the pre-determined con-
ditions. Moreover, in this case, the time restrictions must be
considered according to the AA characteristics.

We analyzed two kinds of auctions

1. “Voracious auctions”: They are those auctions in which
the participants do not know who will be able to execute
until the destined time to the auction finishes. Until then,
the participants will have to compete to give the best of-
fer. The English Auction (EA) and the First Sealed-bid
Auction (FSA) are two examples of this kind of auctions.

2. “Semi-voracious auction”: In this kind of auctions, the
participants determine whether they accept or not the
proposed offers by the seller (SLS). In this way, the par-
ticipants can control the offers that are more appealing
to them. The Dutch Auction (DA) is of this kind of auc-
tions

In the following sub-sections we explain the implementation
of these auctions in ART IS agents.

4.1 Implementation
The deliberative process begins when the RS sends a message
to the DS indicating that it can execute the deliberative parts
of active in-agent (see figure 2). These messages are received
by the EM, that selects and orders the active parts, giving the
definitive list to the SLS.

The in-agents will be able to participate in the auctions if
they fulfill the following conditions (Figure 4):

• Their final part have not still finished.

• They have not executed all their optional parts.

• Their mean-case execution time (mcet) to generate an
answer must be smaller or equal to the available slack
time (Sa): mcet ≤ Sa.

• Their next deadline expiration (td) must be before the
end of the auctioned time (slack time) (tf

Sa): td ≤ t
f
Sa

Before beginning the auction, the SLS sends the following
information to all the participating in-agents:

• Sa: (available slack time) The total available CPU time
for the execution of the optional parts.

• tsSa: Start time of the available slack.

• T offer
max : End time to generate offers, because ART IS

is an architecture for Real-Time Systems (inflexible con-
dition), T offer

max � Tneg , where Tneg is the total time
assigned for DS to the auctions.

• Depending on the auction protocol used, the SLS sends
the best offer received from the participants up to that
point.

These auction implemented in ART IS Agent use the pro-
tocols proposed by FIPA [FIPASpec, FIPA] considering the
restrictions of time imposed by the RTS (Figure 5 and Figure
6).

Voracious Auctions
In this kind of auctions, the participant in-agents try to get the
biggest amount of slack time to run themselves.

The auction begins with the call for proposals of the
second-level scheduler (SLS). In this call, the SLS asks the
active in-agents for bids. Participants will have a limited time
to generate and to send these bids. These bids of the par-
ticipant in-agents must include: the offering quality and the
estimated execution time needed to get this quality. The SLS
gets all the generated bids from the participants and selects
the best one.

We have lightly modificated this process to be used in First-
Sealed Auctions: once the SLS has received all the bids from
the participant in-agents, it proceeds to share out all the avail-
able slack between the best bids it has received.

To implement the English Auction, the SLS assigns the
amount of slack needed by the winner in-agent and, if there is
spare slack time, it repeats the call for proposals for this new
available slack. This process is repeated until one of these
conditions is fulfilled:

• The time the SLS assigned to the auction process is
reached.

• The SLS runs out of available slack.
• There is not any interested in-agent.

Then, the SLS module calls to active in-agents offering pro-
posals by slack available to execute its optional parts and be-
gins the auction (see figure 3). Once finished the auction, the
SLS sends to execution the winning in-agents (optional parts
of these in-agents). Thus, the SLS determines which optional
parts are going to be executed in the available slack time.

For our auctions, the participating in-agents will receive
and evaluate the information according to their beliefs, limi-
tations and characteristics.
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For the English Auctions and the First-Price Sealed Bid
Auctions, the participating in-agents generate offers in order
to execute their optional parts. In the English Auction, the
offers are increased in time until there are no more offers or
auction time ends. In both kind of auctions, the in-agent of-
fers are directly proportional to the following conditions:
• The participating in-agent has not executed any of its

optional parts.
• mcetk ≤ Sa ; ∀k ∈ optional_parts

The mean-case execution time (mcet) for its optional
parts is smaller or equal than the time auctioned by the
SLS, Sa (slack available for optional tasks executions).

• tid < t
f
Sa

The next deadline of in-agent i, ti
d, expires before the

auctioned space ends, t
f
Sa.

• Qt−1
i < Qt

i

The answer quality offered by the participating in-agent
i, Qt

i, increases the previous quality offer, Qt−1
i .

So, the functions that generate the offer of in-agent i in order
to execute its optional part k are shown: for English Auction
in Equation(1) and for First-Price Bid Auction in Equation(2).

Fik(x) =

[

x

(tid − tsSa) ∗ [tid − (mcetik + tsSa)]
∗ Qik

]

+MP

(1)

Oferrik =
x

(tid − tsSa) ∗ [tid − (mcetik + tsSa)]
∗ Qik (2)
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Figure 6: Semi-Voracious Auctions Protocol

Where:

• tsSa : the start instant of the auctioned space.

• tid : the expiration instant of the next deadline for in-
agent i (tid < t

f
Sa).

• mcetik: the mean-case execution time of in-agent i to
execute its respective optional part k.

• MP : The best offer received up to that point. MP
starts at 0 in Equation (1).

• x : the number of iterations for the English Auction (x ∈
[1...n]) in Equation (1).

• Qik : the quality that in-agent i offers to execute its op-
tional part k.

Semi-Voracious Auctions
Auction begins when the SLS calculates and sends a proposal
(SLSWeight) to all active in-agents. The in-agents evaluate
this bid according to their believes, characteristics, temporal
restrictions and abilities. If there is still enough slack, and
time to continue with negotiations, the SLS calculates again a
SLSWeight for the new slack.

In Dutch Auction, the SLS makes an offer to the partici-
pating in-agents for available slack which we call SLSweight
(calculated according to Equation 3). The SLS begins by re-
questing a high answer quality for the AA problem which
we call expected quality, QESa. The in-agents evaluate the
benefits of the SLSweight sent by the SLS. If there is no in-
terest, the SLS decreases the SLSweight for available slack by
decreasing the QESa . The reduction ratio of the QESa is
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determined by a function that has a negative slope without
reaching zero percent. This process repeats until some par-
ticipating in-agent accepts the SLS conditions or the SLS ex-
pected quality (QESa) reaches the minimum value (or which
is QESa = 20%).

The equations for Dutch Auction are expressed to follow.

SLSweight(t) = e(−ln(t+Sa)) ∗ QESa (3)

Where:

• t : the point in time where the SLSweight is calculated.

• Sa : the size of available slack for the execution of the
in-agent’s optional parts.

• QESa : the quality expected by the SLS from the partic-
ipating in-agents for the AA problem solution.

The equation to evaluate the benefits of each participating in-
agent is:

0 ≤

(

QESa

QAi

)

≤ 1 (4)

Where:

• QESa : the quality expected by the SLS from the partic-
ipating in-agents for the AA problem solution.

• QAi : The accumulated quality offered by the partici-
pating in-agent for the solution to the AA problem.

5 Experimental Tests
This section presents the experimental test that have been
made to establish the feasibility of implementing auctions as
ART IS agent acritical tasks’ scheduling policies.

We have made both simulated and real execution tests. We
have used the same data to make both kind of test, allowing
to compare both results.

Due to its real-time performance, ART IS agent architec-
ture works over real-time operating system, RT-Linux. Nev-
ertheless, the AA’s deliberative layer works over Linux oper-
ating system. As we have previously presented our auctions
are part of this deliberative process.

In this way, the SLS assigns (on-line) a percentage of total
available slack time to auctions executions. This percentage
is known and will depend on the kind of auctions executed,
therefore it does not influence in the general ART IS plan-
ning (see previous sections).

We have defined some restrictions in the simulation tests
to match hardware limitations existing in corresponding real
tests. Each test execution lasts until their tasks hyper-period1,
because this is the minimum time after which the execution
sequence is repeated.

For both kind of tests realized, we generate battery tests
with the following common specifications:

• Three, six, nine or twelve in-agents per AA.

• Tasks time restrictions obtained using probability func-
tions proposed in [Campos and García, 2002].

1“The tasks will be released together again at the least common
multiple of the periods of the tasks.”[Bernat et al., 2001]

• We have used two different initial situations regarding
the in-agents time-features values:

– The one with deadlines equals to periods.
– The one with deadlines lower than periods.

• For each previous situations are repeated for different
period values: 20000, 40000, 80000, 160000, 2560000
(milliseconds).

For simulation tests, we have used the tool of simulation In-
SiDE [Julián et al., 2004] simulation toolkit with our negoti-
ation techniques. To execute an AA in InSiDE for simulation
tests is necessary to enter all its data such as: time restric-
tions, behaviours, believes, the system load, etc. In our pre-
vious work [Maldonado et al., 2005], we have shown these
specifications and obtained some results.

For real tests, we implemented the same scenarios used in
simulation tests directly in ART IS agent architecture.

In order to compare the results obtained in the simulation
tests with the results obtained in the real tests, we will use the
final quality that was obtained in the answer to the problem
of the AA which is called Real Relative Quality (RRQ, that
is detailed in [Hernández et al., 2003]) and it is represented
as RRQ = ORQ

IQ
, where ORQ (Obtained Real Quality) is

the quality reached by the in-agents of the AA and IQ (Ideal
Quality) is the quality offered by the AA.

5.1 Obtained Results

Real Relative Quality (simulated tests)
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Figure 7: Simulate tests for deadlines equal to periods

The obtained results on the realized tests according to the
specification mentioned before are showed in the figures 7,
8, 9 and 10. It can be observed from these graphics that the
obtained results in real tests are very similar to the obtained
ones on simulations. However, all the policies obtain better
qualities than the obtained on simulated tests. The main dif-
ference is that on simulations the system got over-saturated.
This was done because the optional load influences directly
on the executions of our policies since these are executed on
the system’s slack.
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Figure 8: Simulate tests for deadlines minor or equal to peri-
ods

Real Relative Quality (experimental tests)

0,6

0,64

0,68

0,72

0,76

0,8

20000 40000 80000 160000 2560000

deadlines

%

BIF

DA

EA

EDF

FSA

HSF

Figure 9: Real tests for deadlines equal to periods

This indicates that it is feasible to use auctions as ART IS
agent optional tasks’ scheduling policies.

6 Conclusions and Future Works
As we have detailed, the main purpose of the work presented
here was to study the usage of auctions as methods to solve
the problems of intelligent agents that work on real-time en-
vironments, specifically on the ART IS architecture. Con-
sidering the obtained results (simulation and real tests) we
proposed the real viability of introducing these techniques in
the ART IS agent architecture.

It can also be observed in the graphics that our auctions
obtain the best quality of all ART IS policies. In this way,
the implemented techniques showed in this paper produce an
improvement with respect to the existing methods. This good
results helps to think about the application of these methods
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Figure 10: Real tests for deadlines minor or equal to periods

to schedule real-time systems.
On the other hand, the results obtained on the practice

matched to the obtained on the simulation in which the real
quality obtained decreases almost 10% when the deadline is
minor than the period.

The implemented auction techniques (explained in this pa-
per) along with the scheduling policies existing before this
work, form a solid study battery for current and future imple-
mentations about task scheduling in intelligent agents.

Finally, based on the obtained results, the future tasks will
be:
• To use the obtained simulation results to identify the

most suitable situations (environment and internal state)
for each scheduling policies, so that the AA can be pro-
grammed to adapt to this situation changing its current
policy to the most suitable one [Casamayor, 2003].

• To orientate the auctions toward more deliberative meth-
ods that involve the planning of all the available slack in
the whole application.

• To generalize the methods here presented to be used in
Multi-AA Systems (SIMBA)[Carrascosa et al., 2003b].
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Abstract

Solving complex tasks successfully and efficiently
not only depends onwhatyou do, but alsohowyou
do it. Different task contexts have different perfor-
mance measures, and thus require different ways of
executing an action to optimize performance. Sim-
ply adding new actions that are tailored to perform
well within a specific task context makes planning
or action selection programming more difficult, as
generality and adaptivity is lost. Rather, existing
actions should be parametrized such that they opti-
mize the task-specific performance measure.
In this paper we propose a novel computation
model for the execution of abstract action chains.
In this computation model, a robot first learns
situation-specific performance models of abstract
actions. It then uses these models to automatically
specialize the abstract actions for their execution in
a given action chain. This specialization results in
refined chains that are optimized for performance.
As a side effect this behavior optimization also ap-
pears to produce action chains with seamless tran-
sitions between actions.

1 Introduction
State-of-the-Art autonomous robot controllers capable of
solving a large spectrum of complex tasks are typically
equipped with libraries of actions implemented by control
routines. The controllers then dynamically combine and par-
tially parameterize these actions on the fly in order to solve
the respective set of active tasks.

Consider, for example, the controllers for autonomous soc-
cer robots. These controllers are provided with actions for
navigating, kicking, searching, etc. During the game, the con-
trollers dynamically select these actions to perform their im-
mediate tasks. For example, they navigate to the ball in order
to get possession of it, or to clear a dangerous situation. In
another task context, they navigate in order to dribble the ball
towards the opponent’s goal. As a consequence, the use of
actions in different task contexts require the designer to rea-
son about how the implemented action will perform in these

∗The work described in this paper was partially funded by the
Deutsche Forschungsgemeinschaft in the SPP-1125.

contexts. On the one hand, programmers want to implement
the navigation action as fast as possible to be more agile and
mobile than the opponents. Unfortunately, fast navigation be-
havior will cause more frequent and harder collisions with the
ball when approaching it and thereby the robot will loose con-
trol of the ball. Even worse, while these hard collisions are
to be avoided when gaining control of the ball and dribbling,
they are often desirable in other task contexts such as clearing
a dangerous situation.

Most robot controllers deal with task contexts by pro-
viding variants of actions for the different task con-
texts. A soccer robot programmer provides, instead of
a single navigation action, a set of navigation actions
such as:clearBall , approachBall , dribbleBall ,
interceptBall , andblockOpponent . In the design
of the action libraries, most programmers consider a trade-off
between the compactness of the action library and its perfor-
mance. And they are typically willing to sacrifice compact-
ness for performance.

However, having only few abstract actions instead of many
specific actions has several advantages. Fewer actions need
to be implemented because viewed at an abstract level the
actions are applicable to a broader range of situations. At
more abstract levels the search space of plans is substan-
tially smaller and fewer interactions between actions need to
be considered. This not only eases the job of the program-
mers but also the computational task of automatic planning
systems. Having fewer actions also makes the system more
adaptive. Suppose the robots play on a new field on which the
dynamics of the robots are very different, and all navigation
actions perform badly. If there are many navigation routines,
they all have to be retuned, rewritten or relearned to perform
well in the new situation. The fewer actions there are, the
faster this can be done, and the more adaptive the system is.

In this paper we propose a novel computational model
for autonomous robot control that allows the control sys-
tem to use small sets of general and abstract actions while
at the same time achieving the performance of large sets
of specialized actions. The computational model performs
execution time and context-specific optimization of action
plans using learned performance models of the general ac-
tions. The basic idea of our approach is to learn perfor-
mance models of abstract actions off-line from observed ex-
perience. These performance models are rules that predict
the situation- and parameterization-specific performance of
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abstract actions, e.g. the expected duration. Then, at execu-
tion time, our system determines the set of parameters that
are not set by the plan and therefore define the possible ac-
tion executions. It then determines for each abstract action
the parameterization such that the predicted performance of
the action chain is optimal.

In this paper, we investigate two mechanisms for execution
time and context specific action specialization:

1. Specialization of general actions for their improved ex-
ecution within given action chains.

2. Specialization of actions for predictive failure preven-
tion through subgoal assertion.

The technical contributions of this paper are fourfold.

1. We propose a novel computational model for the execu-
tion time optimization and generation of action chains
(section 2).

2. We show how situation-specific performance models
for abstract actions can be learned automatically, (sec-
tion 3).

3. We describe a mechanism for subgoal (post-condition)
refinement for action chain optimization. We apply our
implemented computational model to chains of naviga-
tion plans with different objectives and constraints and
different task contexts (section 4).

4. We show how performance models can be used to de-
termine when no action can solve the task, and subgoals
must be introduced to achieve the goal (section 5).

2 System overview
This section introduces the basic concepts upon which we
base our computational model of action chain optimization.
Using these concepts, we define the computational task and
sketch the key ideas for its solution. First of all, we will de-
scribe two exemplary scenarios that clarify the problem.

2.1 Two exemplary scenarios
In Figure 1, a typical situation from robotic soccer is shown.
The robot’s goal is to score a goal. A three step plan suffices
to solve this task: 1) go to the ball; 2) dribble the ball to
shooting position; 3) kick. If the robot naively executed the
first action (as depicted in Figure 1a), it might arrive at the ball
with the goal at its back. This is an unfortunate position from
which to start dribbling towards the goal. The problem is that
in the abstract view of the planner or programmer, being at
the ball is considered sufficient for dribbling the ball and the
dynamical state of the robot arriving at the ball is considered
to be irrelevant for the dribbling action.

What we would like the robot to do instead is to go
to the ball in order to dribble it towards the goal after-
wards. The robot should, as depicted in the Figure 1b,
perform the first action sub-optimally in order to achieve
a much better position for executing the second plan step.
This behavior could be achieved by designing a new action,
e.g. goToPoseInOrderToDribbleTheBallToX , that
takes into account that we plan to dribble the ball to a cer-
tain position afterwards. Its long name already indicates the
loss of generality, and it is also not guaranteed that this action

b)

Goal: Score!
Plan:
− goToPose
− dribbleBall
− kick

Goal: Score!
Plan:
− goToPose
− dribbleBall
− kick

Goal: Score!
Plan:
− goToPoseInOrderToDri..
− dribbleBall
− kick

a) c)

Figure 1: Three alternative plan executions to approach the
ball in order to dribble it.

provides the optimal position from which to start dribbling.
Preferably, an existing action should be parameterized such
that it performs well with respect to the performance mea-
sure of the given context. Again, there is also a solution that
only usesgoToPose action. By determining the angle of
approach at which the overall performance of the plan is opti-
mal, and parameterizinggoToPose so that it approaches the
ball at this angle, also leads to improved performance. The
behavior shown in Figure 1c exhibits seamless transitions be-
tween plan steps and has higher performance, achieving the
ultimate goal in less time than in Figure 1a. This optimiza-
tion, called subgoal refinement, can also be automated, as will
be demonstrated in section 4.

Another frequent task in robotic soccer is to approach the
ball. In Figure 2, the defender’s goal is to clear the ball, and
it has decided to do so by approaching the ball from behind,
and kicking it away from the goal. One way to execute this
plan is by first executing its generalgoToPose action. How-
ever, since this action does not take the ball into account, it
might bump into it before achieving the desired position and
orientation, as can be seen in Figure 2a.

− goToPose
− goToPose
− kick

− kick
− approachBall− goToPose

− kick

a) b) c)

Goal: Clear ball
Plan:

Goal: Clear ball
Plan:

Goal: Clear ball
Plan:

Figure 2: Three alternative plan executions to approach the
ball.

To solve this problem, a specialized action that takes the
ball into account could be written, e.g.approachBall .
This variant is shown in Figure 2b, and would work
fine. However, there is also a solution that only uses the
goToPose action, and that does not require us to write
approachBall . The solution is to introduce an interme-
diate way-point that ensures there will be no collision with
the ball, and performing the navigation task with by append-
ing two goToPose actions. Since the chosen path is similar
to the pathapproachBall would probably choose, perfor-
mance is not lost. When a way-point is needed, and where it
should lie is determined automatically, using subgoal asser-
tion, which will be presented in section 5.
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2.2 Conceptualization
Our conceptualization for the computational problem is based
on the notion of actions, performance models of actions,
teleo-operators, teleo-operator libraries, and chains of teleo-
operators. In this section we will introduce these concepts.

Actions are control programs that produce streams of con-
trol signals, based on the current estimated state, thereby in-
fluencing the state of the world. The basic action we use
here isgoToPose , which navigates the robot from the cur-
rent pose (at timet) [xt,yt,φt] to a future destination pose
[xd,yd,φd] by setting the translational and rotational velocity
of the robot:

goToPose (xt,yt,φt,xd,yd,φd)→ vtra,vrot

Teleo-operators (TOPs)consist of an action, as well as
pre- and post-conditions[Nilsson, 1994]. The post-condition
represents the intended effect of the TOP, or its goal. It spec-
ifies a region in the state space in which the goal is sat-
isfied. The pre-condition region with respect to a tempo-
rally extended action is defined as the set of world states in
which continuous execution of the action will eventually sat-
isfy the post-condition. They are similar to Action Schemata
or STRIPS operators in the sense that they are temporally ex-
tended actions that can be treated by the planner as if they
were atomic actions.

State−space State−space

ActionPre−Cond.

Post−Cond.

Figure 3: An abstract teleo-operator.

The goToPoseTOP has the empty pre-condition, as it
can be executed from any state in the state space. Its post-
condition is [xt ≈ xd,yt ≈ yd, φt ≈ φd]. Its action is
goToPose .

TOP libraries contain a set of TOPs that are frequently
used within a given domain. In many domains, only a small
number of control routines suffices to execute most tasks, if
they are kept general and abstract, allowing them to be ap-
plicable in many situations. Our library contains the TOPs:
goToPoseTOP anddribbleBallTOP .

A TOP chain for a given goal is a chain of TOPs such
that the pre-condition of the first top is satisfied by the current
situation, and the post-condition of each step satisfies the pre-
condition of the subsequent TOP. The post-condition of the
last TOP must satisfy the goal. It represents a valid plan to
achieve the goal.

Post−Cond.

Pre−Cond. Pre−Cond.

State−space

Action i Action i+1
Goal

Post−Cond.
Current state

Figure 4: A chain of teleo-operators.

Subgoal refinementis the process of choosing a specific
state as a subgoal, from the set of states defined by the post-
condition of a preceding and pre-conditions of a subsequent

action in a teleo operator chain. In Figure 5, such a specific
subgoal has been chosen. This state will be visited in the
transition from one action to the next.

Post−Cond.

Pre−Cond. Pre−Cond.

State−space

Action i Action i+1
Goal

Post−Cond.
Current state

Refined subgoal

Figure 5: Subgoal refinement.

Performance models of actionsmap a specific situation
onto a performance measure. These models can be used to
predict the performance outcome of an action if applied in
a specific situation, by specifying the current state (satisfy-
ing the pre-conditions) and end state (satisfying the post-
conditions). An example of a performance measure is pre-
dicted execution time:

goToPose.time (xt,yt,φt,xd,yd,φd)→ t

2.3 Computational task and solution idea
The on-line computational task is to optimize the overall per-
formance of a TOP chain. The input consists of a TOP chain
that has been generated by a planner, that uses a TOP library
as a resource. The output is an intermediate refined subgoal
that optimizes the chain, and is inserted in the chain. Exe-
cuting the TOP chain is simply done by calling the action of
each TOP. This flow is displayed in Figure 6.

To optimize action chains, the pre- and post-conditions of
the TOPs in the TOP chains are analyzed to determine which
variables in the subgoal may be freely tuned. These are the
variables that specify future states of the robot, and are not
constrained by the pre- and post-conditions of the respec-
tive TOP. For the optimization of these free variables, per-
formance models of the actions are required. Off-line, these
models are learned from experience for each action in the
TOP library. They are used by the subgoal refinement sys-
tem during execution time, but available as a resource to other
systems as well.

Refined (optimal) subgoal

Perf.Model1O
ff

−l
in

e
O

n−
lin

e TOP chain

Execute TOP chain

Generate TOP chain

Learn Performance Model

and
Subgoal assertion

Subgoal refinement

Pre/Post−conds

Action
TOP1

TOP Library

Figure 6: System Overview.

One of the big advantages of our approach is that neither
TOP library, nor the generation of TOP chains (the planner)
nor the TOP chain executor need to be modified in any way to
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accommodate the action chain optimization system. We as-
sume that the programmer provides a library of actions con-
taining domain knowledge expressed in the pre- and post-
condition, and has mechanisms for generating and execut-
ing chains of these actions, be it through planning, arbitration
schemes, or simply manual specification. Although each of
these components is a research field in its own right, our pa-
per will not focus on them, also to emphasize that our system
does not rely on their implementation.

The next three sections describe the main components in
Figure 6. In section 3 we describe how performance models
of actions are learned from experience. Subgoal refinement
and subgoal assertion are presented in sections 4 and 5 re-
spectively.

3 Learning performance models
To perform subgoal refinement and assertion, performance
models of each action in the TOP library must be available.
For each action, the robot therefore learns a function that
maps situations to the cost of performing this action in the
respective situation. The robot will approximate the perfor-
mance function by learning decision and model trees based
on observed experience.

Let us consider the navigation actiongoToPose . This
navigation action is based on computing a Bezier curve, and
trying to follow it as closely as possible[Beetzet al., 2004].
Our dribbleBall action uses the same method, but re-
stricts deceleration and rotational velocity, so as not to loose
the ball. We abstract away from their implementation, as our
methods consider the actions to be black boxes, whose per-
formance we learn from observed experience.

To gather experience, with which the model will be
learned, the robot executes the action under varying situa-
tions, observes the performance, and logs the experience ex-
amples. Since the method is based solely on observations,
it is also possible to acquire models of actions whose inter-
nal workings are not accessible. The examples are gathered
using our simulator, which uses learned dynamics models of
the Pioneer I platform. It has proven to be accurate enough
to port control routines from the simulator to the real robot
without change.

The variables that were recorded do not necessarily corre-
late well with the performance. We therefore design a trans-
formed feature space with less features, but the same potential
for learning accurate performance models. In Figure 7 it is
shown how exploiting transformational and rotational invari-
ance reduces an original six-dimensional feature space into a
three-dimensional one, with the same predictive power.

Currently, we perform the transformation manually for
each action. In our ongoing research we are investigating
methods to automate the transformation. By explicitly rep-
resenting and reasoning about the physical meaning of state
variables, we research feature language generation methods.

The last step is to approximate a function to the trans-
formed data. Depending on whether a nominal or continu-
ous value needs to be predicted, we use a decision or model
tree respectively. Both methods learn a mapping from input
features to output feature from experience, by a piecewise re-
cursive partitioning of the examples in feature space. Parti-
tioning continues until all the examples in a partition can be
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Figure 7: Transformation of the original state space into a
lower-dimensional feature space.

approximated well by a simple representative model. Deci-
sion trees use a nominal value, and model trees a linear func-
tion to represent the data in a partition.

We use decision and model trees because 1) they can be
transformed into sets of rules that are suited for human in-
spection and interpretation 2) comparative research shows
they are the very appropriate for learning action models
[Belker, 2004; Balac, 2002] 3) they tend to use only rele-
vant variables. This means we can start off with many more
features than are needed to predict performance, having the
model tree function as an automatic feature selector.

3.1 Prediction of execution duration
The first performance model we have learned is execution du-
ration. It maps a current state and a goal state to the expected
time needed to achieve the goal state with this action.

To gather experience, the robot executed each action thou-
sand times, with random initial and destination poses. The
robot recorded the direct variables and the time it took to
reach the destination state at 10Hz, thereby gathering 75 000
examples of the format [xt,yt,φt,xd,yd,φd,time] per action.
Using our Pioneer I robots, acquiring this amount of data
would take approximately two hours of operation time.

Additional transformed features that were used to learn
the model are shown in Figure 7. The model tree was ac-
tually learned on an 11-dimensional feature space [xt,yt,φt,
xd,yd,φd,dx,dy,dist,angle to dest,angle at dest]. The
model tree algorithm automatically discovered that only
[dist,angle to dest,angle at dest] are necessary to accu-
rately predict performance.

We will now give an example of one of the rules learned by
the model tree. In Figure 8, we depict an example situation
in which dist andangle to dest are to 2.0m and 0◦ respec-
tively. Given these values we could plot a performance func-
tion for varying values ofangle at dest. These plots are also
depicted in Figure 8, once in a Cartesian, once in a polar coor-
dinate system. In the linear plot we can clearly see five differ-
ent line segments. This means that the model tree has parti-
tioned the feature space fordist=2.0m andangle to dest=0◦

into five areas, each with its own linear model. Below the two
plots, one of the learned model tree rules that applies to this
situation is displayed. An arrow indicates its linear model
in the plots. The polar plot clearly shows the dependency of
predicted execution time on the angle of approach for the ex-
ample situation. Approaching the goal at 0 degrees is fastest,
and would take a predicted 2.1s. Approaching the goal at 180
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Figure 8: An example situation, two graphs of time prediction
for this situation with varyingangle at dest, and the model
tree rule for one of the line segments.

degrees means the robot would have to navigate around the
goal point, taking much longer (6.7s).

To evaluate the accuracy of the performance models, we
again randomly executed each action to acquire test exam-
ples. For the actiongoToPose , the mean absolute error and
root-mean-square error between predicted and actual execu-
tion time were 0.31s and 0.75s. For thedribbleBall rou-
tine these values were 0.29s and 0.73s. As we will see, these
errors are accurate enough to optimize action chains.

3.2 Prediction of ball approach failure
The goToPose action can often be used well to approach
the ball. However, in some situations it will bump into the
ball before achieving the desired orientation, as was shown
in Figure 2. The second performance model we have learned
predicts whether executinggoToPose will lead to a colli-
sion with the ball or not.

To acquire experience, the robot again executed
goToPose a thousand times, with random initial and
destination poses, the ball always positioned at the desti-
nation pose. The robot recorded 65 000 training examples
of the format [xt,yt,φt,xd,yd,φd,collided?] per action. The
flag collided? is set toCollision for all the examples in
a whole run, if the robot eventually collided with the ball
before reaching its desired position and orientation, and to
Success otherwise.

The model was learned with the same 11-dimensional
transformed feature space as used in learning temporal pre-
diction. Again, only [dist,angle to dest,angle at dest]
were used to predict a collision.

The learned tree, as well as a graphical representation of
it, are depicted in Figure 9. The goal pose is represented by
the robot, and different areas indicate if the robot can reach
this position withgoToPose , without bumping into the ball
first. Remember thatgoToPose has no awareness of the ball
at all. The model simply predicts when its execution leads to
a collision or not. Intuitively, the rules seem correct. When
coming from the right, for instance, it can be seen that the
robot always disrespectfully stumbles into the ball, long be-
fore reaching the desired orientation. Behind the ball, the
robot may not be too close to the ball (checkered area), un-
less it is facing it. This last rule is indicated by the arrows
pointing in the direction of the ball.
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Figure 9: The learned decision tree that predicts whether an
unwanted collision will happen.

To evaluate the accuracy of this model, the robot executed
another thousand runs, and compared predicted collision with
observed collisions. The decision tree predicts collisions cor-
rectly in almost 90% of the cases. A more thorough analysis
is depicted in Table 1. The model is quite pessimistic, as it
predicts failure 61%, whereas in reality it is only 52%. In
10% of cases, it predicts a collision when it actually does not
happen. This is preferable to an optimistic model, as it is
better to be safe than sorry.

Observed Total
Coll. Succ. Predicted

Predicted Coll. 51% 10% → 61%
Succ. 1% 38% → 39%

↓ ↓ ↓
Total Observed 52% 48% → 100%

Table 1: Accuracy of ball collision prediction.

Actually, this decision tree is much more than a perfor-
mance model. It can be considered as the conditions in
which goToPose will successfully approach the ball. We
now have an teleo-operatorapproachBallTOP , with dif-
ferent preconditions fromgoToPoseTOP. However, since
approachBallTOP also uses the actiongoToPoseTOP
there is no explicit actionapproachBall . We have only
determined the conditions under whichgoToPose must be
executed to achieve successful ball approach. We will make
use of this when applying automatic subgoal assertion in sec-
tion 5.
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4 Automatic subgoal refinement
As depicted in Figure 6, the automatic subgoal refinement
system takes the performance models and a chain of teleo-
operators as an input, and returns a refined intermediate goal
state that has been optimized with respect to the performance
of the overall action chain. To do this we need to specify
all the variables in the task, and recognize which of these
variables influence the performance and are not fixed. These
variables form a search space in which we will optimize the
performance using the learned action models.

4.1 State variables
In the dynamic system model[Dean and Wellmann, 1991]
the world changes through the interaction of two processes:
thecontrolling process, in our case the low-level control pro-
grams implementing the action chains generated by the plan-
ner, and thecontrolled process, in our case the behavior of the
robot. The evolution of the dynamic system is represented
by a set ofstate variablesthat have changing values. The
controlling process steers the controlled process by sending
control signalsto it. These control signals directly set some
of the state variables and indirectly other ones. The affected
state variables are called thecontrollablestate variables. The
robot for instance can set the translational and rotational ve-
locity directly, causing the robot to move, thereby indirectly
influencing future poses of the robot.

For the robot, a subset of the state variables isobservableto
its perceptive system, and they can be estimated using a state
estimation module. For any controller there is a distinction
betweendirectandderivedobservable state variables. All di-
rect state variables for the navigation task are depicted in Fig-
ure 10. Direct state variables are directly provided by state
estimation, whereas derived state variables are computed by
combinations of direct variables. No extra information is con-
tained in derived variables, but if chosen well, derived vari-
ables are better correlated to the control task.

tx

y t

tϕy i

ϕi

ϕg

xi gx

y g

Figure 10: Direct state variables relevant to the navigation
task.

State variables are also used to specify goals internal to
the controller. These variables arebound, conform to plan-
ning terminology. It is the controller’s goal to have the bound
internal variables (approximately) coincide with the external
observable variables. The robot’s goal to arrive at the inter-
mediate position could be represented by the state variables
[xi,yi]. By setting the velocities, the robot can influence its
current position [xt,yt] to achieve [xt ≈ xi,yt ≈ yi].

4.2 Determining the search space
To optimize performance, only variables that actually influ-
ence performance should be tuned. In our implementation,

this means only those variables that are used in the model
tree to partition the state space at the nodes, or used in the
linear functions at the leaves.

In both the learned model trees for the actionsgoToPose
and dribbleBall , the relevant variables aredist,
angle to dest andangle at dest. These are all derived vari-
ables, computed from the direct variables [xt,yt,φt,xi,yi,φi]
and [xi,yi,φi,xg,yg,φg], for the first and second action re-
spectively. So by changing these direct variables, we would
change the indirect variables computed from them, which in
effect would change the performance.

But may we change all these variables at will? Notxt,yt,
or φt, as we cannot simply change the current state of the
world. Also we may not alter bound variables that the robot
has committed to, being [xi,yi,xg,yg,φg]. Changing them
would make the plan invalid.

This only leaves the free variableφi, the angle at which the
intermediate goal is approached. This acknowledges our intu-
ition from Figure 1 that changing this variable will not make
the plan invalid, and that it will also influence the overall per-
formance of the plan. We are left with a one-dimensional
search space to optimize performance.

4.3 Optimization
To optimize the action chain, we will have to find those val-
ues for the free variables for which the overall performance
of the action chain is the highest. The overall performance
is estimated by summing over the performance models of all
actions that constitute the action chain. In Figure 11 the first
two polar plots represent the performance of the two indi-
vidual actions for different values of the only free variable,
which is the angle of approach. The overall performance is
computed by adding those two, and is depicted in the third
polar plot.
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Figure 11: Selecting the optimal subgoal by finding the opti-
mum of the summation of all action models in the chain.

The fastest time in the first polar plot is 2.1s, for angle of
approach of 0.0 degrees. The direction is indicated from the
center of the plot. However, the total time is 7.5s, because
the second action takes 5.4s for this angle . These values can
be read directly from the polar plots. However, this value
is not the optimum overall performance. The minimum of

114



the overall performance is 6.1s, as can be read from the third
polar plot. Below the polar plots, the situation of Figure 1 is
repeated, this time with the predicted performance for each
action.

We expect that for higher-dimensional search spaces, ex-
haustive search may be infeasible. Therefore, other optimiza-
tion techniques will have to be investigated.

4.4 Results
To determine the influence of subgoal refinement on the over-
all performance of the action chain, we generated a thousand
situations with random robot, ball and final goal positions.
The robot executed each navigation task twice, once with sub-
goal refinement, and once without. The results are summa-
rized in Table 2. First of all, the overall increase in perfor-
mance over the 1000 runs is 10%. We have split these cases
into those in which the subgoal refinement yielded a higher,
equal or lower performance in comparison to not using re-
finement. This shows that the performance improved in 533
cases, and in these cases causes a 21% improvement. In 369
cases, there was no improvement. This is to be expected, as
there are many situations in which the three positions are al-
ready optimally aligned (e.g. in a straight line), and subgoal
refinement will have no effect.

Before filtering Total Higher Equal Lower
# runs 1000 533 369 98

improvement 10% 21% 0% -10%
After filtering Total Higher Equal Lower

# runs 1000 505 485 10
improvement 12% 23% 0% -6%

Table 2: Results, before and after filtering for cases in which
performance loss is predicted.

Unfortunately, applying our method causes a decrease of
performance in 98 out of 1000 runs. To analyze in which
cases subgoal refinement decreases performance, we labeled
each of the above runsHigher , Equal or Lower . We then
trained a decision tree to predict this nominal value. This tree
yields four simple rules which predict the performance differ-
ence correctly in 86% of given cases. The rules and a graph-
ical representation are depicted in Figure 12. In this graph,
the robot always approaches the centered ball from the left at
different distances. The different regions indicate whether the
performance increase/decreased due to subgoal refinements,
if the goal lies in this region. Three instances with different
classification and therefore different colors circles have been
inserted.

The rules declare that performance will stay equal if the
three points are more or less aligned, and will only decrease
if the final goal position is in the same area as which the
robot is, but only if the robot’s distance to the intermediate
goal is smaller than 1.4m. Essentially, this last rule states that
the robot using the Bezier-basedgoToPose has difficulty
approaching the ball at awkward angles if it is close to it.
In these cases, small variations in the initial position lead to
large variations in execution time, and learning an accurate,
general model of the action fails. The resulting inaccuracy
in temporal prediction causes suboptimal optimization. Note

that this is a shortcoming of the action itself, not the chain
optimization methods.
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Figure 12: The decision tree that predicts whether subgoal
refinement will make the performance better, worse or have
no influence at all.

We then performed another thousand test runs, as described
above, but only applied subgoal refinement if the decision
tree predicted applying it would yield a higher performance.
Although increase in overall performance is not so dramatic
(from 10% to 12%), the number of cases in which perfor-
mance is worsened by applying subgoal refinement has de-
creased from 98 (10%) to 10 (1%). Apparently, the decision
tree correctly filtered out cases in which applying subgoal re-
finement would decrease performance.

Without subgoal refinement, the transitions between ac-
tions were very abrupt. In general, these motion patterns
are so characteristic for robots that people trying to imitate
robotic behavior will do so by making abrupt movements be-
tween actions. In contrast, one of the impressive capabilities
of animals and humans is their capability to perform chains
of actions in optimal ways and with seamless transitions be-
tween subsequent actions. It is interesting to see that requir-
ing optimal performance can implicitly yield smooth transi-
tions in robotic and natural domains, even though smoothness
in itself is not an explicit goal in either domain.

Summarizing: subgoal refinement with filtering yields
smooth transitions and a 23% increase in performance half
of the time. Only once in a hundred times does it cause a
small performance loss.

5 Automatic subgoal assertion
In the previous section, we have seen how subgoals can be
refined in order to optimize performance. In this section,
we will show how performance models can be used to detect
when the assertion of a new subgoal is necessary.

We use a scenario in which a robot approaches a ball,
introduced in section 2.1. A difficulty in approaching the
ball is that the robot might collide with the ball before it
has reached its desired position and orientation. Since our
goToPose action is not aware of these potential collisions,
it is not always appropriate for approaching the ball. Actu-
ally, it can be derived from Table 1 that it fails in 52% of
cases. To solve this problem, one could write a new action,
e.g. approachBall . It would probably be very similar to
goToPose , but take the ball into account.

Instead of writing a new action, thereby causing the prob-
lems discussed in the introduction, it is also possible to reuse
goToPose , and adapt it to the current context. First of all,
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it is important to recognize thatgoToPose is actually suc-
cessful in approaching the ball almost half the time (Table 1).
Fortunately, we have models that can predict when success
is probable. So when the goal is to approach the ball, and
the performance model predicts thatgoToPose can do this
collision-free, this action is executed as is.

When no action can be parameterized in such a way that
ball approach is likely to succeed, we need to find a chain of
actions that can. This is done in a means-ends fashion. First,
the robot determines which actions can achieve the goal, and
which preconditions must hold for this action to succeed.
Then, it determines if any action can achieve these precondi-
tions. In our example, a sequence of twogoToPose actions
can achieve the goal. A constraint is that the second action
in the sequence must be able to reach the ball without unin-
tentional collisions. This could be any position in the most
left area of Figures 9 and 13, because the performance model
predicts that there will be no collision when starting from any
of the position in this area.
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Figure 13: Subgoal assertion to avoid collisions with the ball.

Although all positions in this area can function as an inter-
mediate goal for the twogoToPose actions, the overall ex-
pected execution duration is different for all off them. There-
fore, we sample a thousand points from the area, and com-
pute the overall performance by adding the predicted time of
the first and secondgoToPose actions in the action chain.
The point with the best performance, that is, fastest execution
time, is chosen to be the intermediate point. This optimiza-
tion process is nothing else than subgoal refinement, as has
been presented in section 4.

In Figure 13, three instances of the problem are depicted.
Since the robot to the left is in the area in which no collision
is predicted, it simply executesgoToPose , without assert-
ing a subgoal. The model predicts that the other two robots
will collide with the ball when executinggoToPose , and a
subgoal is asserted. The optimal positions of the subgoals,
determined by subgoal refinement, are shown as white cir-
cles.

5.1 Results
To evaluate automatic subgoal assertion we executed a thou-
sand random ball approaches, once with assertion, and once
without. The results are summarized in Table 3. It is clear that
using onlygoToPose is not very successful. It approaches
the ball collision-free less than half the time. This is actually
exactly what our performance model predicts, as can be seen
in Table 1. Applying subgoal assertion dramatically improves
this. In less than 3% of cases does the ball approach fail.

We have also investigated under which circumstances a

direct with subgoal
(no subgoal) assertion

Success 47% 97%
Collision 53% 3%

Table 3: The effects of applying subgoal assertion to the ball
approach task.

subgoal was introduced, and if it was helpful to do so. In
37% of cases, no subgoal was needed, as no collision was pre-
dicted. In 52%, a subgoal was asserted, causing a successful
completion that was not possible without a subgoal. In 10%
of cases, a subgoal was introduced unnecessarily, as the task
could have been solved without a subgoal. Note that all these
percentages are roughly the same as those in Table 1. In-
appropriately introducing the subgoal caused a performance
loss of 11% in these cases.

Summarizing: if subgoal assertion is not necessary, it is
usually not applied. Half of the time, a subgoal is introduced,
which raises successful task completion from 47 to 97%. In-
frequently, subgoals are introduced inappropriately, but the
performance loss in these cases is an acceptable cost com-
pared to the pay-off of the dramatic increase in the number of
successful task completions.

6 Related Work
Most similar to our work is the use of model trees to learn
performance models to optimize Hierarchical Transition Net-
work plans[Belker, 2004]. In this work, the models are used
to select the next action in the chain, whereas we refine an
existing action chain. Therefore, the planner can be selected
independently of the optimization process.

Reinforcement Learning (RL) is another method that seeks
to optimize performance, specified by a reward function. Re-
cent attempts to combat the curse of dimensionality in RL
have turned to principled ways of exploiting temporal ab-
straction[Barto and Mahadevan, 2003]. Several of these
Hierarchical Reinforcement Learningmethods, e.g. (Pro-
grammable) Hierarchical Abstract Machines[Parr, 1998;
Andre and Russell, 2000], MAXQ [Dietterich, 2000], and
Options[Suttonet al., 1999]. All these approaches use the
concept of actions (called ‘machines’, ‘subtasks’, or ‘options’
respectively). In our view, the benefits of our methods are that
they acquire more informative performance measures, facili-
tate the reuse of action models, and scale better to continuous
and complex state spaces.

The performance measures we can learn (execution time,
action failure) areinformativevalues, with a meaning in the
physical world. Future research aims at developing meaning-
ful composites of individual models. We will also investigate
dynamic objective functions. In some cases, it is better to be
fast at the cost of accuracy, and sometimes it is better to be
accurate at the cost of speed. By weighting the performance
measures time and accuracy accordingly in a composite mea-
sure, these preferences can be expressed at execution time.
Since the (Q-)Value compiles all performance information in
a single non-decomposable numeric value, it cannot be rea-
soned about in this fashion.

The methods we proposedscalebetter to continuous and
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complex state spaces. We are not aware of the application
of Hierarchical Reinforcement Learning to (accurately simu-
lated) continuous robotic domains.

In Hierarchical Reinforcement Learning, the performance
models of actions (Q-Values) are learned in the calling con-
text of the action. Optimization can therefore only be done
in the context of the pre-specified hierarchy/program. In
contrast, the success of action selection in complex robotic
projects such as WITAS[Doherty et al., 2000], Minerva
[Thrunet al., 1999], and Chip[Firby et al., 1996], depends on
the on-line autonomous sequencing of actions through plan-
ning. Our methods learn abstract performance models of ac-
tions, independent of the context in which they are performed.
This makes themreusable, and allows for integration in plan-
ning systems.

The only approach we know of that explicitly combines
planning and RL is RL-TOPS (Reinforcement Learning -
Teleo Operators) [Ryan and Pendrith, 1998]. Abrupt tran-
sitions arise here too, and the author recognizes that “cut-
ting corners” between actions would improve performance,
but does not present a solution.

Many behavior based approaches also achieve smooth mo-
tion by a weighted mixing of the control signals of various
actions[Saffiotti et al., 1995; 1993]. In computer graph-
ics, this approach is calledmotion blending, and is also
a wide-spread method to generate natural and fluent tran-
sitions between actions, which is essential for lifelike an-
imation of characters. Impressive results can be seen in
[Perlin, 1995], and more recently[Shapiro et al., 2003;
Kovar and Gleicher, 2003]. Since there are no discrete tran-
sitions between actions, they are also not visible in the exe-
cution. In all these blending approaches, achieving optimal
behavior is not an explicit goal; it is left to chance, not objec-
tive performance measures.

A very different technique for generating smooth transi-
tions between skills has been developed for quadruped robots
[Hoffmann and D̈uffert, 2004], also in the RoboCup do-
main. The periodic nature of robot gaits allows their mean-
ingful representation in the frequency domain. Interpolat-
ing in this domain yields smooth transitions between walk-
ing skills. Since the actions we use are not periodic, these
methods do unfortunately not apply.

Reusing actions and transferring knowledge between them
are also key concepts in life-long learning[Thrun and
Mitchell, 1993]. This approach exploits the notion that learn-
ing to run is much more easy when you already know how to
walk, just as approaching a ball is more easy if you already
know how to navigate. In[Thrun and Mitchell, 1993], knowl-
edge is transfered between tasks by reusing neural networks
that have been trained on one task as a bias for similar, per-
haps more complex tasks that have yet to be learned.

7 Conclusion and Future Work
The central idea of this work is that by adapting action param-
eterization, actions can be tailored to the task context. There
is no longer a need to write a new action for each new con-
text, and generality is maintained. Instead of using manual
parameterization, we use learned action models to optimize
the parameters with respect to the given performance mea-
sure.

On-line optimization of action chains allows the use of
planning with abstract actions, without losing performance.
Optimizing the action chain is done by asserting and refining
under-specified intermediate goals, which requires no change
in the planner or plan execution mechanisms. To predict the
optimal overall performance, performance models of each in-
dividual abstract action are learned off-line and from experi-
ence, using model trees.

Applying subgoal refinement and assertion to the presented
scenarios yields significant performance improvement. How-
ever, the computational model underlying the optimization
is certainly not specific to this scenario, or to robot naviga-
tion. In principle, learning action models from experience
using model trees is possible for any action whose relevant
state variables can be observed and recorded. The notion of
controllable, bound and free state variables are taken directly
from the dynamic system model and planning approaches,
and apply to any scenario that uses these paradigms. Our
future research therefore aims at applying these methods in
other domains, for instance robots with articulated arms and
grippers, for which we also have a simulator available.

Currently, we are evaluating if subgoal refinement im-
proves plan execution on real Pioneer I robots as much as
it does in simulation. Previous research has shown that action
models learned in simulation can be applied to real situations
with good result[Bucket al., 2002; Belker, 2004].
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Abstract

Developing a conflict-free plan for a multi-agent
system in a complex and dynamic environment is a
difficult task. Moreover, it is impossible to take into
account all possible events that might occur dur-
ing the execution of the plan. Unexpected events
may cause a plan to be no longer executable with-
out leading to conflicts: we then say that its ex-
ecution is unhealthy. This paper presents a new
model that enables agents (1) to control their plan-
execution health and (2) to regain health when nec-
essary. The agents can utilize the model to pre-
dict consequences of occurring disruptions and thus
detect unhealthy situations. With the help of the
model’s predictions, agents can correct the execu-
tion of tasks within the plan in such a way that con-
flicts will be avoided and health is regained. We
emphasize that, in the case of bad health, the ap-
proach of correcting the plan execution should be
applied before relying on the more drastic approach
of replanning. The applicability of the presented
model is demonstrated by introducing two multi-
agent protocols to keep the plan execution healthy.
Finally, we investigate the solving capabilities and
the efficiency of our method in experiments using
randomly generated plans. Our conclusion is that
a reasonable proportion of unhealthy situations can
be solved adequately by well-thought corrections in
the plan execution instead of performing a replan-
ning procedure.

1 Introduction
Plan development and plan execution in complex, dynamic
environments are difficult tasks. This explains the tendency
to apply intelligent computer programs to support these tasks.
Currently, the (initial) plan development in fields such as Air
Traffic Control (ATC) is to a large extent performed by plan-
ning software. For plan execution, however, such software

∗This research is supported by the Technology Foundation STW,
applied science division of NWO and the technology programme
of the Ministry of Economic Affairs. Project DIT5780: Distributed
Model Based Diagnosis and Repair

is not widely available, even though the execution of plans
in complex and dynamic environments requires continuous
control and adaptation. Our research focusses on employing
a multi-agent system for plan-execution control and adapta-
tion. Multi-agent systems seem an obvious means to this end
since the plans in environments such as ATC are mainly dis-
tributed.

An adequate plan normally satisfies all constraints imposed
by its environment and by other plans. Hence, such a plan is
conflict free. This is a property that should be kept conse-
quently and persistently during the execution of the plan. We
denote a plan execution as healthy, when during the execu-
tion of the plan no constraints are violated. Conversely, an
unhealthy plan execution violates one or more constraints. A
conflict-free plan can have an unhealthy plan execution when
unexpected or unanticipated changes in the environment oc-
cur. For instance, a change in the environment can cause a
plan execution to behave differently from what was expected,
which might result in a conflict with other plan executions
(through violation of their interaction constraints). The pro-
cess of keeping a plan execution healthy can be viewed as a
continuous cycle of detecting unhealthy situations and regain-
ing health. Plan-execution health can be regained by either
correcting the execution or changing the plan (i.e., replan-
ning).

In our opinion, corrections within the execution of a plan
have three advantages when compared to replanning, viz. (1)
they are often easier to accomplish, (2) they are less influen-
tial for the environment and the rest of the plan, and (3) es-
pecially within domains such as ATC, plan changes are more
costly than changes in execution. For instance, gate changes
require a large amount of organization as the passengers need
to be informed, the engaged ground handling needs to be re-
located, and so on. Not surprisingly, within the ATC practice,
the first attempt to regain health is always to try and find so-
lutions within the execution of the current plan. Therefore,
we emphasize that before applying replanning, agents should
try to regain health by correcting the execution of the plan
without changing the plan itself.

In summary, the contribution of this paper is that it enables
agents to keep the plan execution healthy by applying small
corrections within the plan execution. For this purpose, we
developed a model that agents can apply (1) to control the
health of the plan execution and (2) to find corrections to re-
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gain health when necessary. Below, we present our model
and demonstrate its potential by two multi-agent protocols,
viz. (1) a protocol forhealth controlto detect unhealthy plan
execution (conflicts) and (2) a protocol forhealth repair to
find small corrections (repairs) to regain health. To gain in-
sight into which unhealthy situations are suitable for our ap-
proach of correcting plan execution, we tested the protocols
in experiments with randomly generated plans.

The outline of the paper is as follows. Section 2 introduces
the basic notions for our approach and section 3 briefly de-
scribes related research. In section 4, we present our model
for plan-execution health control and repair in a multi-agent
system. Section 5 provides formal definitions of when a plan
execution is healthy, and how plan-execution health can by
regained by applying small corrections to the execution. In
section 6, we present the two protocols, viz. for health con-
trol and health repair. The experiments and the test results are
described in section 7, while section 8 provides our conclu-
sion and topics for future research.

2 Basic notions
In this section, we discuss important notions on planning in
complex and dynamic environments, and present an overview
of our model. Moreover, we briefly discuss the interplay be-
tween our approach of small corrections and the approach of
replanning. Finally, we introduce a running example derived
from the ATC case.

Planning notions
As stated in the introduction, we address the execution of a
plan after it is created. So, we assume that a plan is already
developed. We view a plan as a partially ordered set of steps.
These steps are actions carried out at specific points in the
plan, while the actions are instantiations of general operations
[Ghallabet al., 2004]. The execution of the steps usually has
a certain duration and may require resources that have to be
shared with other steps of the same plan or of other plans. We
assume that a set of constraints describes requirements with
respect to shared resources. Within ATC, for instance, we can
think of safety constraints and of environmental constraints
on noise pollution. Since we consider a multi-agent context,
we assume that the plan is distributed over the agents. Each
agent is responsible for a subplan, consisting of a sequence of
steps the agents wishes to execute. We assume that only one
agent is responsible for one step of the plan (so the subplans
do not overlap), and that the distribution of the steps of the
plan is determined in advance. For example, in the ATC case,
we can think of a multi-agent system containing one agent for
each aircraft (controlling the aircraft’s subplan).

Plan descriptions generally see the steps as atomic parts
that make up the plan. Here, we view them as tasks that re-
quire several, often reactive, activities of the executing agents.
These activities cannot be planned because they depend on
the status of the environment (cf. when driving a car from A
to B, not every overtaking manoeuvre can be planned in ad-
vance). Therefore, the way the plan should be executed is not
specified exactly and we may state that the tasks have some
boundaries or margins within which the execution may vary.

In particular in air traffic, it is common to specify margins for
the duration of tasks. For instance, it is the primary respon-
sibility of a pilot or aircraft agent, flying from one waypoint
to the next one, to keep the aircraft in the assigned flight path
within an assigned time interval. The activities of adjusting
speed, height, and directions are not specified in the plan, but
are assumed to be applied within the boundaries. However,
the activities contribute to the attempt to follow the plan, i.e.,
to keep the plan execution within the specified margins such
as the flight path and the time interval. So, the unplannable
activities within plan execution influence whether the con-
straints are satisfied or violated. Even when a plan is exe-
cuted within its margins, it still may happen that constraint
violations occur (e.g., due to overtaking manoeuvres when
driving a car from A to B).

Model overview
The model proposed in this paper assigns a health state to
each task in a plan. This health state may change during the
execution of a task caused by unforeseen environmental in-
fluences or by activities of the agent executing the task. The
external influences of the environment will be modelled as
disruption events and the activities of agents, assuming that
agents do not deliberately disrupt the execution of tasks, as
repair events.

The assignment of health states to tasks will enable us to
evaluate the effects of disruption events that have occurred
during the execution of tasks. Our first (implicit) assumption
of the model is that disruption events are observable. This as-
sumption will not hold in general, especially in environments
where not all possible disruption events can be known. How-
ever, the model is also useable, with minor adaptations, if
agents are able to determine the actual health states of tasks,
for instance through plan diagnosis (see, e.g.,[Witteveenet
al., 2005]). We note that this will often mean that the agent
has less time to take appropriate action by initiating repair
events. A second assumption is that the plans of the individ-
ual agents are linear. This assumption is mainly made for the
clarity of the presentation of the model. Moreover, it is a com-
mon practice in ATC. The model is, however, also applicable
if agents have partially ordered plans.

Replanning
In the introduction we implied that when plan-execution
health cannot be regained by applying corrections, replanning
should be applied. There are two more situations in which
replanning might be applied. (In our view, they are excep-
tions of our model.) The first situation arises when finding
a plan-execution health repair takes too much time, and an
adjustment in the plan itself (instead of an adjustment in the
plan execution) can be found much faster. To gain a better
insight into this consideration, a comparative assessment of
both methods (plan-execution health repair and replanning)
with respect to the expected complexities and costs is re-
quired.

The second situation in which the agents should fall back
on replanning techniques is when tasks reach states that can-
not be changed by applying repair events. For instance, when
during arrival an aircraft is running out of fuel and needs to
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land immediately. Such ‘emergency states’ should trigger the
agents to solve their problems more drastically, by changing
their plans.

Running example
The following example will be used as a running example
throughout the text. Consider a small airport with only one
runway used for both arrival and departure. It is a small
but busy airport, so plans are tight. Assume that two aircraft
agents, agentA and agentB, each have their own (sub)plan,
connected through a constraint.A’s plan is (1) to taxi from
the gate to the runway, and (2) to take off from the runway.
B’s plan is (1) to arrive at the airport (at the runway), and then
(2) to taxi from the runway to its gate. The obvious constraint
that connects the two plans is that the runway cannot be used
by more than one aircraft at the same time. Therefore, the
agents have agreed on a mutual plan in whichB lands before
A takes off. It is remarked that the aircraft can pass each other
on the taxiway.

In our model, taxiing, taking off, and arriving are consid-
ered as tasks, since they are the smallest planned actions. The
execution of one such a task is a reactive process in the sense
that (sub)actions during the execution of a task (for example
manoeuvring or changing speed) are not part of the planning.
Although the plan satisfies the constraint, still, small changes
in the execution (mostly caused by external influences) can
cause a violation of constraints imposed on the plan execu-
tion. For instance, assume thatA is a bit early as the aircraft
speeded up while taxiing1, andB is a bit delayed because of
heavy head wind during its flight. Then, they still may not
use the (same part of the) runway at the same time, but the
two aircraft might pass one another at a close distance. How-
ever, a close distance could cause a violation of the safety
constraints on the distance that should be kept between the
two aircraft.

In this situation, we would model the following three states
for both the ‘Arrive’ and the ‘Take off’ task: ‘normal’, ‘de-
layed’, and ‘early’. These states represent the timing aspects,
but other types of states are imaginable as well. For instance
for ‘Taxi’ the state ‘off track’, denoting that the aircraft is di-
verging from the standard taxi route may be introduced. The
unanticipated changes in the plan execution are modelled by
disruption events. So the disruption events ‘speeded up’ (dur-
ing the task ‘Taxi’) and ‘heavy headwind’ (during the task
‘Arrive’) may occur during the plan execution. Given the or-
der in which the aircraft may make use of the runway, the
safety constraint can be translated into the demand that it
should not happen that the task ‘Taxi’ is ‘early’, and the task
‘Arrive’ is ‘delayed’. If so, then appropriate action should be
taken. In our example, the disruption events cause the tasks
to achieve these states which then violate the constraint, and
therefore the plan execution becomes unhealthy. To regain
health, agents can apply so-called repair events to reach other
states. For instance, in our example, agentA could wait a
short while during its ‘Taxi’ task. Other examples of repair

1It is known that in practice, some pilots have a tendency to taxi
at higher speed since they are familiar with the taxiways at the air-
port.

events we would like to mention are adjusting the position of
an aircraft on the taxiway or air corridor, adjusting the speed
of an aircraft, and applying small reparations to an aircraft.
Note that these reactive adjustments are not typified as replan-
ning since the corrections in executions will remain within the
margins of the planned tasks.

3 Related research

The main contribution of this paper is the model for plan-
execution health control and repair. A fundamental property
of such a model is, in our opinion, the ability to represent
the current and future states of the plan and its environment.
The models that are at the basis of such a property are Dis-
crete Event Systems (DESs) and Markov Decision Models
(see, for an overview[Cassandras, 1993]). A DES models (1)
the states that a task (or object) can reach by nodes, and (2)
the changes of states by events. Markov Decision Models are
a specific type of DES, in which changes of states are prob-
abilistically determined. Our model is partially inspired by
these two models.

The TÆMS modelling framework used by[Raja et al.,
2000] is also related to our model, since their plan represen-
tation is rather similar. In TÆMS, a plan is represented by
task descriptions that express the uncertainty in plan execu-
tion. Such task descriptions can be viewed as the range of
states the task might be in during its execution. The main dif-
ference with our model follows from its purpose and applica-
tion. Raja et al. use TÆMS for plan development: based on
expectations of the occurrence of certain states, a plan is de-
veloped and tasks can be divided among agents. In contrast,
our research focusses on predicting the states that the tasks
will reach, and how to influence this to regain plan execution
health.

Our goal to keep plan execution healthy somewhat overlaps
the goal of so-called continual planning (for an overview of
distributed continual planning, see[desJardinset al., 2000]).
In continual planning, the processes of planning and execu-
tion are interleaved so as to deal with uncertainties in a dy-
namic environment. In general, continual planning consists
of two parts, viz. (1) monitoring, which corresponds largely
with our plan-execution control, and (2) (re)planning, which
is applied to prevent conflicts or improve the current plan-
ning. desJardins et al. state that the most preferred planning
technique for continual planning uses a hierarchy. In hier-
archical planning, initially, an abstract plan is made and as
the execution approaches, the plan is being refined. Even
though we do not reject this approach completely, it is our
opinion that plan refinement cannot resolve all possible un-
healthy situations, since there is a level within each plan for
which its (sub)activities are unplannable (as discussed in sec-
tion 2). This level is of reactive nature and its activities are
not planned beforehand by any planner. The corrections at
this level can be seen as an adjustment of the parameters that
control the reactive execution of these activities. Our model
is particularly suitable to monitor and correct the activities at
this reactive (task) level. Apart from that, since plan refine-
ment can be viewed as a type of replanning, it can be used
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Figure 1:Normal plan execution of agent A.

when our model does not succeed in regaining health by cor-
recting the plan execution.

Other related research is performed in the area of execu-
tion monitoring. What sets our approach apart is, to our best
knowledge, the state-based model we propose. We would like
to single out[Reece and Tate, 1994], who model plans as ac-
tions that are causally related by their in- and outputs. Based
on the model, it is determined which in- and outputs ought to
be monitored during execution of the actions. When specific
values outside an accepted range are monitored, violations of
the plan execution is detected. Repairs to the plan execution
are initially sought and applied at the execution level, without
unnecessary contacting the level of the planner. This con-
cept of low-level repair to avoid overhead is similar to our
basic concept of plan-execution health repair. Our approach
differs with respect to the model used by Reece and Tate, as
we abstract states and constraints between the states from the
actions and their causal relations. It is our opinion that by us-
ing states as a way to abstract from detailed parameter values
(indicating how a plan is being executed), agents are able to
perform their task of controlling plan execution health more
efficiently. Moreover, when the agents communicate on the
plan execution at the state level, agents are provided a certain
privacy (which is preferable in economic, competitive envi-
ronments).

4 Model description
We model a multi-agent plan as a quadruple consisting of a
four sets:MAP = (A,PD , R,Cst). The sets are: (1) a set
of agentsA, (2) a set of plan descriptionsPD , containing one
plan description for each agent’s subplan:PD =

⋃|A|
i=1 PD i,

(3) a set of common rulesR specifying the execution of the
plan in general, and (4) a set of constraintsCst between the
agents’ subplans. In the remainder of this section, these four
sets will successively be explained in more detail.

We assume that eachagentin the setA has its own individ-
ual subplan. All subplans are gathered withinMAP . There
are no other plans outside the model that the agents should
consider.

A plan descriptionPD i = (Pi,Si, Ei, τi, σi) describes
how the subplan of agenti will be executed. The base
of the plan description is the sequence of tasksPi =
〈ti,0, ti,1, ..., ti,n〉 which the agent wants to execute in this
specific order. We usePi to denote the corresponding set
of all tasks in sequencePi. As pointed out in the previous

section, for simplicity reasons, we assumePi to be totally or-
dered. However, with some minor adjustments, our model is
also applicable on partially ordered sequences of tasks. To
describe the health of a task, we have the setsSi andEi con-
taining for each task a set of states and a set of events respec-
tively. The functionsτi andσi formalize, in combination with
the common rulesR, the execution of tasks within a plan (we
will specify this further on).

During the execution of an agent’s subplan, a taskti,j
is in a certainstate. Each task has its own set of possi-
ble states:Si,j ∈ Si. We distinguish three types of state:
pending, active, and finish. For each taskti,j holds: Si,j =
Spending

i,j ∪ Sactive
i,j ∪ Sfinish

i,j . There is only one pending state
for each task, this is the state in which the task is awaiting
before it is being executed. Thus,Spending

i,j = {spending
i,j }.

When the current task (task1) finishes, the next task (task2)
will become active by changing from the pending state to an
active state (which state that is, depends on the execution of
the previous task). Finally, when task2 is completed, task2
changes from an active state to a finish state and consequently,
the then subsequent task (task3) is triggered. Note that a fin-
ish state is different from a goal state. So, a task can reach a
finish state, even when its goal is not reached (then, the task
has failed).

Each subplan has one start task:ti,0, with Si,0 =
{spending

i,0 , sfinish
i,0 }. The start task has only one pending and

one finish state. When the start conditions are fulfilled, this
start task will change from the pending to the finish state,
which will cause the next task to begin execution (viz. go
from the pending state to an active state).

State changes are caused byevents. Each taskti,j has its
own set of events:Ei,j ∈ Ei, with Ei,j = Efinish

i,j ∪Edisrupt
i,j ∪

Erepair
i,j . Finish events are triggered when pre-defined condi-

tions are fulfilled. Moreover, finish events change tasks from
an active to a finish state. Disruption events are externally
caused and represent unexpected changes in the execution of
a task that might effect the plan-execution health. Finally,
the repair events are executed by the agent to regain the plan-
execution health when necessary. They represent the correc-
tions in the plan execution. A task’s state is the result of the
sequence of events during the plan execution, and will be rep-
resented by predicatets(ti,j , s, E), whereti,j ∈ Pi is the
task for which event sequenceE = 〈e1, ..., ek〉 leads to state
s ∈ Si,j . We use the predicateats(t, s) to denote that taskt
will achieve states during the actual plan execution, i.e., the
past, current, and expected events lead tos.
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Figure 2:Disturbed plan executions of agents A and B.

Figure 1 illustrates the normal execution of a subplan of the
departing agentA in our running example. The subplan con-
sists of three tasks:P1 = 〈t1,Start, t1,Taxi, t1,Takeoff〉, and has
event sequence〈efinish Start, efinish Taxi, efinish Takeoff〉. Note that,
for reasons of clarity, the figure does not present the whole
model, but shows only the occurring states.

As stated above, we formalize the execution of tasks within
an agent’s subplan by the partial functionsτi andσi, and by
the set of common rulesR from MAP . The partial func-
tion τi maps a task, its state, and an event to a new state:
τi : Pi ×

⋃
j Si,j ×

⋃
j Ei,j 9

⋃
j Si,j . (with9 denoting a

partial mapping).τi is defined such that only events inEi,j

can change the state of a taskti,j into a new state inSi,j . We
assume that there is exactly one finish event for each task.
Therefore, the finish state that is reached does not depend on
the finish event, but on the previous state the task is in. This
transition is defined inτ . The partial functionσi returns the
new state in the next task based on the previous task and its
finish state:σi : Pi×

⋃
j Sfinish

i,j 9
⋃

j Si,j . The functionsτi

andσi are defined per agent (instead of being the same for all
agents), since they represent different types of plan-execution
behaviour for different types of agents.

Theset of common rulesR in MAP consists of three rules.
The first rule inR describes how a state transition of a task is
caused by an eventek:

(ts(ti,j , s, 〈e1, ..., ek−1〉) ∧ τi(ti,j , s, ek) = s′)
→ ts(ti,j , s′, 〈e1, ..., ek〉) (1)

The second rule inR describes the immediate activation of
the next task when the previous task is finished:

(ts(ti,j , pending, 〈e1, ..., ek−1〉)
∧ts(ti,j−1, s, 〈e1, ..., ek〉) ∧ σi(ti,j−1, s) = s′)

→ ts(ti,j , s′, 〈e1, ..., ek〉) (2)

The third rule inR defines which states will or will not
be reached during the plan execution. We use the predi-
cateEvents({E1, ...., Em}) to denote that these sequences
of events will occur (a sequenceEi for eachPi).

∃e1, ..., ek(Events({〈e1, ..., ek, ..., en〉i, ...})
∧ts(ti,j , s, 〈e1, ..., ek〉)) ↔ ats(ti,j , s) (3)

We denoteRPD as the set of all instantiations of the rules
in R for all plan descriptionsPD i.

The setCst in MAP is the set ofconstraints, with each
constraint composed of predicatesats(, ) and logic symbols
{∨,∧,¬}. Moreover, constraints are only defined on fin-
ish states, as they can be viewed as a summary of the ex-
ecution of a task. An example of a constraint iscst =
¬(ats(t, s) ∧ ats(t′, s′)) ∨ ats(t′′, s′′), in whichs, s′, s′′ are
finish states. The constraints are ‘demands’ on the plan exe-
cution that should be fulfilled. A constraint violation or con-
flict occurs when the expected execution is inconsistent with
a certain constraint. We will assume that when plans are ex-
ecuted normally, all constraints will hold and the plan execu-
tion is in good health. Consequently, the constraint violations
are caused by disruption events, and might be solved by repair
events to regain the plan-execution health. In addition, we as-
sume that the constraints represent all interdependencies that
exist between subplans of different agents.

Figure 2 illustrates a disrupted execution of the sub-
plans of the departing agentA and arriving agentB
in our running example. Both subplans consist of
three tasks: P1 = 〈t1,Start, t1,Taxi, t1,Takeoff〉, and P2 =
〈t2,Start, t2,Arrive, t2,Taxi〉. The event sequences of the plan
execution are〈efinish Start, eSpeededup, efinish Taxi, efinish Takeoff〉1
and 〈efinish Start, eHeavyheadwind, efinish Arrive, efinish Taxi〉2. In
this setting, the constraint¬(ats(t1,Takeoff , finish early) ∧
ats(t2,Arrive, finish delayed)) between the two subplans is vi-
olated.
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In general, we assume that each agenti has knowledge (i)
of its individual plan descriptionPD i, (ii) of the common
rulesR, and (iii) of the constraintsCsti ⊆ Cst that are rel-
evant for its subplan. Moreover, we assume that each agenti
is able to communicate to the other agents to whose subplans
the constraintsCsti apply.

5 Health and health repair
We assume that an agent notices when disruption events oc-
cur during the execution of its subplan (for instance through
its sensors). Based on the detected disruption events, an agent
can construct the sequence of past events (up to and includ-
ing the current or latest events) in the so-called current event
history CEH i (with CEH =

⋃
i CEH i). We assume that

in the future, from current taskti,j on, no disruption or re-
pair events will occur. Hence, for each task in the remaining
plan, one finish event will occur. The resulting sequence of
eventsFE i = 〈ej , ej+1, ..., en〉, with eh ∈ Efinish, will be
called the future event sequence. The current event history
can be combined with the future events sequence into the fu-
ture event history:FEH i = CEH i ◦ FE i (with ◦ denoting a
concatenation of the two sequences, andFEH =

⋃
i FEH i).

Based on the set of future event histories,FEH , we can de-
fine a constraint violation as follows.

Definition 1. A constraint cst∗ is violated iff
Events(FEH ) ∪ RPD ` ¬cst∗.

Since constraint violations decrease the health of plan exe-
cution, we can define plan-execution health as follows.

Definition 2. A plan execution is healthy iffEvents(FEH )∪
RPD ` Cst.

When an unhealthy plan execution has been detected, the
agents should correct the execution of the plan such that no
constraint violations will occur in the future and the plan-
execution health is restored. To achieve this, each agent can
insert repair events in the future event history in order to cre-
ate new state paths in its plan execution. By inserting repair
events, the anticipated constraint violations can be avoided.
Inspired by research in the field of Model-Based Diagnosis
(for an overview, see[Mozetic, 1992]), in which a distinction
is made between consistency-based diagnosis and abductive
diagnosis, we define weak and strong plan-execution health
repair, respectively.

A weak plan-execution health repairFER− is a set of event
sequences containing all future event sequences with some
repair events inserted, in such a way that by applyingFER−

all anticipated constraint violations will dissolve and no new
violations will be created.

Definition 3. A weak plan-execution health repair
FER− is a set of sequencesFER− = FE d RE
where RE is a minimal subset of Erepair s.t.
Events(CEH ◦ FER−) ∪ RPD ∪ Cst 6` ⊥.

We useFER− = FE dRE to denote that the events inRE
are placed at specified places within the sequences collected
in FE . Note that for the sameFE and RE different sets
FER− = FE d RE are possible, depending on the place-
ment of the repair events in the sequences inFE . With a

minimalRE we limit the subsets ofRE to those which have
no subset that will construct a (weak) plan-execution health
repair as well. Note that computing a weak plan-execution
health repair corresponds to constructively applying consis-
tency checks.

A strong plan-execution health repairFER+ differs from
the weak version in thatFER+ ensures that all constraints
hold.

Definition 4. A strong plan-execution health repair
FER+ is a set of sequencesFER+ = FE d
RE where RE is a minimal subset ofErepair s.t.
Events(CEH ◦ FER+) ∪ RPD ` Cst.

Finding a strong plan-execution health repair corresponds
to applying abduction.

Since both consistency checking and abduction problems
are known to be NP-hard, in general, plan-execution health
repair is NP-hard as well.

Though generally, abduction is strictly stronger than con-
sistency checks, here we have the result that definitions 3 and
4 are equivalent.

Proposition 1. A weak plan-execution health repair is a
strong one and vice versa.

Proof. (=⇒) The instances of common rule (3) guarantee
that for every taskti,j and for every finish states ∈ Sfinish

i,j

either ats(ti,j , s) or ¬ats(ti,j , s) holds. Hence, for every
cst ∈ Cst, eitherEvents(CEH ◦ FER−) ∪ RPD ` cst
or Events(CEH ◦ FER−) ∪ RPD ` ¬cst. However, there
is no cst ∈ Cst for which the latter holds, because then
Events(CEH ◦ FER−) ∪ RPD ∪ Cst ` ⊥, which con-
flicts with our definition of a weak plan-execution health re-
pair. Therefore,Events(CEH ◦ FER−) ∪ RPD ` Cst and
subsequentlyFER− satisfies the condition of strong plan-
execution health repair.

(⇐=) Note that the instances of common values do
not enable us to derive conflicting propositions. Hence,
Events(CEH ◦ FER+) ∪ RPD 6` ⊥. Since
Events(CEH ◦ FER+) ∪ RPD ` Cst, and since predicate
logic is monotonic, we have thatEvents(CEH ◦ FER+) ∪
RPD ∪ Cst 6` ⊥. Hence,FER+ satisfies the condition of a
weak plan-execution health repair.

Due to proposition 1, we refer to plan-execution health re-
pair as the setFER and make no further distinctions between
the weak and strong version in the remainder of this article.

In our example, agent A can apply an eventeWait during
the taxi task, which changes the state of taskt1,Taxi from
‘active early’ into ‘activenormal’, and subsequently the
state of taskt1,Taxi also to ‘activenormal’. This correction of
plan execution resolves the constraint violation. Therefore,
an example of a plan execution health repair isFER =
{〈efin Start, eSpeededup, efin Taxi, eWait, efin Takeoff〉1,
〈efin Start, eHeavyheadwind, efin Arrive, efin Taxi〉2}.
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6 Two protocols
In this section we propose two multi-agent protocols to keep
plan execution healthy, viz.health controlandhealth repair.
The protocols utilize our model for plan-execution health and
thereby demonstrate its applicability for maintaining plan-
execution health with a multi-agent system.

Health control
During the execution of a plan, agents control its development
to detect unhealthy states (conflicts) as follows. Based on
the detected disruption events and the expected future events,
the agents construct a future event history. Using the future
event history, agents are able to predict which states will be
reached in the future. If these expected states are part of
a possible constraint violation, the agents communicate the
new values to other agents that participate in this constraint
(the related agents). This way, the agents individually have
sufficient information to determine whether a constraint will
be violated and an unhealthy plan execution is reached. The
corresponding protocol for health control is presented in fig-
ure 3. When one or more conflicts are detected, i.e., when
the plan-execution health is disturbed, the protocol for find-
ing repair events to restore plan-execution health is activated.
Note that we made the simplifying assumption that there is
one unique agent (agent 0) that all agents can communicate
to and that is either involved in the conflict or is informed to
start the health repair protocol.

Health control protocol of agenti
while executing plan

if disruption event occurs
determine expected future states;
send messageSTATE CHANGE to related agents;

end if;
if messageSTATE CHANGE received

update view on other agent’s states;
check for conflicts;
if conflict detected

agent 0 starthealth repairprotocol;
end while

Figure 3:A protocol for health control.

Health repair
To enable the agents to find a plan-execution health repair,
we formulate the plan-execution health repair as a constraint
satisfaction problem:HRcsp = (V,D, C). The set variables
V contains a variable for each task inMAP : V = {vi,j |ti,j ∈
Pi}. D contains for each variable a domain of possible val-
ues. We choose for the possible variables the set of finish
states:D = {Sfinish

i,j |ti,j ∈ Pi}. We divide the set of con-
straintsC into plan constraints,Cplan, and conflict constraints,
Cconflict. The plan constraints represent the execution of the
subplans, as described byPD . A plan constraint between
two successive tasks is true, if there is an event path from the
value assignment (or finish state) of the first task, to the value
assignment (or finish state) of the second task. The possi-
ble paths depend onCEH andFER (the sets of future event

sequences with inserted repair events). Therefore, the set of
plan constraints can be constructed as follows.

Cplan = {cvi,j ,vi,j+1(s1, s2)|
∃FER : Events(CEH ◦ FER) ∪ RPD

` ats(ti,j , s1) ∧ ats(ti,j+1, s2)} (4)

The set of conflict constraintsCconflict is a direct mapping of
the setCst in MAP onto the variablesvi,j .

Cconflict = {cvi,j ,....,vk,l
(s1, ..., sp)|

ats(ti,j , s1) ∧ .... ∧ ats(tk,l, sp) ` cst,∀cst ∈ Cst} (5)

The problem of finding a plan-execution health repair is
now transformed into the problem of assigning values to the
variables from their domains such that all constraints are met.
An overview on algorithms for distributed constraint satisfac-
tion is given by[Yokoo and Hirayama, 2000]. We would like
to single out the recent asynchronous and synchronous algo-
rithms by Mailler and Lesser[Mailler and Lesser, 2004] and
by Brito and Meseguer[Brito and Meseguer, 2003]. In our
protocol for health repair, we apply a basic synchronous al-
gorithm. Our algorithm is based on the representation of the
constraint satisfaction problem in a constraint graph. On re-
peated occasions in the protocol, arc consistency is applied
on this graph to rule out inconsistent value assignments at an
early stage and thus narrow the search space.

Each agent maintains an individual constraint graph which
is a subgraph of the whole constraint graph. An individual
constraint graph consists of two types of nodes, viz. so-called
internal and external nodes. The internal nodes represent the
variables of the agent’s plan, these are the variables that the
agent itself can influence. The internal nodes are connected
through bidirectional arcs that represent the plan constraints.
The external nodes represent the variables of other agents’
plans that are linked to the variables of the internal nodes
through the conflict constraints. These conflict constraints
are represented by unidirectional arcs between the external
and internal nodes. The domains of the external nodes are
communicated by the agent that owns the nodes (i.e., which
tasks or variables are represented). Each node in the graph is
labelled with its variable’s domain.

Because of the sequential nature of plans, the individual
subgraph solely based on the internal nodes and the bidirec-
tional arcs, will be linear. The individual constraint graph
(the subgraph combined with the external nodes and unidi-
rectional arcs) itself is a non-cyclic graph.

The individual constraint graph of agent B from our ex-
ample is presented in figure 4. Each task in B’s subplan
P2 = 〈t2,Start, t2,Arrive, t2,Taxi〉 has its own node. These
nodes are connected through bidirectional arcs denoting the
dependencies between the two tasks (i.e., the event paths
that are possible). The node ‘A: take off’ is the exter-
nal node, connected to the ‘Arrive’ node by the constraint
¬(ats(t1,Takeoff , finish early)∧ats(t2,Arrive, finish delayed)).
Moreover, each node has a domain of possible values: the
possible finish states of the task.
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Figure 4:Individual constraint graph of agent B.

A protocol for finding a plan-execution health repair is de-
picted in figure 5. Once a conflict is detected, agent 0 starts
its health repair protocol.

Health repair protocol of agent 0
all agents startarc consistencysubprotocol;
if arc consistency succeeded

agent 0 startvalue assignmentsubprotocol;
else

health repair failed, no solution possible;

Value assignment subprotocolof agent i
while!value assigned && !failed

assign new values to each variable;
if succeeded

all agents: startarc consistencysubprotocol;
if arc consistency succeeded

value assigned
if agent i+1 exists

agent i+1 startvalue assignmentsubprotocol;
else

all agents apply repairs
else if i != 0

failed, agent i-1 startvalue assignmentsubprotocol;
else

failed, no solution possible;
end while

Arc consistency subprotocolof agent i
repeat

apply individual arc consistency;
if domains changed

send messageDOMAIN CHANGE to related agents;
receive allDOMAIN CHANGE messages,
update internal representation;

until no domain changes occur anymore

Figure 5:A protocol for health repair.

Initially, agent 0 requests the other agents to start thearc
consistency subprotocol. The arc consistency subprotocol
achieves arc consistency on the whole constraint graph by re-
peating two steps. First, the agents reduce the domains of
their variables by applying arc consistency on their individ-
ual constraint graphs. This can be achieved in linear time,
provided that the domain reduction is started with the unidi-
rectional arcs connected to the external nodes. Note that for
this part of the algorithm no communication with other agents

is required. Second, for each internal node with a changed do-
main that is involved in a conflict constraint, the correspond-
ing agent communicates the new domain to the other agents
involved (represented by the external nodes). Subsequently,
the latter agents adjust the domains of the corresponding ex-
ternal nodes to the communicated values. Then again, the
agents apply arc consistency on the updated individual con-
straint graphs, which is followed by communication on the
altered domains. The two steps are repeated as long as some
domain changes during the process. This subprotocol ends
when the whole constraint graph is arc consistent and the do-
mains are maximally reduced.

Start TaxiArrive-¾ -¾

{normal}

{normal, early}

{»»»normal, delayed} {»»»normal, delayed}

6

A:
Take off

Figure 6:Arc-consistent individual constraint graph of agent B.

Figures 6 and 7 show one iteration of the arc-consistency
process of agent A and B from our example. Figure 6 depicts
the individual constraint graph of agent B, after applying arc
consistency (task ‘Arrive’ is the current task). The domains
of tasks ‘Arrive’ and ‘Taxi’ are both reduced, since i) there
is no event sequence that causes a state transition to ‘(finish)
normal’ in the task ‘Arrive’, and ii) based on the state domain
of task ‘Arrive’, there is no event sequence that will lead to
state ‘(finish) normal’ in task ‘Taxi’. Then, agent B commu-
nicates the new domain of node ‘Arrive’ to agent A, which
updates the label at the external node in his individual con-
straint graph. Consequently, applying arc consistency on its
graph results in altered domains for agent A (which should be
communicated to agent B and so on). See figure 7.

Start Taxi Take off-¾ -¾

6

{normal} {normal,©©early} {normal,©©early}

{delayed}

B:
Arrive

Figure 7:Arc-consistent individual constraint graph of agent A.

When the protocol of finding arc consistency has suc-
ceeded and arc consistency on the whole constraint graph
is achieved, agent 0 starts itsvalue assignment subprotocol.
However, if during the arc consistency subprotocol one do-
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main becomes empty, enforcing arc consistency has failed
and no value assignment is possible. Following the value
assignment subprotocol, agent 0 searches for a value assign-
ment for its variables within the restricted domains. Then
again, all agents apply arc consistency. If this succeeds, this
assignment is accepted and a ‘new’ agent starts itsvalue as-
signment subprotocol. If the arc consistency fails, a new value
assignment needs to be made by the current agent. If the
current agent is not able to create a new value assignment,
it passes the turn back to the previous agent (which starts
the subprotocol again and tries to find a new assignment).
The (sub)protocol ends when the value assignment of the last
agent is accepted. Then, all agents apply the repairs that result
in the assigned values, and plan-execution health is restored.
However, if agent 0 is not able to find a new value assignment
that is not (eventually) rejected, the subprotocol ends and sub-
sequently, the protocol ends. Hence, finding repair events to
regain health is not possible. In that case, replanning should
be applied.

In our example, the only possible value assignment might
be for A to assign value ‘normal’ to all its tasks, and for B
to assign value ‘normal’ to task ‘Start’ and value ‘delayed’ to
both tasks ‘Arrive’ and ‘Taxi’. This assignment corresponds
to the plan-execution health repair as described in the previ-
ous section, in which agent A applies the repair event ‘wait’
during the execution of the task ‘Taxi’.

7 Experiments
As stated in the introduction, the goal of the experiments is
to gain insight into which unhealthy situations are suitable
for our approach of correcting plan execution. Moreover,
we would like to test the efficiency of the proposed proto-
cols with respect to the communication overhead. For these
two purposes, the protocols presented in the previous section
have been implemented and tested with randomly generated
plans. During the experiments, the complexity of the prob-
lem of finding repair events has been varied by altering two
conflict-constraint parameters: (i) the percentage of conflict
constraints on the variables (or tasks), p1, and (ii) the percent-
age of value combinations that are allowed within a conflict
constraint between the variables, p2. The performance of the
protocols is measured by the number of messages on state or
domain changes.

In each experiment, one (abstract) random subplan per
agent is generated according to parameter settings that are
defined beforehand. The subplans each consist of a sequence
of abstract tasks (the variables), specified by their sequence
number. Each task has a number of states (the values), of
which one is chosen as the task’s initial value. By random se-
lection, we generate for each state a set of possible disruption
and repair events, specified by the states they lead to. Sub-
sequently, constraints are generated. Theconflict constraints
are generated according to the parameters p1 and p2. Note
that a conflict constraint specifies for a set of tasks, which
state combinations are allowed. The number of conflict con-
straints is calculated by taking p1 percentage of all possible
conflict constraints. Then, this number of conflict constraints
is generated by randomly selecting sets of tasks (while pre-

venting more than one constraint per unique set of tasks).
To specify each generated conflict constraint, (unique) sets
of states representing the allowed state combinations are ran-
domly selected. The number of state combinations that are
selected, depends on parameter p2. Theplan constraintsare
dynamically defined as they depend on the future event his-
tory. Given a certain partial value assignment, the plan con-
straints define that two states s1 and s2 of two consecutive
tasks t1 and t2 are allowed only if s1 equals s2 (under the as-
sumption that an activation of task t2 by t1 leads to t2 having
the same state as t1) or if there is an event path possible (con-
taining one or more repair events) in task t2 from state s1 to
s2.

After initialization, the experiment proceeds as follows.
A number of randomly generated disruption events are ex-
ecuted, which causes state changes. Based on the current and
expected future states, the agents detect constraint violations.
When an unhealthy plan execution is detected, the agents start
the repair protocol to regain plan-execution health.

Figure 8: Results of experiment.
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Figure 8 illustrates typical results of our experiments. The
figure shows for a series of settings of conflict-constraint pa-
rameters (10 < p1 < 100 and10 < p2 < 100), the aver-
age percentage of problems solved and the average number of
messages on domain changes that were sent during theplan-
execution health repairprotocol. The other parameter set-
tings for these specific experiments are: number of agents =
5; number of tasks per agent or subplan = 5; number of states
per task = 5; number of tasks per constraint = 2; number of the
possible repair events per state = 2; number of executed dis-
ruption events = 10; number of runs per constraint-parameter
setting = 1000.

The results show that problems with high constraint density
are unsolvable with health repair, as was to be expected since
increasing the constraint density causes a decrease in the so-
lution space. Given the settings of the experiments described,
the phase transition from solvable to unsolvable problems lies
roughly around the boundaryp1 + p2 = 100. The ridge in
the bottom figure shows that problems situated at the phase
transition need the largest amount of messages.

8 Conclusion and future research
In this paper, we presented a model that enables agents to
maintain plan-execution health. With help of the predict-
ing capabilities of the model, agents can control the plan-
execution health and regain health by correcting the plan ex-
ecution. The protocols for health control and health repair
together with their implementations demonstrate the applica-
bility of the model in a multi-agent system. Within the exper-
imental settings, we have shown that a substantial proportion
of unhealthy situations are solvable by small corrections in
plan execution with a reasonable amount of communicative
costs. In view of the observations presented in section 7, we
may conclude that health repair is best applicable in problems
with constraint density considerably lower than the transition
area. Our overall conclusion is that a generally reasonable
range of unhealthy situations can be solved adequately by a
well-thought correction in plan execution instead of perform-
ing a replanning procedure.

There are three topics we wish to examine in the near fu-
ture. First, the efficiency of the protocols can be increased
to reduce communication overhead. Second, the balance
between health repair and replanning can be examined into
more detail to gain a better insight into which unhealthy sit-
uations should be solved by plan-execution corrections, and
which by replanning. Third, the model can be extended to

a probabilistic model (inspired by Markov Decision Models)
in which the probabilities that a disruption event will occur in
the future are taken into account. This will improve the con-
trolling power of the agents, in which they can anticipate on
unhealthy situations in a much earlier stage.
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