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Recent developments in multiagent systems (MAS) have been promising by achieving
autonomous, collaborative behavior between agents in various environments. However,
most of the agents, both software agents and physical agents, still have problems if the
environment is dynamic and the agents have to act in real time. Examples are obstacle
avoidance with moving obstacles or world models which are composed from egocentric
views of numerous agents. Another aspect is the need for quick responses. In an en-
vironment where a number of agents build a team and both single agent decisions and
team collaborative decisions have to be made methods have to be fast and precise. This
workshop addresses various problems that occur with respect to these issues.

The main focus of this workshop will be methods from various areas such as world
modeling, planning, learning, and communicating with agents in dynamic and real-time
environments. Within this general theme we aim to bring together researchers to discuss
the following topics:

e World modeling (quantitative, qualitative)

e Coaching (one agent gives advice to a group of agents)

e Planning with resources (especially time)

e Learning (both off- and on-line)

e Cooperation between agents (robot and/or humans)

e Communication between agents (implicit, non-verbal, or verbal one)

e Real-time systems software issues (often ignored but important if serious about
real-time issues in robotics)

e Scalability and robotics interfacing issues (demands a great deal of support from
the initial design of the system)

In the last decade, a lot of effort has been invested to develop methods that can be
used with multi-agent systems. The language development in the area of communication
between agents (ACL) might act as the first example. Speech acts serve as the basic
principle and various protocols have been invented (e.g. auctions, contract-nets, etc.).
Can we transfer these results to environments where quick decisions have to be made?



Consider planning as another example: there are promising methods for path planning,
but do they still hold if the observed obstacles are moving? Learning is another example:
we need on-line learning in a real-time scenario to give agents the option to learn more
about their environment. Usually, learning takes a fair amount of time but sometimes
this time is not available. Can we find methods which will consider these restrictions?

This workshop addresses researchers from various areas in AI who want to discuss the
mentioned issues from their point of view. How can we develop new methods or adapt
existing methods to meet these demands?

We had ten submissions for this workshop and each of the papers have been evaluated
by three reviewers (except one paper with two reviewers). The results of the reviews were
surprisingly close. After a discussion among the organizers we decided to accept all ten
papers for oral presentation at the workshop.

The contributions can be roughly categorized into the following topics: World model-
ing, planning, learning, and behavior/collaboration. Please note that this is only a rough
categorization and that there are a number of papers that belong to more than one topic.

World modeling: A qualitative spatial knowledge representation based on ordering
information is proposed by Wagner & Hibner. They use this representation to navigate
with physical robots taking into account the egocentric perspective of the robot. Their
method also provides means to reason about the robots world model validity despite
insufficient and uncertain sensory data. The method is based on spatial representations
using landmarks.

The contribution by Merke et al. discusses important problems that occur with lo-
calization issues using physical agents that perform in real-time environments. Their
proposed approach is based on a robust particle filter method using features found in a
camera image. Those features are points on field lines and can be recognized reliably
under natural light conditions with 30fps.

Planning: The contribution of Domshlak € Lawton deals with opportunistic planning
and plan execution. They discuss how multi-agent systems can exploit shared knowl-
edge for opportunistic predictive encoding using an approach based on an abstract plan
representation called Partial Order Plan Graphs (POPGs). They also present several ap-
proaches for increasing system-level performance by improving the efficiency of the plans
containing predictively encoded opportunities (e.g. planning with shortcuts, plan repair
methods).

Le Gloannec et al. discuss planning issues that occur under uncertainty having multiple
resources. They propose an approach to control the operation of an autonomous agent
which operates under multiple resource constraints. They use a DAG of progressive tasks
using an optimal policy obtained by an MDP. Computing an optimal policy for an MDP
with multiple resources makes the search space large and therefore unusable at run-time.
The authors thus propose a solution by decomposing a large MDP into smaller ones,
compressing the state space, and constructing and recomposing local policies for the
decomposed MDPs in order to obtain a near optimal global policy.

Learning: Rettinger proposes an idea that provides a scoring policy for simulated soccer
agents. This method is able to be used in real-time in dynamic environments such as the



RoboCup Simulation League. The technique uses data obtained from prerecorded soccer
games for supervised neural network learning.

The second paper that discusses a learning approach within the RoboCup Soccer
Simulation proposes a symbolic learning method. Konur et al. learn decision trees for
the selection of the agents next actions. The method is used to learn the action selection
strategy of the whole team, that is, defenders, mid-fielders, and attackers, when a player
is in ball possession. The authors state that the method can also be used in a different
way. The learning method yielded a set of qualitative features to classify game situations,
which are useful beyond reactive decision making.

Behavior and collaboration: Lundh et al. study teams of autonomous robotic agents
where agents help each other out by offering information-producing resources and func-
tionalities. Depending on the current situation and tasks, the team may need to change its
functional configuration dynamically. The authors propose knowledge-based techniques to
automatically synthesize new team configurations in response to changes in the situation
or tasks.

Carrascosa et al. discuss the behavior of real-time agents with respect to reactivity
and deliberation. They introduce the concept of Reactivity Degree. This concept implies
some meta-reasoning capabilities to be available in the agent in order to dynamically
decide the amount of resources which have to be assigned to deliberation and reaction.
The paper also shows how to implement such a concept in the hard real-time, hybrid
agent architecture called ARTIS.

Dorer proposes an approach where behavior networks can be extended to model be-
havior selection of agents in dynamic and continuous domains. The paper focusses on a
mechanism for concurrent behavior selection by explicitly represent the resources which
are used by a behavior. Dorer describes further how this process can be combined with
behavior execution in continuous domains.

Shimony € Berler discuss local decision problems and how they can be solved using
Bayesian knowledge bases. The authors state that collaboration of multiple intelligent
agents on a shared task is a complex research issue. The problems become particularly
difficult when communication is limited or impossible. They developed AWOL (Abstract
World for Opportunistic Local decisions), an abstract framework with a disciplined treat-
ment of opportunistic action, in the context of an existing joint plan.
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An Egocentric Qualitative Spatial Knowledge
Representation Based on Ordering Information for
Physical Robot Navigation

Thomas Wagner! and Kai Huebner 2

Abstract. Navigation is one of the most fundamental tasks to be acapproaches. By the use of ordering information, i.e., based on a de-
complished by many types of mobile and cognitive systems. Most apscription of how landmarks can shift and switch, we generatexan
proaches in this area are based on building or using existing allocenended panoramic representati@PR). We claim that our represen-
tric, static maps in order to guide the navigation process. In this papéation in combination with path integration provides sufficient infor-
we propose a simple egocentric, qualitative approach to navigatiomation to guide navigation with reduced effort to the vision process.
based on ordering information. An advantage of our approach is tha&urthermore the EPR provides the foundation for qualitative spatial
it produces qualitative spatial information which is required to de-descriptions that may be invariant to translation and/or rotation.
scribe and recognize complex and abstract, i.e., translation-invariant Since our approach abstracts from quantitative or metrical detail
behavior. In contrast to other techniques for mobile robot tasks, thah order to introduce a stable qualitative representation between the
also rely on landmarks it is also proposed to reason about their validaw sensor data and the final application, it can for example be used
ity despite insufficient and uncertain sensory data. Here we preseint addition to the well-elaborated quantitative methods.

a formal approach that avoids this problem by use of a simple inter-

nal spatla_tl representatl_on based on landmarks alignedéntanded 2 Motivation

panoramic representatiostructure.

Modeling complex behavior imposes strong requirements on the un-
derlying representations. The representation should provide several
levels of abstraction for activities as well as for objects. For both

Navigation is one of the most fundamental tasks to be accomplisheﬁ'pes of knowledge, different representations were proposed and it

by robots, autonomous vehicles, and cognitive systems. Most sudvas demonstrated that they can be used successfully. Activities can,
cessful approaches in the area of robot navigation like potential field§9- be described adequately with hierarchical task networks (HTN)

(see [11] and [8]) are based on allocentric, static maps in order t hich provide clear formal semantics as well as powerful, efficient

guide the navigation process (e.g. [10]). This approach has an i lanning-) inferences (see e.g. [4]). Objects can be described either

tuitive appeal and gains much intuition from cognitive science: thell ontology-based languages (e.g., OWL [23]) or constraint-based

cognitive map(a good recent overview [17]). The main purpose is '3”9“""9?5 (e.g., [9)- Both typ?s of representations allqw for the rep-
to build up a precise, usually allocentric, quantitative representatioﬁesemaﬂon of knowledge at different levels of abstraction according

of the surrounding environment and to determine the robot’s positioﬁ0 the domain and task specific requlrements. In physmally ground_ed
according to this allocentric, quantitative map. environments, the use of these techniques requires an appropriate

One difficulty results from the fact that the same spatial representaqua"tative spatial description in order to relate the modeled behavior
tion serves as a basis for different tasks often with heterogeneous 2 the real world.
quirements. For example, more abstract reasoning tasks like planning
coordinated behavior, e.gounterattackanddouble passand plan 2.1 Allocentric and Egocentric Representations
recognition usually rely on more abstract, qualitative spatial repre- . . . . .
sentations. Generation of qualitative spatial descriptions from quanl-n an egocentric representation, spatial relatlon_s are usually directly
titative data is usually a difficult task due to uncertain and incompletéel?ted tol.lfn ager;t f?y .thﬁt u;efof ?nbe%(?csr:ame of reference
sensory data. In order to fit heterogeneous requirements, we shou'fah erms ike, €.9.Jeft, nignt, n front, behind As a consequence,

be able to represent spatial qualitative description at different level¥ ecr;tanbager(ljt rtn(()jst throtught an enwro:mtw_ent, SH S%at'al relaltllons
of granularity, i.e., invariant according to translation and/or rotation" o0 O D€ Updated. In contrast, repreésentations based on an atocen-
and based on different scalings. tric frame of reference remain stable but are much harder to acquire.

Based on recent results from cognitive science (see, e.g., [33] ,?d't'ona”yi the ntl)meer ﬁflspatlatlj relations WE'Ch htave to _l()je t?rlfen
we present a formal, egocentric, and qualitative approach to navi _nt_o acck:)utn may ehmubg ?rge;r Iclec?#se vg_e ?v_e g]con3|_ erthe r?-
gation which overcomes some problems of quantitative, allocentri auons between each object and all other objects in the environment,

whereas the number of relations in egocentric representations can be
1 Center for Computing Technologies (TZI), Bremen, Germany email: twag-Significantly smaller (see Fig. 1)An interesting phenomenon, when

1 Introduction

ner@tzi.de looking into the didactic literature about, e.g., sports [13] we often
2 Institute of Safe Systems (BISS), Bremen, Germany email: khueb-
ner@tzi.de 3 For reasons of clarity not all allocentric relations are drawn in diagram 1(a).



3.2 Robot Navigation

Player1

Navigation and localization is the most fundamental task for au-
tonomous robots and has gained much attention in the robotic re-
E search over the last decades. While several earlier approaches ad-
dressed this problem qualitatively [10], e.g., topological maps ([12],
[16], [1]), more recent approaches focus very successfully on prob-
abilistic methods. Famous examples are RHINO [25], MINERVA
[24] and more recently [27]. Currently, the most promising tech-
nigues for robust mobile robot localization and navigation are either
based on Monte-Carlo-Localization (MCL) (see [19] for RoboCup-
application and the seminal paper [26]) or on various extentions of

find that (tactical and strategic) knowledge is described in both, ego<@iman-filters(e.g., [14]) using probabilistic representations based

centric and allocentric terms, whereas, e.g., the literature about driy@" guantitative sensory data. MCL is based on a sample set of pos-
ing lessons strongly relies on purely egocentric views. At least ondUres: the robot's position can be estimated by probabilities which
of the reasons are that the latter representation seems to provide bgflow to handle not only theosition tracking and theglobal local-

ter support for acting directly in physically grounded environments,Z&tionproblem but also the challengitkginapped roboproblem of
since perception as well as the use of actuators are directly basdBVing & robot without telling it. -

on egocentric representations. In addition, egocentric representations Furthermore, probabilistic methods based on quantitative data
provide better support for rotation and translation invariant represenP!@Y & crucial role in handling the mapping problem, i.e., the SLAM-

tations when used with a qualitative abstraction (see section 3.3 arR{oDlent. Very much the same is true for many robotic approaches to
4 for more details). navigation, e.g., potential fields for avoiding obstacles by following

the flow of superposed patrtial fields in order to guide the robot to a
goal position (see [11] and [8] for a RoboCup-application) based on
3 Related Work quantitative data.
s . . . According to thespatial semantic hierarch{ESH) [10], these ap-
3.1 FC{:ognltlont. l?.ynamlc’ Egocentric Spatial proaches try to address the problems related to robot navigation on
epresentations thecontrol level Besides the strong computational resource require-

The fact that even many animals (e.g., rodents) are able to find neients they usually do not address the problem of generating a dis-
paths leading to familiar objects seems to suggest that spatial ré'ete, qualitative spatial representation which for instance is required
lations are encoded in an allocentric stditognitive map”. This at more abstract levels, e.qg., for describing complex coordinated tac-
almost traditional thesis is supported by many spatial abilities likefical and strategic behavior either on individual- and on team level.
map navigation and mental movement that humans are able to per-

form (beginning with [28] and [15]). Nevertheless, recent results3. 3 The Panorama Approach

in cognitive science provide strong evidence for a different view ) . )
([33] among many others). Instead of using an allocentric view-The concept of panorama representation has bggn studied extensively
independent map, humans and many animals build up a dynamié the course of specialized sensors (e.g., omnivision, see, e.g., [34]).
view-dependent egocentric representation. Although the allocentri¥/e Present an extended approach based on the panorama approach
interpretation of theognitive maseems to differ radically from the P Schiieder ([20], [21]and [22]). . .
egocentric representation theory, both theories can account for many A COMPlete, circular panorama can be described 3604 view
observations and differ mainly in two points: The allocentdeg- ~ Tom a specific, observer-dependent point of view. Ben Fig. 2(a)

nitive mapinterpretation assumes that the spatial representation igenote a person, then the panorama can be defined as the strict or-
view-independent and that therefore viewpoint changes do not ha/gering of all objectshouse, woods, mall, lak&his ordering, how-

any influence on the performance of, e.g., spatial retrieval processe8vel. does not contain all ordering information as described by the
Many recent experiments provide evidence for the opposite, theycenario. Themall is not only directly between theoodsand the
show that viewpoint changes can significantly reduce performanck®ke but more specifically between the opposite side ofttbese

in terms of time and quality (e.g. pointing errors) (among others,and thelake (the tails of the arrows). In order to represent the spa-

[31] and [32]). The second main difference is concerned with the C|y_tial knowledge described in a panorama scenario, [20] introduced a

namic of the underlying representation. The egocentric interpretatiofPfmal model of a panorama.

assumes that all egocentric relations have to be updated with eaghufinition 3.1 (Panorama) Let©= {01, ..., 0, } be a set of points
egocentric movement of a cognitive system. The underlying assuUMpy. ¢ @ and® = {4, ..., ¢, } the arrangement of n-1 directed lines

tion of a sophisticated series of experiments done by Wang ([31] angonnectingﬁi with another point 0, then the clockwise oriented
[32]) was that spatial relations have to remain stable in an allocentriccycﬁcm order of® is called the panorama df;.

cognitive mapndependent from egocentric movements. When errors

arise, e.g., because of path integration, the error ratenfiguration As a compact shorthand notation we can describe the panorama in
error”) should be the same for all allocentric relations; otherwise Fig. 2(b) as the string< A, C, D, Bo, Ao, Co, Do, B >. Standard
thgy rely on an egoce'ntrlc represen.tatlon. The results IndlcaFe Clec.“ and Sholl [3] have shown that under very specific conditions it is possible
evidence for egocentric representations and have been confirmed ing pyild up allocentric maps. Regardless these results indicate, that under

a series of differently designed experiménisg., [3] and [5]. more natural conditions human navigation relies on egocentric snapshots

and a dynamic mapping between these.

4 Nevertheless, these results do not allow the strict conclusion that humarisThis term is also directly connected to a set of algorithms addressing exactly
do not build up an allocentric cognitive map. On the contrary, e.g., Easton this problem (e.g., [2])

(a) Allocentric relations (b) Egocentric relations

Figure 1. Allocentric vs. egocentric spatial relations
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y c penalty area. In section 4.1 we briefly discuss the key properties of
ouse PRt -

A .* ~. the first task in relation to ordering information from a more theo-
Woods 7 \E’ retical point of view, whereas in section 5 these aspects are investi-
/ \ gated in more detail. In section 4.2 we describe the theoretical frame-
' 'oB work underlying the mapping- and update-mechanism for egocentric
Lake Bt ] views on external landmarks.
AY
\ /,’
D , -
Y .7 oA 4.1 Within a Frame of Reference
Mall Se-e-eT
oC A crucial property of panoramic ordering information is that it does
(a) Concrete panorama (b) Abstract panorama not change as long as an agent stays within a given FoR, i.e., the
_ _ corners of a soccer field, do not change unless the player explicitly
Figure 2. Panorama-views leaves the field (see Fig. 3(a)). So in order to use ordering informa-

tion for qualitative self-localization we have to introduce an egocen-
tric FOR. But even with an egocentric FOR the location within this
FoR can only be distinguished into a few different qualitative states
(e.g., ego-front between front-left and front-right corner of the field,
see Fig. 3(a))This way of qualitative self-localization is too coarse

letters (e.g.,A) describe reference points, and letters with a follow-
ing o (e.g.,Ao) the opposite side (the tail side). As the panorama is
a cyclic structure the complete panorama has to be described by

strings withn letters, withn being the number of reference points on [)or many domains as well as for the different RoboCup-domains. In

the panorama. In our example, the panorama has to be described - - ; :
. - ) S fCtIOI’] 5 we demonstrate in more detail how angular distances can
eight strings. Furthermore, the panorama can be described as a setbo

. . 5 - . e used to overcome this problém
simple constraintgl(vp, im.,lm2)°. Based on this representation, . . .
- o " . A perhaps even more important property of spatial locations
[21] also developed an efficient qualitative havigation algorithm. L - .
. " . ithin a given FoR is that they can be used as a common FoR for
The panorama representation has an additional, more importa i, . . -
o . . : . the position of different landmarks in relation to each other (e.g., the
property: it is invariant with respect to rotation and translation. But

- ) . . gosition of the penalty area can be described in within-relation to the
evidently, not every behavior can be described in such an abstract ) . . . . .
Soccer field). This property is especially important for an egocentric

manner. In order to model complex, coordinated behaviors, 0ﬂer%na shot-based approach to navigation since it provides the common
more detailed ordinal information is involved. Additionally, different P pp 9 P

- . . . o S frame that is required to relate different snapshots to each other (for
metric information (e.g., distance) is required in some situations. In

the following section, we show how the panorama can be extende% more detailed discussion see [29]).
in a way that more detailed ordinal and metric information can be
introduced. 4.2 Updating Outside-Landmark Representations

) In a re-orientation task we can resort the knowledge about the previ-
4 An Extended Panorama Representation ous position of a player. Therefore we concentrate on an incremental
updating process, based on the following two assumptidndt is

Instead of building an aIIocentng map we provide an egocentri nown that the configuration of perceived landmasksB, ... € L
snapshot-based approach to navigation. The most fundamental dif- : ) . .
: ! ejther form a triangle- or a parallelogram configuration (e.g. either by
ference between both approaches is that an egocentric approach. !
: -~ - - vision or by use of background knowledge). (2) The position
strongly relies on an efficient, continuous update mechanism that up- . . . .
. - . . , of an agent4 in relation toL at time steg — 1 is known.The EPR
dates all egocentric relations in accordance with the players’ move; . ' ) .
: . . . L Pr) of a triangle configuration can then be defined as follows (see
ment. In this section we show that this task can be accomplished b, Iso Fig. 3(b)):

strict use of a simple 1D-ordering information, namely an extende

qu_la}::t_atlve dpa;noramﬁ rep resg nta?or;(Eg’l?). d with . Definition 4.1 (Triangle Landmark Panorama) Let P4 denote
o is upd_? € mechanism has fo be defined with respect 1o SOMe position of an agentt and Cr(4 5y the triangle configuration
asic conditions. formed by the set of pointd, B, C in the plane. The lind.p, ;v p

e Updating has to be efficient since egocentric spatial relations> the line of view fromP to VP, with VP being a fixed point within

change with every movement, i.e., the updating process itself anf(f‘T(ABC)' Furthermore Loyup, /v p) be the orthogonal intersec-
the underlying sensor procesé ! lon of Lp, /v p. The panoramic ordering information can be de-

e The resulting representation should provide the basis for qualita§cnbed by the orthogonal projectioR(P4, VP, Cr(asc)) of the

tive spatial descriptions at different levels of granularity. POt ABC' ONtO Lorun(pa /v p):
e The resulting representation should provide different levels of ab- Therefore, moving around a triangle configuration s c) re-

straction, 1.., rotatlon_and/or trans_latlc_)n invariance. ._.sults in a sequence of panoramas which qualitatively describe the
* The process of mapping egocentric views should rely on a MY ocation of the observer position. 360° movement can be distin-
mum of allocentric, external information.

guished in six different qualitative states:

e 1 e Obsenvaton 1 (Trangle Landark Panraa Cyce)
. : ! i - EPR Iti f th b t jecti
erence (short notation: FoR), i.e., the soccer field and (2) updating restiting fom ©  stbsequen projection

of landmark representations from an external point of view, e.g., thé An additional approach is to introduce more landmarks that are easy to
perceive or to introduce additional allocentric FOR when available (e.g.,
6 Short fordirect — le ft(viewpoint, landmarks , landmarks). north, south, etc.)
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P(Pa,VP,Cragcy) by counter-clockwise circular move- the expressiveness is weaker and the landmark panorama represen-
ment aroundvP can be described by the following ordered, circular tation of a quadruple tuple panorama representation is much more
sequence of panoramas: intuitive we focus on the latter one (see Fig. 4(a)).
(CAB),(ACB),(ABC),(BAC),(BCA),(CBA)
Definition 4.2 (Parallelogram Landmark Panorama) Let P4 de-
For each landmark panorama the landmark panorama directly lefiote the position of an agemt and Cp(a5c) the parallelogram
as well as at the right differ in exact two positions that are lying nextconfiguration formed by the set of points B, C, D in the plane.
to each other (e.g(ABC), (BAC) differ in the position exchange The lineLp, ;v p is the line of vision fronP4 to VP, with VP being
betweenA and B). These position changes occur exactly when thea fixed point withinC'p( 4 gopy. Furthermore, Lo, +h(p,, yv p) be the
view line Lp, /v p intersects the extension of one of the three tri- orthogonal intersection ot », ;v p. The landmark panoramic order-
angle linesiLag, Lac, Lpc. Starting with a given line (e.9L, ) ing information can then be described by the orthogonal projection
and moving either clock- or counter-clockwise, the ordering of line P(P4, V P, Cpascpy) of the pointsABC'D onto Loyn(py /v P)-
extensions to be crossed is fixed for any triangle configuration (see
Fig. 3(b)). This property holds in general for triangle configurations  Moving around a parallelogram configuratioiy 4 s p) also re-
but not, e.g., for quadrangle configurations (except for some specia&ults in a sequence of landmark panoramas which describe the loca-
cases as we will see below). Since (almost) each triplet of landmarkion of the observer position qualitatively. 60° movement can be
split into twelve different states:

Observation 2 (Parallelogram Landmark Panorama Cycle)

The panoramic landmark representations resulting from the sub-
sequent projectionP(Pa,V P,Cpapcpy) by counter-clockwise
circular movement aroun®/P can be described by the following
ordered, circular sequence of panoramas:
((BCAD),(BACD),(ABCD),(ABDC),(ADBC),(DABC),
(DACB),(DCAB),(CDAB),(CDBA),(CBDA),(BCDA))

From-Left From-Right
Corner Corner

Right

Left [

. B C BCAD
Behind-Left Belving Behind-Right / ™ BACD
Comer Orh(PAVP) . BCDA
(a) Use of Egocentric Frame @) Triangle panorama construc- VP / ABCD
Reference tion by projection (result here: / CBDA
(ACB)) : / / \
A D ABDC
K CDBA
Figure 3. FoR and Triangle panorama. ’ X f
CDAB ADBC
can be interpreted as a triangle configuration, this form of qualita: DCAB\ _prec
Orth(PAVP) DACB

tive self-localization can be applied quite flexibly with respect to _ ) _
domain-specific landmarks. The triangle landmark panorama, how(?) Use of Egocentric Frame @) Triangle panorama construction
. s e Rfeference by projection (result here: (ACB))

ever, has (at least) two weaknesses: The qualitative classification o

an agent’s position into six areas is quite coarse and, triangle con-
figurations are somewhat artificial constructs that are rarely found
in natural environments when we consider solid obfedsnatural
extension seems to be applying the same idea to quadrangles (?

Figure 4. Parallelogram panorama

e .
he two presented landmark panoramas can be mapped flexibly onto
andmarks that can be found in natural environments like a penalty

so that each quadrangle would be described by a set of two tria area. While solid objects often form rectangle configurations, irregu-

gle panoramas. With this approach, the space around a quadran 1y landmarks can be used in combination as a triangle configuration,
would be separated into ten areas a,nd therefore it would be more ex+ € this approagh is. not str.ictly restricted to point-like objec.ts. An
pressive than the more simple triangle panorama. It can be shovx}ﬂt?res“ng extensnon_ls to t_aunld up more com_plex_representatlons by
that eight of the resulting triangle landmark panorama (one for eacHS'nfg Ian?marchhqnflg”uratlons ?S bs”?lg'e pomtst_ln larger Iantdrtr_wark
triangle of the quadrangle) can be transformed into quadruple thato gurations. his atiows us 1o build up hesting representations
results when we transform e.g. a rectangle directly into a Iandmarl\éVhICh supportdlffe_rent levels of granularity according to the require-
panorama representation (e.g., the above given tuple ((BCA)(CDA)Snents of the domain.

can be transformed into (BCDA) without loss of informatitrifhe

expressiveness of the other two landmark panoramas is weaker: they  |mplementation

have to be described as a disjunction of two quadruple tuples. Since

- - - - ‘ ~According to the described scenarios, the EPR is meant to be a qual-

i tThhaet Ecg";‘:]g;etﬁgrr‘]‘;?;ragg’; Ctgnsgl? daggj"e%‘tisg?r”hfg"’::'g’nté’ei{‘i%’s”lmggOgiggpésitative fundament for tasks that are important for mobile robot ex-
in Fig. 3(b) and 4(a) are used to explain the underlying concept of positior?!0ration. The latter part described in 4.2 is not adequate for the
exchange (transition). RoboCup scenario because there is almost no structure for the robot

9 The detailed proof will take too much space. to move around. Here, we will show some experimental extraction

Fig. 4). The most direct approach is to interpret a quadrangle as
set of two connected triangles sharing two points by a common lin
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of EPR sequences to practically point up the idea presented in secf the common image distortion in real images, an operator detect-

tion 4.1 and the basic idea of building panoramic ordering informa-ng exact, mathematic symmetry fails and offers erroneous symmetry

tion from the image data. images. Therefore, we propose the following qualitative symmetry
For our first experiments, we use tRebotContralSimRobo{18] operator based on a normalized mean square error function:

simulation environment for the simulation of one four-legged robot.

This tool is shared with the GermanTeam, which is the German 1 & . 2

national robotic soccer team participating in the Sony four-legged S(pi,m) =1~ mZUU’ m) - 9(Pi=; Pits) @

league in the international RoboCup competitions. The EPR concept =t

p_resented Is not proposed to b'.a restrlcte_d to this spemal domaln_, Fherem > 0is the size of the surrounding @f in which its value

discussed. The tool supports simulated image retrieval '°‘.”d motiogy symmetry shall be detected. Thus, the complete number of pixels

cor_1trc_)l _routlne_s that are easy 10 use and portable to ph_ysu:al rObOtEonsidered i2m. C' is a normalization constant depending on the

while |t_|s p_oss_lbl_e to enca_psulate t_he EPR and adapted image featuﬂ%ed color space and ar(j,m), which is a radial weighting func-

extraction in distinct solutions, letting other modules untouched. tion. The difference between two opposing poipts; andp:; is

determined by a gradient functiaf(p:—;, pi+;), which usually is

the Euclidian distance of the corresponding color vecgors and

p;. ;- For all presented experiments, we used 8-bit gray-scale repre-

sentation with

IP;i—j —Pirill pij ERAPir; €ER
9(pi—j, pivs) = 7 o ! 2
c otherwise

wherec is the maximum error available (depending on color space),

Figure 5. Simulation environment of the GermanTeam (left); the standard and a linear weighting function additionally dependingron

four-legged league field configuration (right).

ol
o(jym)=1 T (3)
5.1 Visual Feature Extraction Important symmetry axes can be found at places where not nec-

essarily high symmetry values but symmetry peaks can be detected.

In order to expediently fill the EPR with information, the recogni- Though the extraction of maxima and minima of a symmetry image
tion of landmarks is necessary. Usually, the robot's viewing angle otayses more distortion in resulting binary images, it is more signif-
57.6° degrees is not sufficient to get a reasonably meaningful EPReant than using a threshold value. Thresholds may vary from ap-
with the feature extraction of goals and flags supported bR#tot-  pjication to application or even from image to image. Additionally,
Controltool (see [19] for a description of these features). appropriate thresholds are difficult to find for normalized symmetry.

Even if the scene is perceived from one goal directly to the othera symmetry value of 0 corresponds to hard black-white transitions
there are just three landmarks that can be found. On the other hangetween each pair of opposing poipis.; andp;.;, while a value
the standard configuration of all landmarks as can be seen in Fig. § 1 corresponds to exact parity. Thus, high symmetry values are
is of an unfavorable kind for the EPR. The landmarks build a convexngre frequent and much denser, which makes threshold setting very
structure which the robot never can leave, thus the ideal EPR Wiljneffective. Symmetry is more adapted for the application of local
never allow to reason about the environment by permuted landmarks,trema, since it is a regional feature characterizing the local envi-
(see section 4.1). For robots with common cameras, searching fQpnment (in contrast to local features like edges). Since calculation
localization markers additionally inhibits from concentration on es-of yertical symmetry in one row is independent of those in other rows
sential game objects like the ball. Thus, it is only possible to eithelyr columns, maxima and minima can be detected line by line and
localize the robot or to capture the ball at a point of time, accordinglycojumn by column, respectively for horizontal symmetry. Results of
it would be more efficient to concentrate on the field for localization. hjs symmetry axes detection are presented in Fig. 6. Note that each
A possible and more intelligent solution could be the extraction ofiesyit has been achieved by only using the symmetry operator and
field lines. We further introduced the symmetry line operator pro-maximum detection, without any kind of pre- or post-processing like

posed by Huebner [7] to address these problems by extracting 2B 45 filtering, segmentation, or related techniques.
field lines from the image data as additional features.

i

5.2 Symmetry Operator 0 \I U

Wb TEF o { 2 P P
a 55

i
Our line detection method is based on a compact 1-dimensional sym- L
metry operator for arbitrary images [6]. For each pixel of the image, | r.;-.
a qualitative value of reflective symmetry in horizontal or vertical di-
rection is determined/ertical symmetrys defined as symmetry of a
vertical axis, thus only pixels in the same image Bw= [po, pw—1]
have to be considered for the detection of vertical symmetry of a pixel Figure 6. Symmetry maxima of a RoboCup image using= 5 for
p; € R, wherew is the width of the image. The same is applied for vertical (left) and horizontal (right) symmetry axes extraction.
horizontal symmetry regarding only one column of the image. Fur-
thermore, robot vision requires processing of real images. Because
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5.3 Symmetry Line Detection until we find another point of type B (the line’s end point). Therefore,

. . ) ) we use the search patterns described in Fig. 9 which are rotational
Line extraction techniques usually need some preprocessing, €.Gpp oviant:

edge detection, thresholding or thinning. Using symmetry, we can
detect lines as a structure from arbitrary images. For example, a hor-

izontal line is a structure where we should continuously detect a

given A; S Az-pattern & Asymmetry —Symmetry— Asymmetry) 41211 2

in each small vertical neighborhood along the line. ActuallyS is v | 3 by |1
sufficient, because the symmetry agismplies that there is another x

Ay symmetric toA;. An example for detection of this structure is X 5 3
shown in Fig. 7, where only horizontal symmetry axes using- 3

were detected. If the specifi¢.S-pattern can be found in the same

environment, we can assume that itis part of a line. Figure 9. The two search patterns for line segmentation.

-~ SupposeX andY are points of type B or C, and has been de-
; tected as the neighbor &f. Now we can start searching the neigh-
pri boring fields as proposed, until we find a new feature point. If no
feature point is foundY” is the end point of the current line, other-
wise we proceed with” in the same manner. Note that the fields left
empty can not be occupied by feature points because of the symmetry
Figure 7. Filtered horizontal line points of Fig. 6 byt.S pattern. maxima detection.
Each line segment can now be represented as the list of feature
] _ points found by this method. Based on this representation, we can
In the following, two approaches are presented to extract lineg,ccess further information about the line, e.g. the variance of each
from the images resulting from the proposed symmetry line filter.,oint to the line described by start and end point. This measure is
The first one is a modified Hough approach using the Wallace MUf{jery useful to easily distinguish curves from straight lines, because
space [30], which represents a line by its start and end point on thgye maximum variance will probably not exceed a few pixels in the
image border rectangle. The Muff parameter space (see Fig. 8) showgse of a straight line (see Fig. 10 for an example). As proposed, the
that there are two lines which lead from the left to the right side Oftheperformance of this method is quite acceptable. Additionally, it is
symmetry line image. The results seem quite acceptable, but severglore compact and faster than the Muff space approach. It needs less
adaptation were required steps, due to the difficulty to extract maxagaptation, but offers extraction of line segments and classification
ima in Muff space. There are further disadvantages of this approachys curves. In each presented case, we had to search for thin white
for example, a line now is represented by its image border points,

thus information about line segments is lost. Additionally, curve seg-
ments may also be detected as lines with this method, which in itself
is complex enough without a modified Hough transform for circle
detection.

# Line Classificator

Welines | H-Lines | Both

Time: 0.010 sec

Count: 49

I—

Length: 49.37
-angle: 012
- Man. var.: 0.83

Group | Save ppml
Size 3 Threshold 100

L

e~

Figure 8. Muff parameter space of line points in 7(left). Lines found in
Muff space (right).

Figure 10. Screenshot of the Line Classificator Dialog.

horizontal lines. Thus, we applied the horizontal symmetry opera-

Because of these disadvantages. we developed another appro toF] usingm = 3 and included an illumination threshold neglecting
. ges, P - PP %ﬁose feature points having a gray-scale value smaller than 100 in the
which takes advantage of the fact that most feature points of the sym- . - . . .
metry line image only have one or two neighboring feature points SCU"CE image. Additionally, we disregarded lines shorter than a given
sim yl usin ”?e nurri/ber of feature points ir?the:%;ngei hborhopod threshold and implemented a heuristic to combine line segments, in
Pl 9 . P e 9 the case that they seem to belong to the same field line, but are dis-
of a pointp, each feature point can be classified as one of the foIIow-ru ted by occluding obiects
ing types: P y 9 0b) ’

e A:if p hasno neighbor, it is not interesting for line extraction.
e B:if p hasoneneighbor, it is start or end point of a line.
e C:if p hasmore neighbors, it is part of a line.

5.4 Landmarks of the EPR

The proposed method for line extraction is simple, robust, and works
Thus, we only have to search for feature points of type B (a line’s starwithout plenty of parametrization. Additionally, it offers the opportu-
point) and recursively search the next neighboring point of type Chity to test the approach with natural landmarks (lines) instead of ar-
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tifacts (colored beacons). After processing the images, lines are digpualititative conversion of the feature angles, we can establish a qual-

tinguished from curves and represented by their start and end poiitative EPR sequence of detected landmark configurations for a path.

in the image. Some samples of such sequences might look like the following, cor-
responding to the EPR of Fig. 11:

[(T_JUNC,FAR);(L_JUNC, SAME);(T_JUNC,SAME);

%| | (X_JUNC,SAME)]

[(T_JUNC,FARY);(X_JUNC, SAME);(FLAG,SAME);
(T_JUNC,SAME)]]

5

[(T_JUNC,FAR);(FLAG,SAME);(L_JUNC,CLOSE);
(T_JUNC,MEDIUM);(T_JUNC,MEDIUM);(L_JUNC,SAME);
i (L_JUNC,CLOSE);]

[(FLAG,FAR);(L_JUNC,SAME);(L_JUNC,CLOSE);
(T_JUNC,MEDIUMY);(L_JUNC,SAME);(T_JUNC,CLOSE);
- (L_JUNC,MEDIUM);(T_JUNC,SAME)]]

| B+ |

[(FLAG,MEDIUM);(GOAL,FAR);]
[(FLAG,MEDIUM);(GOAL,FAR);(L_JUNC,CLOSE)]

As can be seen in this example, the line landmarks appear and dis-
appear frequently in the robot’s view. This is caused by the landmark
feature extraction working on insufficient simulated image data. We
5 F are optimistic that real images are more comfortable for the extrac-
T ©° °% tion of lines because they are not supposed to be fragmented like
those in simulated images. Although this is error-prone in this regard,
we claim to deal with this problem using the EPR. The representation
g R can generally be useful for this re-orientation task, where the agent

* T knows at least to some extent where it has been. Based on this in-
formation, the circular panorama landmark representation can tell us
=} - H which hypotheses are plausible according to previous information.

The same panoramic representation is additionally used in our
r—1 simulation soccer tearkirtual Werder Although sensor problems
are neglectable since the world model is more comprehensive and
| | detailed, it provides a simple and intuitive interface for the genera-
tion of qualitative descriptions.

L2+ 2N+ ] L]

L+
F(P?| 7 [pecf+=
e

5

=

5.6 Experiments on Real Images

£

Finally, some experiments have been made to test the proposed fea-
ture extraction and EPR construction on real images (see Fitf. 12)
Figure 11. Landmarks for the EPR. Center column: Landmarks extracted using one Sony AIBO ERS-7 model inside a common four-legged

(for six representation between given start position (left) and goal position |eague scenario. Without plenty of adaptation, the results are as good
(right): “L" for L-junctions, “T” for T-junctions, “X” for X-junctions;
horizontal lines (yellow), vertical lines(green), goals(red) and flags(blue).

Those lines can be put into the EPR by adopting these points or the
center point, for example. Anyway, a classification of edge types is
more efficient with respect to the subsequent need of recovering land-
marks. To support the panorama with a broader range of landmark
types which ideally are points on the field, we can classify each pair

of lines extracted from an image into different line pair types. In our
experiment, we extracted L-junctions, T-junctions and X-junctions * , r
(see Fig. 11). These edge-extracted features represent the additional &* i “tm Ealls

landmarks that are used for the EPR.

Figure 12. Landmarks for the EPR on real images. Top row: image data
. . and extracted field / border lines. Bottom row: Landmarks extracted.
5.5 Qualitative Representation

The simulated environment for the experiment corresponds to th
standard four-legged league field configuration with lines instead o
sideboards. One robot is instructed to move a certain path presented The difference of size in the corresponding images is caused by the differ-
by a given sequence of EPRs. Using the EPR representation and aent image sizes of the old AIBO model ERS-210 to the new ERS-7.

s those in the simulation examples. Problems appearing by the line
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extraction technique (e.g. side walls as lines, lines found over horiREFERENCES

zon, optional grouping of lines to handle occlusions) will be ad-

dressed in future work to increase robustness and performance. [

[2]
6 Conclusion and Future Work

Navigation, localization, planning, and reasoning for physically
grounded robots imposes strong but heterogeneous requirements
the underlying spatial representation in terms of abstraction and pre-
cision. In contrast to many other approaches to this topic which try to[4]
generatellocentric maps, we proposed a nesgocentricapproach
based on recent results from cognition. The qualitative EPR is dy-
namic in a predictable way for outside landmarks as stated in the twas;
observations described above. This representation, however, provides
also interesting properties for navigation inside fixed landmarks (e.g.,
navigating within a room). (6]
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landmark panorama can help to focus perception in a qualitative selfm
allocation task. During the transition of one panorama landmark into
another exactly one position change is performed. Therefore, in this
case the perception of further landmarks is without any use for updat-[s]
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landmark representation is not only useful for position updating but
also for re-orientation without knowledge about the previous posi-
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Although a detailed analysis of the relation to the recent cognitive
results is out of the scope in this paper, we want to mention that th, 5
EPR shows several properties which are observed in recent experi-
ments: e.g., translation tasks seem to be performed more easily afid]
accurately than rotation tasks.

Several tasks remain to be done. We are currently extending olt”]
landmark-based (re-)orientation vision module so that it is not onl)flS]
able to track EPRs but also allows active snapshot-based navigation
(first results are available). Thereby we implement the concept of
outside-landmarks that formally describes how landmarks can shift®]
and switch during movement (see section 4.2). This should also allow
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Line Based Robot Localization under Natural
Light Conditions

Artur Merke! and Stefan Welker? and Martin Riedmiller?

Abstract. In this paper we present a framework for robot
selflocalization in the robocup middle size league. This frame-
work comprises an algorithm for robust selflocalization and a
set of benchmarks which can be used offline to test other
algorithms and to compare their outcomes with our results.
The algorithm is part of our competition team Brainstormers-
Tribots which won the Robocup German Open 2004. This
is a multi agent real time environment, therefore our algo-
rithm is prepared to work with 30 frames per second, leaving
enough time for other tasks like robot control or path plan-
ning. Our approach uses a particle filter method relying on
features found in the image. The features are points on field
lines. They can be recognized reliably under natural light con-
ditions, so the is no longer a need for a well defined and con-
stant light source. Also color coded landmarks or goals are
not required for a stable selflocalization. We present results
for different runs on our benchmark suite, which is an out-
door soccer field with the size of 16x10m. This field size is
bigger then in current competitions and anticipates the trend
of using larger fields in future competitions.

1 Introduction

Since 1996, when the first Robocup competition took part,
there was a steady pursuit of making the Robocup environ-
ment more realistic and less artificial. Certainly one can argue
that there were not enough changes in this direction, as the
games are still conducted under well defined artificial flood-
light. Also different color coded landmarks are used for self-
localization on the field. The use of such color coded land-
marks strongly relies on color classifiers, which are very sen-
sitive to external light conditions. So to get a system which
works under natural light condition one has to extract more
shape oriented features from the images.

In this paper we present a method which relies on easily
extractable shape information, which can be robustly recog-
nized under different light conditions. Our method uses parti-
cle filtering and is a significant extension of the method used
in our Brainstormers-Tribots team in 2003. The old method
worked well and our team scored 5 wins, 1 draw and con-
ceived 2 defeats (scoring 26:8 goals altogether) in the world
championships in Padova 2003. But there were also foresee-
able limitations. The old method relied on color coded poles
and goals. For example distant poles were easily overlooked

1 Universitit Dortmund, Germany, artur.merke@udo.edu
2 Universitit Dortmund, Germany, stefan.welker@udo.edu
3 Universitéit Osnabriick, Germany, martin.riedmiller@uos.de
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(they can be few pixel large due to the geometry of the mir-
ror) or other colored objects could be mistaken for poles or
goals.

In our new method we only detect points on lines along rays
radially arranged around the center of the omni-directional
camera image. As such points can be recognized without
highly tuned color classification (see section 4 for more de-
tails) we were able to conduct different benchmarks under
natural light conditions. Also such features are insensitive to
varying surroundings, so for example the robot cannot get
misled by different colored objects in the audience. Another
advantage is that we can now self localize on larger fields, as
we don’t rely on specific distant and therefore small features.
Using particle filter methods enables us to estimate the posi-
tion of the robot very exactly on a 16x10 meters large outdoor
field (see figure 1 in section 2). For example driving and turn-
ing the robot (using omni-directional drive) for 30 seconds
across the field with a speed of 1.5 m/s, the self-localization
deviates only approximately 20 cm on average from the ref-
erence path (with maximal deviation of 50 cm). See section 5
for further results.

The second most important aspect of this paper is the re-
producibility of the presented results. We compiled a set of
25 runs of our robot on an 16x10 meters large outdoor field.
Each run consists of all image information (e.g. 30 fps), the
gathered odometry data, and externally measured reference
robot positions during the whole run. These reference posi-
tions were measured with a laser scanner positioned outside
the field, and can be used to evaluate the accuracy of the used
algorithms.

To our knowledge it is the first benchmark in the Robocup
middle size league for self localization. We hope this will en-
courage other researchers (also such which haven’t yet partic-
ipated in Robocup, but are active in the machine vision field)
to compare their algorithms against our benchmark. The set-
ting of our benchmark excels current rules of the middle size
league (larger field, natural light). We hope that this is a
chance to test current algorithms for coming requirements,
and that this also will accelerate the process of making the
conditions in the middle size league more realistic.

2 Environment

In this section we describe the setting of our experiments.
All experiments for this paper were conducted on an outdoor
field with the length of 16 meters and the width of 10 meters,
see figure 1. We have chosen a field covered with tartan, be-



Figure 1.

Outdoor field, 16 meters long, 10 meters wide

cause on surfaces like asphalt or concrete the omni-directional
wheels of our robot do not have enough grip and also fret ex-
tremely. Originally we looked for a field with the dimensions
16x12 meters but could not find a tartan field in such size
without disturbing lines. As the fields in Lisboa in 2004 will
have the dimensions of 12x8 meters we are still much ahead
of the current Robocup requirements.

It was very important to us to use an outdoor field, so that
we could demonstrate self-localization under natural light
conditions. As it was quite difficult to find a large enough
tartan field without disturbing lines it was even more difficult
to find one covered with green tartan. Here we decided for a
compromise, weighting the outdoor conditions and large size
more then a specific surface color. Our field is therefore col-
ored dark red with slight color intensity variations (the tartan
is quite old and soiled). Meanwhile we consider the different
surface color as an additional challenge, actually real soccer
is also played on different fields not always lawn covered, but
also covered with red ash (at least in the lower soccer leagues).
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Figure 2. Field dimensions
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The dimensions of the field and positions of lines, goals
and poles conform to the current Robocup rules for the year
2004 [2], see figure 2. The poles and goals are not needed in
our algorithm, but we positioned them on the field such that
groups with other approaches could also use our benchmarks.
The outer lines are 12 cm thick, all inner lines are 6 cm thick.

Outside the field we stationary positioned a laser range
scanner. This enables us to scan the robot path for each run.
Afterwards the scanned positions (each position has an unique
time stamp) of the robot can be used to verify the obtained
algorithmic results.

Figure 3. Tribot, omni-directional drive and camera

For all runs we used our standard competition robot - the
Tribot. See figure 3 for a picture of the Tribot. It has an omni-
directional drive and can for example drive towards the ball
and rotate at the same time (see [1] for more details). During
a run the robot records camera images and odometry data. In
the collected odometry data we abstract from this particular
drive, and only collect the velocity in direction x and y and
the rotation velocity ¢ of the robot. So using the benchmark
one is not confined to this particular robot drive.

The images recorded by the robot are omni-directional, be-
cause the camera captures the reflections of the field produced
by a hyperbolical mirror (see [1] for more details). Due to a
calibration process one can compute for every pixel in the im-
age the corresponding real world distance. This matches the
reality as long the recognized objects stand on the ground.
The accuracy of the distance estimation decreases signifi-
cantly with the distance from the robot. In figure 4 one can
see two separate images from the camera, where one can also
clearly recognize the different light conditions.

3 Benchmarks

At the moment our benchmark suite consists of 25 different
robot runs. Currently each run is at least 11 and at most 35
seconds long. Using a frame rate of 30 frames per seconds
and storing the images uncompressed in VGA resolution it
requires between 200 and 600 megabyte disk space per run.



Figure 4. Two camera images showing different light
conditions.

In figure 5 we depicted four exemplary robot runs, see [8]
for a complete list. For example in figure 5 (a) the robot starts
in front of the blue (=left) goal, drives across the whole field
almost crossing the right penalty area, exits the field near
the right bottom pole and enters it again driving toward the
yellow goal. The sequence is 23 seconds long, consisting of 350
raw images (approx. 200 megabyte) taken with the frame rate
of 15 frames per second. During the run approximately 4 laser
measurements per second were recorded, resulting altogether
in approx. 100 reference positions. These externally measured
reference positions can be used to measure the quality of the
deployed algorithms. As another example the run in figure 5
(d) is 35 seconds long, consists of 1050 raw images (because
of the doubled frame rate) with approximately 160 reference
positions.

The collection of benchmarks is supposed to grow in the
future. The current set of 25 benchmarks can be found at
[8]. At this URL we also provide source code for reading and
showing the raw images and related data. We hope that this
will encourage other teams to use our benchmark suite and
maybe also to contribute in extending the existing data base.

4 Algorithm

For localizing our robot in the Robocup environment we es-
sentially rely on a camera as the primary sensor. A camera
image provides very significant input data, a human can eas-
ily estimate the position of a robot by looking at the image.
On the other hand a camera image can contain a lot of use-
less, even obstructive data such as image noise, light artifacts
, color shift, brightness or camera shutter issues. It can be a
difficult task to find an algorithm that recognizes meaning-
ful features in an image, which can be used for localization.
Most of the time a trade-off has to be made between speed
and reliability. In the past most approaches were based on
recognizing the color coded landmarks in the Robocup envi-
ronment. Due to lightning conditions it can be hard to clas-
sify pixels safely to different color classes such as blue, yellow,
green, orange or black. Therefore it is more robust to rely
on shape oriented features. We decided to use the white field
lines for localization, which can be recognized under varying
light conditions. As our incremental algorithm makes do with
even a small number of such features, lines occluded by ob-
stacles and overlooked distant lines do not present a problem
for our approach.
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4.1 Vision Architecture

With our vision system we present a fast detection method
for pixels in the image that belong to the field lines. Our
algorithm does not recognize the location and direction of
the lines and corners in the image. Also color coded land-
marks like poles and goals are not necessary. We do not use
these additional features because our self-localization algo-
rithm uses particle filtering which is a probabilistic method
and the points on white lines are sufficient to get good and
robust localization results.

To gather samples of points on lines in the image, we scan
the image along several scan lines. These lines are radially
arranged around the center of the omni-directional camera
image. See figure 6 for an arrangement of these scan lines.

To recognize a line crossing along a scan line we search for
significant variations in the color values. The variations are
measured using an euclidean distance function in the YUV
color space. By applying a threshold to these distances, we
detect possible color transitions. Two consecutive transitions
are recognized as a line transition if they are in close real
world proximity to each other and the color before and after
the transition show only a small color distance. This process
gathers all kinds of line transitions in the image. To sort out
transitions that do not belong to field lines an additional color
validation is conducted. The deployed color classifier does not
need to be non-ambiguous. The color classes may overlap and
can therefore be tolerant enough cope with changes in light
conditions during the classifying process.

The recognition of line transitions along the scan lines has
the additional advantage of using only small amounts of com-
putational resources. The image does not have to be seg-
mented as a whole. This allows to run the system with 30
frames per second at a resolution of 640 x 480 pixels.

Analysis of an image with scan lines and recognized
line transitions

Figure 6.

Each line transition is a possible sensor measurement. To
make it meaningful, we need its distance and angle to the
center of the robot. To get the position of a pixel in the image
in real world coordinates, we calibrate a distance mapping
D(r,¢) into every direction ¢ of the robot. The process of
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calibration is partially automated. A distance calibration en-
vironment has to be set up before the process. It consists
of several color coded markings that are located at defined
distances from the robot. While turning slowly, the robot rec-
ognizes these markers to gather data about the real distances
of pixels in the image. With this data a complete distance
mapping can be calculated for every pixel of the image. This
mapping is only meaningful for objects that are located on
the ground.

4.2 Self-Localization

In order to localize a robot correctly an appropriate estimate
of the robot position z; € R" at time t has to be found.
In our setting the position consists of the coordinates of the
robot on the field and its relative orientation (n = 3). We
utilize a sequential Monte Carlo method to generate the pos-
terior probability distribution 7, of the robot state z; with
regard to the prior distribution 7;_;;—1. The former estimate
T_1j¢—1 iS incrementally updated using new odometry data
at and sensor values y;. This is done in two stages.
First a prediction step is conducted using the odometry:

T () = /R i) KCeea) ()

where K(:|x¢—1,a:) denotes the Markov transition kernel
for action a:.

Afterwards an update step is performed using the current
sensor values:

e (-) = | g(elwe)mye—1(dae)] " = g(yelwe) -1 (r) (2)
R

where g(y:|x:) is the conditional probability density of the
observed sensor values with respect to the estimated position.
See [4] for more details.

In particle filtering the real probability distribution ), is
represented by a discrete probability measure using a set of
N (currently about 200) weighted particles. The steps from
equation 1 and 2 imply the following procedure of sequen-
tial importance sampling and resampling steps. This process
consists of

. Predicting new positions for particles while incorporating
action information i.e. odometry

. Updating the particle probability weights by estimating
sensors input probability

. Normalizing the probability weights of the particles

. Resampling from the particle distribution to get the poste-
rior distribution

In the following we will elaborate on the particularities of
the steps 1, 2 and 4 in our approach.

Step 1. To predict the particles position by action we add
the odometry reading a; that consists of (Zodo; Yodo, Podo) fOr
each particle. To represent the uncertainty of the odometry
reading, gaussian noise is added to the particle location, pro-
portional to the length of the odometry.

Step 2. We estimate the probability of obtaining the cap-
tured camera image at the location of every particle. This is
done using an approximation which only relies on the detected



line transitions. For this approximation a product of all single
transition probabilities is a reasonable estimate. To compute
the probability of a single line transition, the location of the
transition is mapped to a point p in the global coordinate
system using the orientation and position of the considered
particle. The minimal distance of this point p to the existing
lines determines the probability value for the transition.

As this has to be done for every line transition and every
particle, it can be very resource consuming process. Therefore
we use a precalculated two dimensional look-up table of the
field that provides the distance of every location on the field
to the lines in O(1).

Additionally the probability value for the transition de-
pends on the distance of the point p to the position of the
particle. This is because the distance measurement error of
the vision system increases significantly for distant objects.

Step 4. To make the algorithm work the particles have to
be resampled. Resampling statistically multiplies or discards
particles at each time step to adaptively concentrate particles
on regions of high posterior probability. This process consists
of drawing N new Particles from the existing ones accord-
ing to the particle weights using a multinomial distribution.
In general this requires O(nlogn) but can be done in O(n)
according to [5].

With these steps we can achieve robust incremental knowl-
edge of the robot position by determining the average of the
particle positions and headings.

5 Results

In this section we present the results for the sequences in-
troduced in section 3. In this test we assume that the initial
position of the robot is known, but our algorithm also solves
the global localization (kidnapped robot) problem.
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Figure 7. Sequence a, 15 frames/sec, 23 seconds

Sequence (a) (see Figure 7) shows the robot starting at the
blue goal, driving across the whole field with a speed of 1.5 me-
ters per second. The run is 23 seconds long and was captured
at 15 frames per second. At the end of the run it leaves the
field turns around and enters the field again. During this run
the average deviation of the particle filter position to the laser
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scan position was only 18.1 cm, the maximum absolute error
was 59.7 cm. In comparison to the large field size we only de-
viate by 1.8% of the field width and 1.1% with respect to the
field length. This high quality of the result can be also seen in
Figure 7 as the computed path lies very close to the reference
position path. Also the deviation of the self-localization is
uniformly accurate across the whole field, not only in regions
close to lines. In contrast to the self-localization by particle
filter the dead reckoning position obtained by the odometry
measurements deviates very quickly from the real path and
cannot be relied on for self-localization purposes.
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Figure 8. Sequence b, 30 frames/sec, 35 seconds

Sequence (d) (see Figure 8) shows a run with 30 frames per
second and 35 seconds length. The robot starts at the side of
the blue goal, drives across the field into the yellow goal region
and back into the field while turning. Again the average error
is only 17.4 cm and the maximum deviation 51.6 cm. This
test run performed a little bit better which may be because
of the increased frame rate. This shows that even when only
processing half of the available image data the localization is
still sufficiently precise. In Table 1 we summarized all results

Table 1. Evaluation for test runs in figure 5
sequence length avg. error max. error
run (a) 23 sec 0.152 m 0.359 m
run (b) 23 sec 0.390 m 0.847 m
run (c) 35 sec 0.177 m 0.500 m
run (d) 35 sec 0.205 m 0.502 m

for the benchmarks presented in section 3. In all test runs
the particle filter shows similar small deviations from the real
path.

5.1 Results under reduced view range

The above results were obtained on a field without obsta-
cles. Our algorithm also does work with partly occluded lines,



which happens in real world applications, where obstacles can
cover significant parts of the image. We could prove this in the
Robocup German Open 2004, where our team won the compe-
tition (winning all its 8 games, scoring 44:3 goals). The robots
didn’t delocalize during the matches, although the lines were
covered by 7 other robots (3 teammates and 4 opponents) and
a human referee.

As our current benchmark suite does not yet include se-
quences with obstacles (such sequences will be included in
near future), we simulate an occluded view range using arti-
ficial black areas in the images. To this end we use different
bitmap masks which reduce the original image information.
A mask with four black areas can seen in figure 10. This mask
constantly occludes two thirds of the image.

Reduction of the view range

Figure 9.

As our algorithm also makes do with few lines, the results
are only slightly worse than in the case without occlusions.
This can be seen in table 2.

Table 2. Evaluation for test runs in figure 5 with occluded view
range using mask shown in figure 9
sequence length avg. error max. error
run (a) 23 sec 0.161 m 0.354 m
run (b) 23 sec 0.393 m 0.877 m
run (c) 35 sec 0.195 m 0.466 m
run (d) 35 sec 0.231 m 0.537 m

5.2 Simulating a directed view range

An occlusion mask as used in the above section, can also be
used to simulate the view range of a directed camera. This
can be seen in figure 10.

Also the results for this case are very good concerning the
fact that only the lines and no other landmarks were used.
This is remarkable because due to the big size of the field

Figure 10. Simulation of directed view range

there are times where no lines at all are detected. But this
short periods are compensated by the odometry. In figure 11
one can see such a period, where the robot leaves the left
penalty area.

6000

o (I

-4000 H \ B

-6000

L L L L L L L L
-8000  -6000  -4000  -2000 0 2000 4000 6000 8000

reference position (laser scan)

odometry position (dead reckoning) -

Figure 11. Sequence a, using directed view range

In table 3 we summarized the results for the directed view
range case.

Table 3. Evaluation for test runs in figure 5 using directed view
range from figure 10
sequence length avg. error max. error
run (a) 23 sec 0.308 m 0.775 m
run (b) 23 sec 0.856 m 0.1764 m
run (c) 35 sec 0.274 m 0.687 m
run (d) 35 sec 0.352 m 0.837 m




6 Conclusions

In this paper we presented a framework for self-localization
in the Robocup middle size league. This framework consists
of

e a benchmark suite for testing self-localization algorithms
and
e a newly developed algorithm for self-localization.

Using these freely available and reproducible benchmarks we
presented the results for our algorithm. The obtained results
show that our algorithm is very well suited for self-localization
under natural light conditions. This is achieved without rely-
ing on color coded features like goals or poles and does work a
16x10 meters large outdoor field. Beside the presented bench-
mark results the algorithm was deployed in our competition
team Brainstormers-Tribots, which won the Robocup German
Open 2004.

The reason for the good performance of our algorithm lies
in the combination of sequential Monte Carlo methods (par-
ticle filter) and the robust extraction of line features from the
image data.

Both mentioned parts of the presented work are innovative.
Benchmarks are extensively used in many fields of machine
learning, but to our best knowledge our benchmark is the
first considering self-localization of autonomous robots in the
Robocup environment. The presented benchmarks are con-
sidered as a starting point and will be extended in the future
(hopefully for non Robocup specific environments as well).

With respect to our algorithm and its outdoor deployment
there are similar but distinct approaches in the literature.
In [6] natural light conditions are considered, but only for
color classification, no resulting self-localization performance
tests were presented. In our work we do not heavily rely on
color classification, as the main features are obtained from
strong thresholds in color values which appear on line cross-
ings. Color classification is also used, but just for validation of
the obtained line crossings and can therefore be more fuzzy.

The work in [11] presents a robust self-localization algo-
rithm for the middle size league. It relies on the detection of
more complex line features in an homogeneously colored field.
Our algorithm makes do with less structured features which
we consider as one of the reasons of its robustness. Also the
use of a particle filter distinguishes our work from [11]. It
would be interesting to test the algorithm from [11] under the
conditions of our benchmark suite.

Maybe the algorithm presented in [9] is most similar to
ours. The extraction of line features is different, as we for
example do not rely on separate detection of a horizon line.
Also the deployment of the particle filter and the computation
of sensor probabilities differ partially from our approach. The
results presented in [9] were obtained on a quite small field
(due to the Sony legged league limitations) and under artificial
light conditions, therefore it would be interesting to see it’s
performance in our framework.

There are other approaches in the literature, see for exam-
ple [10]. The methods used therein can also be distinguished
from the work presented by us, but no qualitative compar-
isons were possible until now. We hope that our benchmark
suite will be helpful in making such qualitative comparisons
in the future. Also by using our challenging extensions of the
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current Robocup environment (natural light, large field), we
hope to accelerate the progress in the Robocup environment.

The work presented in this paper would not be possible
without the foundations created by the Brainstormers-Tribots
team [1] in 2003. We would also like to thank the CoPS team
from Stuttgart [3] for their support with the laser range scan-
ner. Finally we thank our local sport facilities for providing
the environment for our experiments.

REFERENCES
(1]

M. Arbatzat, S. Freitag, M. Fricke, R. Hafner, C. Heermann,
K. Hegelig, A. Krause, J. Kriiger, M. Lauer, M. Lewandowski,
A. Merke, H. Miiller, M. Riedmiller, J. Schanko, M. Schulte-
Hobein, M. Theile, S. Welker, and D. Withopf, ‘Creating a
robot soccer team from scratch: the brainstormers-tribots’, in
RoboCup-2003 - Proceedings of the International Symposium,
(2003).

M. Asada, T. Balch, A. Bonarini, A. Bredenfeld,
S. Gutmann, G. Kraetzschmar, P. Lima, E. Menegatti,
T. Nakamura, E. Pagello, F. Ribeiro, T. Schmitt,
W. Shen, H. Sprong, S. Suzuki, and Y. Takahashi.
Middle size robot league rules and regulations for 2004,
http://www.tcsi.de/ROBOCUP/_DOCUMENTS/MSL/msl-
rules-2004.pdf.

T. Buchheim, G. Kindermann, R. Lafrenz, H. Rajaie,
M. Schanz, F. Schreiber, and P. Levi, ‘Team description -
cops stuttgart’, in RoboCup-2003 - Proceedings of the Inter-
national Symposium, (2003).

D. Crisan and A. Doucet, ‘A survey of convergence results on
particle filtering methods for practitioners’, in IEEE Trans-
actions on Signal Processing, (2002).

Arnaud Doucet. On sequential monte carlo sampling methods
for bayesian filtering, 1998.

G. Mayer, G. K. Kraetzschmar, and H. Utz, ‘Playing robot
soccer under natural light: A case study’, in 7th International
Workshop on RoboCup 2003, Lecture Notes in Artificial In-
telligence. Springer, (2004).

A. Merke and M. Riedmiller, ‘Karlsruhe brainstormers - a re-
inforcement learning way to robotic soccer ii’, in RoboCup-
2001: Robot Soccer World Cup V, LNCS, eds., A. Birk,
S. Coradeschi, and S. Tadokoro, 322-327, Springer, (2001).
A. Merke, S. Welker, and M. Riedmiller. Bench-
mark  suite for  self-localization,  http://Irb.cs.uni-
dortmund.de/ merke/robocup/sloc.

Th. Rofer and M. Jiingel, ‘Fast and robust edge-based lo-
calization in the sony four-legged robot league.’, in 7th In-
ternational Workshop on RoboCup 2003, Lecture Notes in
Artificial Intelligence. Springer, (2004).

E. Schulenburg, T. Weigel, and A. Kleiner, ‘Self-localization
in dynamic environments base on laser and vision data’, in
International Conference on Intelligent Robots and Systems
(IROS), volume 18, pp. 998-1004, (2003).

F. v. Hundelshausen and R. Rojas, ‘Tracking regions’, in 7th
International Workshop on RoboCup 2003, Lecture Notes in
Artificial Intelligence. Springer, (2004).

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]



26



Opportunistic Planning and Plan Execution

Carmel Domshlak! and James H. Lawton?

Abstract. Multi-agent opportunisnrefers to the ability of agents and execution scheme readily supports a computationally efficient
operating in a multi-agent system (MAS) to recognize and respond téorm of opportunism based opredictive encoding16], in which
potential opportunities for mutual assistance in achieving individuapotential opportunities are pre-computed and associated with exist-
goals. Two major potential obstacles in operationalizing multi-agening plan elements.

opportunistic assistance in real-world systems are (i) low amounts of In our work, we examine both whether and how different forms
knowledge shared between the agents, and (ii) limited ability of theof shared knowledge can be exploited for multi-agent opportunis-
agents to re-plan dynamically. We have previously shown that evetic behavior, and the actual impact that such exploitation may have
under these limiting conditions, systems of agents can benefit fromon performance improvements in an MAS due to multi-agent oppor-
multi-agent opportunism. In this work we discuss how multi-agenttunism. In particular, we have focused on variants of two basic types
systems can exploit shared knowledge for opportunistic predictivef knowledge that we believe could be shared even in most heteroge-
encoding using an approach based on an abstract plan represent@&ous and complex MASs: knowledge of agents’ principal capabili-
tion called Partial Order Plan Graphs (POPGs). Further, we preseties (.e., what goals can possibly be assigned to each of the agents),
several approaches for increasing system-level performance by inand knowledge of the goals that have been actually assigned to the
proving the efficiency of the plans containing predictively encodedagents. The results of our focused evaluation show that adopting op-
opportunities, as well as the results of an empirical analysis of theiportunistic behavior for planning agents does not come for free, and
impact on the system performance. that its efficiency depends significantly on the way the shared knowl-
edge is exploited by the agents.

ducti On the positive side, we show that multi-agent opportunism can
1 Introduction improve the overall performance of an MAS, even in extreme situ-
Single-agent opportunism is the ability of an agent to alter a preations where the amount and type of the shared knowledge are very
planned course of action to pursue a different goal, based upon lnited, and when the agents have little or no ability to re-plan. How-
change in the environment or in the agent's internal stateeppor- ~ €Ver, the basic mechanism used to achieve multi-agent opportunism
tunity [8, 11]. Extending this notion, multi-agent opportunism refers often produced inefficient plans, occasionally resulting in reduced
to the ability of agents operating in a multi-agent system (MAS) toSystem performance. Therefore, we introduce a set of extensions to
assist one another by recognizing and responding to potential ofur original approach to multi-agent opportunistic planning and exe-
portunities for each other's goals [4, 12]. Naturally, multi-agent op-cution aiming to improve the efficiency of the plans and the system
portunistic behavior is feasible only when the agents have sufficienperformance. We formally describe these extensions, and present the
knowledge about one another. Unfortunately, in real-world (and estesults of a comparative empirical analysis.

pecially heterogeneous) MASs, the agents may not possess a sig-

nificant degree of shared knowledge (sucheag, shared plans [7] . . .
or even shared goals [2]). Therefore, the two fundamental practica% Computational Model of Planning and Execution

questiong regarding multi-agent_opp_ortunism aredi) multi-agent Our abstract MAS model is similar to those used in [15] and [17], but
opportunism be helpful at allin S|tu§t|9ns whgre the.f.imoun.t and YP&as been extended to support opportunistic behavior. We model an
of the shared knowledge are very limited®d, if so, (ijwhatisthe ;A5 55 a finite set of benevolent agefits,, - - , A, }, where each

best way to exploit this information both offline (in planning) and agenta, is associated with a set of capabiliti€s = {ci,, - - - , ¢, },
online (durl.ng the e).<ecut|om) . and a set of resourcé®, = {ri,,- - ,rm, }. To avoid confusion due
We consider multi-agent opportunism in systems where the agenty, overloading of these two nétions in tlhe literature, in our maicke!
are required to perform non-trivial planning tasks. The planning an%apabilities setC; corresponds to the goals that in general can be
execution scheme for the agents used in this study was develop%gsigned toh,;. For example, in a team of three planetary rovers
especially to support opportunistic behavior of agents in various SEtAZ andAs, where bothA; andA. are equipped with cameras, while
tings of shared knowledge. To preserve generality, this scheme do%3 is not, the goal “have picture of locatian” can possibly be in
not assume that the agents are using any particular, or even the Same, and (', but not inCs. In contrast, the resources stand for the
planning methodology. This is achieved by using a generic form Ofphysical means consumed by the agent's actions:1Ferj < m,
plan representation, with which we can represent artifacts of mo e haver;, € Dom(r;), wherer; is a certain type of resource (..,

(if not all) techniques used in the area of classical (STRIPS-baseq)me energy, etc.), andom(r; ) is the corresponding domain of
Al domain-independent planning [18]. Further, the selected planning Inyadditior’l to {h‘e acting égent{s&l -+ An}, the system cc;n-

1 Cornell University, Ithaca, NY, USA. Email: dcarmel@cs.cornell.edu tains a task brokeB [10]. The primary job ofB is simply to dis-

2 US Air Force Research Laboratory, Inforation Directorate, Rome, NY,Patch the goals of the system to the acting agents. Note that we
USA. Email: lawton@ai.rl.af.mil use the task broker only to simplify the description of the infor-

27



mation flow in the system: The decision process befinds well @ > ns(L)
as its actual implementation, are tangential to our work and thus -
are not within its scope. The only thing we assume afibig that =

it will assign goalg to A; only if g € C;. Given a set of goals ~ **"” 2 pei®)
Gi = {gi,, - ,9i,} € Ci, agentA; plans for this set of goals, -7

and executes the generated pfan However, during the actual ex- np(L1)

ecution of P;, several aspects of the world could change, impacting

the relative attractiveness @f;. For instance, any of the following

may occur: Figure 1. A fragment of a partial order plan graph (POPG) for Bogers

example.
(@) A, is assigned an additional gagl,, , by B. xamp

(b) Some other agent; in the group fails to accomplish one of its
assigned goalg € G . causal links. Unlike plan graphs, however, POPGs are not leveled

(c) The value of someg € G has been changed (positively or neg- graphs, and (like partial order plans) the alternative total-order sched-
atively). ules of the actions in a POPG are captured by the ordering constraints

(d) Some of the goals i67; becomes unreachable with respect to between the actions. An example POPG capturing an episode of a
Pi. plan for theRovers domain [5] is shown in Figure 1. The border-

(e) Resource consumption by the parféxecuted so far has been less and rectangular nodes represent proposition and action nodes,
significantly different (positively or negatively) from whatitwas and the solid and dashed edges represent the causal links and or-
expected during planning. dering constraints, respectively. The propositiat$p), hs(p) and

hp(p) respectively stand for “located at”, “have rock sample from”

In such cases, we would lik; to revisit its current course of action, and “have picture from” locatiop. The causal links fromat (L1)

poss.ibly updating its set of f’ictive goals, asubpendingoals it de- to SampleRock(L1), and fromSampleRock(L1) to hs(L1) capture
termines are no longer feasible. Normally, these suspended goals Atat(L1) andhs(L1) are the preconditions and effects of the ac-
returned to the broker for redistribution to other agents in the multi-

t svst | del. th it kt tisfy th tion SampleRock(L1), respectively. The ordering constraint between
agent system. 'n our moce-, - ough, may attempt fo sa Isty ese SampleRock(L1) and Navigate(L1,12) captures that the former
goals opportunistically by fitting them into its current plan, or into

. i . _action cannot be performed after the latter. The (relevant part of the)
the current plan of another agent in the multi-agent system, with a8 itial state of the agent ist (L1) A =hs(L1) A —hp(L1) A ~hs(L2),

“ttlBe rle-plannéng a§bp055|bler$|f anyf). lanni d i ._.while the goals aras(L1), hp(L1), andhs(L2).
elow we describe our scheme for planning and execution (origi- For further technical details on POPGs and the precise relation

nally introduced in [4]), as well as its conceptual extension to SUPPOIts 5oPGs to plan graphs and partial order plans, we refer the

multi-agent opportunism as in [13]. reader to [4]. The only thing we would like to highlight is that
POPGs can be easily derived from any form of plan representa-
2.1 Planning tion used in the planning community, making our framework es-

o . . . sentially planner-independent. Finally, after constructing a (POPG-
The qualitative part of the problem is assumed to be described us'nr%presented) “skeleton” plan for the qualitative part of the problem,

the standa}rd prop05|t|_o_nal STRIPS formalls_m n which both pOSItIVethe guantitative information is added into this structure: The actions
and negative preconditions are allowed (which is exactly the formal- . . . o
ism used for the first level of the annual International Planning Com-are annotated with their resource cpnsumptlon d.IStI‘IbUtIOI’]S and _the
petition [5]). Each agent is associated with a description of its initialgoal nodt_es are annotated W!th their valu_e functions. The resulting
: ; o . structure is ready to be used in the execution stage.
state (represented as a conjunct of all the propositions valid in this
state), a set of goal propositions to be achieved, and a set of all types
of actions this agent is able/allowed to perform. In turn, the quantita2 2 Execution
tive part of the problem is described by the resource consumptions of
agents’ actions and the relative desirability associated with each godBiven an initial state, a set of resources, and a POPG structure of the
Since in most applications resource consumption is not necessarilylan annotated with the information about resource consumption of
deterministic, it is modeled vieonsumption distributionassociated the actions in the plan and goal values, the agent starts executing its
with each action. Likewise, the desirability of each ggas mod- plan. At each intermediate state of the executigrthe agent must
eled via avalue functionVy, allowing conditioning goal desirability make a decision about the next action to perform. As the agent is pro-
on deadlines reached, costs involved, etc. vided with a (partial order) POPG, there may be more than one action
Following the practical methodology developed in [3], in the plan- applicable in the state. For instance, in the initial state of the run-
ning stage for agen; we first solve the qualitative, propositional ning example, both actior$ampleRock(L1) andTakePicture(L1)
planning problem for all the goals i@; while ignoring the issues of  are applicable. In addition, observe that the actianigate (L1, L2)
resource consumption and variance in the importance of the goalsan be performed in the initial state as well. Clearly, if resources are
The main difference between our framework and that in [3] is thatot an effective limitation, performing this action will be irrational,
the plan representation required in [3] commits planning to a certairas the agent will loose its ability to achieve the gaa§L1) and
methodology, while our approach is planner-independent. The lattep(L1). However, if the resources are limited and the gedlL2) is
is achieved by representing plans using a novel structure, called \ery important, it might be the case that the right thing to do is to
partial order plan graph(or POPG for short). forget abouhs(L1) andhp(L1), and to perfornNavigate(L1,L2),
Structurally, POPGs have some properties of both plan graphs [1fying to achievens(L2) with as little risk as possible. In general, for
and partial order plans [14]: As with plan graphs, POPGs consist o&n agent to decide which action among a set of alternative applicable
two types of nodes (proposition and action nodes) interrelated viactions should be performed, requires an estimate of how much “ex-
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Refine(P, a, 5) Finqlly, notige that in step (3) of the decis!on process above, the
agent is selecting one of the most cost-effective actions among those
maximizing the expected value achievement. This is done to dis-
N _ _ _ tinguish between different courses of action not only on the basis
e All the proposition nodeg (together with their outgoing of their expected value, but also with respect to the costs involved
edges), suchthat¢ o (s, a), and the nodg has no incoming . L . . . :
edges, and in achieving this value. Thus, each sub-plan is implicitly associ-
. , ated with its cost, and the costs of the optimal sub-plans are back-
e Allthe action nodeg’, such that for at least one of the precan- .
ditions ¢ € prec(a’) there is no proposition node associated propagated in attachment to the values of tk_lese sub-plans calculated

with ¢ and having an outgoing edge db. by the dynamic programming procedure as in Eq. 3.

To illustrate possible outcomes of this process, consider the POPG
in Figure 1. Suppose that the properties of the actions with respect to
the resource are abstracted as in the table below, whergand
min(a) stand for the expected resource consumption ahd the
minimal amount of energy with which execution @fis permitted,
respectively [3].
pected value” could be gained by performing each of these actions.

1. Remover from P, together with all its outgoing edges.
2. lteratively remove:

Figure 2. Procedure for updating POPR after performing actiow.

. o . - . a p(a) [ min(a)
Computing these values exactly is intractable, as it requires taking SampleRock(L1) 3 3
into account not only the probability of certain resource consump- ;:ﬁg;ﬁg‘gf(gg 120 125
tion by each action to be executed in the future, but also capturing SampleRock(L2) 5 7

in the model all possible results of potential future failures. HOW‘Likewise, let the value functions of the goals to be constant:
ever, adopt.lng the way that resource consumption dlstrlbutlons arg; ) = 2, Vapsy = 2, andVaauzy = 10. If we havep = 19,
abs_,trac_ted in [3] (see below), we can perform an approximated valug,an we will haveU (P, s, p) = 12 and the action to be executed
estimation. o ) is TakePicture(L1), as the estimated best course of action is to

Informally, at every decision pointthe agent: perform first TakePicture(L1), then Navigate(L1,L2), and fi-
nally SampleRock(L2). However, if p = 18, then we will have
U(P, s, p) = 10 and the action to be executediisvigate(L1,L12),
as we estimate that performing any other action will prevent us from
achieving (very valuablejs(L2).

Observe that sudden unreachability of goals, as well as uncer-
tainty in resource consumption by the agent's actions, is captured
by the model implicitly. Likewise, suppose that the value of some
of the (still reachable) goals that the agent had planned to achieve
have changed. The only thing that the agent has to do is update the
value functions associated in its plan with the corresponding goals
More specifically, let — All of the subsequent decisions will implicitly take into account
this change in the agent’s objectives. The only part of dynamics that
seems to be problematic is assigning a new goal to an agent (i.e. a
be the set of actions iR that are executable in statavith p amount goal that is not captured by the current piah Such a goal can be
of resource available. The vallgP, s, p) represents our estimate of gjther completely new to the multi-agent group, or one of the goals
how much value could be gained by executing gfawith p amount  that has been suspended by some other agent in the group. Clearly,
of resource, starting at the stateThis value is specified by Eq. 3 3 complete re-planning for the extended set of goals will solve the
via (i) the value of the plans that the agent will have after performingproblem, and in many domains such a painful solution might be un-
one of the actions € actions(P, s, p), and (ii) the value of the  ayoidable. However, below we show that, at least for some practical
goals achieved directly by the actianthese quantities are specified domains, we can slightly extend the above model of planning and

in Eq. 2 bya(P, a, s, p) and3(a, p), respectively. The part of the execution in a way that will require no re-planning at all.
planP (= subgraph of POP®) remaining after performing action

a in states is constructed by the proceduRefine(P, a, s), which 3
appears in Figure 2. The value of each such “sub-plan” generated by
theRefine procedure is evaluated with the initial statés, a), which

results from executing actiom in states, and with the amount of The general scheme for planning and execution described above pro-

1. Eliminates from its current plaR all the actions that are not exe-
cutable with the current resources

2. Estimates the expected valUgP, s, p) of P in the current state
s with the current resources

3. Chooses the most cost-effective actiog P from the currently
applicable actions that actually provid€$P, s, p).

4. Performsa (resulting in a new state’, and some remaining re-
sourcesp’ < p), and updates its pla® to reflect the result of
executinga.

actions(P, s, p) = {a € P | prec(a) € s A p > min(a)} (1)

Multi-Agent Opportunism and Shared
Knowledge

resource that is expected to remain after executing vides an agent with flexibility in selecting its course of action. In this
section we show that this flexibility would in turn allow agents to

a(P,a, s, p) = U (Refine(P, a, s),0(s,a), p — pu(a)) better adapt to dynamic environments by exploiting multi-agent op-

B(a, p) = Z Vy(p — u(a)) ) portunism, even in settings that severely limit potential cooperation

between the agents. We first discuss some general issues that should
be addressed while considering adopting multi-agent opportunism in
wherey(A) stands for the expected resource consumption of the agpractice® We then describe how those issues can be handled in our
tion a. Putting things together, we have: scheme for multi-agent planning and execution, and provide some

g€effects(a)

U@®,s,p)=0 experimental results from [13] for the case without re-planning.
_ 3
UP,s:p) aeaccig;%),s,p) (P, a, 5, p) + Bla, p)] 3 For a detailed discussion on issues involved in multi-agent opportunism,
see[11, 12]
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3.1 Some General Concerns (Our Motivation) of this planning and execution methodology.

In theory, multi-agent systems can clearly benefit from the ability of3_2 Making Execution Opportunistic
agents to act opportunistically, adapting to changing environments,

unexpected events, etc. In practice, however, taking advantage of &onsider an MAS{A,,--- ,A,} as in Section 2 executing plans
opportunity is far from trivial. The opportunity must first be rec- P1,--- ,P, for the goal sets=1,--- ,G,, respectively. Suppose
ognized, the course of action it facilitates must be determined, anthat, at some point agert; suspends a gogl € G, notifying the
the agent must decide whether or not it is appropriate to pursue thiest of the agents that it can no longer satigfySince we are as-
course of action at the current time [6]. (To use an extreme examsuming the agents in the MAS are benevolent, we would like the
ple, it would probably not be appropriate to stop for a drink while other agentg\; (such thaty € C;) to at least consider whether they
being chased by a bear, no matter how thirsty you are.) Multi-agentan achievgy themselves and whether the corresponding changes in
opportunismice., exploiting opportunities at an inter-agent level) is their course of action would be worth it. However, if the agents are
even more complicated: The agents should be capable of recognizirmgevented from replanning, the pla®s, - -- ,Pi—1, Pit1, - , Pn
whether a given event or situation may be an opportunity for a goatannot be changed, and thus any opportunistic assistante (i
of anotheragent in the system, and of responding appropriately topossible at all) must be based on them as they are.
these recognized opportunities. Two key issues below can make the Notice, though, that even without replanning, it might be the case
potential practical attractiveness of multi-agent opportunism somethatg is present, and thus potentially achievable, in one of the POPG-
what questionable. represented plarg; (e.g, as a side-effect of ;'s primary activities).

First, both recognizing opportunities and responding to themTo opportunistically adopj as a new goak\; needs only to properly
should have low computational complexity, otherwise the MAS will increase the value af, updating the value functioli; in P;. While
be more “socially friendly” than useful. Theoretically, if agedt considering actions in the future, the execution modulé pfwill
has information that another agent in the system could benefit fronmplicitly adjust its intention with respect to this update.
A, achieving goaly, thenA; could try to adjust its plan to achieve Let us consider some properties of this extension to our planning
G; U {g}. The problem is that, in some domains, even small adjustand execution scheme to support multi-agent opportunism. First, be-
ments to the plan can be computationally hard [20] and thus infeacause we are using predictive encoding, the runtime computational
sible during the execution. Likewise, in the case of physical agentsomplexity of some agent; providing opportunistic assistance to
such as robots or sophisticated hardware controllers, the qualitativenother agen\; is, as desired, kept low. In our model, updating a
part of an agent’s plan must often be carefully verified off-line (some-value functionV} is all that is required to determine a potential op-
times even by human operators [19]), and thus the agent is not aportunity for a suspended gogl This process is linear in the size of
lowed to consider completely new courses of action. This discussioROPGP; in the worst case.
boils down to a very basic questio@an multi-agent opportunism Second, the value @fis automatically leveraged against the value
be effective if only minimal or no replanning at all is allowed during of other goals inG;. As the choice of action in our scheme of exe-
execution? cution is based on maximizing expected value, achieyimgll not

The second issue is that, in order for an agent to recognize peccome at the expense of other goalgin unlessg is justifiably con-
tential opportunities for other agents, the agent clearly has to knowidered to contribute more to the MAS. Finally, even if ag&ns
something about what these other agents are doing. However, we beet itself capable of single-agent opportunism, it may still be able to
lieve that especially in heterogeneous MASS, this “something” mayprovide opportunistic support for other agents, as long as the goals
turn out to be very limited. For instance, the agents may know onlysuspended by these other agents are still reachable in the POPG of
the goals that some agents can no longer achiege $uspended A. Thisis interesting because we had initially considered multi-agent

goalg, while knowing only little about these other ageatpriori. opportunism strictly as an extension of single-agent opportunism.
If so, can we hope that multi-agent opportunism will be effective in  Returning to the discussion on our approach to opportunistic exe-
such cases of extremely limited shared knowledge? cution, the alert reader may rightfully say thayifvas assigned as a

We address these two questions using our scheme for multi-agegbal toA;, it is not very likely thaty will also appear in the plan of an-
planning and execution as a platform for the analysis. To make thether agent. (In our Mars rovers example, indeed, why would a rover
analysis as conclusive as possible, here we focus on somewhat “legdtin to sample rocks at a certain location if it was not assigned to
permitting” conditions, taking the system to an extreme in whichit?) It again appears as if multi-agent opportunism without dynamic
multi-agent opportunism is least likely to contribute. First, we as-replanning is not very promising. However, this is not necessarily the
sume that no online replanning is allowed (and/or possible) whatease.
soever. Second, we consider two (probably the most basic) settings Observe that nothing in our scheme for planning and execution
of shared knowledge. In both settings, the agents communicate onlyrevents agents from planning for goals that they wereassigned
information about their suspended goals. In addition, the agents ate, i.e., goals havingzerovalue from the local perspective of these
assumed to hawepriori only very limited knowledge about the other agents. Since the decision mechanism behind the execution takes into
agents in the group: In the less informative settings, the agents knoaccount not only the value of the goals to be achieved, but also the
only the “types” of the other agents in the MA;,, their individ- risk behind the various courses of action (encountered via cumula-
ual capabilities. In the more informative settings, the agents knowive resource consumption), achieving a goal with a zero value will
about the individual goals that have been assigned to the agents layitomaticallybe postponed. Similarly, if one of the goals that the
the broker. In the reminder of this section, we show how multi-agentagent has planned for becomes irrelevant, instead of removing this
opportunism can be supported in our scheme of multi-agent plangoal from the plan, the agent could simply zero its value function.
ning and execution under these conditions, and briefly present thdow, recall that in our model each agent is characterized by a set of
results of our empirical evaluation from [13]. In the later sections,capabilities representing all the goals that can possibly be assigned
we present our complementary work on improving the effectivenesso the agent. In general, instead of planning for the set of goals that
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levels of quality.

The evaluation was performed on problem instances involving
teams of 4 agents), ..., A4, with partially overlapping capabil-
ities: The working area of the team was divided into 4 partially over-
lapping regions (see Figure 3), and each rover could navigate only
within its designated area. The scientific tasks that a révecan
perform constitute its capabilitie§;, and these are schematically
restricted to a sub-area in which this rover can navigate. This way,
each agent is capable of performing some 35 (of the 65) goals. At
the beginning of each planning/execution cycle, each agent is as-
signed by the broker a set of goals, such as (i\G; C Ci, (i)
for 1 <14 < n, we havelG;| = k, and (iii) (), G: = 0. The agents
start with planning for their individual sets of goals using a domain-
independent planning methodology. In our experiments the agents
use thefFF planner [9], but any “off-the-shelf” planner capable of
producing plans for the IPC-2002 domains should be applicable.

Agent-3 Agent-4 For the results reported here, an evaluation was performed on 100
randomly generated problem instances. Given a problem instance for
Figure 3. Workspace partitioning for MAS. which the agents have generated individual pl@s. .., P, let

EC(P;) be the expected amount of energy required4grto ful-

) o fill its plan PP; completely. Each agent is allocated with a fraction
have been actually assigned to the agent, one can comaieting  of pC/(Pp,), wheres; is randomly chosen from a uniform distribu-
for the whole set of capabilitieand reasoning about the best course tjon within [0.5,1.5]. In addition to thek assigned goals, each agent
of action during the execution, when the value of different capabili-y55 allowed to choose and plan for anothecapabilities, basing its
ties is known better than during the off-line planning. Itis not hard chgjce on the knowledge available about the other agents. Recall that
to see that plannlng for capabllltle_s would allow an agent tg readilVine idea is to select goals that might get suspended by other agents
adapt to newly assigned goals, without re-planning, at runtime. Pergt yyntime, thus predictively encoding potential opportunities. Since
haps more importantly, though, is that planning for capabilities coulgne primary focus of the evaluation has been on potential contribu-
significantly improve the performance of multi-agent opportunism,ions of exploiting severely limited shared knowledge, we conducted

since more opportunities may be discovered that would otherwise gy sets of experiments corresponding to two different levels of such
unnoticed. Of course, nothing prevents the set of capabilities fro“?(nowledge:

being orders of magnitude larger than an average set of goals the
agent is actually assigned. For such cases, planning for capabilitiés Individual CapabilitieCK): The agents have complete knowl-
should beselectiverestricted only to “most promising” capabilites =~ edge about each other's capabilities. Therefore, each agent
to plan for. chooses for itselk’ goals fromC; = (U]. (Cin Cj)) \ Gy, (e,
from the capabilities thak; shares with other agents).
2. Individual Goals(GK): The agents have complete knowledge
about the goals that have been assigned to every agent by the

Suppose that aget; considers planning not only for its assigned ~ Proker. Thus, each agent; chooses for itselft” goals from

goals G;, but also for a limited set of its other, opportunity-wise  G; = (U]. (Gin Gj)) \ Gi, (i.e, from the assigned goals that

“most promising”, capabilities. Cad; estimate whether the pur- happen to be in the capabilities Af).

ported overhead in planning is worth the potential contribution to the

overall achievements of its MAS? What makes certain capabiliies The experiments for CK and GK were performed under several

more promising than others? choice functionérom C; andg;, respectively. First, consider the case
In attempt to address these questions, we have implemente?f CK and letC; = (J7— C/ be a disjoint partition of;, such that

an evaluation testbed for MASs with our planning and execqu consists of the capabilities @&, that are also part of the capa-

tion scheme. The simulation platform used in the experiments is &ilities of exactly; other agents in the system. The first- 1 (in

discrete-event simulator, used to put the activities of different agentsur experiments, three) choice functiogs . .. x»—1 correspond to

on a single time scale. The benchmark problems we have used imndomly choosing:’ extra goals fronC},...,CI'™", respectively.

the evaluation are based on the standard planning benchmark dén additional choice function for the case of CK, denoteg(asm,

mainRovers (inspired by the planning problems for NASA's Mars picksk’ extra goals fron€; at random, where the random choice is

Rovers), used in International Planning Competition (IPC-2002) [5].not uniform, but normalized with respect to the above partition of
In a nutshell, the working area of a set of rovers consists of 2%C;. Specifically, lety = E,ivgll |C7|/5. The probability of choosing

waypoints, schematically arranged at the cells 6f:a 5 grid (see g € C/ is given byl/~k'.

Figure 3). Each rover can navigate between 12 waypoints, and per- Since GK is strictly more informative than CK, we would expect

form various scientific tasks such as soil sampling, rock samplingthat the better choice functions for GK would be based on the addi-

and taking pictures of objects of interest if they are visible from thetional information carried with GK. One obvious function like this,

rover's current location. There are total of 65 different goals that carf,.x, corresponds tad\; selectingk’ capabilities with the greatest

be assigned to the rovers by the broker, namely 13 rock samplingglue inG;. Two additional choice functiongmin andémea, corre-

(at the emphasized locations), 13 soil samplings, and 13 objects t&pond to choosing capabilities with the lowest and median values in

be photographed, where each picture can be taken at three differe@t, respectively.

3.3 Empirical Evaluation
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brokerB, and thatA selectsk’ additional goals to plan for on the
Figure 4. Initial results (normalized). expectation that they may lead to opportunistic execution. Also like

in the basic approach creates a plaf® for all thesek + k’ goals.

Since the external planner cannot differentiate between the assigned

The results of this evaluation are shown in Figure 4, where thend extra goals, it will produce a plan that satisfies all of the goals
baseline corresponds to expected performance with no multi-agefft @ manner that it considers “efficient” — often based on minimizing
opportunism whatsoever. These results show that opportunistic prébe number of actions. We would, however, like the agents to be able
dictive encoding in constrained environments can be effective aftefynamically skip those actions that do not contribute to achieving
all. However, Figure 4 shows that adopting multi-agent opportunisnny of the currently valuable goals.
was only moderately effective at the level of knowledge of individual ~ Consider, for example, the small POPGs shown in Figure 5, where
goals (GK), while actually beinbarmfulat the level of knowledge the circled and rectangular nodes stand for proposition and action
of individual capabilities only (CK). nodes, respectively, and doubly-circled propositions stand for goals.

At first view, given the decision-theoretic nature of the executionFigure 5(a) shows a base plan fbr = 3 assigned goals, while
module, this is a somewhat unexpected result: Since each agent aétglure 5(b) shows a pla® for thesek and some extra chose
to maximize its (and thus global) expected payoff, having more pogoals. The gray nodes in Figure 5 represent the additional actions
tentially valuable goals in a plan should only increase its flexibil-@nd conditions needed to accomplish these= 2 extra goals. Fig-
ity, guaranteeing an improvement in the expected performance. Thug€ 5(c) shows the plais, constructed fron> by automatically
planning for extra goals, using either choice function, should lead t&dding shortcuts devoted to bypass achieving the extra goals. The
performance at least as good as when planning for only the assigné@lidity of adding shortcut nodes to a POPG, creatingcatended
goals. The pitfall here is that this claim is sound only under an “allPOPG(or EPOPG), is discussed in [4], and thus we will not go into
else being equal” assumptioie., only if we compare two qualita- it further. The real question is, however, how do we determine where
tively identical plans. In the case of plan-based predictive encodingt© Place the shortcut actions? Our approach is to trace throtajala
however, achieving: assigned goals using a plan created for theseorder of the plan?, finding the start and end nodes of “skippable”
and some othet’ goals can be far more complicated (and thus moresections. For each pair of start and end nodes, we can generate a plan
risky and resource consuming) than achieving thgoals using a fragment that bypasses the corresponding section of the core plan.
plan created only for them. Seeking improvement, in the next section T0 formally specify the notion of skippable sections of a plan, as-
we address these planning shortfalls by considering various ways /Mme that an ager is assigned goalsGa = {g1,92,...,9x}
improve the result of the planning process. (with V(g;) > 0 for 1 < i < k), and that it also selects addi-

tional ¥’ goalsG. = {gk+1,9k+2, -+, grra } (With V(g;) = 0
. - for k +1 < i < k + K'). Further, letP be the plan generated for
4 Making POPGs More Efficient all k 4+ k' goals, and4 = {a1,as,...,a,} be a total order of its

In the previous section we noted that planning for opportunities pro?* actions consistent with the ordering induced by the POPG. For
€ A, we say thata;, < a; if i < 3.

duced less than overwhelming results because the plans created ¢ Pair of actions;, a; € A, we _ :
the k + k' goals were inefficient for accomplishing the assigied This sequence of actions is implicitly assQC|ateq vy!th a sequence of
goals. This is because such plans may lead an agent to execute b= 1 States{so, s1,..., sn}, such thatso is the initial state, and
needed actions on the chance that an extra goal would be suspend@ 1 < 7 < n. a; moves the agent from staig, to states;. Let
by another agent. To make the plans more efficient, we need to find (9) b€ the action that actually satisfies some gpal G U G,
way to create a plan that can opportunistically satisfy extra goals ak€: @(9) = am is the action such that € s, butfor0 < < m,
they arise, yet efficiently satisfy the assigned goals when no oppodd £ i- Consider the assigned godlg:, g2, . . ., g1} numbered ac-
tunities are present. cording to their achievement alopd) That is, forl < < j <k, if
In this section we examine three approaches to this problem. ~ @(9i) # a(g;), we havea(g;) < a(g;).
Suppose that for some pair of consequent ggalg;+1 € G,, we
1. Planning with shortcutsEach agent first generates a plandtr ~ have an extra goal € G., such that(g:) < a(g) < a(gi+1). Let
of its (assigned and extr&) + k' goals, and then augments the a(g:) = a; anda(g:+1) = a;. To allow bypassing the actions needed
structure of that plan by adding “shortcuts” to the assigned goalsonly for achievingg, we can first create a plan fragmeRt with
Shortcuts are actions (or short sequences of actions) that bypass = s; and the goal conjuna&»: = s;—1, and then attaci’’ to
the segments of the plan devoted strictly to support predictivelyP, properly grounded at the appropriate proposition nodes and
encoded extra goals. supporting the proposition nodes%f ;. This will create an alternate
2. Predictive plan repair:Each agent creates a plan for just its  path around the skippable section, as illustrated in Figure 5(c) by the
assigned goals, and then repairs that plan by creating and addirsggments with solid black nodes. As formalized by Proposition 1,
subplans that take a form of “side-loops” to and from the coreadding such shortcuts preserves the completeness of the plan with
plan, devoted to accomplish the extragoals. respect to the assigned goéls.
3. Reactive plan repairSimilar to predictive plan repair, but dif-
fers by postponing updating the core plan to the execution phaS(?Jroposition 1 The structure resulting in replacing the actions
namely to the points in time when the agents learn of other agent%ﬂh ...,a;_1 in P with the plan fragmen®’ is a valid partial
suspended goals. order plan that, given unbounded amount of resources, achieves all
the assigned goal§,.

4.1 Planning with Shortcuts Observe further that the total set of propositionsGp, can be

As with our basic approach to multi-agent opportunism described idarge, as it corresponds to the entire state;. However, in general
Section 2, we assume that each agkns assigned: goals by the  there is no need to plan for all the propositionsspf;, since many
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Figure 5. Example POPGs: (a) Base plan; (b) Extended plan; (c) Extended plan with shortcuts; (d) Base plan with repairs.
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of them may have no effect on the applicability of the remaining part

{as,...,an} of P. Therefore, without loss of either soundness or 110
completeness, we can assi@®- to contain only the propositions of 1.08
si—1 that act as pre-conditions of some actiongan, . . ., a, }. That '
is: 1.06
Gpr = U s1—1 N prec(a) (4)
a>a; 1.04
2 [N
==&
1.02 -
4.2 Predictive Plan Repair —_
1.00
For predictive plan repair, we again assume that each afent
is assignedk non-zero-valued goalsy, = {g1,92,--.,9x}, 0.98
and that it also selects additional (zero-valued) goal€s. = 0.96
{gr+1, Gr+2, - - -, gr+x +- Unlike in planning with shortcuts, how- '
ever, the agent initially generates a pl&nonly for its k£ assigned 0.94
goalsG,, and therexpandsP to include actions that accomplish the Basic Shortcut PPR

goals inG.. For illustration, such a plafP for achievingk = 3
assigned goals as depicted in Figure 5(a). Figure 5(d) shows an exrjgyre 6. plan Efficiency Experiments results (normalized), Goal-based
pansionP, of P, achieved by augmentirfg to include extra actions selection.

(shown in borderless gray) to satisfy the additiokfa= 2 goals.

As with the formalism for planning with shortcuts, let =
{a1,a2,...,a,} be a total order of the actions of the current plan
‘P. To expandP with respect to an extra gogle G., the agent se-
lects from its action set an actienthat providesy and has the best
support in® among all such actions. That is:

previously considered repairs), and not on the core plan fok tee
signed goals only. This is necessary to ensure new plan repairs do not
prevent previously added repairs from satisfying their extra goals if
the corresponding opportunities arise.

a= argmax { max {[s; N prec(a/)|}} (5) 4.3 Reactive Plan Repair
a’ s.t. g€effects(a’) (1<isn
Planning with shortcuts and predictive plan repair are two forms of
and withs; being the corresponding state supportinge.. predictive encoding that can be adopted by agents which are not
capable and/or not allowed to adjust their plans at execution time.
Si = S%Erimaf {Isj Nprec(a)|} (6) If, however, some degree of online plan adjustment is possible, the
SES0eens n

agents can adjust their intentions as they learn about the suspended

To preserve the opportunistic nature, the agent should avoid predi@oals of other agents, without having to “guess” and plan for any
tive encoding of extra goals having insufficient correlation with the €xtra goals in advance.
current plan. For instance, in our evaluation discussed in the next [N this case, one may consider a reactive variant of predictive plan
section,s; is required to meet at least half @& preconditions, oth- ~ repair. Following the reactive plan repair approach, here again we
erwiseg is not considered to be a potential opportunity. have each agent generating a pfarfor its k assigned goals. Un-
Given the core plafP, and an action/state pairands; as above, like in purely offline approaches to predictive encoding, however,
the agent starts by creating a plan fragm@tfor s, = s; and the agents doot select any additional goals. Rather, when an agent
Gp: = prec(a). Let s’ be the state resulting from applying' in is notified about some other agent’s suspended goal, it uses the plan
s;, and s” be the state resulting from applyingin s’. Next, the repair mechanism described in Section 4.2 to fit the goal (if possible)
agent creates another plan fragm@Xitfor sj = s” andGp» = s;,,  intothe remaining portion of its current plan.
and concatenaté®’, a, andP”’. Again, as with planning with short- A significant advantage of this approach is that the agents only
cuts, the resulting “side-loog, is attached té by linking it to the ~ Plan for goals that actually get suspended. They do not waste any ef-
appropriate proposition nodes in, and executed as usual. Propo- fort preparing for goals on the chance they might lead to opportunis-
sition 2 states that, since the execution mechanism always picks tHi¢ e€xecution. Rather, they can focus their resources on considering
most cost-effective course of action among those achieving maximaPportunities for goals that they know cannot otherwise be satisfied.
expected value, if at runtime the value of one of these extra goaldhe reason we consider reactive plan repair in our analysis is two-
g € G. remains zero, the “side-loop” added for achievingill be fold. First, this approach corresponds to what we expect is the min-
pruned by the execution mechanism. imal form of online re-planning, preserving the qualitative core of
the plan generated off-line. Second, as such, this approach provides
us with yet another reference point for evaluating attractiveness of
purely offline forms of predictive encoding, the main interest of our
work here.

Proposition 2 If during the execution oP, all the extra goalsG.
will remain zero valued, the execution Bf. will be equivalent to
executing the core plaR.

Finally, _here_ as WeIGp//' = s; can pe replaced without any loss 5 Evaluation
of generality with the specification as in Eq. 4. However, as the extra
goalsG. are considered one by one, the whole process of plan refo examine the impact of the various plan enhancement approaches
pair is incremental with respect @.. ThereforeGr» asin Eq. 4  discussed in Section 4, we have repeated the experiments discussed
should be based on tleurrent plan (i.e. the core plan with all the in Section 3 for each of the three techniques as above. This evaluation
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has been performed on the same 100 problem instériceslving
teams of 4 agents with partially overlapping capabilities as shown il
Figure 3.

The results of this evaluation for our two settings of shared knowl-
edge GK and CK are shown in Figures 6 and 7, respectively. Th
left-most group of bars labeled “Basic” simply replicates the results
depicted in Figure 4 for offline predictive encoding with no efficiency 102 —_
adjustments to the plan. The next two groups of bars depict the tc 1 o f(
tal value achieved on these problem instances under planning wi 1.00 .
shortcuts and predictive plan repair (PPR), respectively. In both Fig —
ure 6 and Figure 7, the lower, light-colored horizontal line depicts
the total value obtained on these problem instances using the sta
dard execution mechanism without any multi-agent opportunism. A, o
in Figure 4, this represents our baseline, and thus the results for ¢
other planning and execution strategies are normalized againstit. F 9,4
nally, the upper, dark horizontal line in both graphs shows the tota Basic Shortcut PPR
value obtained when the agents are allowed to adjust their plans .
runtime U§|ng the reac“"? plan repair (RPR) mechanism. Figure 7. Plan Efficiency Experiments results (normalized),

From Figures 6 and 7 it is easy to see that all three plan enhance- Capability-based selection.
ment techniques lead to an improvement in performance both over
the baseline plan execution mechanism with no opportunism and
over our original (Basic) approach to offline predictive encoding.time, reactive plan repair would again be the preferred choice.
Considering Figure 6, none of the three advanced techniques seem tolt might be argued that, even with our plan enhancement tech-
dominate the other two, despite the significant differences betweehiques, the improvements obtained by using multi-agent oppor-
them @.g, one-shot vs. incremental planning, predictive encodingtunism may not be worth the additional computational burden in-
online vs. offline, etc.) One difference, however, between these tectsurred. Indeed, Figure 6 shows that predictive encoding results
niques is in time complexity of the corresponding planning and exdn ~7% average improvement over the baseline, non-opportunistic
ecution. In our experiments, the average time each agent spent petanning and execution, while in Figure 7 the improvement is only
problem instance was 7.57 minutes with planning with shortcuts~3% on average. However, notice that each problem instance has a
22.87 minutes with predictive plan repair, and only 0.43 minutes withtotal of 16 goals assigned to the system of 4 agents. The value of each
reactive plan repair The dramatically shorter execution time for the goal is selected at random from the uniform distribution between 1
reactive plan repair approach is not surprising, since the plans a®nd 100. Thus, the expected value of a goal is 50, and the expected
modified only for goals that are known to be suspended. This leadttal value of the 16 goals (if all were satisfied) is 800. Hence, a
to smaller plans to execute, with fewer contingency branches to conf% improvement means an average increase of 56, or the equivalent
sider, which in turn allows for faster execution. However, recall thatof 1 goal that would have otherwise not been accomplished. Even
reactive plan repair is feasible only if some degree of online replan@ 4% improvement would provide an average increase of 32, which
ning is allowed. Otherwise, our results favor the use of planning withwould likely indicate the accomplishment of an additional, lesser-
shortcuts. valued goal that otherwise would have been unsatisfied. Our statis-

In some ways, the results obtained with plan enhancement tecfiical analysis verifies that such qualitative improvements do in fact
nigques while exploiting the less informative CK knowledge (see Fig-take place, and that they are statistically signifiant
ure 7) may be considered even more impressive than the GK results.
Recall that our basic approach to multi-agent opportunism a(:tuall)(5
produced a reduction in system performance as compared to not
adopting opportunism at all (see the Basic group of bars in Figure 7)Through our study we have shown that with limited shared knowl-
The results for CK with plan enhancements, however, show that wedge, and even with no re-planning or plan repair capabilities, real-
can significantly reduce the overhead involved in opportunistic planworld systems of heterogeneous agents can assist one another oppor-
ning, making adopting multi-agent opportunism attractive even intunistically in accomplishing their goals. Conversely, we have also
cases of extremely limited shared knowledge. shown that adopting opportunistic behavior for planning agents does

As with the GK results, neither planning with shortcuts or pre- not come for free, and that its efficiency depends significantly on the
dictive plan repair was dominant when exploiting CK knowledge.way the shared knowledge is exploited by the agents.

Both produced moderate performance improvements compared to We have presented a general scheme for multi-agent opportunistic
the baseline of not exploiting opportunities (and average:8% planning and execution, which is based on selective predictive encod-
for planning with shortcuts, are4% for predictive plan repair). But  ing of opportunities and the principle of planning for capabilities. To

again the time complexity of these approaches (and average of 12.6&ercome some computational limitations, we have presented three
minutes per problem instance for planning with shortcuts, and 26.6%chniques for plan enhancement that allow the agents to avoid per-
minutes for predictive plan repair) suggests a preference for planninfprming unneeded actions. In particular, we have examined two post-
with shortcuts. Of course, if the agents are able to replan at executigplanning methods of enriching the core structure of a plan: one that

%X

0.98

Summary

4 At the time of this submission, the CK/PPR experiments were still running.5 As measured with a paired t-Test. For the worst casg, Shortcut),

The results reported use only the first 75 of the 100 problem instances. p < 0.15, thus a significant difference cannot be claimed with reason-
5 Since these experiments were run on comparable, but not identical comput- able confidence. However, for the others in CK experimgnts0.06, and
ers, the precise relation between these numbers may slightly vary. in the GK experimentp < 0.0006 in the worst case.
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adds “shortcuts” bypassing the segments of the plan devoted strict[¢5]
to support predictively encoded extra goals, and one that predictively
repairs the core plan to include subplans achieving the extra goaIﬁ.G]
We have also examined an online approach that assumes the agents
possess limited runtime plan repair capabilities. Using this approach,
the agent attempts to enhance its core plan only at the time it learr&?]

of a goal suspended by another agent.

Finally, we have presented the results of an empirical analysis
our plan enhancement approaches. These results demonstrate

p

when we take simple measures to augment our core plans, mulfit9]
agent opportunism is indeed feasible in that it produces results as
least as good as, and often better than, not using multi-agent opp&?—
tunism. Further, this improvement can be obtained even when the
agents have only very limited knowledge of each other’s capabilities,

and even when the agents have no ability to re-plan at runtime.
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Planning under uncertainty with multiple consumable
resour ces

Simon Le Gloannec! and Abdel-1llah Mouaddib® and Frangois Charpillet?

Abstract. Most work on planning under uncertainty in Al as-
sumes rather simple action models, which do not consider multiple
resources. This assumption is not reasonable for many applications
such as planetary rovers which much cope with uncertainty about
the duration of tasks, the energy, and the data storage necessary. In
this paper, we outline an approach to control the operation of an au-
tonomous rover which operates under multiple resource constraints.
We consider a directed acyclic graph of progressive processing tasks
with multiple resources, for which an optimal policy is obtained by
solving a corresponding Markov Decision Process (MDP). Comput-
ing an optimal policy for an MDP with multiple resources makes
the search space large. We cannot calculate this optimal policy at
run-time. The approach developed in this paper overcomes this dif-
ficulty by combining: decomposition of a large MDP into smaller
ones, compression of the state space by exploiting characteristics of
the multiple resources constraint, construction of local policies for
the decomposed MDPs using state space discretization and resource
compression, and recomposition of the local policies to obtain a near
optimal global policy. Finally, we present first experimental results
showing the feasibility and performances of our approach.

1 Introduction

There has been considerable work in Al on planning under uncer-
tainty. However, this work generally assumes an extremely simple
model of action that does not consider continuous time and multiple
resources[3]. These assumptions are not reasonable for many appli-
cation domains such as space mission and planetary rovers which
much cope with uncertainty about the duration of tasks, the energy
required, the data storage necessary and limited communication ca-
pacity. Limited communication capacity combined with multiple re-
source constraints require that the remote spacecraft or planetary
rover operates autonomously. The need of autonomy and robustness
in the face of uncertainty will grow as rovers become more capable
and as missions explore more distant planets.

Planning systems that have been developed for planetary rovers
and similar applications typically use a deterministic model of the
environment and action effects. Such a planning system produces
a deterministic sequence of actions to achieve a set of tasks under
nominal conditions. These current planning systems, which rely on
re-planning to handle uncertainty , are myopic and do not model the
uncertainty in the planetary applications. As the mission complex-
ity (the set of tasks grows) and communication constraints grow, the
weakness of these approaches will become critical.

1 GREYC-Université de Caen Campus |1 - BP 5186 F-14032 Caen Cedex
2 LORIA, BP 239 F-54506 Vandceuvre-lgs-Nancy

Decision Theory is a framework for reasoning under uncertainty,
rewards, and costs. This framework allows to find a tradeoff between
uncertainty on the multiple resources consumption, the value gained
when achieving a goal and the cost of consuming resources. This
framework combined with the progressive processing that allows a
rover to trade off execution resources against the quality of the re-
sult similar to resource-bounded reasoning provides a suitable frame-
work. The objective of this paper is to complete previous decision-
theoretic approaches on controlling progressive processing to over-
come new requirements of the rover applications that we illustrate by
an example of plans in the next section. These plans present several
new requirements that have not been previously addressed:

e Task inter-dependency: Task execution may depend on the out-
come of previous actions.

e Multiple resources: The controller must optimize its operation
with respect to multiple resources.

The contribution of this paper is twofold. First, we generalize pre-
vious decision-theoretic control techniques [6, 4] to handle multi-
ple resources under uncertainty by using a Markov Decision Process
using multidimensional utility and value functions. Second, we ex-
amine the effect of increasing the size of plans (the acyclic graph)
on the MDP. We address the problem of the large size of the MDP
by using classical techniques of decomposition of the large MDP
into smaller ones that are easy to solve and then recompose the local
policies to obtain an optimal or near optimal global policy. The re-
maining of the paper describes these different steps of our approach
that consisting of formalizing the problem of planning under multiple
resources constraints with a Markov Decision Process with multidi-
mensional value and utility functions, examining the complexity of
solving the obtained MDP to construct an optimal policy and then
tackling this difficulty : (1) decomposing a large MDP into smaller
ones [7], (2) compressing the states of multiple variables that are not
significantly different, that is, that have the same transition proba-
bilities to other states, and thus the same expected return, under the
optimal policy, (3) constructing local policies of small MDPs under
the model of discretization of state space of multiple resources using
a minimal partition of the state multiple resources using point 2 and
(4) re-composing local policies to obtain a near optimal global policy
[5]. The rest of the paper describes in detail all these steps.

2 Progressive task planning
2.1 General definitions

Definition 1 An exploration graph G is a directed acyclic graph of
P progressive processing units PRU1, PRUs, ..., PRUp.

in the rest of the paper, we assign p or PRU,, as the p'* PRU in the
exploration graph (figure 1)
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Figurel. An exploration graph

Definition 2 A progressive processing unit (PRU), PRU, con-
sists of a set of L, levels, £, = {lp1,1p2,...,1p.1, }-

Definition 3 A level [,,; in PRU), consists of a set of M, ; modules,
Mot ={mp,1,1,Mp 12, - Mp 10, }-

A level corresponds to a specific task. The PRU),, in figure 3 is di-
vided into 3 levels (L, = 3), which can be for example [, 1: arm
camera, [, »: take a picture and [, 3: save the picture.

Definition 4 The module my ;. of the level [, ; in PRU, consists
of a quality Q,,1,m and a probability distribution II,; ., over the
consumed resources when the module is executed

A module is a specific way to execute a level task. For example,
mp 2,1: take a low resolution picture and m,, 2 o: take a high resolu-
tion picture (M, 2 = 2) in the level [, > of PRU, in figure 3, and
which means Qp2,1 < Qp,2,2. An example of module is given in
figure 2.

2.2 Extension to multiple resources

The main contribution of our work is the extension of progressive
task planning to multiple resources. The problem is that we do not
know exactly how many resources will be consumed by a specific
task. We represent this uncertainty with a resource probability distri-
bution. A task can for example consumes between 8 and 12 units of
energy.

2.2.1 Resource dependency

In this problem, we must take into account all resources. There con-
sumption may be sometimes dependent. We distinguish two kinds of
dependency : internal and external dependencies. We can have an in-
ternal dependency when the energy consumption depends on the time
consumption for a specific task. For example, the more the robot digs
a hole, the more it takes time and energy. We can easily express this
with a dependency mapping f such that energy = f(time).

An external dependency happens when a resource consumption
for a given task affects a later task. For example, if the rover takes
a picture during the night, it has to use the flash, which consumes
energy, but he can also wait until the day. It has to make a choice
between two resources, that can have consequences for the rest of
the plan.

The rover will evolve in a real environment, and resource con-
sumption may also depend on some external factors like temperature
or sunshine. For the moment, we do not take these factors into ac-
count.

2.2.2 Resource vector

We have chosen to work with resource vector, for example if we are
dealing with energy and time, we denote itas & = {energy, time}.

In general, for r resources, we note & = {R1, Rs,...R,}, where R,
the pt" resource, 1 < p < r. We assume that we know in real time
the amount of remaining resource and we note it R rem.

Definition 5 To model the evolution of the remaining resource vec-
tor, we introduce the following notation :

/
ﬁrenb S ﬁrem = vp € [17 TL R/) S R;) (l)
Definition 6 It is not physically possible to have a single resource
with negative value. In such situation we denote

Rrem = Ry

The resources we are dealing with, like time and energy, are contin-
uous variables. The better for us would be to take into account this
continuous dimension as long as we can. But realistically we need to
use a discretization.

& dpe[lr], R, <0 (2)

Definition 7 A discrete probability distribution of the possible con-

sumption of the resources vector for the module mp, i, IS :

Iy 1,m = {(Pp,i,m,15 ﬁp,l,m,l)v ooy (Ppym,x ﬁp,hm,x)} where

X is the number of possible consumed resource vector,
X

a consumed resources vector, and Z:c:l Ppima =1,

p,lm,z 1S

module M p.l.m
Quality: Q=10
Probability distribution:

Time

60.02/0.05/ 0.1 | 0.05|0.02|

5/0.06{0.1 |0.2 |0.1 |0.06|

410.02/0.05 0.1 | 0.05|0.02|

8 9 10 11 12 Energy

Figure2. A module descriptor
The module described in figure 2 has a quality of 10 and consumes
two resources, energy and time. The execution of this module can for
example consume 9 units of energy and 5 units of time with proba-
bility 0.1. We denote it as (P, 1.m.c = 0.1, Rp1m.e = {9,5}). In
thisexample X =3 x 5=15

2.3 Task selection

Definition 8 The progressive processing control problem is to se-
lect at run-time the set of tasks that maximizes the global utility.

When the rover has executed a module for a given level I,,;, he has
to choose between two actions :

e select a module of the next level I, ;1 and execute it,
o skip the remaining levels in the P RU,, to move to another PRU
accessible from PRU,, in the exploration graph.

The optimal decision is the one that maximizes the global utility.
The sequence of decisions will determine the set of modules to be
executed. The global utility is the cumulative reward of the executed
modules (reward is measured by the qualities associated to modules).
Since the rover decision process only depends on the quality of the
next modules and the current remaining resources, the problem of
module selection respect the Markov property. We can control the
rover with a Markov Decision Process (MDP).

38



3 Markov Decision Process Controller
3.1 Definitions

An MDP is a quadruplet {S, .4, 7, R} where S is a set of states A
is a set of actions, 7 is a set of transitions, R is a reward function. In
the following, we define what {S, .A, 7, R} means in our context.

Definition 9 The accumulated quality Q.. is the sum of the previ-
ously executed module quality Qp.;,» in the current PRU.

Definition 10 A state, s = [l,.1, Qace, B rem), CONsists of the last
executed step, the accumulated quality and the remaining resources
vector R em

Definition 11 there are two different kinds of terminal states

o Afailurestate [1,1, Qace, T%)@] = [failure, R ) is reached when
one resource is totally consumed(see definition 6)

e Afinal state is reached when a task of a terminal PRU has been
executed (a PRU with no successor in the exploration graph)

Definition 12 There are two possible actions (see figure 3): exe-

cute E;,; and move M,,_, /. The action M,,_,,» moves the MDP

to the PRU,,. The action E,; execute the m"" module mp, 141,
of level lp,Hl (ifI < Lp).

m
E ol Execute
p-p’ Move

module

level

Figure3. 2 PRU and the two possible actions E and M

Definition 13 the transition model is a mapping from S x {E, M}
to a discrete probability distribution over S. The move action is de-
terministic :

Pr([ly 0,0, Bllllpt, Quees B, Mp_py) = 1

The execution action is probabilistic, the distribution is given by the
module descriptor I, ; ., (Definition 4 and 7),

if Vr, € 72),77",3 >0
Pr([lp,l+17 Q:ICC? ﬁ ]Hlp 12 Qacm ﬁ] p,l+1)

where Qe = Qace + Qp,i+1,m and 1_%), =F - ﬁlﬂ,m,l.
else VT%”,EIT,, € F)/,rp <0
Z Pl+1 m,xr

R <R,

Definition 14 Rewards are associated with each state based on the
quality gain by executing the most recent module My, ; 1.

Priiimg

Pr([failure, R Nlp,1s Qace, ﬁ] Epit1) =

0 ifl <L

Rew([lp.1, Qace, R]) = { Qace ifl=1L ®

3.2 State’s value

We adapt the Bellmann equation to our problem

V(s = [lp1, Qace, R]) = Rew(s

)+ maxz Pr(s'|s,a).V(s") (4)

X
Rew(s) + mrgx(a =E}41) Z Pr(s'|s,Epi1).V(s)

Rew(s) + max(a = M,_,) l.V(s”)
p’

= max

s' = [lp,i41, Qace + Qp,i4+1,m, ]_%)rem - ﬁ)p,lJrl,m,ﬂE]

!
ith
we { s" = [lyr.1,0, B)

However s’ could be the state [failure, I_%)} that does not appear in
the equation because it’s value is 0. For terminal states :

V([lp,vaQaca]_ﬂ) = Rew([lp,LwQacaﬁ]) (5)
V([failure, B]) = Rew([failure, B])=0  (6)

t
starting resources state space %
e

t
Level +—Ry
e
Q= 24— Quc
States
state
Leve = s=[,,2{43}]
States
‘@ Action
Level Transition
States

Figure4. State representation for a single PRU

3.3 Optimal policy computation

We are dealing with a finite-horizon MDP with no loops. Transitions
with E and M move forwards in the state space by always increment-
ing level or unit number. Although there are a lot of states due to the
number of resources, this kind of MDP can easily be solved because
the value function is calculated in one sweep (backward chaining,
beginning with terminal states); But we have two problems:

e The MDP is large, i.e there is a lot of states and transitions. Al-
though we calculate each state value only once, the computation
time increases exponentially in the number of resources with the
number of PRU. Therefore we cannot calculate the global opti-
mal policy at run-time.

e We cannot add ore remove any PRU to the exploration graph
without recalculating the entire new MDP. This global approach
is not adapted to our problem.
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The rover has to choose his action at run-time. But it can not calcu-
late at run time the entire MDP values : when the number of PRU
increases , the number transitions corresponding to a Move action
increases too. We decide to approximate the MDP, to allow dynamic
task selection. In the next section, we address the problem of solving
this large MDP.

4 Solving the large MDP
4.1 Principle

To overcome these difficulties we decompose the large MDP into
smaller ones, that we later recombine to construct a nearly optimal
policy. The goal of the decomposition is to avoid calculation of the
MDP states values that are not directly accessible from the current
state. We just want to focus on the states that are in the current PRU.
The states in the next PRU are not evaluated at run-time, to avoid
combinatorial explosion. We evaluate all PRU initial states before
run-time. At run-time the agent evaluates the states values in the cur-
rent PRU, and chooses the best action between M and E. We explain
now the way we decompose the global MDP.

Since the transition corresponding to an action M is deterministic,
a natural way to decompose the MDP is to calculate a local policy
for each PRU (figure 5.b). We keep only the action E and we obtain
as many local policies as there are different PRU in the graph. For
one PRU, we do not store the entire state space, but only the start-
ing level state space (see the top of figure 4), because an action M
can only reach the starting level of the next PRU. Once all the states
have been pre-evaluated, we store this starting state space and its val-
ues for each PRU (figure 5.c) in a library, before execution time.
At run-time, we dynamically recompose the MDP. The question is
to decide if it is better to remain or to leave the current PRU. We
examine the local policy of the current PRU, we compare the ex-
pected value for the best execution action VE to the value for the best
move action V). Since it is not feasible to calculate V)4 at run-time,
we make an approximation that we denote Vj,,.. (for decomposi-
tion)(figure 6.c).
The remaining of this section explain how we managed to calculated
VMue. We also have problem with the number of resources, with
which the starting state space we store for each P RU grow. We find
a way to improve the state space storage. Finally, in section (5), we
compare Vg 10 Viiee-

library

Tl
vy

AAAA.

(a)Decomposition

Figure5. Decomposition

4.2 Decomposition

To estimate a P RU we calculate the estimated value for all the states
in its starting level (figure 7), S = {[lp,0, Qace = 0, T%’rem}}(figure
5.b). We calculate also the estimated consumed ressources (T%)cst)

(b)Pre computation (c) Compression + Data storage

library
msz=e [

ssssec, EO

||‘! 4

o A

(a) Stored data

(b) Exploration graph

(c) Recomposition
Figure6. Recomposition

for each possible starting state. The algorithm we use to estimate
resource consumption is the same that we use for estimating the state
value (see section 3.2). To do it, we accumulated the total consumed
ressources I cons as we did with Qacc previously. Vege = V.

States with
same values

not enough
resources

Figure7. Starting states values for a P RU with 2 ressources

—
ﬁest = Z PI‘(S/ = [ll+1, Q;ccv ﬁ,”S, ngH_l).Rlest
ﬁlzﬁw

+ Y Pr(failurels, E}'i1) (R pitime + Reons)
ﬁlgﬁ@

and for the last level I1: }_%)est = ﬁcons.
property :

’

VS, Sl, ‘/est(s) = Vest (5/) 4 ﬁest - ﬁest (7)

4.3 State data storage and space compression

We are dealing with multiple ressources and facing a new problem:
how can we store the starting state space for each PRU (figure 5.c)?
We can however quickly find the expected value for a given state,
which is necessary for the run-time recomposition. This section ex-
plain first how the transformation 7' : S — Sstorea WOrKs. In a
second time, we explain 771 : Sy0req — S. A starting state cor-
respond to s = [lp,0, Qace = 0, T?f], only T varies. so we project
the starting state space on [ﬁ]. This state space correspond to a r-
dimensionnal cartesian product with one dimension for each resource
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that T" tranforms into a 1-dimensionnal space (corresponding to val-
ues). Since we have a monotonic function Vs, 0 < V(s) < Vinaz =
V([Rmaz] = {(rmaz)1, - - -, (Fmaz)r}), We project the state space
on the value space (figure 8 is the projection of figure 7). For each
value, we make groups of states with the same value in S,. And
in each group we only keep the states with minimal resources in
(Sv)min. Notice that there can be several states with minimal re-
sources ina S, set. Formally :

Sy = {s=[R};V(s)=v} ®)
(Sv)mzn - {5 S Sm '3 3/ S 81)7 Vp € [1; 7“], r/p S Tﬁ} (g)

and we finally store the set of groups :

Sstored = {3 S (Sv)min7 0<wv< Vmaz} (10)

time t

Values: Vo : BT,

|::T> 0 Vimax

1 .q} - : Sstored
<):| EEEp== ==

Remaining resources
Estimated resources
Expected value V

energy

All starting states Lower bounds Stored states

Figure 8. multi resource data compression

The transformation 7! is very simple. We want to know a state
value, given R. We just have to pass through the Ssiorea Vector
and stop when we reach a state with more resources. The last en-
countered state give us the value. We managed to transform & =
{1{0, 0}], ..., [{29, 29}] }(size = 900) into Ssiorea With a length of
20.

4.4 Recomposition

The goal of this paragraph is to recompose dynamically at run-time
a policy that approximate the optimal one. To do it, we need to cal-
culate the expected value Vj\s,.. for a M action from a state, given
the exploration graph and the stored data. Therefore we have to re-
compose the MDP (figure 6). We calculate Vjg,... by maximizing
the sum of the expected state values in last PRU. The first thing to
do is to calculate each P RU depth in the exploration graph, keep for
each depth the PRU with the best global expected value in a queue.
Then, we sort the PRU queue, we put the best PRU to the top.
From a state s = [/, Q, Tf], we take all the available resources %,
we add the value given by the first PRU. Then we remove the esti-
mated resources § = F — R ... We continue with the next PRU
until the queue is empty. In fact, we just make d additions, where d
is the size of the queue, or the depth of the graph.

VMaeo(s = [, B)) = Veur(s) + (WMgeo (P + 1, B = Reat]))
and for the last PRU :
VMdec(S = [p7 ﬁ]) =

We are currently searching for new heuristics to improve this re-
composition algorithm, but it already works well, as we will see.

Vest(s) 11

5 Experiments
5.1 Methods comparison

We compare the optimal policy with the policy obtained by decom-
position. The advantages of the second method are the short compu-
tation time, and the small state space. However, we need to analyze
how good the policy obtained by decomposition approaches the op-
timal policy.

To do so we calculate two error values: the mean error e.ncaqrn, and
the decision error. The mean error indicates if the values obtained by
decomposition and recomposition are close to the optimal policy. The
decision error counts the times the error exceeds a fixed threshold.
The measure our result in term of graph depth, so we experiment
only on queues of PRU. We show in the next section that the mean
error is small and that the decision error converge toward zero.

5.2 Error measure

We denote Tz as the amount of resources required to execute all
tasks for the whole plan. We denote Vopt(l_%)) as the value obtained
with the optimal policy for a state s with R remaining resources, and
Vdec(l—{)) the value obtained with the decomposition method.

|V0pt (ﬁ) — VdeC(ﬁ”
Vope(R)

e(R) = (12)

, I_fmaz} are

The mean and the max error for R = {{0,...,0},...

Z 6(1_%}) €mar = Max e(l_%))

Rer and Rer
Card(R)

For the decision error, we take a threshold of 20%, considering that
the rover could make a bad decision if the error exceeds this value.

€mean =

5.3 Results

We first experiment on a queue with identical PRU s.

Graph depth 2 3 4 5 10 | 20 | 40

Mean error (%) 74 171|167 |71|80)|80]|84

Max error (%) 28 | 28 | 28 | 28 | 28 | 28 | 28

(=] o] Nl iy

Decision error (%) 16 |44 3326|1306 |03

We also used queues with different PRU s.

Graph depth 1] 2 3 4 5 10 | 20 | 40

Mean error (%) 0|26 28|27 |28]|27]|39]25

Decisionerror (%) | 0 | 50 | 58 | 44 |55 |27 |13 | 06

5.4 Discussion

Errors are made when the PRU queue is short, but the goal of our
algorithm is to treat very large P RU queues. For short PRU queues,
we can calculate the optimal policy without any approximation.

In each case the mean error stays constant. The more resources
and PRU are left, the better is our approximation. The decision error
decreases toward zero. The max error is high, and it stays constant.
This is the main problem of our algorithm. Errors are locally high,
so we intend to search for better approximation methods to reduce
them.
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6 Conclusion and perspectives

We have presented a solution to the problem of planning under un-
certainty with multiple resources. This approach relies on solving
a corresponding MDP, generalizes earlier work on MDP controller
[6, 4]; it permits for the first time to deal with multiple resources.
Moreover, our approach addresses effectively the problem of limited
amount of memory required for creating and solving the large ob-
tained MDP and storing the resulting policy. Using decomposition
of the large MDP into smaller ones, we managed to reduce the size
of MDPs to create and to solve, using a compression data technique,
we managed to store the resulting policies and using re-composition
approach based on an approximation technique of value functions,
we managed the construction of a global policy with a small loss de-
cision quality (less than 1% for large problems). Future works will
allow us to develop more precise estimates of the value function.
This will include state decomposition, policy decomposition, and ac-
tion decomposition [1] [2]. We are also developing new techniques
to deal with dynamic operation by recomposing local policies of in-
dividual PRUs when new PRUSs should be added or removed.
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Learning from Recorded Games:
A Scoring Policy for Simulated Soccer Agents

Achim Rettinger!

Abstract. shoot and where solely on human consideration. In the old approach,
This paper outlines the implementation of a new scoring policy formanually adjusted thresholds gave the striker the positions, relative

the agents of the Simulated Robot Soccer team from the University db goal and opponents, in which he was supposed to shoot.

Koblenz, called RoboLog. The applied technique is capable of acting

in real time in the dynamic environment of the RoboCup Simulation

League and uses data obtained from prerecorded soccer games Forrl Problem statement

supervised neural network learning. The benchmark used for testingy,q Optimal Scoring Problem is stated as follows (see [4jhd

this approach is the Optimal Scoring Problem stated as finding thgye point in the goal where the probability of scoring is the highest
point in the goal where the probability of scoring is the highest whenyhen the ball is shot to this point in a given situation”

the ball is shot to this point in a given situation. Goalshot situations \when observed in more detail another side of this problem appears
from numerous logfiles are extracted and employeq for the training, pe essential for finding an optimal scoring poliGiven the point

of two independent multi layered perceptrons. Beside the usage 3§ shoot, determine the probability of scoring if the ball is shot to
training patterns the gained data is evaluated statistically and prapjs point in a given situationlthough, this heuristic is especially
v@es interesting general insights into goalshots carried out lately ifteresting for deciding whether to shoot or not, it is not mandatory
Simulated Robot Soccer. _ _ _ for finding the point to shoot in our approach.

The results obtained after extensive testing of the new policy are ggth problems can be correlated to each other. If you can solve the
presented. Furthermore, general issues of learning from observgfst problem you know which point to test for the second problem.
logfile data and starting points for future work are discussed. But if you can solve the second problem you can also find a good

solution to the first problem by comparing numerous different points
1 INTRODUCTION and taking the one with the highest probability of scoring. Thus, the
second problem seems to be an intermediate step to solve the first

Scoring goals is essential for winning games not only in real soCy;aament of the Optimal Scoring Problem.

cer but also in the RoboCup Simulated Soccer League. The purpose |, yhis paper solutions to both problems will be presented which
of the RoboCup Simulated Soccer League is to provide a standardgq ot dependent on each other.
ized problem domain for Artificial Intelligence research based on a
soccer simulation called the RoboCup Soccer Server [2]. Teams of
soccer agents programmed by researchers from all over the worldl.2 Related work
can compete with each other by using this simulator.
This paper outlines the implementation of a new scoring polic - ’ ! . )
for the RoboLog team from the University of Koblenz. Searching for {€Cniques previous work has been carried out in this area.
a scoring policy is a comparably simple task. Although the proper- A detailed implementation of the scoring policy used by the UvA

ties of the environment provided by the RoboCup Soccer Server ark11€am 2001 team is described in [4]. Here, data is generated from
"epeated experiments where a striker is placed somewhere in front

inaccessible, non-deterministic, dynamic and continuous (see [6]), " L th i h i th L Th h
the success of a goalshot can directly be evaluated. In most othgf the goal, the opponent goalie somewhere in the goal. Then the

problems within the RoboCup domain the outcome of actions canndfa” is shot to some position in the goal. The qutcome of this shot
be estimated as simple because the actions only result in intermedg €valuated statistically. In the end, a function is presented that can
ate and therefore not easily evaluable states. Contrary to that, a go‘éﬁ‘lcma_te the probability ,Of scoring if shot toa given point in the
is definitely a success for the attacking team and final reward caﬂoal' F'”a”,V; the best pomt to S_hOOt at IS determlned by computllng
be assigned. This makes the Optimal Scoring Problem a well suitef'® Probability for some discretized scoring points on the goal line
benchmark for various techniques and by choosing the global maximum of the results.

Accordingly, we chose the Optimal Scoring Problem for evaluat- In comparions to [4] our approach differs in three major points.

ing the innovative use of supervised learning from existing data. Thé:irSt’ the training data is not generated by simulating situations but

data needed for this kind of inductive learning was obtained by anpy extracting already existing data from prerecorded soccer games

alyzing relevant situations in prerecorded games. The automaticall{fodfiles)- Second, 1;ar mo(;e |n(1;Iuencmg flgctors ofka goalshot situ-
learned heuristic was intended to replace the analytical algorithm agilion. not just one forward and one goalie are taken into account.

plied so far in the RoboLog team which based its decision whethertJhird' th separate mOdl_"eS are developed to solve both in section
1.1 mentioned problems independently from each other. Thus, there

1 University of Koblenz, Koblenz, Germany email: achim@uni-koblenz.de is no need for testing discretized shooting points.

yAs the Optimal Scoring Problem is well suited for Machine Learning
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In [1] high level actions are based on Neural Networks which are goalie though, it is interpreted as a valid but unsuccessful goal-
trained to learn success rates. In this case the "shoot2goal” action shot.
will compute the probability of scoring which is later on used for
decision support by ranking the success rates of all actions in a pri-

ority list. This paper does not mention how to find the best point to total | S5 | ratio l
; . ; ; games analyzed

s?o_ct)t att_. Again, training data was obtained by repeated generations goalshots exiracted 9315 shotsigamel 9.352
of situations. . Successil

In _contrast to that_, a tool for the analysis _of games _play_ed by_a successful goalshots 3745 ]| goals/game| 3.760
certain soccer team is presented in [5]. Special game situations (like unsuccessful
goalshots) are identfied in logfiles on this selected team only. The __intercepted by goalig 4305 goalie/game| 4.322
patterns obtained are fed into a decision tree induction algorithm re- intercepted by defende] ggg defe”det;/game g-ggz

P : ; : out out/game| 0.

sulting in a set of rules which describe classes of successful scoring Sther Teasons for miss ™ 69 othersigamel0.060

attempts and classes of unsuccessful attempts, respectively. After-
wards, those rules are used for a perturbation analysis that can give
recommendations for changes in the goalshot heuristic used in this Table 1. Statistical evaluation of analyzed goalshots
certain team.
Although logfiles were used for obtaining data in [5] and, among
others, goalshot situations were extracted the crucial difference to
the method outlined here is that the knowledge obtained was used All those heuristics can be no guarantee for identifying and classi-
for recommending changes to an already existing behavior (like th&ying all scoring attempts correctly, as the internal state of the striker
scoring policy) of a certain team. In contrast to that, we intended td?@nnot be reconstructed from logfiles precisely. It is impossible to
find a universal and optimal scoring policy from scratch. restore the intentions of a player in a specific situation only by ob-
By combining data acquisition from logfiles with neural network serving the visual outcome of its actions. Nevertheless evaluation by
learning two promising techniques are combined in the approach gdiand showed that most of the shots a human observer would clas-
scribed in this paper. In addition to that, not only are success rate¥y as scoring attempts were equally categorized by the automatic
learned, but the best point in the goal to aim at is determined di€xtractor. Besides that, the classification accuracy is, in that case, not
rectly by a module independent from the success rate module. Thgssential for the purpose of neural network learning as long as the ac-

redundantizes the test of several different scoring points as done #Pn holds valuable information. On this account, successfull shots,
previous work. never intended to be scoring attempts (but e.g. passes), are important

as well.

2 APPLICATION

The application of our approach can be separated in three phase: 35
First obtain the training data by extraction from logfiles, second an-

alyze this data by supervised neural network learning and last eval- 30
uate the performance of the heuristic, in this case the feed forward
networks.

25

2.1 Extraction of data

To obtain training samples, goalshot situations must be identified in
logfiles. It is not enough to find successful scoring attempts because
positive and negative training samples are required for classifying the 15—
success rate. The characteristics of a potential goalshot, identifiable
from logfile data, are: 108 L S
o A forward has kicked the ball. :
e The forward is in a reasonable distance to the opponent goal. 5
e The shot has the potential to reach the opponent goal (reasonabl
power and direction).

0
Even if all those conditions apply, further tests need to be done to 20
make sure that it is a valid goalshot and to obtain information about
the outcome of this scoring attempt. To determine that, the successive
cycles are scanned and checked individually:
Figure 1. Position of striker while kicking; successful shots

e Can the situation be classified as goal, out, goalie catch or offsite?

In this case it is a valid shot and the outcome is known.
e But, if the ball was kicked by another player it could also be clas-

sified as passing (if kicked by a player from the own team) or Those heuristics were finally applied to all recorded games from

dribbling (if kicked by the same striker again) and thus not as athe last RoboCup in Padua (2003) and games from the Simulated

scoring attempt. If kicked by an opponent defender or opponenSoccer Internet League. Plenty of interesting information can be
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gained from statistical analysis of the obtained goalshot situations.
An overview is given in Tab 1. 55
It is interesting to know that 40.2% of the identified scoring at-
tempts were successful and 77.3% of the unsuccessful ones wet
caught by the goalie. As expected, the goalie is the main factor in — T—
intercepting goalshots but it also becomes apparent that the opponel
defenders should not be neglected. After all, they are responsible fo S S LI
17.8% of the inhibited attempts. '
The extracted goalshot data can give even more interesting in-
sights. Fig 1 shows the upper right quarter of a soccer field when
looked at in top view and landscape format. One half of the oppo-
nent goal is drawn as a filled black rectangle in portrait format at the
lower right part of the figure. Accordingly, one of the corners is pre-
sumed in the top right. The white lines denote parts of the goal linep 2 Learning
the side line, the goal area and the penalty area, respectively. The

axis refer to the coordinates used in the Soccer Server. The scattergd mentioned before, two basic 3-layered backpropagation neural
black dots indicate the pos_ition of the fonNard at that point in time yatworks were trained to solve the two tasks. The first network is
when the successful goal kick was carried out. required for predicting the point to shoot at that maximizes the like-

In contrast to that, Fig 2 marks the position of the forward at thejingaq of scoring in a specific situation. The second network should
moment of a goal kick that t_urned out to be unsuccessful. Obviously,s gpie to classify the success rate of scoring, given a specific sit-
the dots are spread more widely as expected. uation and the point to shoot. Diverse issues need to be addressed

concerning the pragmatics of neural learning.
In the following, some considerations of the decisions that needed
35— to be made shall be presented. One main issue is whether to use ob-
Co jective world data taken from the logdfiles directly (accessible envi-
) . ronment) instead of trying to simulate the subjective world model
30 - , Lo of a specific soccer agent (inaccessible environment). In the later
RS- i case, the objective world data from lodfiles like the exact ball po-
sition would have to be reduced und altered according to the limited
subjective world model of an agent. On the one hand, it seems rea-
sonable to use incomplete and noisy data for training because in a
real simulated soccer game an agent would only get incomplete data
as well. There is already previous work providing a method for es-
timating the internal state of RoboLog agents in a specific situation
from logfile data only. Thus, it would be easy to use this data as in-
put to the machine learning technique, every agent could be prepared
with a specific decision module for its specific procedure of con-
structing its world knowledge. Unfortunately, it is still impossible to
make sure that the reconstructed subjective world model precisely
matches the original model from the recorded situation. Thus it is
likely that the recorded action is not appropriate to the interpreted
world model. Additionally, there is another fundamental shortcom-
ing of using subjective data. As soon as the way a player constructs
his world knowledge is changed, all the training needs to be redone.
Therefore objective world data was used for learning to take advan-
tage of this more general approach.

Another issue is the question which format of the input data would
be the most suited one for this kind of problem. A polar representa-
tion of the positions was favored over a Cartesian representation be-
cause polar coordinates implicitly express relations between objects

Note that all goalshot situations are mirrored to this upper rightwhich could be more useful for the networks to generalize over the
quarter of the soccer field not only for visualization reasons, but mirseen examples.
roring is also essential for avoiding the aliasing problem. While train- Besides that, the search for the most significant relations in the
ing, the network could get confused if apparently different patterngdata remains a challenge, independent from the representation. As
have the same outcome, if mirrored. most design decisions involved in neural learning are still consid-

Fig 3 shows where successful goalshots crossed the goal linered an empirical art (see [3]), the final selection and representation
Darker areas denote more crossings. This time the goal is drawn iof inputs was found by comparing the results of numerous trained
landscape format as a white rectangular boundary; scaling and minetworks using three set cross-validation. A visualization of the fi-
roring is applied accordingly. As it can be easily seen, most of thenal inputs is given in Fig 4. The indices refer to Fig 6. The attacker is
shots were aimed at the corners of the goal, especially to the goarawn in yellow, the goalie in dark grey, the ball is a white circle. De-
pole which was closer to the attacker. fender 1 to Defender 3 (marked blue) are the three opponents which

Figure 3. Goal line crossings: dark areas denote more crossings

Figure 2. Position of striker while kicking; unsuccessful shots
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can reach the ball fir&tAll variables were scaled to range between
0 and 1 and assigned to one input node each.
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Figure 4. Visualization of input variables; left: best-scoring-point net,
right: success-rate net

Figure 5. performance of the best-scoring-point net

The target value of the best-scoring-point network is the y-
coordinate on the goal interval. The output, goal or no-goal, of the ) o
success-rate network is a binary class variable. As the classes de&xemplarily shows the contribution factors for the success-rate net-
separable, two output nodes - one for goal and the other one fd¥ork. "X” denotes a Cartesian x-coordinate and "Y” denotes a Carte-
no goal - are used. In the end, both values are combined again ®an y-coordinate, respectively. A "D" denotes distance in polar co-
get a success rate between 0 and 1 by using the simple formul@Fdinates and "A” angle in polar coordinates. This nomenclature also
(((output for no goal) — (output for goal))/2) + 0.5. corresponds to Fig 4. _

The final topology of the best-scoring-point network and the Most 01_‘ the valugs cor_respond to common sense. For instance
success-rate network derived from cross validation, is 15-53-1 ant1® most important input is the angle and the distance between the
19-80-2, respectively. For the first network only positive samples_ba” and _the goalie. Regarding the opponent defenders, the distance
were used partitioned into three data sets for cross validatioS More important than the angle and the closest defender has the
purposes (sample size: 2060, 936 and 748). The stratified sets of tiéggest influence.
second network contained equal proportions of positive and negative
samples (sample size: 4494, 1693 and 1302). The stopping criter. 3 Evaluation
is based on a calibration interval of 200 (total of training patterns . . )
processed per event), where training stops when the last minimurﬁfeeq forvv_ard version of both networks, using the learned weights,
on the testing set (second data set) has occurred 50000 events agdVas finally integrated in the RobolL.og framework. Two methods are

provided to the soccer agents. If an agent decides that he is in a po-

After tweaking the various parameters involved in neural networkSition where it makes sense to consider a goalshot he makes use of
learning, the prediction accuracy of both networks on the evaluatiofp©th methods. The first is required to find the best-scoring-point and
set (third data set) showed promising results. the second to get the probability of scoring with this shot.

The best-scoring-point network gave a mean average error of 1.4 The threshold indicating whether an agent risks a shot or not has
units, which is reasonable if taken into account that the goal is mor&® P€ found by experiment. An observation that thereby needs to be
than 14 units wide. So the deviation on average is 10%. Fig 5 visytaken into account is the following: The closer the striker gets to the
alizes the performance using a scattered graph. The horizontal ax§9al the more unlikely it is that he can improve his position for a
denotes the actual value and the vertical axis the interpreted outpud@@!shot. This is because the resistance of the defenders is more con-
Optimal predictions would result in a line from bottom left to top centrated around the goal. This fact capnot be taken into account by
right. It can be observed that there is no bias towards a certain poirit "eural network as used here. There is no temporal component that
in the predictions. The success-rate network achieved a remarkabf?uld give feedback about the quality of future states. Consequently,
85.4% classification accuracy of the goal/no-goal patterns. a region model was |ntrodu§ed. From thg .plot of the cgordlnates qf

Calculating the contribution factor for each input variable is an-Successful goalshots (see Fig 1) we specified three regions according

other way to get information about the networks' performanbeg to the number of goalshots. Region 1 is clqsest to the g(_)al and mo§t
of the goals were scored here. Region 2 is more spacious but still
2 Those three defenders are determined by using a method from the RoboLog

code, based on a Newton iteration. predicting the network’s output, relative to the other input variables in the
3 Contribution factors are a rough measure of the importance of a variable in same network.
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of an agent is dependent on the available computational power the

025 — [ P [ 2 A deendenn goalshot extraction heuristic described in section 2.1 was once again
[ voiers [ 2% 0 cefenden used for automatically evaluating all games played. Thus, the ratio of
[ T, [ 2t Adetendens scored goals to scoring attempts' cguld also be calculated and so the
0.20 - [ Jatopeyer [ 2 Ddetenders real performance wnthogt the deviation of server related performance
- losses could be determined.
2e: Atarget [ Jan: Adefender3
Tab 2 shows the average performance over the 440 test games
0 .I 5 [ l:lzf: D target -20: D defender3

played. Statistics of all games played are summarized on the left half
and the final 60 games on the right half of the table. This distinction

is due to the fact, that we tried different parameter-settings for the
networks and the zone model in the first 380 games. This resulted
in fluctuations of the performance. The best set of parameters was

B 2 v target [ ] 2p: AupperGoalPole
[ 2 Agoalie I 200 upperGoalPole
0.10 — Il > 0 goalie [ 2r: AlowerGoalPole
Il 2: 0 lowerGoalPole

0.05 finally used for the last 60 games.
average test average final
0.00 conventional[ ANN conventional] ANN
: 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l 2m 2n 20 2p 2q 2r 2s games total 440 60
games won 121 130 11 21
Figure 6. Contribution factors of the success-rate net ratio won/total 0.275 0.295 0.183 0.35
shots total 578 556 75 83
shots goals 172 216 23 33
ratio goals/shots 0.298 0.388 0.307 0.398

covers lots of goalshots. Region 3, finally, is the most wide-spread

only containing a few positive data patterns (see Fig 7). From Re- Table 2. Results for test phase and final settings

gion 3 down to Region 1 we gradually decreased the threshold that

is used for the final decision whether to shoot or not. We observed

that these rules could successfully prevented the agent from trying to

score a goal when he is far from the goal and there is enough time The ratio of successful shots to scoring attempts is significantly
and space to improve its scoring position. better for the team with the neural networks. Although most of the
games still were a draw, in the end the new goalshot module could
clearly outperform the conventional module by winning twice as of-

ten.

Another indication for the potentials of this approach is the per-
formance of the RoboLog team at the RoboCup German Open 2004
30— ’ where the new module was used in a competition for the first time.

: Even though, the overall results were not good and therefore don’t
look promising on the first sight the performance of the module
becomes obvious after having a closer look at the lodfiles. There
were hardly any chances to score for the RoboLog team because
the RoboLog strikers rarely got close to the opponent goal. So once
more the ratio of goals to scoring attempts was calculated by using
the goalshot extractor described in section 2.1. This more signifcant
benchmark turned out to be exactly 50% which means that every sec-
ond shot was successfull. In addition to that, a RoboLog agent for the
first time managed to score against the Brainstormers04 team. Brain-
stormers04 ranked third in the end and conceded only two more goals
in the whole competition.

1

35

25

3 CONCLUSION

This paper outlined a technique that uses data obtained from pre-

recorded soccer games for supervised neural network learning. The

benchmark used for testing this approach is the Optimal Scoring

Problem. The problem was tackled by decomposing it into two sub

Figure 7. Zone model problems which where both individually addressed with one multi-
layered perceptron each, resulting in a variety of applications. The
results show that observational learning from logdfiles using neural
networks delivers a promising performance while providing a series
For the purpose of finetuning and evaluating the performance, 406f advantages compared to previous work on this field.

test games were played. To allow for a meaningful comparison this

was done by letting the conventional RoboLog team play against @ The time consuming step of generating training data from repeated

RobolLog team with the new neural modules. As the performance experiments is not required.
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e Training patterns obtained from prerecorded games provide unREFERENCES

versal information about the observed situations. The data is not[l]
limited by a specific agent used for data generation.
e The features used for training can be easily extended. There is no
fundamental limitation due to complexity if further input variables
are added to the networks. 2
Besides that, the extensive statistical analysis of goalshots pro-
vided in this paper should arouse interest of everyone dealing with
simulated robot soccer. -

3.1 Future work 4]

It is obvious that the presented work is not able to provide a really
optimal scoring policy.

First of all, there are starting points to improve the module with-
out making fundamental changes. More sophisticated inputs to the
networks, like speed, acceleration and body/view-angle of moving[S]
objects on the field, would most likely result in more accuracy. In
addition, putting more effort into the learning process and providing
more training data would also help the networks to better generalize6]
over the seen samples.

But it becomes apparent, that all those straightforward improve-
ments will never be able to result in an optimal scoring policy. To
achieve that all future situations on the soccer field and the strategies
of both teams would have to be taken into account. The work intro-
duced in this project would in that case only provide a solution to a
sub task in a broad decision support system. For a holistic solution, a
prediction of the next actions of the opponent team (opponent model-
ing) and the own team needs to be made in order to set up an optimal
scoring strategy. Only then, would it be possible to decide whether
there will be a better position to score if the attacker performs some
action, like dribbling first, and then tries to score instead of shooting
right away. This cannot be achieved by a simple zone model with
thresholds.

Steps in this direction could be to rank success rates of various
actions of all team-mates (see [1]) or to use an auction protocol to
decide on the next action to be carried out. However, it is very dif-
ficult to take all relevant future actions into account in this rapidly
changing environment. But a one-step optimization has not the po-
tential of being optimal.

Besides that, there are other interesting aspects to think about. Ob-
taining data by generation as done in previous work has the capability
of finding situations not observed in prerecorded games. This could
help to round off areas with sparse logfile training data or test uncon-
ventional strategies. Thus, if possible, a combination of both kinds of
data acquisition seems to be the most promising approach.

Finally, a policy more specific to an opponent team could be ad-
vantageous and achieved in two ways. For one thing, training data
from shots against one specific team could be emphasized in the
training process to bias the network. This would result in a specific
network for each opponent team. For another thing, online learning
could most dynamically handle new situations and is as promising as
challenging.

ACKNOWLEDGEMENTS

I would like to thank Oliver Obst for all his motivating support.

48

Sebastian Buck and Martin Riedmilldrearning Situation Dependent
Success Rates Of Actions In A RoboCup Sceniari®. Mizoguchi and

J. Slaney, editors, PRICAI 2000 Topics in Artificial Intelligence, num-
ber 1886 in Lecture Notes in Artificial Intelligence, Springer Verlag,
page 809, 2000.

Mao Chen, Klaus Dorer, Ehsan Foroughi, Fredrik Heintz, ZhanXiang
Huang, Spiros Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Jan
Murray, Itsuki Noda, Oliver Obst, Pat Riley, Timo Steffens, Yi Wang
and Xiang Yin: Users Manual, RoboCup Soccer Server, for Soccer
Server Version 7.07 and latefebruary 11, 2003

\ojislav Kecman.Learning and Soft Computing: Support Vector Ma-
chines, Neural Networks, and Fuzzy Logic Modptge 267, Bradford
Book, MIT Press, Cambridge, Massachusetts, 2001.

Jelle Kok, Remco de Boer and Nikos Vlassiswards an optimal scor-

ing policy for simulated soccer agenta M. Gini, W. Shen, C. Torras,
and H. Yuasa, editors, Proc. 7th Int. Conf. on Intelligent Autonomous
Systems, pages 195-198, 10S Press, California, March 2002. Also in G.
Kaminka, P.U. Lima, and R. Rojas, editors, RoboCup 2002: Robot Soc-
cer World Cup VI, Fukuoka, Japan, pages 296-303, Springer-Verlag,
2002.

Tayler Raines, Milind Tambe and Stacy Marsellawards Automated
Team Analysis: A Machine Learning Approachhird international
RoboCup competitions and workshop, 1999.

Michael Wooldridgelntelligent Agentsin Gerhard Weiss, editor, Mul-
tiagent Systems: A Modern Approach to Distributed Atrtificial Intelli-
gence, page 30, MIT Press, Cambridge, Massachusetts, 2000.



L earning Decision Trees for Action Selection
In Soccer Agents

SavasKonur ! and Alexander Ferrein and Gerhard Lakemeyer 2

Abstract.

In highly-dynamic domains such as robotic soccer it is important
for agents to take action rapidly, often in the order of a fraction of
a second. This requires, a possible longer-term planning component
notwithstanding, some form of reactive action selection mechanism.
In this paper we report on results employing decision-tree learning to
provide a ball-possessing soccer agent in the SIMULATION LEAGUE
with such a mechanism. The approach has payed off in at least two
ways. For one, the resulting decision tree appliesto amuch larger set
of game situations than those previously reported and performs well
in practice. For another, the learning method yielded a set of quali-
tative features to classify game situations, which are useful beyond
reactive decision making.

1

In highly-dynamic domains like robotic soccer it is important for
agents to take action rapidly, often in the order of a fraction of a
second. Thisis especially true in the application domain considered
in this paper, the RoBOCUP SIMULATION LEAGUE with 11 players
per team on a 2D playing field. Such tight time constraints require,
a possible longer-term planning component notwithstanding, some
form of reactive action selection mechanism. By reactive we mean,
roughly, that decisions are made solely on the basis of a description
of the current situation or world model. In particular, this precludes
any evaluation of different possible courses of actionsasin planning.

When presented with a game situation in the SIMULATION
LEAGUE, humans are usualy quite capable of choosing a reason-
able action for, say, the ball-possessing agent. However, it is not at
all easy to encode this “expert” knowledge in a way suitable for an
artificial soccer agent for at least two reasons:

I ntroduction

1. Itis not clear what the salient features of a game situation are,
which determine the action to be chosen. Presumably, these fea-
tures would include qualitative descriptions such as the team
member or opponent closest to the ball. But what the relevant
ones?

Even if we were given those features, it is not clear how to trans-
late them into rules for decision making. We could try to hand-
code them, but this approach is likely error-prone, not to mention
the difficulty of eliciting the rules from the human expert.

Perhaps the best way to overcome these problems is to use
machine-learning techniques. Deciding what action to take next in

! Free University of Amsterdam Artificial Intelligence Department, Amster-
dam, The Netherlands, skonur@cs.vu.nl,

2 RWTH Aachen, Knowledge-Based Systems Group, Aachen, Germany,
{ferrein,gerhard} @cs.rwth-aachen.de
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robotic soccer can be thought of as a classification problem, where
a game situation is classified according to the best next action.
Machine-learning techniques suitable for classification are decision-
tree learning such asID3 [8] or C4.5 [9]), neural networks [12, 18]
and reinforcement learning [15, 18, 16].

For our work we have chosen decision-tree learning, in particular,
C4.5, asitis capable to deal well with both issues raised above. For
one, given asufficiently large set of training examples, the system au-
tomatically builds a decision tree, which encodes the rules for action
selection. Compared to other techniques like neura networks, deci-
sion trees al so have the well-known benefit that they can be inspected
and understood by humans. For another, it is not necessary to decide
beforehand what the relevant features are for classification. All that
is needed is that the system is given a sufficiently large set. Therel-
evant features are produced as a side-effect of building the decision
tree in the sense that only those features or attributes that eventually
appear as nodes in the decision tree are thought of as relevant.

We remark that we applied learning to all types of players (ex-
cept the goalie) anywhere on the field, but we restricted ourselves to
playersin ball possession.

We believe that our results are noteworthy for at least the fol-
lowing reasons. For one, the resulting decision tree covers a much
wider range of game situations and actions than in previous work
such as [7, 17]. For another, as we will see in the discussion of ex-
perimental results, ateam using this decision tree, but which is oth-
erwise not optimized at all, performs surprisingly well. Finaly, as
aready noted above, while decision-tree learning by itself does not
come up with qualitative world descriptions, it is neverthel ess useful
in pruning irrelevant attributes from a given set.

This rest of the paper is organized as follows. In Section 2 we
briefly discuss existing learning methods applied to robotic soccer.
In Section 3, we describe our approach to decision-theoretic learning
of action selection for a soccer agent in the SIMULATION LEAGUE,
followed by a discussion of experimental results in Section 4. The
paper ends with abrief summary and concluding remarks.

2 Related Work

In this section we present some of the work on applying machine
learning techniques to robotic soccer and action selection. One focus
islearning of basic agent skills such as dribbling, passing, and inter-
cepting. [11], for example, use reinforcement learning for this pur-
pose. In [13, 17] aform of so-called Layered Learning is proposed.
It provides a bottom-up hierarchical approach to learning agent be-
haviors. In this framework, the learning at each level isdirectly used
in the learning at the next higher level. The bottom layer considers
low-level individual agent skills such as ball interception or drib-



bling. In contrast to [11], the behaviors are learned using aneural net-
work. At higher levels, action selection of the ball-possessing agent
islearned using multi-agent reinforcement learning. We remark that
the authors consider only eight kicking actions, which is much more
limited than in our case. (A comparison of multi-agent reinforce-
ment learning methods in the soccer domain can be found in [?].) In
earlier work, Matsubara et al. [7] considered action selection using
neural networks. There the scope was even more limited, as they re-
strict themselves to the decision of whether to shoot directly to the
goal or to pass to a better positioned player. Decision-tree learning
has been applied in robotic soccer as well. For example, Visser and
Weland [19] recently applied C4.5 to learning aspects of the strategy
of the opposing team in the SIMULATION LEAGUE.

Outside of the soccer domain, action selection for robots is often
addressed using reinforcement learning. For example, [?] proposes
hierarchical Q-learning for action selection, where the control task
of arobot isdivided into a set of simpler problems each learned sep-
arately. Another reinforcement learning approach to the action selec-
tion problem was proposed by Humphrys [?]. Each behavior module
proposes an action with a certain weight of which the action with the
highest weight is executed. The weights of the actions are modified
based on the difference between the weight of the action being ex-
ecuted and the action a behavior module proposed using a form of
reinforcement learning. The application domain presented in [?] isa
simulated environment of a house keeping robot.

3 Learning the Decision Tree

In this section we present how we applied C4.5 to our SIMULATION
LEAGUE agent. We start with an overview of the categories which
should be learned, i.e. the action which the agent should perform. In
Section 3.2, we present the attributes which turned out to be appropri-
atefor the SIMULATION L EAGUE before we show how we instructed
the agent in Section 3.3. The consulting procedure in on-line games
isrepresented in Section 3.4.

3.1 Skill Hierarchy and Meta-Level Actions

As C4.5 cannot deal with parameterized categoriesto be learned [9],
weimplemented special behaviorswhich areto be selected by the de-
cisiontree. Figure 1 givesan overview of the skill hierarchy weusein
our reactive soccer agent. The low-level action layer comprises basic
actions like dashing to a position, accelerating the ball to a certain
velocity, or freezing the ball. Those commands are tranglated into the
SOCCERSERVER commands, such as dash, kick, turn, etc. The in-
termediate action layer defines actions like moving to a position, or
kicking the ball to a certain point, which are based on the low-level
action layer. High-level actions use the intermediate actions for the
desired behavior. dribbling and passing the ball to a teammate are
two examples of high-level actions taken from [1].

C4.5 requiresthat output values (categories) of decision trees must
be discrete and specified in advance. This means action categories
which we use in the learning process should not take any argument in
order to satisfy the C4.5 requirements. Therefore, we cannot directly
use the high-level actions in the learning process since they require
some arguments in order to be executed. For that reason, we need
new actions which should have the form of a argument-free discrete
category. In order to accomplish this purpose we have introduced
the meta-level actions which use the high-level actions to generate
the desired behavior. These skills are parameterless encapsulations
of skillsfrom the other layers suitable to deal as a category for C4.5.
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‘ Soccer Server Commands ‘

Figurel. Skill hierarchy

The meta-level actions calculate necessary arguments before calling
the corresponding high-level actions. In our current implementation,
we have defined 15 meta-level actions (see below). An example for
such an action isthedribble action depicted in Fig. 2. Some decisions
like with which angle and speed the agent should dribble are made.
For the supervision process it is very important that the supervisor
has the semantics of the respective meta-level action in mind in or-
der to give the right advice. The high-level dribble action in turn is
responsible for correctly determining when to kick and intercept the
ball in order to move player and the ball to the demanded position on
thefield.

dribble()
if ball isnot in kickable margin then
return intercept()
else
if path toward opponent goal isfreethen
ang <+ direction to opponent goal
type < DRIBBLE_FAST
elseif path toward goal isfairly freethen
ang <+ direction to opponent goal
type <— DRIBBLE_SLOW
else
ang < getDirectionOfWidestAngle()
if ang = widethen
type <— DRIBBLE_FAST
else
type <— DRIBBLE_SLOW
end if
end if
end if
return dribble(ang, type)

Figure2. Thedribble action which is executed by the decision tree

Inthefollowing, we give an overview of the categories (meta-level
actions) which were used.

e Outplay Opponent The ball is played into the opponent’s back
followed by an intercept action.

e Dribble calculates the angle relative to the agent where it should
dribble to. A second argument is the speed with which the agent
should dribble. Two different speeds are distinguished: slow and
fast.



Direct Pass comprises several actions. It is distinguished between
direct passes of an attacker and between a defensive player and
amidfielder. Moreover, there exists a pass action for back passes
and passes in front of the player. We have to split the direct pass
action because the different aspects (playing a pass to a player in
front or to the back) does not fit in one pass action model. C4.5
is not able to determine the differences in the semantics only by
looking at the attributes. Each different instance of a direct pass
share the calculation of the “least congested team-mate”. Heuris-
ticaly, this team-mate is chosen. The heuristics is based on the
number of opponents in a certain distance around the player, there
exists afree pass-way to that respective player, and some more.

A Through Pass is a pass which is played behind the opponent
defense. A free space behind the defensive line is found where a
team-mate is able to receive.

A Leading Passis a pass in the run-way of the respective team-
mate. It is calculated if ateam-mate can intercept the ball after the
pass in a certain amount of time.

The Shoot at Goal action calculates a point on the opponent goal
line with maximum distance to the opponent goal keeper.

With Clear Ball the player simply kicks the ball as far away as
possible. For instance, if a defender is not able to dribble or pass
the ball to ateam-mate it seem reasonable to bring the ball as far
away from the own goal as possible.

Turn to Opponent Goal When the agent isin ball possession and
cannot see the opponent goal in order to perceive the opponent’s
goal keeper position, this action enables the agent to turn towards
the goal without leaving the ball.

3.2 Constructing the Attribute Set

In order to generate a good classification by the C4.5 algorithm
choosing an appropriate attribute set is a crucia task. Having irrel-
evant attributes in the attribute set is the main reason for overfitting
[8, 9]. Another difficulty for finding an appropriate set liesin the na-
ture of the soccer domain. As there are different player types and
situations during a game where each player has to react in different
ways according to its type and location on the field, we have to ac-
count for this by dividing the field into different regions. One such
possible division is depicted in Figure 3 which was proposed in [1].
One approach to the problem could have been to learn different trees
for different player types, such as attacker, midfielder, defender, by
constructing the test sets with only the relevant information. How-
ever, this approach raises several problems: (1) itisnot trivial to rec-
ognize all relevant regions; statically dividing the field into defense,
midfield and attack is not sufficient because also a defender might
sometimes be located in amidfield region, (2) aseparate construction
of the training set for each region and player type is a tedious task
and available data from the LoGPLAYER® consists of whole game
information, (3) different decision trees for each player type accord-
ing to the game situations demand a selection mechanism that tells
which tree should be consulted; this would take the same problem to
ahigher level.

Therefore, we decided to use only one decision tree containing
the distinguishing features like player types and playing region as
attributes. We al so restrict the consulting of the decision tree to game
situations where players are in ball possession.

From the considerations above and from many experiments we
arrived at 35 attributes, which can be summarized as follows:

3 The LoGPLAYERisatool coming with the SIMULATION LEAGUE simula-
tion server to replay recorded games.
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Figure3. Possibleregions aplayer can bein.

Type of player is a discrete attribute and distinguishes between
defender, midfielder, and attacker.

Playing region is a discrete attribute representing in which region
the player islocated. The different regions are depicted in Figure
3.

Closest teammate to ball is a boolean attribute denoting if the
player isthe closest player to the ball.

Distance and angle to ball, goals and opponent goal keeper are
continuous attributes determining the agent’s distance and angle to
theball, the own aswell asthe opponent goal, and to the opponent
goal keeper.

Distances and angles to the visible teammates and opponents are
anumber of attributes denoting the visible teammates and oppo-
nents of an agent.

Closest team to the ball is a boolean attribute which istrue if one
player of our team isthe closest player to the ball and false other-
wise.

Ball possessing team takes three values corresponding to whether
the ball isin kickable range for our team, for the opponent team,
or for none.

Ball distances and angles to both goals are continuous attributes
representing the distances and angles of the ball to both of the
goals.

Opponent goali€'s distances and angles to itsgoal postsisanum-
ber of attributes representing the the distance and angle of the op-
ponent goalie to the opponent goal posts.

The reader should note that it was the decision-tree learning algo-
rithm that ultimately decided that these are the relevant attributes of a
game situation for aplayer in ball possession, as only these attributes
were used in the decision tree. For example, it turns out that only
the five nearest players to the ball are ever considered relevant. One
possible explanation for this are the restrictions due to two dimen-
sions of the current SIMULATION LEAGUE, where passes across the
opponent defense are impossible. Other attributes which were used
during tests were not contained in the resulting tree and therefore
deemed irrelevant.

We also remark that the choice of attributes may likely be different
for players other than the one in ball possession. For example, one
would not expect the goalie to care much about the distance to the
opponent’s goal .

The reader should note that many of the above attributes have a
continuous domain. We make use of C4.5’s ability to discretize con-
tinuous attributes given the training set. This discretization some-
times results in wrong classifications during the consulting phase,
as hard bounds on the attributes are drawn. Nevertheless these errors
seem acceptable in practice.



MyPlayerType = 2:
BallDistanceToOpponentGoal <= 18.2609
MyCurrentPlayingRegion = 4: 9 (6.0/1.2)
MyCurrentPlayingRegion = 5:
MyDistanceToOpponentGoal <= 12.4953
MyDistanceToOurGoal <= 92.6233 : 1 (3.0/2.1)
MyDistanceToOurGoal > 92.6233
MyDistanceToOpponentGoalie > 18.5529
MyDistanceToOpponentGoalie <= 18.5529
| OpponentGoalieGoalRightCornerAngle <= 47.7002
| OpponentGoalieGoalRightCornerAngle > 47.7002
| | MyAngleToBall <= 26.746 : 11 (4.0/1.2)
| | MyAngleToBall > 26.746 : 10 (2.0/1.0)
MyDistanceToOpponentGoal > 12.4953
MyDistanceToOpponentGoalie <= 6.47349
OpponentGoalieGoalRightCornerDistance > 16.9349
OpponentGoalieGoalRightCornerDistance <= 16.9349
MyDistanceToSecondVisibleOpponent <= 5.27978
MyDistanceToSecondVisibleOpponent > 5.27978
MyDistanceToOpponentGoalie > 6.47349
MyAngleToOpponentGoal <= -103.167 : 10
MyAngleToOpponentGoal > -103.167
MyDistanceToThirdVisibleOpponent <= 8.71111
MyDistanceToOpponentGoal <= 14.6303 9 (2.0/1.0)
MyDistanceToOpponentGoal > 14.6303
| MyAngleToFirstVisibleTeammate > 53.8028
| MyAngleToFirstVisibleTeammate <= 53.8028
MyDistanceToThirdVisibleOpponent > 8.71111
ClosestTeamToBall = 0: 1 (0.0)
ClosestTeamToBall = 2: 11 (2.0/1.0)
ClosestTeamToBall = 1:
| MyDistanceToOurGoal > 95.9754 : 9 (5.0/2.3)
| MyDistanceToOurGoal <= 95.9754
| MyDistanceToThirdVisibleTeammate <= 14.797 :[S8]
| MyDistanceToThirdVisibleTeammate > 14.797 :[S9]

9 (3.0/2.1)

11 (40.0/2.6)

9 (5.0/2.3)

4 (3.0/1.1)
11 (11.0/2.5)

(3.0/1.1)

8 (5.0/2.3)
: [S7]

BallDistanceToOpponentGoal > 18.2609
MyAngleToOpponentGoal <= 98.1456
MyAngleToOpponentGoal <= -89.512
MyDistanceToFirstVisibleOpponent <= 1.87341
MyDistanceToFirstVisibleOpponent > 1.87341
MyAngleToOpponentGoal <= -118.357
OpponentGoalieGoalRightCornerAngle <= 12.9107
OpponentGoalieGoalRightCornerAngle > 12.9107
MyAngleToOpponentGoal > -118.357
MyAngleToFirstVisibleTeammate <= -113.017
MyAngleToFirstVisibleTeammate > -113.017
| MyDistanceToThirdVisibleTeammate <= 13.8264
|| MyDistanceToThirdVisibleOpponent <= 14.2218
|| MyDistanceToThirdVisibleOpponent > 14.2218
|
|

8 (21.0/2.5)

10 (53.0/3.8)
8 (3.0/1.1)

4 (7.0/2.4)

8 (9.0/2.4)
1 (4.0/2.2)

MyDistanceToThirdvVisibleTeammate > 13.8264
| MyDistanceToOurGoal <= 74.9802 : 10 (15.0/4.7)
| ] MyDistanceToOurGoal > 74.9802 : 4 (2.0/1.8)
MyAngleToOpponentGoal > -89.512
BallAngleToOpponentGoal <= 32.6327
| ClosestTeamToBall = 0: 1 (0.0)

Figure4. Excerpt from the resulting decision tree.
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3.3 Gatheringthe Training Data

For the supervision process we extended the LOGPLAYER to be able
to associate the actions described in Section 3.1 to players. This
supervisor monitor generates the training examples by storing the
output category (actions) together with the input categories (world
model information).

It isimportant to note that while cal cul ating the attribute values we
cannot use the global information from the LOGPLAY ER directly. In-
stead, we must cal culate the supervised agent’s relative world model
from the global information and derive the attribute values from
it. This is important because while the agent consults the decision
tree in on-line games, the world model information comes from the
SOCCERSERVER, which supplies the agent with relative information
about the world model. Therefore, in the supervision process by cal-
culating the relative information from global view, it is guaranteed
that our training and test data are almost from the same distribution.

Another important point to be noted is that the supervisor should
have agood ideaof how soccer isplayed in order to give adviceto the
agent. For humans it is easier to classify a given situation including
qualitative measures and give advices of what to do than to formalize
agood action selection scheme. In the supervision process, the idea
to specify the action classification of aplay situation wasthat aplayer
should select the most suitable action which provides him with the
best advantage among alternatives actions. In this case, we can say
that each action has a priority which depends on the player type and
the region the agent plays in. Below is some part of the scheme that
we used in the supervision process while advising the agents:

if scoring prob. is very high then
goalshot
else if agent in defensive region close to our goal then
if no opponent close and agent faces our goal then
turn to opponent goal
else if there is a very free teammate ahead then
pass ball directly to this teammate
else if trajectory to opponent goal is fairly free then
dribble forward
else
clear ball
endif

else if agent in wings close to opponent goalie then

One might ask why we simply did not implement the above
scheme instead of using a learned decision tree. As motivated in
the introduction human beings are good in classifying the world into
qualitative categories but encoding this as agent control software is
much harder. Asone can see from the scheme it uses qualitative state-
ments like “very” or “fairly”. When supervising “fairly” is evaluated
by the supervisor in the complex situation the agent is in. On the
other hand, by having a qualitative world model it would be inter-
esting to compare an agent using the supervision scheme as action
selection with the decision tree learned by C4.5.

Naturally, the supervisor makes mistakes in the classification or
decides on the border line, giving contradictory advices. But as C4.5
is very robust against such mistakes they do not matter that much as
they would in a hand-coded variant of the scheme.
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3.4 Consulting the Decision Tree

In the previous sections, we considered how the attribute and data
sets are gathered through the supervision process (the training
phase). After the training phase the model generation phase startsin
which these input files are passed through the C4.5 system, and the
decisiontreemodel isproduced by executing the C4.5 program. That
is, at the end of these phases we have acquired a model which can be
used by an agent to classify unseen cases. In the RoBoCuP context,
classification means offering a convenient action to the agent asitis
playing an on-line game in the SOCCERSERVER. This task is done
in a different process which we call the consult phase in which an
agent consults the resulting decision tree to select an action in aplay
situation. An agent consults the decision tree model when the ball is
kickable for him. In this case, a new process is started in which the
attribute values are cal cul ated according to the world situation. Based
on these values the decision tree offers an action category which will
be performed by the agent in this particular world situation, and the
consult process halts for this time instance. Whenever the agent isin
the ball-kickable margin, this process is started again. This process
repeats until the game finishes. The hierarchical relationship between
these phases is shown in Figure 5.

Training Phase i Model Generation | Consnlt Phase |
. Phase : :
i | w data collection Lo : '/J\
] P | cas W oK
— VAR
561 CTeation "

automatic

Figure5. Overview of processing the Reactive Component for our soccer
agents

Figure 4 shows parts of the resulting decision tree for a midfield
player. Attributes are the nodes in this tree, e.g. MyPlayerType or
BallDistanceToOpponent Goal. The leaves of the tree can be identi-
fied by numbers which correspond to a respective meta-level action,
e.g. action 1 stands for dribble, 4 represents a through pass, and 11
means shoot to goal. The pair which follows an action shows the
number of training instances and the number of misclassifications.
The numbers in square brackets represent another subtree which is
not shown here for readability.

4 Empirical Results

For assessing the quality of the learned decision tree we conducted
several experiments.

Thefirst question of interest was the accuracy of our training data.
In total, we collected 3000 training examples and grouped them in
training sets in steps of 500 examples up to the largest set contain-
ing the whole number of training examples (see Table 1). For each set
size we built several instances choosing randomly from the whole set
of training data. Table 2 shows the classification error rates. The col-
umn Tree size reflects the number of nodes the tree contains. Based
on this table we can make the following observations:



First, the results show a (dightly) decreasing error rate with an
increasing number of examples. The fact that we are left with an er-
ror rate of amost 9 % even before pruning has at least two reasons.
One reason is that the supervisor makes mistakes giving contradic-
tory examples. The other is that we use a large number of contin-
uous attributes. For a continuous attribute, C4.5 finds a split value
which maximizes information gain for the respective attribute. This
discretization leads to misclassifications.

Second, in each category, we see the error rate of the pruned treeis
higher than that of the original tree. Actually, this result is expected
since in the pruning process some branches of the tree are replaced
by aleaf node, yielding misclassification of some of the examples
which were previously classified correctly.

Finaly, it should be noted that the size of the trees gradually in-
creases as the size of training data gets bigger, since C4.5 adds new
branches to the decision trees in order to correctly classify the data
instances.

Category | 1 | 2 | 3

| 4 5 6
SefSize | 500 | 1000 | 1500 |

|
2000 | 2500 | 3000

Table1l. Sizesof thetest sets.

cat Before Pruning After Pruning

" | Treesize | Error(%) | Treesize | Error
1 174 8.40 144 9.74
2 353 7.82 296 9.40
3 493 8.76 422 | 9.94
4 672 8.60 588 9.75
5 846 8.20 722 9.50
6 979 8.02 847 | 9.30

Table 2. Error rates for the training set.

The next interesting question was how good the decision tree clas-
sifies unseen examples. We therefore played alarge number of games
against severa teams with adifferent tree for each category from our
training set (For each category we collected 1500 test examples). For
assessing “ground truth” we classified for each logged game the sit-
uations according to the supervision scheme we presented in Section
3.3. Theresults over the training games are presented in Table 3 and
Figure 6

Category | 1| 2 | 3 |
Classification Ratio (%) | 35.1 | 46.3 | 59.8 |

4
64.1

Table3. Resultsof training games.

By looking at the table and figure we can see that there is a sharp
increase in the correctness between the Category 1 and Category
3. However, the performance increases only dightly between Cat-
egories 3 and 5. In the last category we even see a small reduction
in the correctness of the classification. This suggests that the optimal
size of the training set isreached at around 2500 examples.

The highest ratio of correct classifications we obtained is 66.8 %
(Category 5). If we take the RoboCup’s domain characteristics and
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Figure6. Learning curve of the agent

restrictions into account, we can say that this value is quite reason-
able. Especially our results seem to compare favorably with other
case studies. For example, Matsubara et. al. [7] performed an exper-
iment, in which only the simple situation of two attackers attempting
to score a goal against a single opponent is examined. In this exper-
iment, the attackers learned when to select either ‘pass’ or ‘shoot’
actions. Theratio of the correct classification that the results showed
was 68 %. Note also that the choices in this experiment are far sim-
pler than in our case where we consider al skills for all types of

players.

AllemaniACs: Robolog 2:0
AllemaniACs: VirtuaWerder  1:0
AllemaniACs : UvaTrilearn 0:9
AllemaniACs: WrigthEagle  0:0

Table4. Some test game results

We played severa games against SIMULATION LEAGUE teams
from 2003 showing the performance of the learned decision tree. Ta-
ble 4 shows the results of some of these games. Against mediocre
teams like Robolog or Virtual Werder we are able to win. Against
the world champion Uva Trilearn our approach leaves room for im-
provement. One has to note that for these games the agent used the
decision treewhen aplayer wasin ball possession and executed some
standard behavior like “move to strategic position” or “search ball”
otherwise. The agent was not highly tuned as we wanted to see the
performance of the decision tree.

5 Conclusions

In this paper we described an application of the decision-tree learn-
ing method C4.5 to RoboCup’s SIMULATION LEAGUE. The method
was used to learn the action selection strategy of the whole team,
that is, defenders, midfielders, and attackers, when a player isin ball
possession. We were able to obtain decision trees which performed
surprisingly well in real game situations. Moreover, the method is
suitable for selecting the relevant attributes from a given set of qual-
itative world descriptors.

While this paper focusses on reactive action selection, we believe
that cooperative team-play cannot be achieved by reactive control
alone, taking only the current game situation into account. Consider,
for example, the situation where a wing-change would be necessary



because one side of thefield is blocked by opponents. A good choice
would be to shift the game to the other wing of thefield. It is hard to
imagine how such behavior could come about without some form of
deliberation where different possible courses of action are considered
and evaluated.

For this purpose we have developed an architecture which pro-
vides for reactive control as well as a deliberative component using
the logic-based language Golog [6]. Golog is alanguage for reason-
ing about actions and change and is based on the situation calculus
[14]. Recent extensions like dealing with a continuously changing
world [5] and the integration of aform of decision-theoretic planning
[2] to account for the uncertainty arising in the soccer domain makes
it a suitable language to reason about scenarios like a wing-change
and to coordinate the agents accordingly (cf. [3] for an example in
the soccer domain).

When using deliberation one needs a symbolic representation of
the environment. Therefore, we are interested in building up a qual-
itative world model which can be used for the deliberative compo-
nent. One of the central problemsis finding the appropriate attributes
to describe the environment in a qualitative way. Recently, Dylla et
al. [4] approached this problem by looking at the issue of specifying
soccer moves based on the knowledge from a domain expert’s (from
[210] in their case) for different RoBOCUP leagues. As soccer theory
isdescribed in avery abstract fashion, qualitative descriptions clearly
seem important, but the theory itself does not answer the question of
which qualitative descriptions are most suitable.

The present paper can perhaps be thought of as one step in this
direction. Aswe saw, one interesting outcome isthat for the player in
ball possession only the five nearest team-mates and opponents seem
to matter. Applying the presented approach also for other players
like the goal keeper one probably can learn more about the relevant
information in robotic soccer.

We believe that the proposed method for reactive action selection
is not restricted to the RoBoCupP domain. Highly dynamic domains
have in common that actions must be performed rapidly, even if
those actions seem to be sub-optimal. Applying decision-tree learn-
ing yields one method for implementing a reactive action selection
mechanism. In future work we will apply this approach to other
dynamic real-time domains, for instance to soft-bots in computer
games, to get comparable results. Also the suitability of decision-
tree learning for achieving good attribute sets for qualitative world
modeling will be further investigated.
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Dynamic Configuration of a Team of Robots

Robert Lundh and Lars Karlsson and Alessandro Saffiott!

Abstract. We study teams of autonomous robotic agents in whichrobot A and the gate. Robot B can therefore offer this functionality
agents can help each other by offering information-producing reto A so that A can perform its task more reliably — see Fig. 2 (right).
sources and functionalities. Depending on the current situation and In general, the same task can be performed by using different func-
tasks, the team may need to change its functional configuration, thaibnalities in different robots and connected in different ways. For ex-
is, which agents provide which functionalities to whom. We pro- ample, the previous gate-crossing task can be achieved by either (1)
pose to use knowledge-based techniques to automatically synthesizennecting the camera functionality in A to the gate-crossing func-
new team configurations in response to changes in the situation dionality in A, or (2) connecting the camera functionality in B to the
tasks. This note summarizes our approach, and reports our prelimgate-crossing functionality in A. We informally catlonfiguration
nary steps in this direction. any way to allocate and connect the functionalities of a distributed
multi-robot system. Note that we are interested in functional soft-
ware configurations, as opposed to the hardware configurations usu-
1 Introduction ally considered in the field of reconfigurable robotics (e.g., [7, 12]).
Clearly, which configuration should be preferred depends on the task,
Consider a society of autonomous robotic systems embedded in @tyation and resources. This suggests that the system should be able
common environment. By aautonomous robotic systewe mean  to switch to a new configuration whenever these conditions change.
here any computer-controlled system able to sense the environment, The focus of our work is to study configurations of a society of
take decisions about actions to perform in the environment, and pefghotic agents. Our objective is threefold:
form those actions. These include mobile robots, like the one pictures
in Fig. 1, as well as simpler devices like domestic appliances or mort. To define the concept of functionabnfigurationof a robot soci-
itoring apparatuses. We do not assume that the systems in the societyety: which robot is providing which functionalities to which one,
are homogeneous: they may have different sensing, acting, and rea- and how.
soning capacities. 2. To study how talynamically changéhe configuration of a robot

From an abstract point of view, this society can be seen as one society in response to changes in the environment, in the tasks, or
distributed robotic system. The system usually includes a number of in the available resources.
functionalitiesorganized in some way, for instance, in a generic two-3. To use knowledge-based techniques (e.g., planning and monitor-
layer hybrid architecture like the one shown in Fig. 2 (left). In these ing) to automaticallydetectwhen a configuration is not adequate
architectures, the top layer implements higher cognitive processes for any more, angynthesize new one for the current situation.
world modeling (M) and for planning and deliberation (D). The bot-
tom layer implements sensori-motor processes for sensing and per-
ception (P) and for motion control (C), which are connected to a set
of sensors (S) and actuators (A).

In practice, the above functionalities can be distributed across dif ;
ferent physical units in the society (robots, devices, etc). Each un 1l e e
includes several functionalities in each one of fie M, D, C, S, i i | :
A} classes, which it can use to perform the tasks assigned to it. | 3
addition, each unit may use functionalities from other units in orde :
to compensate for some one that it is lacking, or to improve its own
Consider for example the following scenario involving a pair of out- e
door robots, A and B, equipped with pan-tilt stereo cameras. Robc| "* -
A needs to perform the action to cross a gate in a metalic fence, & ...
shown in Fig. 1. To do so, it must have a P functionality to measuref™ |
the relative position and orientation of the gate, since this informa-£—"
tion is needed by the controller. Robot A can use its stereo camert
to observe the edges of the gate during the crossing, but the me/{-
sure obtained when these edges are near is not very reliable. Robd: e
B, however, could observe the entire scene from a distance and com-
pute a better estimate of the relative position and orientation between

Figure 1. An outdoor robot about to cross a gate in a fence.

1 Center for Applied Autonomous Sensor Systems, UniversitfDabro,
Sweden{robert.lundh, lars.karlsson, alessandro.saffi@aass.oru.se
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Robot A Robot B

Figure 2. Left: abstract view of a team as a distributed robotic system. Right: a simple team configuration consisting of two-robots: Robot B is providing a
missing perceptual functionality to Robot A.

At this initial stage of our work, we focus on the first objective: to supervision since we deal with multiple physical agents with both
define a concept of configuration which is adequate from the point ofensing and acting capabilities.
view of the other two objectives above. The rest of this paper outlines In a paper more similar in spirit to this one, Simmons et al [20]

our first steps in this direction. consider a task involving a heterogeneous team of robots — a crane,
a robot with a manipulator, and a robot with stereo cameras — solv-
2 Related work ing a construction task where a beam is placed on top of a stanchion.

This task requires tight cooperation between the robots involved. Co-
There are several relevant areas from which one might take inspiraperation between the robots is hand-coded, although the authors de-
tion to address the above objectives. In the area of multi-robot syselare their intention to use planning techniques to set up the coopera-
tems, much work has been done on the problem of multi-robot taskion. For specifying tasks, they use TDL (task description language)
allocation, that is, how to allocate a number of tasks to a number of19], an imperative language which is a superset of C++. This lan-
robots taking into account that different robots may be differently ad-guage does not appear to be adequate for automatic reasoning about
equate for different tasks (see, e.g., [9] for an overview and analysisgonfigurations by, e.g., a planner.
Some examples are the ALLIANCE architecture [13] and Local El-
igibility approach [25] based on local utility estimates, and the M+
[2] andMURDOCH [8] approaches. Closely related to task allocation 3 Framework
are the issues of robotic team configuration and of dynamic role as- i . . L
signment [23, 21, 11]. Chaimowiet al [3] consider roles as the part The _f|rst goal in our research program is to deyelqp a definition of
of an individual agent in a cooperative task. They define a role as gonflguratloq that is adequate for_the three objectives presented in
control mode in a hybrid automaton, and a role assignment is a trarf '€ Introduction. In general, a configuration of a team of robots may
sition in that automaton. The approach that we propose in this papépclude interconnected functionalities of two types: information pro-

departs from the above works since we focus on the distribution anMiding functionalit_ie_s, that is, funct_ionglities thf"t change th_e inter-
— in particular — the interconnection of atomic (action and percep-nal state by providing or processing information; and action exe-

tion) functionalities. These are combined to form behaviors Whichcutions, that is, functionalities that change the state of the environ-
achieve tasks ’ ' ment. (Some functionalities can have both aspects.) In the work pre-

The problem of distributing the performance of a task across a§ented here we focus on the information providing functionalities,

number of agents according to their respective capabilities has beei'C€ these are a less studied aspect in the planning literature. The

widely addressed in the Distributed Al (DAI) and in the Multi-Agent extension of our framework to include action functionalities is left as
Systems (MAS) communities. Early work in DAI considered dis- aseconq step. . ) ) L

tributed problem solving settings with a precedence order amon To define our n_otloq of configurations, a clarlflcr_:ltlon of the three
sub-tasks [6]. Later work has included the notion of coalitions be- oncepts of functionality, resource and channel is in order.

tween sub-groups of more closely interacting agents [17]. The no-

tions of team-work [14], capability management [22] and norms [1]3_1 Functionality

have also been used in the MAS community to account for the dif-

ferent forms of interactions between the sub-tasks performed by thg functionalityis an operator that uses information provided by other
agents in a team. These works, however, typically assume softwaf@nctionalities to produce additional information. Each instance of

agents, and are not concerned with issues of physical action, mobik functionality is located in a specific robot (or other agent). The
ity, and perception, which play a central role in our work. functionality consists of:

Another area of interest is program supervision, where program
modules are combined, tuned and evaluated in order to solve specific a specification of inputs, to be provided by other functionalities.
computational tasks such as image processing, often using planning For each input, it contains information about domain (e.g. video
techniques [10, 4, 18]. Our work adds several dimensions to program images) as well as timing information (e.g. every 100 ms).
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o a specification of outputs, to be provided for other functionalities. g pot o
They also contain domain and timing information.

o a specification of relations between inputs to outputs.

e a set of causal preconditions, that is conditions in the environment
that have to hold in order for the functionality to be operational.

Measure pos +
orientation of
door

Pos + orient

of door wrt A '

e asetof causal postconditions, that is conditions in the environment
which the functionality is expected to achieve. Door

e possibly also a specification of costs in terms of e.g. computation
and energy.

3.2 Resource

A resourcds a special case of a functionality. There are two different Rrobot A
types of resources: sensing resources and action resources. As men-
tioned previously, only sensing resources will be considered in this

Camera
on Door

Pos + orient

of robot A
wrt door |

transformation

Pos + orient

paper. Asensing resourckas no input from other functionalities, and
is typically a sensor that gives information about the current state of Robot B
the surrounding environment (e.g., a camera) or perhaps information
about the internal state of the robot.

3.3 Channel

A channelransfers data from one functionality to another. A channel
can be in terms of either inter-robot or intra-robot communication,
and be on different mediums (radio, network, internal connections).
A channel may have requirements of band width, speed and reliabil-

ity.

3.4 Configuration

A configurationis the set of functionalities and the set of channels

that connects functionalities to each other. Each channels connects

the output of one functionality to the input of another functionality. =~ Robot A
In the context of a specific world state, a configuratioadsnissi-

ble if the following conditions are satisfied:

e each input of each functionality is connected via an adequate Rebot B
channel to an output of another functionality with a compatible
specification (information admissibility).

e all preconditions of all functionalities hold in the current world
state (causal admissibility).

e the combined requirements of the channels can be satisfied.

3.5 Examples

In order to illustrate the above concepts, we consider a concrete ex-

ample inspired by the scenario described in the introduction. In order
to more easily test the example on real robots (see next section), we

consider an indoor office building. A robot is assigned the task of

moving from one room to another one by crossing a door between the
two rooms. The “cross-door” action requires information about posi-

of door wrt A
Pos + orient

Camera of door wrtB g/ (ransformation |—

on B

Pos of robot A
wrt B
Global orient of B
Orient of
robot A wrt B
v
Global orient of A Pos + orient
of door wrt A
Pos + orient

Camera of door wrt B P transformation ——

on B

Pos of robot A
Image wrt B
|
Image
v

Camera Pos + orient

on A of door wrt A

tion and orientation of the door with respect to the robot performing
the action. The resources available are two indoor robots (including Robot A
the one crossing the door) each one equipped with a camera and a
compass. The door to cross is equipped with a wide-angle camera.

Figure 3. Four different configurations that provide the position and
orientation of a given door with respect to robdt See explanation in the
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Two functionality operators from this scenario are shown below: This in turn requires that we know the relative position and orienta-
tion of robot A relative toB. The relative position is obtained from

(Op Measure_Door (?Y) the camera information. The relative orientation can be obtained by
Inputs:  Image (?X) . . comparing the absolute orientations of the two robots, measured by
Outputs. Door pOSItlon & orientation their two on_board Compasses_

of ?Y relative to ?X
Preconds: Door ?Y fully visible
in image from ?X

The fourth configuration in Fig. 3 is similar to the third one, ex-
cept that the orientation of robot relative to B is obtained in an-
other way, i.e., no compasses are used. Both robots are equipped with

-FF?;;(;?;%S{ measuring door procedure cameras and have a functionality that can measure the bearing to an
) object. When the robots are looking to each other, each robot can
measure the bearing to the other one. By comparing these two mea-
(Op ICamera (?X) surements, we obtain the orientation of robbtelative to robotB.
nputs: -

Outputs: Image (?X)

Preconds: CameraOn

Postconds: -

Transform: image retrieval procedure
) In order to test whether sharing of functionalities in different config-

urations would actually allow us to solve simple coordination exam-
The input and output of a functionality represent the data flow asples, we have conducted a series of experiments using a pair of real
sociated with the functionality. In thdeasure_Door example we  robots equipped with different sensors. These experiments were also
have an image taken by camé4 as input and from that we are able aimed at assessing the mechanisms for the switching between con-
to compute the position and orientation of the d@Wrrelative to?X figurations. In these first experiments, the configuration generation
as output. The second example is an operator for a camera. Outpand configuration switches were hand-coded. We intend to eventu-
from Camera is an image taken by came?PX. SinceCameraisa  ally make both aspects automatic.
sensing resource no input is specified. There are also certain condi- We present here a simple experiment based on the third and fourth
tions that need to be satisfied in order for the functionality to operategonfigurations in Fig. 3. The platform used were two Magellan Pro
and conditions that will be satisfied if the functionality is executed.robots from iRobot, shown in Fig. 4. Each robot runs an instance of
This causal flow is represented as preconditions and post-conditioribe layered hybrid architecture Thinking Cap [16].
in the operator. For instance the precondition Nteasure_Door Both robots are equipped with compasses and fixed color cameras.
is that the door?Y is fully visible in the input image and the pre- They have additional sensors (e.g., sonars, laser, and an electronic
condition forCamera is that the camera is switched on. The body nose) not used in our experiments. Since the cameras are fixed, they
of the operator describes the computations performed on the input igan only measure distances to objects further away than 2 meters.
order to generate the specified output provided that the preconditionEhe environment consists of two rooms (R1 and R2) with a door
are satisfied. Notice that the output @hmera matches the input connecting them. The door and the robots have been marked with
of Measure_Door . Intuitively, this means that a channel between uniform colors in order to simplify the vision task (see Fig. 4).
these two functionalities can legally be created. The following scenario describes how the two configurations were
Fig. 3 illustrates four different (admissible) configurations that used, and demonstrates the importance of being able to reconfigure
provide the information required by the action “cross-door”, which dynamically. Robotd and robotB are in room R1. Roba#l wants
include the functionalities above. to go from room R1 to room R2. Since the camera can only measure
The first configuration involves only the robot performing the ac- distances to objects further away than 2 meters, rdlistnot be able
tion. The robot is equipped with a panoramic camera that makes #o perform the action on its own. Robstis equipped with the same
possible to view the door even during the passage. The camera preensors as robot, but since robot3 is not crossing the door it is
duces information to a functionality that measures the position anehble to observe both the door and rolofrom a distance during the
orientation of the door relative to the robot. whole procedure. We therefore configure our team according to the
The second configuration in Fig. 3 shows the other extreme, whethird configuration in Fig. 3, and execute the task. Rataontinu-
all information is provided by the door that the robot is crossingously receives information about the position and orientation during
and the robot is not contributing with any information. The door is the execution of “cross-door”.
equipped with a camera and functionalities that can measure the posi- When robotA enters room R1 it signals that the task is accom-
tion and orientation of the robot relative to the door. This informationplished. This signal is received by robBtand the current config-
is transformed into position and orientation of door with respect touration is played out. Next, robd® is assigned the task of going
the robot before it is delivered to robdt from room R1 to room R2. The same configuration as before is used
The third and fourth configurations in Fig. 3 consist of two robotsto solve this task, but with the roles exchanged — i.e., robas
(A andB), each with its own set of resources and functionalities. nhow guiding robotB. This time, however, during the execution of
In the third configuration, robotd (the robot performing the the “cross-door” behavior a compass fails due to a disturbance in the
“cross-door” action) only contributes with one resource, a compassnagnetic field. This makes the current configuration not admissible,
Robot B’s resources are a compass and a camera. The camera pr@Ad a reconfiguration is necessary to proceed. The fourth configura-
vides information to two functionalities: one that measures the distion in Fig. 3 is still admissible even with no compass, and we there-
tance and orientation to the door, and another one that measures tftge use this one to carry out the remaining part of the task. Fig. 5
distance to robotd. All these measurements are computed relativeshows the trajectories performed by the robots in a sample run of this
to robot B. In order to compute the position and orientation of the experiment. In the picture, robet is standing still at the observing
door relative to robotd, we need to use a coordinate transformation. position and roboB has just accomplished its task.
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4 A Simple Experiment
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Figure 5. RobotA and B have both reached room R2. Circles show robot

Figure 4. RobotB is guiding robotA through the door.

A’s trajectory and dots show robdt’s trajectory.
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Abstract. In agents theory, it is commonly accepted that reactiv-
ity is one of the main features of an agent. Reactivity can be defined
as the capability of an agent to respond to significant changes in its
environment. Traditionally, reactivity has been confronted with the
agent’s capability of deliberation, in the sense that the most reac-
tive an agent is, the least time it spends deliberating (and vice-versa).
Agent architectures normally present a fixed proportion between re-
action and deliberation, normally implemented by assigning a given
amount of resources to each of them at design time, with no possibil-
ity of further adaptation at run time. In this way, the agent may work
well for certain environments/problems, but it can poorly adapt this
feature to changes in such initial conditions.

Therefore, if the agent could accommaodate its reactivity to the cur-
rent situation of the environment, its adaptability would be consider-
ably enhanced and its behavior would be closer to humans. Further-
more, if the agent has real-time requirements, the agent’s ability to
adapt its reactivity becomes essential, because the environment will
typically undergo periods of different stress conditions. In this sense,
this paper introduces the concept of Reactivity Degree. This concept
implies some meta-reasoning capabilities to be available in the agent,
in order to dynamically decide the amount of resources which have to
be assigned to deliberation and reaction. The paper also shows how
to implement such concept in a hard real-time, hybrid agent archi-
tecture named ARTIS, as well as some experimental results which
demonstrate the usefulness of this new concept.

1

Reactivity is a general feature of live organisms, at both organic and
cell level. It consists of producing a reaction to every physical or
chemical stimulus of the environment. This reaction allows for the
survival and development of such beings.

In the context of software systems, a reactive system is consid-
ered as a system that interacts with some independent “environment”,
which can be either physical (belonging to the real world) or sim-
ulated by another software system. In any case, the reactive sys-
tem will need some sensors to detect changes in the environment,
to which they have to produce responses of some kind. Normally,
these responses will modify the internal state of the system and/or
the environment itself.

In agents theory, it is commonly accepted that reactivity is one of
the main features of an agent. Reactivity can be defined as the capa-
bility of an agent to respond to significant changes in its environment.

Introduction

L Work partially funded by grants DP12002-04434-C04-02 and T1C2003-
07369-C02-01 of the Spanish government.
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This feature is present in all the alternative agent definitions in the lit-
erature, from the simplest [13] to the most complex ones [17]. Tradi-
tionally, reactivity has been confronted with the agent’s capability of
deliberation, in the sense that the most reactive an agent is, the least
time it spends deliberating (and vice-versa). In fact, these confronted
concepts have been used to classify the agent architectures in the
literature into three groups (as established in [17]): reactive, delib-
erative and hybrid. Reactive and deliberative agent architectures are
in opposite extremes, defining agents which either react to stimuli
immediately (without deliberation) or spend all their time elaborat-
ing the best possible answer, with little or no computational and time
restrictions.

Hybrid architectures, on the other hand, do consider an agent to
possess both characteristics (reaction and deliberation). The propor-
tion of reaction and deliberation in the agent definition may vary in
different agent architectures, but, in every one of them, this propor-
tion is a fixed trait in the agent. Such architectures normally imple-
ment this fixed proportion by assigning some given computational re-
sources to the agent’s reactive and deliberative layers at design time,
with no possibility of dynamically reallocate such resources at run
time. In this sense, each agent architecture is better suited to deal
with certain problem domains and environments, depending on the
amount of deliberation and reaction required, but they are all unable
to adjust this feature to changes in the initial conditions of the prob-
lem.

As a result, if the agent could accommodate its reactivity to the
current situation (including both its internal state and the status of the
environment), its adaptability would be considerably enhanced. In
this sense, it would behave closer to humans. For example, if a person
sees an important paper starting to burn, she can spend a moment to
think how to avoid the paper to be consumed by the flames; however,
if her own hand is burning, she will not even think of what to do, she
will just take the hand away from the fire immediately. This basic
example presents a human being solving the same problem in two
scenarios with different reactivity requirements.

Moreover, if the agent has to deal with a real-time environment,
the ability to adapt its reactivity becomes essential, since some (or
all) of the agent responses may have hard real-time restrictions. In
such cases, the amount of time the agent may spend in deliberating
is not only strictly bounded, but it may greatly vary depending on
how stressed is the environment at the present moment. If the agent
is statically designed to cope with the most stressed conditions at all
times, it will waste its resources when such conditions do not apply.
Conversely, underestimating the resources for dealing with the worst
case may result in the agent missing a vital deadline because it spent



too much time calculating the solution.

With all this, the adaptive chances of the agent would be greatly
improved if its reactivity was considered as a dynamic feature, which
could be adapted to the current environmental situation. In this sense,
this paper introduces the concept of Reactivity Degree. This concept
implies some meta-reasoning capabilities to be available in the agent,
in order to dynamically decide the amount of resources which have to
be assigned to deliberation and reaction. The paper also shows how
to implement such concept in a hard real-time, hybrid agent archi-
tecture named ARTIS, as well as some experimental results which
demonstrate the usefulness of this new concept.

The rest of the paper is structured as follows: next section presents
the concept of real-time agent and its base in the real-time sys-
tems field; Section 3 presents an overview of an specific real-time
agent architecture, the ARTIS agent architecture; after that, Section 4
presents the concept of meta-reasoning and its application in the AR-
TIS architecture is presented, paying special attention to the concept
of reactivity degree; Section 5 shows an application example of the
new functionalities of the ARTIS architecture; last section presents
the conclusions of the paper and some ongoing work.

2 Real-Time Agents

Real-time agents are agent-based software systems which have real-
time requirements. In the Artificial Intelligence area, it is a common
misunderstanding that a real-time system is a system which is contin-
uously connected to some real environment, calculating its solution
in non-simulated time; another typical misinterpretation of the term
consider a real-time system as a system which has to provide a fast
result. In fact, a real-time system (RTS) is a system which correction
depends not only of the computation results, but also of the moment
at which these results are produced [15]. In a RTS, the usual way of
specifying the valid interval for a solution is by assigning a deadline
to the task which is calculating this solution, meaning that if the solu-
tion is provided after that deadline, the solution loses quality or even
it is completely invalid. In this sense, a RTS must try to achieve its
objectives while also meeting its deadlines.
There are two types of RTS [15]:

Hard Real-Time Systems (HRTS). These are systems which have
strict time requirements. In systems of this kind, if a task misses
a single of its deadlines, the consequences may be grave (typi-
cally involving the integrity of the system itself, monetary loss or
human lives).

Soft Real-Time Systems (SRTS): These are systems in which miss-
ing a deadline normally supposes a degradation in the system’s
quality response, but not intolerable loss.

According to this, real-time agents may be classified into hard and
soft real-time agents, depending on whether they have strict temporal
requirements or not.

In the RTS field, some research lines have been conducted toward
the objective of adjusting the behavior of the system to changes in
the environment (or in the system’s internal state). This research line
includes developments such as the mode changes [11], which pro-
pose a safe mechanism by which the system may change the set of
tasks at run time without missing any hard deadline. An example
of such techniques in the field of real-time agents can be found in
the CIRCA/SA-CIRCA architecture [7, 8, 6], where a simple syn-
chronous mode change is used. The problem with mode changes is
that they are very drastic, in the sense that maybe it is not necessary
to change the entire set of tasks.
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3 ARTIS Agent (AA)

This section provides a short description of the ARTIS Agent (A.A)
architecture, for hard real-time environments (a more detailed de-
scription can be found in [3] [14] [4]). In accordance with existing
agent architectures [17], the AA architecture could be labeled as a
vertical-layered, hybrid architecture with added extensions to work
in a hard real-time environment [3].

The ARTIS agent architecture guarantees an agent response that
satisfies all the critical temporal restrictions of the system while also
trying to obtain the best answer for the current environment status.
This is due to its capacities for problem-solving, adaptability and
proactivity, which have been added to the architecture.

The architecture of an AA can be viewed from two different
perspectives: the user model (high-level model) [3] and the system
model (low-level model) [16]. The user model offers the developer’s
view of the architecture, while the system model is the execution
framework used to construct the final executable version of the agent.

To translate the user model’ specification into the system model
a toolkit, called InSiDE [14], is used. This toolkit allows the agent’s
designer to define the .A.4’s user model and to convert this model to
the corresponding system model automatically [5]. The result is an
executable AA.

3.1 User Model

From the user model point of view, the A.A4 architecture is an exten-
sion of the blackboard model [9] which has been adapted to work in
hard real-time environments. This model is formed by the following
elements:

1. A set of sensors and effectors allowing the agent to interact with
the environment. Due to the environment’s restrictions, the per-
ception and action processes are typically time-bounded.

A set of in-agents which model the A.A behavior. The main rea-
son to split the whole problem-solving method into smaller en-
tities is to provide an abstraction which organizes the problem-
solving knowledge in a modular and gradual way (see figure 1).
There exists a CLIPS-like language of entities allowing the de-
signer to specify these in-agents.
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Figurel. Modular division of an AA into in-agents

Each in-agent periodically performs an specific task. Each in-
agent has to solve a particular subproblem, but all the in-agents



of a particular .A.A cooperate to control the entire problem, and an
in-agent may use information provided by other in-agents.
In-agents can be classified into critics and acritics. The first ones
are in charge of solving the essential problems of the A4, so their
execution are guaranteed at least for calculating a minimal qual-
ity answer. The last ones are in charge of solving non-essential
problems of the .A.A in order to improve its performance quality.
A critic in-agent is characterized by a period and a deadline.
The available time for the in-agent to obtain a valid response is
bounded and, in this time, it must guarantee a basic response to
the current environment situation.

From a functional point of view, an in-agent consists of two layers
(see Figure 2): the reflex layer and the real-time deliberative layer.

The reflex layer assures a minimal quality response (an off-line
schedulability analysis of the .4.A, considering all the in-agents
in the AA, guarantees that this reflex layer will be fully exe-
cuted). The reflex layer of all the in-agents make up the AA
mandatory layer.

The real-time deliberative layer tries to improve this response
(this layer will be executed in slack time). The real-time delib-
erative layers of all the in-agents form the A.A optional layer.
An acritic in-agent only has the real-time deliberative layer.

. A set of believes comprising a world model (with all the domain
knowledge which is relevant to the agent) and the internal state,
that is, the mental states of the agent. This set is stored in a frame-
based blackboard [2]. In a similar way as the in-agents, there is a
CLIPS-like language of classes to specify this set.

. A control module that is responsible for the real-time execution
of the in-agents that belong to the AA. The temporal requirements
of the two in-agent layers (reflex and deliberative) are different.
Thus, the control module must employ different execution criteria
for each one. In fact, the control module is divided into two sub-
modules [4], Reflex Server -RS—and Deliberative Server -DS—, in
charge of the reflex and deliberative parts of the AA respectively.
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Figure2. ARTIS Agent architecture

One of the main features of the A.A architecture is its hard real-

time behaviour. It guarantees the execution of the entire system’s
specification by means of an off-line analysis of the specification.
This analysis is based on well-known feasibility analysis techniques
in the RTS community, and it is described in [5].
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3.2 System Model

The system model provides a software architecture for the A4 that
supports all the high level features expressed in the user model. The
main features of this model are [5]:

A task Model that guarantees the critical temporal restrictions of
the environment. So, the user model’s in-agents are translated into
system model’s tasks. In this model, a generic task may have three
parts:

— Initial: It is in charge of checking the system state with regards
to the subproblem it knows. It also calculates a first answer to
its problem, with low quality, but in a bounded time.

— Optional: It improves the quality of the answer calculated in
the initial part, but this improvement may use time-unbounded
methods.

— Final: It carries out the best answer calculated.

According to this model, only the initial and final parts of a critical
task will have hard real-time restrictions, and also will be in charge
of the interaction with the environment (by means of the sensor
and effectors).

Off-line schedulability analysis. This off-line analysis only en-
sures the schedulability of real-time tasks (corresponding to in-
agents with critical restrictions). However, it does not build a plan
with the task execution sequence. There is a scheduling policy,
compatible with the off-line analysis, that is used to decide the
next task to be executed at run-time. This allows the A.A to adapt
itself to environment changes, and to take advantage of the tasks
using less time than their worst-case execution time (wcet).

Some slack extraction method to on-line calculate the available
time for executing the real-time deliberative layer.

A set of extensions to the Real-Time Operating System incorpo-
rating features for managing real-time capabilities.

It is very important to emphasize that there exists an automatic
translation process between the user and system models, according
to the correspondence that can be seen in figure 3.

The integration of intelligence in an .AA lies in the effective man-
agement of the slack time by the control module.

The current version of the system model of an AA is implemented
in RT-Linux 3.2-prel over Linux kernel 2.4.18.

4 Meta-Reasoning

In its most general meaning, meta-reasoning is any process interested
in the operation of other computational process inside the same entity
[12]. According to the nomenclature used in [10], an agent should be
able to make two different types of decisions:

Meta or Macro-level decisions managed by the meta-level con-
troller. This controller must be designed to take quick and cheap
decisions about how many resources are dedicated to domain ac-
tions and how many to control actions.

Scheduling or Micro-level decisions managed by the domain-level
controller.

The main purpose of the meta-level control activities is to optimize
the agent execution. To do this, it allocates, in the proper moment and
quantity, the processor and other resources between the control and
domain activities.
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In the AA architecture, the Control Module includes all these con-
trollers above mentioned, but also has to deliver with the peculiari-
ties of this architecture. Due to its two reasoning layers, there are two
domain-level controllers, that is, two schedulers:

First-Level Scheduler (FLS), in charge of the reflex layer. It is part
of the Reflex Server.

Second-Level Scheduler (SLS), in charge of the real-time deliber-
ative layer. It is part of the Deliberative Server.

This Control Module also incorporates the meta-level controller
that must decide, among other things, how many time is dedicated
to macro-level decisions as one of its possible meta-level decisions.
All these decisions are carried out by a set of meta-rules that may
be specified at design time by means of a control language. This
language is also CLIPS-like to look like the rest of languages of the
AA’s user model.

4.1 Reactivity Degree

As it was presented in previous sections, the Reactivity must be seen
as a degree rather than a trait. In this way, the Reactivity Degree of
an agent must be defined.

The Reactivity Degree of an agent is a feature that indicates how
much effort is going to dedicate such agent to deliberate. This de-
gree defines two extreme situations with infinite intermediate states.
These extreme situations are:

If the reactivity degree is zero, the agent works in reflex mode: it
doesn’t spend time to deliberate, to improve the first answer it has
got.

If the reactivity degree is 1, the agent works in deliberative mode:
it dedicates all its time to calculate the best answer to its problem.

As the reactivity degree is closer to 0 the agent is more sensitive to
changes in the environment, whilst if the reactivity degree is closer
to 1, it is more self-centered.
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So, the reactivity degree allows an agent to move along the Arkin’s
robot control spectrum [1] to get the proper features to face the cur-
rent situation.

411 AA'sReactivity Degree

This point centers the question of how to manage the reactivity de-
gree of an agent, in the particular case of an AA.

Focusing on the A.A system model, after executing an initial part
of a task, if there is available slack, the DS takes control of the A.A
during this slack time. One of the DS functions is to use the available
time to schedule the execution of all the active optional parts (the
ones whose initial parts have been executed and their final parts have
not yet been executed).

If the DS finishes its operations before all the slack time is con-
sumed, it returns the execution control to the RS. In this case, the RS
is able to get the most out of this available time bringing forward part
of the critical tasks execution?,

This same method will be used to modify the Reactivity Degree of
an AA.

The Reactivity Degree of an AA is defined as the maximum avail-
able slack percentage that may be used for the agent to improve its
answer (to deliberate) (figure 4). If the reactivity degree is zero, the
agent works in reflex mode (it doesn’t spend time to deliberate, to
improve the first answer it has got), whilst if the reactivity degree is
1, the agent works in real-time deliberative mode (all its available
slack time is dedicated to improving its answers).

Though it will have a default value, the reactivity degree is a dy-
namic value. So, for instance, an initial part of a task could detect if
the agent must go to an emergency mode where it has to act immedi-
ately. In this case, the slack should be temporally annulated, and the
whole system’s execution would be bringed forward (suppressing the
DS and optional parts execution).

2 This method is even used by some second level scheduling policies used
by the DS to join several slack gaps to improve the possibilities of optional
parts execution
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Figure4. AA’s Reactivity Degree

Moreover, if the situation is not so extreme, it couldn’t be needed
to wholly eliminate the slack, only just to reduce it. That is, the slack
may be seen as a value in the interval [0, original slack]. Thus, there
are two extreme execution modes (the one with 0 slack correspond-
ing to the emergency mode or reflex mode, and the one with the
original or maximum slack corresponding to the cognitive mode or
real-time deliberative mode) with an indeterminate number of inter-
mediate execution modes.

The use of this execution modes doesn’t violate the schedulability
of the system, because it only changes the way of slack management.

Anyway, the proper management of the reactivity degree allows
the .A.A to adapt to changes in the environment.

This management is one of the actions that may be carried out
by the meta-reasoning done by the Control Module. This meta-
reasoning process is able to adjust several parameters to change the
AA reasoning process [4], as the reactivity degree, the second level
scheduling policy, ...

4,2 Meta-Rules

Part of the meta-reasoning process is specified by the designer by
means of a meta-rule language named control language. So, this lan-
guage is used to establish the situations in front of which the agent
has to change the reasoning process and how is this change carried
out. For this reason, one meta-rule is triggered by an event (usually
a modification of an agent’s belief). Moreover, it has a condition that
must be fulfilled to execute the actions specified in its right-hand side.
This condition must check if the agent is facing a situation where it
must change to face it.

The actions of these meta-rules establish the different ways the
agent can adapt its way of behaving, allowing to change not only the
reactivity of the agent, but also the usage of its process time.

Figure 5 presents an example of a meta-rule according to the syn-
tax of the control language.

The Meta-Rules are translated to a data structure that is stored in
a shared memory accessible from both parts of the Control Module.
They are interpreted and executed at running time.

The decision of managing the Meta-Rules this way is to allow
to meta-reason about the meta-reasoning process. This meta-meta-
reasoning (that, nowadays, is one of the open issues in this work)
will be able to learn and to forget meta-rules. The learning method
used here will have to take into account its working in bounded time.
Moreover, the agent will have to take into account not to fall in di-
gressing while meta-meta-reasoning, that is, not to spend too much
time in meta-reasoning and/or meta-meta-reasoning that there is not
enough time left to execute nothing more.
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(def MetaRul e | evel 3
( MODI FI CATI ON t ank. t ankA. | evel )
( tank.tankA.level >= 200 )
( tank.tankA.level < 400 )
=>
( SetReactivityDegree ( 0.75 ) )

Figure5. Example of meta-rule
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Figure6. Simulated tanks in LabView 7

5 Example: Sewage Tanks

The main purpose of the following example is to show the possibili-
ties of adaption using this new dynamic Reactivity Degree capability.

5.1 Problem Description

The objective of the agent of this example is to control some sewage
tanks interconnected between them. The A.4 must control that the
liquid level in all this tanks remain within an interval. This interval
may be changed by the user even at running time.

It has to be taken into account that the system to control (the above
mentioned tanks) will be simulated in a computer connected to the
one of the AA by the serial port. So, though it is a simulated process,
from the A.A’s point of view, it acts like a real physical process to
control. The program used to make the simulation is LabView 7° (as
shown in figure 6).

In fact, the .A.A has to control three water tanks: A and B, both with
5000 litres of capacity, and C with 10000 litres of capacity. There are
five sensors at each tank to control their levels. These sensors are
located every 20 % of the tank volume.

The water inputs to the system come from 4 taps with 10, 20, 40
and 80 litres per second of flow, respectively. Each one of these taps
can just be open or closed but their sending flow can’t be regulated
(there are taps all/nothing).

3 Program generator of virtual instrumentation developed for National In-
struments allowing the simulation of physical processes and their real-time
control



A and B tanks have one controlled output with a valve allowing
them to empty their contents over tank C in a controlled way (by
means of such valves). The flow of these outputs is 95 litres per sec-
ond each one. On the other hand, there is valve to control the output
flow of tank C, being of 180 litres per second. All these valves are
also all/nothing.

Some additional inputs and outputs not automatically controlled
have been added to introduce perturbations in the system. So, tanks
A and B have one input tap, or noise, each one with 20 litres of flow
and an output tap, or leak, of 10 litres per second of flow. The water
proceeding of the leak doesn’t go to tank C as in the automatic taps.
It also has some controls to establish the interval of stored volume.
These controls are represented by turning controls for each tank with
the following meaning:

| Position | Minimum Level | Maximum Level

0 0% 20%
1 20% 40%
2 40% 60%
3 60% 80%
4 80% 100%
52 AA’s Design

The AA designed to control all the system is formed by three in-
agents, one for each tank. This is the reason for in-agents in charge
of A and B tanks to be identical.

Each in-agent is formed by three parts:

1. Sensorization: it is in charge of reading the sensors indicating the
level of its respective tank. It is also in charge of reading the but-
tons of choosing the level (the ones in the control panel, and the
emergency ones in the same simulator). This is the initial part of
this critical in-agent.

. Cognition: to calculate the actions to do (opening and closing of
the corresponding tap). This part has three levels, the critical level
0 and two optional levels. The level 0 implements an algorithm to
calculate a quick but low-quality answer:

If the stored volume is under the asked one, open all the input
taps and close the output valve of the corresponding tank.

If such volume is above the asked one, close all the input taps
and open the output valve.

. Action: to carry out the actions calculated by the previous part,
that is, to send the proper actions to the simulator to open or to
close taps and valves.

The main time features of the critical in-agents of this .A.A are the
following®:

in-agents Deadline Period Optionals | WCET* ‘
In_Agent_ A | 2500000 | 2500000 T6-T9 200000
In_Agent.B | 2700000 | 2700000 | T10-T13 200000
In_Agent_.C | 2900000 | 2900000 | T14-T17 | 200000

The column WCET™ indicates the worst-case execution time for
the initial and final parts of the corresponding in-agents in this exam-
ple, it is the same quantity for both cases).

4 All the time features are in micro-seconds (because Linux works in this
magnitude).
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The purpose of this example is to check the improvement in the
flexibility of the .A.A time management. For this reason, some Meta-
Rules to change the .A.4’s Reactivity Degree has been defined (for
instance, to change it to 0 when some tank arrives to its maximum
level, or the one in figure 5).

It has to be underlined that when the execution of a Meta-Rule
changes the Reactivity Degree to 0O, it will accomplish that no more
optional parts will be executed and the execution of the tasks’ final
part will be advanced, that is, the A.4 will act as soon as possible to
avoid the tanks overflow.

5.3 Execution Example

At this point, some chronograms are shown® to show how the above
presented example works.

The A.A’s debugging toolkit uses to visualize chronograms kiwi®.
When this toolkit is used, it stores in memory during the execution of
the A.A a set of trace events explaining this exection. After the AA
has finished its execution, this events are translated into a file con-
taining a kiwi chronogram. The chronograms included in this paper
are captured from real executions of the A.4’s debugging toolkit. For
this reason, the images include more information than the explained
here. The necessary information to take into account in the following
chronograms is:

The uppest row, labelled as Kernel, shows the execution intervals
of the RS.

The next rows, and always in strictly decreasing priority order,
show the critical tasks (corresponding to the user’s model in-
agents).

After that, it appears a row labelled as Linux representing Linux
execution (during this time the AA is not executing nothing).
The next row corresponds to the DS.

The last part of the chronogram is composed by the rows corre-
sponding to the optional tasks of the .A.A, sorted also by priority.
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Figure8. Kiwi’s execution chronogram

To finish the explanation about the way tasks are represented in a
chronogram, it is only necessary to indicate the highlighted parts of
the figure 8:

5 The .A.A has been executed over a Pentium 111 computer to 600 MHz with
128 Mb of RAM.

6 Toolkit to visualize chronograms developed in Tcl/Tk by Agustin Espinosa.
It is freely available in http://rtportal.upv.es/rtportal/apps/kiwi/
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Figure7. Execution 1 during 4 seconds

1. Activation of the task In_Agent_B. This task may be executed from
this instant till its deadline.

. Deadline of the task In_Agent_B.

. Execution of the task In_Agent_C. These rectangles indicate the
time when the different tasks are being executed.

. The execution of the optional task T8 is interrupted. Later, if the
DS decides it so, its execution would be resumed (if there is avail-
able time before its deadline).

The most important aspect to notice in the chronogram of the fig-
ure 7 is a total change of the Reactivity Degree of the agent. Thus,
during the execution of the optional parts of the first task, the agent
detects an emergency situation (the level of one of the sewage tanks
has surpassed the upper allowed limit), and then the Reactivity De-
gree is changed to 0. This change is made by means of the corre-
sponding Meta-Rule that is activated by a modification in the tank
level. The change makes the .4.A to react immediately (opening out-
going valves and closing implied taps). Like it can be observed, this
makes that in the rest of the execution no more optional parts of the
tasks are executed, since the finishing parts are executed immediately
after the initial parts.

In the figure 9 it can be seen the same example as before, same
duration also, but where the Reactive Degree goes to 50 % instead
of 0, and then the variation of the execution of the other tasks can be
observed, also the DS and the levels chosen by it for execution. This
Reactivity Degree change is made by another Meta-Rule at which
condition part checks that the level of the tank is in a range that rec-
ommends of not using all the available slack, but is enough to use
50 %.

This example also illustrates the empower that having a variable
Reactivity Degree does to the A4, allowing to adjust the time dedi-
cated to deliberate about the current situation by using also the Meta-
Rules. With these extensions, the .A.4 manages to face new situations
changing its behaviour very quickly, as seen in the emergency exam-
ple changing to 0 the Reactivity Degree, making the agent answer as
quick as possible. Moreover, it may adjust its behaviour not only to
critical changes (emergency), but to any significant change chosen
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by the designer.

6 Conclusions

The present paper presents a new approach to the reactivity concept
within the agent paradigm. In this approach, the reactivity is defined
as a degree instead of a feature. This allows to define different reac-
tivity degrees having different ways of reacting to the environment.
This approach also allows to dynamically change the reactivity de-
gree of an agent to adapt to significant changes in the environment.

This approach can be considered of greater importance when
speaking of hard real-time agents. It has been implemented in a hard
real-time agent architecture (ARTIS agent) and its increase in flexi-
bility and adaptiveness has been checked.

Currently, the ARTIS agent architecture is being applied to other
examples, including a mail-delivering robot in an office building.
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Extended Behavior Networks for Behavior Selection in
Dynamic and Continuous Domains

Klaus Dorer!

Abstract. In this paper we present how behavior networks can beby the introduction of continuous state-propositions to represent at-
extended to model behavior selection of agents in dynamic and cortributes of continuous domains. In this paper we describe how EBNs
tinuous domains. More precisely, the focus is on a mechanism foare able to select multiple behaviors in a single decision cycle to
selection of concurrent behaviors by explicit representation of rebe performed concurrently. We also show how the decidedness of
sources a behavior makes use of. Further it describes how the bbehavior selection can be used to control the intensity with which
havior selection process can be coupled with behavior execution ibehaviors are performed as is the case in biological systems [4].
continuous domains. Behaviors may be influenced by the decided- The remainder of this paper is organized as follows: Section 2 de-
ness of the behavior selection as is the case in biological systemscribes the basic concept of behavior selection using extended be-
Empirical results in the RoboCup domain show that both extensionfavior networks. In section 3 this concept is extended by introducing
improve the performance of soccer playing agents significantly. ~ concurrent behavior selection. Section 4 explains how behaviors can
be parametrized by the decidedness of the behavior selection. In sec-
tion 5 we summarize empirical results gained in the RoboCup simu-
1 INTRODUCTION lated soccer domain. Finally, in section 6 we discuss possible future

work directions before concluding.
Behavior selection in dynamic domains is complicated by the fact

that the deciding agent has limited amount of time for its decision
before the situation has changed. This is usually addressed by i EXTENDED BEHAVIOR NETWORKS

proving the speed of the decision mechanism for dynamic domaingz,sended behavior networks [5, 2, 3] have been introduced to com-
However,’thls does not take into agcount the posglblllty {0 IMpProve&y;q reactive and goal-directed behavior selection in dynamic and
the agent's performance by conducting multiple actions concurrently, o iini ous domains. This section gives a short overview on the struc-

I\/]Icqreover_, insome d'oma:(lns, concugenthacnons Ere not simply a WaYyre of extended behavior networks and the behavior selection mech-
ot improving agents’ per ormance, ut they can become anecessaby,ism using activation spreading. The next two sections will then
condition to perform tasks. For driving a car, for example, itis atleaslyeq orine two further extensions of EBNs, selection of concurrent be-

neC(Iesslary to tu_rn thelste_erlng whheel_and acce:e_rate or blreak CONCHviors and behavior parametrization, to improve action selection in
rently. Most action selection mechanisms result in a single action t?iynamic and continuous domains.

be performed. To overcome this limitation two possibilities exist: (1)
either the decision mechanism is provided with a (usually huge) set
of combined actions like ‘turnLeft’, ‘turnLeftAndBreak’, ‘turnLeft- 2.1 Network Definition
AndAccelerate’, etc., or (2) the decision mechanism decides on mor
complex behaviors like ‘drive’ that combine actions appropriately
leaving the detailed decision to the execution module of the agen
The later is usually the _preferred option accepting the disadvantaggqfinition 1 A goalconsists of a tupleGCon «, RCor) with
of more complex behaviors.
This situation is even complicated in continuous domains, where GConthegoal condition(conjunction of propositions, i.e. possibly
actions may be performed with variable strength, degree, duration. negated atoms), the situation in which the goal is satisfied,
For example, the ‘turnLeft’ action of the above example would haves , ¢ [0..1] the (static)importanceof the goal,
to be split into ‘turnLeft5Degrees’, ‘turnLeftl0Degrees’, ... Again it ¢ RCon the relevance conditior{conjunction and disjunction of
is usually preferred to put the decision of the degree with which an  propositions), i.e. the situation-dependent (dynamic) importance
action is performed into the low level behavior execution module. of the goal.
Behavior selection and behavior execution is usually strictly sepa-
rated. Definition 2 A competence moduleonsists of a tupleRre b, Post
Extended behavior networks [2, 3] (EBNs) are a means to carry;) with
out behavior selection in dynamic and continuous domains. They ex-
tend original behavior networks [5, 6, 7] by explicit representation® Prethepreconditionande = 7p(Pre, s) the executabilityof the
of goals with dynamic, i.e. situation-dependent, utility function and ~competence module in situatiewhererp(Pre, s) is the (fuzzy)
truth value of the precondition in situation s;

1 Living Systems GmbH, Humboldtstrasse 11, D-78168 Donaueschinger® b the behaviorthat is performed once the module is selected for
Germany, email: kdorer@living-systems.com execution;

Extended behavior networks consist of goals and so called compe-
{ence modules that are linked into a network.
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e Posta set of tuples (Effex), where Eff is an expected effect (a by 3 (defined in the set of parametdis:

proposition) ancex = P(E f f|Pre) is theprobability of Eff get- . s .

ting true after execution of behaviéy ar = fay, " + Z kg, » @)
e g theactivatione IR, representing a notion of the expected utility i

of the behavior (see below). Wherea’,igi is the maximal activation modulk receives at time

o _ ) from goal g; to which the module is linked directly or indirectly
Definition 3 An extended behavior netwo(EEBN) consists of a tu-  across incoming successor and conflictor links of other competence
ple (G, M, 1), whereg is a set of goalsM is a set of competence modules. For more details on activation spreading see [2, 3].

modules andl is a set ofparametershat control activation spread-  Behavior selection is done locally in each competence module in
ing (see below) a cycle containing the following steps:
e v € [0..1] controls the influence of activation of modules, 1. Calculate the activation of the module.
e § € [0..1] controls the influence of inhibition of modules, 2. Calculate the executabilieyof the module. _
e 3 € [0..1] the inertia of activation across activation cycles, 3. Calculate the execution-valuga, e), which is a monotonically
e 0 € [0..a] the activation threshold that a module has to exceed to increasing function of the activation and executability of a module
be selected for execution, withthe upper bound for a module’s  (calculated e.g. by multiplication) [2].
activation, 4. If the highest valué(a, ¢) of all competence modules lies above
e AQ €]0..0] the threshold decay. a threshold (defined in the set of parametdi3, execute the cor-

responding competence module’s behabjoesed to its original
value inTT and go to 1.
2.2 Behavior Selection 5. Otherwise reducé by A¢ (also defined idI) and go to 1.

In the first cycle of activation spreading, only competence modules

The decision of which behavior to adopt should be based on the thgat directly have links to goals get activation. Activation by succes-
expected utility out of executing such behavior. In EBNSs, the ex-sor and conflictor links is zero at that time, because no module has
pected utility of a behavior is approximated by a mechanism calledyctivation initially. So only behaviors that directly satisfy a goal will
activation spreadingThe competence modules are connected to theye taken into account for selection. In the second cycle also com-
goals and other competence modules of the network. Across tho%fetence modules get activation that may reach the goal within two
links activation is spread from the goals to the competence modulegctions. They got activation through successor and conflictor links to
and among competence modules. modules that got activation in the first cycle. The more cycles activa-

A competence module receivestivationdirectly from a goal if  tjon is spread the longer is the (timely) horizon of action sequences
the module has an effect that is equal to a proposition of the goalken into account that lead to goals. This cyclic approximation of ex-
condition of that goal. The amount of activation depends on the prObpected utility of a behavior in EBNs is somewhat similar to a growing
ability ex of the effect to come true and the utility of the proposition pgrizon when solving a Markov Decision Process (see e.g. [1]). For
in the goal condition. Activation from a goal represents the expecteghanavior selection a good trade-off is therefore necessary between
utility of the behavior to reach that goal. The utility of propositions running enough activation spreading cycles to look far enough into
that are part of a goal condition can be directly derived from the im-ne future and acting fast enough.
portance and relevance of the goal [2].

A competence module imhibited by a goal if it has an effect
proposition that is equal to a proposition of the goal condition and3 CONCURRENT BEHAVIOR SELECTION
one of the two propositions is negated. Inhibition represents negativa shortcoming of the above described mechanism for behavior se-
expected utility and is used to avoid the execution of behaviors thafection is that behavior selection results in a single behavior to be
would lead to undesired effects. performed at any time. Humans on the other side are able to per-

A competence module is linked to another competence module formed well trained behaviors concurrently if they do not use the
y if z has an effect that is equal to a proposition of the preconditiorsame resources [10, 8]. A typist, for example, is able to type a text
of y. y is called asuccessomodule ofz. Modulex gets activation  she is reading and speak aloud a text she is listening to at the same
from the successor the amount of which depends on the utility of théime [10]. Performing behaviors that use the same resources usually
precondition and the probability of the effect to come true. The utility ends with no behavior performed successfully. For instance, when a
of propositions that are not part of a goal condition is not availablehuman is undecided between the words "close’ and 'shut’ it may end
directly. It can be determined indirectly using the activation of theup pronouncing a non existing word "clut’ [9]. The common resource
containing module and the truth value of the proposition [2]. In this‘language processing’ may not be used by multiple behaviors. It may,
way, unsatisfied preconditions get implicit sub-goals of the networkhowever, be influenced by multiple goals.
Their utility directly depends on the utility of the competence module  Sequential behavior selection of Maes networks [5] avoids the
itself. problem of resource conflicts. The disadvantage is on the one side

Finally a competence moduleis linked to another competence g reduced performance in domains where multiple behaviors may be
moduley if it has an effect that is equal to a proposition of the pre- performed in parallel. On the other side it may prevent the comple-
condition ofy and one of the two propositions is negatgds called  tion of tasks completely for which concurrent behavior execution is
a conflictor of =, because it has an effect that destroys an alreadyssential (like car driving).
satisfied precondition of. Again, a conflictor link fromz to y is To perform multiple behaviors in parallel the agent needs knowl-
inhibiting (negative activation) to avoid undesired effects. edge about the resources used by the behaviors. The definition of

The activation of a modulé at time¢ is then the sum of all in-  competence modules and extended behavior networks has therefore
coming activation and the previous activation of the module decayetb be extended with the notion of resources.
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Let R be the set of all resources ang : R xS — IRt afunction  activation value is prevented by a missing resource, another module
that assigns to each element®fan amount of available resources With less activation not using the missing resource may be performed.
in the domain in state s. The functiep : M x R xS — IR, with Modules with a disjunct set of resourcBss may be performed con-

M the set of all competence modules, defines the expected amouggrrently.
of resource units used by the corresponding competence module in Besides allowing concurrent behavior selection, this algorithm

state s to reach its effects. overcomes another limitation of original behavior networks. Behav-
ior selection has previously been done by selecting the most active
Definition 4 Aresource nodss a tuple (es, g, Ores) with executable competence module for execution. Unfortunately, this in-

formation can not be calculated locally in a competence module.
Therefore, the process of action selection could not be calculated
distributively in each competence module. By introducing resource
nodes, a competence module is now able to perform action selection
locally. All information is available within the node or within linked
nodes. The information a competence module gets across a link to a
resource node is the current activation threshold and the number of
bound resource units. Information a resource node gets from a com-
petence module using the resource includes the number of resource
units to bind and release and when to reset activation threshold.

e res € R theresourcaepresented by the node,

e g € IR the amount obound resource unité.e. units that are
bound by a currently executing competence module and

e Ores €]0..0] the resource specifiactivation thresholdwhered
is the global activation threshold of the network).

The definition of a competence module can then be extended to:

Definition 5 A competence modulé consists of a tupleRre b,
Post Res a) with Pre b, Postand a as defined above andesis
a set ofresourceges € R used by behaviob. 77 (k, res, s) is the
situation-dependent amount of resource units expected to be used dy BEHAVIOR PARAMETRIZATION
behaviorb.
Most decision mechanisms for agents only have influence on the
Definition 6 Anextended behavior netwoEkBN consists of a tuple  decision which behavior the agent should perform, but not on the
(G, M,U,TI), whereG is a set of goals,M a set of competence behavior execution itself. In biological systems, however, the deter-
modules{ a set ofresource nodeandII a set ofparameter§see ~ Minedness of a decision has influence on the execution of a behavior.
section 2). “Intensity and endurance of an activity is determined by the voli-
tion strength of the goal intention”[4]. Of course different intensities
To coordinate concurrent behaviors the competence modules df.e. strength/degree of execution) of the same basic behavior could
M are connected with resource node#4nA competence module also be modeled by distinguishing these as different behaviors and
has for each resourees € Resa link to the corresponding resource let the decision mechanism decide between those. Obviously, at least
node. This link enables the competence module to check the availn continuous domains, this would increase the number of behav-
ability of the resource. Concurrent behavior selection may thereforérs considerably making the decision process much more complex.
be calculated locally in each competence module. Itis done in a cycl&herefore it would be desirable if the determinedness of the agent’s
containing the following steps: decision would directly influence the execution of the behavior itself.
The behavior ‘run to ball’ of a soccer agent, for example, could be
more or less intens depending on the determinedness of the agent to
run. The higher the expected utility and the executability of the be-
havior the more effective it should be to spend resources (stamina) on
(a) Check ifh exceeds the activation threshdlg... of the corre- this be_havior. An a(_jequate measure for determinedness in extended
sponding resource node. behavior networks is the execution-valb@f a competence module
(see section 2.2). It reflects the expected utility for reaching the goals
of the agent as well as the executability of the behavior with respect
SR e . to the situation.
units, i.e. increase the number of used resource-units of the re- 1 nronlem of using the execution-value is that its absolute value
source node by the number of expected units the behavior Williehends on the goals defined in the behavior network. This is be-
use. causeh is a function of the sum of all activation received by the
3. If all tests in 2 succeeded goals it is contributing to directly or indirectly. In an extreme case
all effects of a behavior might be defined as goals resulting in a
high execution-value. In another network, none of the effects might
(b) Reset the activation thresholds of all resources used. be defined as goals and the module only receives activation indi-
4. Release all bound resource-units, i.e. reduce the number of boufi§Ctly through other modules. A parametrized behavior on the other
resource units of the resource node by the number of previousl?ide should be independent on the specific network architecture. It
bound units. Is therefore necessary to normalize the execution-value adequately.
5. Repeat from 1. Following we describe three approaches to map execution-values to
the codomain of0..1].
The activation thresholér.., ensures that the competence module One obvious approach to normalize the execution-value is to di-
with highest execution-value will be performetk.., linearly de-  vide it by the number of goalgj| of the behavior network. How-
creases over time so that eventually a module exceeds the threshader,|G| is not available within a competence module. A competence
and may be performed. If modules have equal execution-values in module only knows the number of goals it (directly or indirectly) re-
range ofA#, the threshold reduction, the module that first binds theceives activity from. Normalization by using division by the number
resource is performed. If the execution of the module with highesbf goals violates the locality principle and is therefore inappropriate.

1. Calculate the execution-valleof the module as described above.
2. For eachresourees used by competence modulestarting with
the previously unavailable resource

(b) Check if enough resource units are available in the current sit
uation, i.e. check ify < 7r(res, s). If so, bind the resource-

(a) Execute the corresponding behavior.
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Another approach is to use the maxima) @nd minimal {) Since version 5 of the RoboCup-soccerserver, commands can be
execution-value. It can be calculated locally within a competencéxecuted concurrently, if they do not use the same resourcezy A
module. The influence parameteof a module can then be calcu- command, for example, can be executed concurrently wiihla -,

lated as dash -, orturn -command and &urn _neck -command. The con-
_h— h 2 current execution of such actions should improve the speed and re-
p= h—h @) activity of an agent.

. . This has been examined in a series of 30 soccer-games. Two iden-
whereh is the current execution-value of the competence module,. ; .
: . - tical teams of 11 agents played against each other. The only differ-
This approach, however, is vulnerable to extremely high or low . . )
ence was that one team used concurrent behavior selection, while the

execution-values. . . . .
: s ... _other team used serial action selection. For the serial team only the
This does not matter if instead of extreme values the distribution_ . L . o
. . . - . action with highest execution-value within a cycle was executed. The
of execution-values is taken into account. Assuming that execution- , .
o o concurrent team'’s agents were able to execute communication, head
values are normally distributed it is enough to calculate mea

L . . . r}urning and running or kicking actions concurrently. An example for

and standard deviation of the execution-values. Mapping execution- : .

values to an influence parameteis then done b competence modules the behaviors of which may be performed con-
P 1 y currently is shown in figure Irr has been defined independent of

the situation aSiegs = 2, Tneek = 1 aNdTpouern, = 1. Since no

0 : h<p—k-s commands using legs may be performed concureniiywas set to
p= }L—(Q;i-—gk.s) S u—k-s<h<pu+k-s (3) 2 for all behaviors using legs. _ - .
1. pt+k-s<h The soccer agents turned their head in direction of the ball in case

the ball left the visible area of the agent (mindBall). This way the

wherek defines the range of the normal distribution that is mappedggent can run in an angle of up85° relative to the ball and keeping
to the interval[0..1]. The calculation ofz ands can be done incre- it in the visible area. Without turning the head this would only be
mentally: 45°. This is especially useful for all positioning behaviors. An agent
is only able to run forward and backward in body direction. If, for

fint1 = fin + h— pn and (4) example, an offender positions itself in the middle of the field while
n+1 the ball is on the wing it can run towards the goal while keeping
(n—1)- s the head turned to the ball. An agent that runs and turns the head in

Si+1 =m+1) (Hnt1 — Nn)2 + (5) consecutive cycles is much slower than an agent that is dashing each
ﬁycle and turns its head concurrently. Separate turning of the head
relative to the body was performed in about 8% of all cycles. This is
not surprising since turning the head is only necessary once the ball
is close to leave the visible area.

5 EMPIRICAL RESULTS Also the agents communicated to each other their position and

Empirical tests have been conducted in the RoboCup simulated sol?—OSItIOnS of some other_ playgrs (say_Posmon). The number of cycles
n agent can communicate is restricted to 4% of all cycles by the

cer environment. In this domain agents represent soccer players. )

Teams of eleven soccer players each play against each otherin a Siilqu?risse;\lll?)\r/vf drfst:;t ?fmkﬁﬂi(:]w'it:e?f Zg?or:gnécgltéoir;{ gglzg\ﬁr
ulated dynamic and continuous soccer domain. 9 Y 9 y y

The domain is dynamic from the perspective of a single agentversion 7 used for the experiments. The agents used a simple round

because 21 other agents change the domain without this agent doirh pin sched‘ullng that effectively allowed an agent to talk each 22
cles. Again the agents of the concurrent team were able to talk

anything. Also the decision cycle within which an agent has to decide” . s i :

is quite short (100ms). Within one decision cycle an agent may de\t-l;l]h'tlirl:]nm.ng r?rglﬁl.('?]g' Th(ta_ agt_ents of ﬁ?etierlatt)l tﬁ""”.‘ only talked if

cide for concurrent actions. Dashing, kicking or turning the agent’s Z‘niea\go;r;e t I?n'ir agf ';(%ﬁgﬁ aa Odoenre i g;;'o;a communi-

body may be done concurrently with turning the agent's head and INce Sep urning o was : 0 uni
ation in 4% of the simulation cycles, concurrent behavior selection

talking to other agents. The RoboCup domain is therefore quite welf . . . .
suitedgfor testing%oncurrent behavio?selection q effectively only took place in 2% of the cycles. Despite this, the team

The domain is continuous in most of the underlying attributes using concurrent behavior selection scored significAmigre goals

Examples are the position and velocity of players and the ball an(Ijhan the team using serial behavior selection (see table 1).
the view and body direction of the agents. Also most actions of

n

Section 5.2 presents empirical results of behavior parametrizatio
gained in the RoboCup domain.

the agents are continuous. Dashing is done with variable strength, _
turning with continuous momentum and kicking with continuous serial | parallel | p (n = 30)
strength and direction. This makes the RoboCup domain an ideal Mean no of goals| 2.4 43 < 0.001

testbed for behavior parametrization.

. . Table 1. Comparison of serial and parallel behavior selection of EBNs in
5.1 Concurrent Behavior Selection the RoboCup domain.

Section 3 explained how extended behavior networks are able to
decide on multiple concurrent behaviors. This enables the agent to
reach a goal faster or to pursue multiple goals at once. This should
lead to improved behavior control of the agent especially in dynamic

domains where success also depends on the time an agent needs_ta
decide and act. 2 two samples t-test with: = 0.01.
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Resource legs Resource mouth Resource neck

bound O bound O bound O
theta 1.2 theta 1.2 theta 1.2
If If haveSeenBall If maySaySomething If haveSeenBall
then relax and not ballKickable then sayPosition then mindBall
effect not lowStamina 0.3 and not teammatelsNearerBall effect teammatelnformed 1.0  effect haveSeenBall 0.8
using legs 2 and haveEnoughStamina using mouth 1 using neck 1
endif then runToBall endif endif

effect haveBall 0.5
and ballKickable 0.4
and lowStamina 0.3
using legs 2
endif

Figure 1. Parts of the network used for concurrent behavior selection in the RoboCup domain. Modules runToBall, sayPosition and mindBall may be
performed concurrently. Modules relax and runToBall use the same resource legs and may not be performed concurrently.

5.2 Behavior Parametrization exactly identical. For the distribution normalization we chése 1.
As shown in table 2, the team with distribution normalization scored

In section 4 we described how the execution of behaviors may beignificantly more goals than the team with MinMax normalization.
influenced by the decidedness of the action selection. This can ensure

that the execution of a behavior is more appropriate to the current
situation. The intensity of behavior execution can be adjusted to the
importance of the current situation. The usage of resources is focused | mean number of goals 4.2 6.0 0.008
to these situations.

These effects can be shown by experiments in the RoboCup do-
main. Agents have limited stamina for running on the soccer field.
They have to make pauses in order to recover from running. If an
agent runs out of stamina it gets very slow. The faster an agent runs
the more stamina is consumed. For the experiments the ‘run to ball’
behavior has been parametrized. A normalized execution-value of
0.0 was translated to 60% dash power a value of 1.0 to a dash power . . i .
of 100% with linear interpolation. Relevance conditions in the goals®-2-2  Comparison of Parametrized and Static Behavior

(see [2]) ensure that the decidedness in important situations like bexs mentioned above, parametrized behavior execution should im-
ing close to one of the goa_ls 1S high. Th's should_ens_ure that th‘:p‘)rove the utilization of resource ‘stamina’ in the Robocup domain.
agent consumes less stamina in less important situations and s should improve the overall performance of a team measured
more stamina available in important situations. by the number of goals scored. This can be verified by experiments
running Robocup games where one team uses parametrized behav-
iors and the other does not (static). Normalization of execution-
values was done using the distribution method. The parameter for
Section 4 explained the need for normalization of the executionthe execution-value of the static team was constant during one game.
value. Two approaches have been mentioned that can be used féwas varied in the interva]0..1], however, for different series of
normalization without violating the principle of locality. One pos- games. In this way parametrized behaviors can be compared with
sibility is to store the minimal and maximal execution-values of agrowing static parameter values. The hypothesis is that for low static
competence module and map it to the intefgall] (MinMax). An- values the disadvantage of being too slow (e.g. to reach a ball) out-
other possibility is to calculate the mean execution-valuend its ~ Weighs the advantage of being less tired. For high static values the
standard deviatios (incrementally). Then a range of values from disadvantage of fast exhaustion should outweigh the advantage of
w—k-stou+ k- s can be mapped to normalized execution-valuesbeing faster at the ball.
in the interval[0..1] (distribution). First it is interesting to look at the number of pauses an agent takes
Since MinMax normalization is vulnerable to extreme values oneduring a game. This is a measure for the consumption of stamina of
would expect to get worse results with this approach. This was emthe agent. As expected the number of pauses of the static team grows
pirically evaluated in 30 games of 2 Robocup soccer agent teamayith increasing parameter values (Fig. 2).
One team played with MinMax normalization the other team played It is interesting to compare the two teams at the intersection of
with distribution normalization. Besides that both teams have beeRoth curves at value 0.7. Although both teams’ agents have to make

MinMax | distribution | p (n = 30) ‘

Table 2. Comparison of the MinMax normalization and normalization
using the distribution of values.

5.2.1 Normalization of the Execution-Value
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the same number of pauses on average, the team with parametrizedruture work will mainly have to examine if these results generalize

behaviors scored significantly more goals (Tab. 3). Although thgo other dynamic and continuous domains. Especially domains will
average usage of resources of both teams is equal the team wilie interesting, where the amount of available resources depends on
parametrized behaviors makes more use out of it. It uses the rdéhe current situation. The stamina resource in the RoboCup domain
sources in situations in which the goals of the agent are more rethat resembles how much 'energy’ is left for dashing can not be used
evant. In such situations the execution-values of behaviors directeith this sense, because although enough stamina would be available

towards such goals are higher.

Pstaticteam = 0.7 static | parametrized| p (n = 45)
mean scored goals 8.9 11.2 0.003
mean number of pauses 130.6 130.2 0.950

for different behaviors the server does not allow concurrent dashing
behaviors.

Also it would be interesting to examine the stability of the pro-
posed concurrent behavior selection in cases where the estimated
amount of resources used by a competence module’s behavior may
differ from the effectively used resources. The behavior selection it-
self should still work in such occasions, the performance of the agent,
however, is expected to decrease.

Table 3. Comparison of the mean number of goals and pauses of players
of static (parametey = 0.7) and parametrized behavior execution.

(1]

The comparison of scored goals for the static and parametrizqu]
team shows significantly better results for the parametrized team for

all parameter values used for the static team (Fig. 3).
(3]

6 CONCLUSION (4]
In this paper, we describe a mechanism that can be used for an ager[wst]
to select multiple actions to be performed concurrently using ex-[6]
tended behavior networks. The concurrent action selection mecha-
nism is calculated distributively in the competence modules (nodes)[7
of the EBN. Conflicts between actions are moderated by resourcgg;
nodes that are explicitly represented in the EBNs. In addition, we
introduce a mechanism for EBNs to influence behavior execution us{9]
ing the execution-value of a competence module as a measure of { %]
decidedness of the agent to perform the action. Both extensions im-
proved the performance of agents in the RoboCup simulated soccer
domain significantly.
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Abstract World for Opportunistic Local Decisionsin
Multi-Agent SystemsUsing BayesianKnowledgeBases

SolomonEyal Shimony and Ami Berler 2

Abstract. Collaborationof multiple intelligentagentson a shared
taskis a comple researchissue which hasnumerougmportantap-
plications,suchasbattle-fieldsimulation,web-basedgentsandAl
in games.The problemsaddressedire particularly difficult when
communicationis limited or impossible.A common solution in
multi-agentsystemsis to commit a team of collaboratingagents
to a joint plan. Sinceary deviation from the plan by an agentis
hazardousthesesolutionsface up to potentialunplanned‘oppor
tunistic” actionsby ignoring them, or by ad-hocrules determining
whetherto acceptsuchopportunities.

Sinceneitherof thesesolutionss desirablewedSJeIopedAWOL3
(Abstract World for Opportunistic Local decisions),an abstract
frameawork with a disciplinedtreatmentof opportunisticaction,in
the context of anexisting joint plan.

Theideais to modelthe (stochastickradeof of opportunismvs.
continueccommitmento thejoint plan,while abstractingaway from
the stateof the world. The abstractmodelis evaluatedusing strict
decision-theoreticriteria, with the goal of applyingthe optimal de-
cision on whetherto acceptan opportunisticactionin the original
domain.

Whenthisabstractlomainis modeledasanMarkov DecisionPro-
cess(MDP) (andto an even greaterextent, a Partially Obserable
MDP (POMDP),the compleity of finding an optimal decision,al-
thoughmary ordersof magnitudelower thanin areal or simulated
domain,is still high.

In order to reducethis compleity, we implementa compact,
contet-specificindependencespresentatiofor the transitionprob-
abilities. Our representatiorusesrules, in a probabilistic model
known asBayesiarKnowledgeBases(BKB). Sincethe latterarea
compactly-representegeneralizatiorof BayesNetworks (BN), our
schemeshouldhave representatiosize and compleity adwantages
in representinglistributionsin the respectre decisionproblem.

1 INTRODUCTION

Collaborationof severalintelligentagentson a sharedaskis acom-
plex researclissue Evenwhenthereis aglobalteamutility, theenvi-
ronmentmay force decisiongo bedecentralizediueto limited com-
municationand uncertaintyaboutthe environment. Effective agent
interactionsgn suchdomaingraisevariousresearcithallengesin ad-
dition to thetraditionalsingleagentsystems.

1 We acknavledgethe supportof the Lynn andWilliam Franlel Centerfor
ComputerSciencesandthe partial supportof the Paul lvanier Centerfor
RoboticsandProductionManagemenatBGU.

2 Departmentof ComputerScienceBen-GurionUniversity of the Negev
email: shimory@cs.bgu.ac.ij ami@cs.bgu.ac.il

3 Unlike the military term AWOL (AbsentWithOut Leave), herethe agent
defaultsonly in orderto increase(expected)teamutility.

A commonsolutionin multi-agentsystemss to commita teamof
collaboratingagentsto someform of prior joint commitment,such
asJointPlang[3, 4] andSharedPlans[9, 8, 7].

StoneandVeloso[17] presentedSet-Plays”,aspartof thelocker
room agreement theseare multi-step,multi-agentplansfor execu-
tion in specificsituations However, an agentwhich actsin the con-
text of a pre-plan,may encountempportunitiesthat have not been
previously consideredn the team plan or even contradictit. Al-
thoughtaking advantageof unexpectedopportunitiesoccurringdur-
ing plan executionis possible noneof the existing mechanismsre
intendedto handlesuchbeneficialoccurrencesThe practicalsolu-
tion in systemsnvolving joint commitmentsareeitherto ignoreop-
portunities,or to usead-hocrulesfor whento breaka commitment.

Yet clearly neithersolutionis desirablethereshouldbe a way to
computeor atleastapproximateexpectedteamutility for theseac-
tions, and act basedon the result. Naturally, in evaluatingthe ex-
pectedutility of anopportunisticactiononeshouldtake into account
undesirablgossibleconsequencesf opportunismsuchasconfus-
ing the otherteam-matesgtc.

This paperis aninitial attemptto introduceopportunismjn adis-
ciplinedmannerby aimingataformal estimateof the expectedutil-
ity of applyingunplannedpportunisticactions,assuggesteébove.
In orderto focusspecificallyon plansandopportunismwe present
the AWOL framework, thatabstractsway from aspectof the ervi-
ronmentthatareirrelevantto theissueof opportunisticactions.

The framawork is a stochastianodel, consistingof a setof joint
plans,whereeachplanis a sequencef joint steps.Eachjoint step
assignsaroleto eachagentandanagentactionis selectiorof aplan.

Although we wish to abstractaway from the ervironment, we
still needto modelunplannedpportunitiesthat may appearduring
planexecution.This is doneby introducing“opportunity variables”
thatchangestaterandomly- which we call “dummy agents”in our
framework.

Currently we areexaminingtheimpactof opportunisrin the ab-
senceof communication(althoughcommunicationcan be handled
in AWOL), exceptat the initial stageswvhenthe initial joint plan(s)
is establishedQuality of the resultingdecisionsandtheir sensitv-
ity are measuredor simulationruns as the following parameters
aremodified: probability of succes®f opportunisticplans,the way
eachagentmodelsits team-matesbehaior, anddistribution of roles
within plans.

While thetype of approximationave examineabove arenot nec-
essarilynew, they arenovel, asfaraswe know, within theframework
of opportunisticactionsunderjoint plans.Ohviously, computingex-
pectedutility in multi-agentsystemss non-trivial, andin fact not
always well defined[2]. Additionally, the ervironmentin applica-
tions further complicatestreatmentof this issue.Although several
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strongcommitmentsveremadeabove aboutthe statespaceactions,
etc.the domainis still too expansve to be ableto definemeaningful
empiricalevaluation,evenwhenwe make severalfurtherrestrictions
thatallow usto specificallyfocuson theissueof opportunismin the
context of plans.Anotherproblemwe encountereds thatthe com-
putationalcompleity of the AWOL modelitself is still high.

In our implementationof AWOL, we make use of a context-
specificindependenceepresentationf the transitionprobabilities.
We introducethe useof BayesiarKnowledgeBaseqBKB) [14, 15],
a ruled-basedrobabilisticmodel that extendsthe BayesNetworks
model[11]. We believe that this representatiorshould make solu-
tion of the decisionproblemmoreefficient. Thereareothermodels
which exploit contet-specificindependencen probabilisticreason-
ing [12, 13]. Neverthelesspur useof BKB, to representransition
probabilitiesin decisionmodels,is novel, asfar aswe know, within
the scopeof multi-agentsystems.

Therestof the paperis organizedasfollows: Section2 describes
the AWOL framework, and the specific choicesmadewithin the
frameawork. Section3 introduceshe BKB modelandits implemen-
tationin our framework. Section4 presentshe designof several ex-
perimentson the model,andsomepreliminaryresults.We conclude
with adiscussiorof relatedwork, andfutureresearch.

2 THE AWOL FRAMEW ORK

In most applications,the compleity of the domain, number of

agentsa spacestatetoo large andthe incompleteinformationabout
theteammembersesultin aproblemimpossibleto analyzeformally.

In orderto supportsuchanalysiswe constructhe AWOL (Abstract
World for OpportunisticLocal decisionin multi-agentsystems)ab-
stractervironment.In addition,we make provisionsto performex-

perimentsn theabstractiomain.To thatend, AWOL consistof two

mechanisms:

1. A decentralizectontrol problem,where eachagentreceives an
obsenrationandsubsequentlgecidesaboutthe next action.

2. A problemgeneratoandsimulatorthatallows usto setup param-
etersfor aninstanceof AWOL, applyvarioussolutionmethodso
the controlproblem,andevaluatetheresults.

The control problemis a Markov process,controlled by several
agents,with partial obsenability and (in the basic AWOL model)
no communication.

2.1 Definition of the control problem

In the general framavork the domain is modeled as a tuple:
(G,8,9,AT,0,T,R)where:G is thesetof N agentghatactin the
domain,S is the abstract)plan-state’space ¥ is thesetof M plans
in the domain, A is the setof abstraciactionsin thedomain,I" is a
finite setof obsenations,O is atableof obserationprobabilities,7
is atransitiondistribution,andR is arewardfunction.

The State of the world S is an N-tuple consistingof the agents
statesS = (s[1], ..., s[IV]) wherethe Stateof an agentg is: S[g] =
(%, k), with 7 anindex into the setof plans¥, andk the stepin the
plan.

A planis afunctionassigningo eachagenta role at eachstepin
theplan.Formally, if F isthesetof roles,aplaniy € ¥ isafunction:
YNxXG—F

Abstractagentaction selectsaplani € ¥, andjoint action A is
atuple (A[1], ..., A[N]) of agentactions.

Eachagentrecevesinformationaboutits teammate$dy obsewa-
tion. In our modelthe obseredvariablesarejusttheindividual state
of the agents,subjectto noise.Sincethereare only two obsered
variablesfor eachagent theidentifier plannumberandthe step,the
obsenration function © in our abstractdomainis relatively simple:
0:8x8—][01].

TheTransition distrib ution is definedin thegenerakaseas: 7 :
S x AY x 8 — [0,1]. In our domain,the roles of the teammates
in the plansareimplicit in the state,andarecritical in definingthe
actualtransitionprobabilities,asshavn below.

The reward function R in our framewvork dependonly on the
stateof world, andwithin the stateon the rolesof the agentsin the
active plans.

2.2 Assumptionsfor the test-bed

In orderto build adisciplinedempiricaltest-bedye needfurtherre-
strictions.We alsoexplain our choicefor statevariablesmadeabove.

For simplicity, we will be assuminghatthe agentsare syndiro-
nized i.e. if they are executingthe sameplan, they arealsoin the
samestep(how to achie/e thatin arealervironmentis not necessar
ily trivial, we aremakingthis assumptiorasachie’zing stepsynchro-
nizationis beyondthe scopeof this paper).For eachworld stateS,,,
we denoteby ¥, C ¥ thesetof plansactive in this state,j.e. the set
of plansexecutedby atleastoneagent.

Failureof ary sortin executinga planis representetly forcing all
“failing” agentgo executeanespeciallyintroducednull plan,which
hasonly onestepcalled®, andfrom which thereis (usually)noway
out. Usually, stateswith teammembersn thenull planhave very low
rewards.

In orderto focusspecificallyon opportunismandfurther simplify
the analysis,we actually limit eachagentactionsto two possibili-
ties:attemptingto remainin the sameplanasin thecurrentstateand
the opportunisticactionof attemptingto selecta differentplanfrom
the onethe agentis executingin the currentstate.(In this paper we
actuallydo not allow the agentto selectbetweendifferent“oppor
tunistic” actions- eachagentg will have its own single predefined
“opportunistic”plano(g), which it selectsvheneer it attemptsnot
to follow thecurrentplan).Additionally, we assumeahatanagental-
readyexecutinganopportunistigplancannotmove to ary otherplan
(exceptfor thenull plan).

Whenthe agentactionis to attemptto stick with its currentplan,
therearetwo possibleoutcomesone,theactionsucceedétheagent
movesto the next stepin the plan),or two, it fails (the next statefor
theagentis the Null plan).

Likewise,whenan agentactionis opportunistic(selectnewn plan
1), the possibleresultsare:one,the actionsucceed$the agents next
statebeingthe new plan), otherwise the actionfails: the agentnext
stateis theNull plan.However, in this casethe currentplandoesnot
necessarilyail (howvever, it usuallyhasahigherprobabilityof failing
dueto oneor moreof theagentglefaultingonthejoint commitment).

As we areignoringtheissueof synchronizationif thereareother
agentsexecutingstepk of planz in the currentstate the next agent
statewill be (¢, k + 1) (the sameasthe otheragentsexecutingplan

i)
2.3 The transition distrib ution

With the abose assumptionsywe cannow write down the form of
thetransitiondistribution. We will needto introducesomenotation,
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denotingspecificsetsof agentsasafunctionof thecurrentstate(de-
notedS,;4) andnext state(denotedSy..,), When executinga joint
action A. First, Gr denoteghe agentghattry to remainin their cur-
rentplani whentheteamis in stateS andthejoint actionis A:

Gr(i, 5, A) = {g/Slg] = (i, k), Alg] = i}

whereA[g] denotegheactionby agenty in thejoint action A. Like-
wise Go denotesthe setof agentsexecutingplan: in stateS and
attemptanopportunisticaction:

Go(s, 5, A) = {glSlg] = (i, k), Alg] # 1}

The setof agentsthat attemptto executean opportunisticaction
andsucceeds denoted:

C;OS (Snew, A7 Sold) =

{9134, ¢ Soialgl = (i, k) A Snewlg] = (Algl, ©)) A Alg] # i}

The setof agentgthatattemptto remainin their currentplansis de-
noted:

C;l’s (Snew; A: Sold) =

{91So1a[g] = (Alg]; k) A Snewlg] = (Algl, k + 1)}

The setof agentghatattemptto executean opportunisticactionand
fail (andthuslandin the Null plan)is denoted:

GOf (Sneu)7 A7 Sold) =

{913i Sowalgl = (i, k) A Snewlg] = (Null, 0) A Alg] # i}

Thesetof agentdhatattemptto continuein their currentplanbut fail
(andthuslandin theNull plan)is denoted:

Gl'f (Snew; A’ Sald) =

{91Soialg] = (Algl, k) A Snewlg] = (Null, 0)}

As ashorthandye omit theargumentdn thelastfour functionse.g.
we useGrf to denoteGy s (Snew, A, Soid)-

We furtherassumehatdependencexistsonly betweertheagents
thatarein thesameGy set,andthatthetransitiondistribution for the
restof the agentsis independenbf their teammatesThe transition
distribution underthe abore assumptionss the following:

p(SnEw|A,Sold)= H Pi H Pg (1)

€¥%1a  geGg(4,5,4)

where¥,;, is the setof (non-null, non-opportunisticplansbeing
executedby someagentin stateS,;q, the productover anull setis 1
by corvention,and:

Psucc_cont (Z, Sold; A) Gr (Z, Sold; A) g Grs
Pi = 1-— Psucec_cont (2, Sold; A) Gr ('L; Suld; A) g Grf

0 Otherwise

1-— Psucc-opp (g; Sold; A) g € Gof
0 Otherwise

wherepsyce_cont (2, S, A) is afunctionthatrepresentshethecon-
tribution of the setG., of agentsparticipatingin plani, to the proba-
bility thatthe planwill successfullymove to the next step.Likewise
Dsuce_opp (g, S, A) representshe probability that an agentmaking
anopportunisticwill successfullybegin to executean opportunistic
plan.

psucc_opp(gy Sold, A) g€ Gos
Py =

3 USING BAYESIAN KNOWLEDGE-B ASES

In orderto simplify decisionproblems,DeanandWellman[5], use
the well-known BayesNetworks (BN) to decomposéhe transition
probability tablesinto much smaller conditional probability tables
(CPT),usingconditionalindependencassumptions.

Santoset al. [14, 15] presenteda robust and flexible model
for knowledge representatiorunder uncertainty called Bayesian
Knowledg-Bases(BKB). BKBs are a ruled-basedprobabilistic
modelthat extend BNs in a mannervery similar to Pooles proba-
bilities rules[12]. BKB representsbjects/vorld statesandtheir mu-
tualrelationshipsusingadirectedgraph.Thegraphconsistof nodes
which denotevariousrandonvariableinstantiationsyhile theedges
representonditionaldependencies.

We amguethatusingBKBs cansignificantlyreducerepresentation
sizeandcomputationtime in AWOL. Figure 1 describeghe useof
probabilisticnetworks, suchas BNs and BKBs to modela Markov
DecisionProcesgfMDP).

Actions Actions

| |

BN

BN Stat
ates
States or _(States) _(StepN-L 4 O
Step 0 Step 1
BKB

BKB

States
Step N,

Figurel. Overalldescription

The randomvariablesin the BKB arethe statesof the agentsin
theteam,dummyagentsin eachstepin the plan, andtheir actions.
As definedin our framework, the stateof the agentcanbe: plan,op-
portunism.or null. A “dummy” agentcaneitherbeactive or passie,
in eachstepin the plan. Eachagentcanonly executetwo possible
actions:remain,or opportunistic.

Step i Step i+1

0.2
State Agentl= State Agentl=
plan 63 R plan
Action Agentl=
State Agentl=

remain
0.4 null

State Agent2=
opportunism
State Agent2=

null

Action Agentl=
opportunistic

Figure2. Fragmenbf BKB for two agentsn theteam

Figure2 shavs a fragmentof a BKB for ateamwith two agents,
whereovalsrepresenstateof agentgincludingdummyagents)and
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rectanglesepresenactions.Thestateof theworld is atupleof agent
statesasdefinedin thesection2. Blackenedcirclesrepresentulesin
the BKB, whereR; is the nameof therule, andthe numberon each
nodeis the conditionalprobability associatedvith therule.

Figure3 detailsonespecificrule, which representshe conditional
probability that Agent2is in an opportunisticplan at Stepi+1, de-
pendingon variablesin the previous Stepi (stateof Agent2, its
dummyagentvalueandaction).

State Agent2=
opportunism
Action Agentl=
opportunistic

0.4

R3

State Agent2=
opportunism

Figure 3. Therule representtheconditionalprobability P(Agent2=
opportunism Agent2= opportunismPummy2= 0, Action2 =
opportunisticF 0.4

We obsere thatthe numberof rulesnecessaryin orderto repre-
sentthe transitionprobabilities,is smallerthanthe completetable.
Thus,we canbuild a sparseBKB which includesonly the relevant
rulesfor thedomain.

4 EMPIRICAL EVALUATION

Initial experimentatiorin AWOL is usedto testwhethertherestricted
modelis sufficiently rich to represeninterestingbehaior resulting
from opportunisticaction.

4.1 Experimental setup

At this initial stagewe male the following additionalassumptions
in theexperimentaketup:

e In theinitial state,all agentsexecute(the first stepof) the same
plan.

e Transitionprobability to an opportunisticplan is non-zeroonly
if aspecific‘dummy agent’is in the “active” state.The dummy
agentsareall independeniarkov processed-or eachagentin an
opportunisticplan, theteamreceized animmediate‘opportunity”
reward. For the initial plan, the teamis rewardedat the last step
of theplan,dependingnthe agentsstill executingthe planatthe
laststep.

e Thedomainis fully obserable.Thus,onecancomputeanoptimal
global policy by solvingan MDP (althoughin the future we will
run experimentswith partialobserability).

As statedabore, opportunitieduring plan executionaremodeled
by Markov processdummy agents.We add a “dummy agent” for
eachagentin theteam.In addition,ratherthaninventdifferenttypes
of roles werepresentherolesusingafocus whichis arealnumber
within therange[0,1], to represenhow importanteachagentis to a
givenplan.

We compareexpectedjoint utility undervariousschemesvhere
eachagentmakesassumptionsboutits team-membersiAs AWOL
includesa centralizedsystemthat receves total information about
the domain, it can computea theoreticallyoptimal global policy.
However, AWOL canalsomodeltheindividual agent.eachof which

canmale only its own decisionsandreceie only partialinformation
abouttheteammateshroughobsenation.

In the experimentswe usefinite horizon (teamutility is just sum
of all rewardsreceied). For control purposesye computea global
optimalpolicy andits expectedutility. We comparehis controlresult
to the expectedutility recevedfrom thefollowing “distributed” pol-
icy: eachagentgenerateds own individual policy, andthe individ-
ual policiesareconcatenatetb createthe distributedpolicy. Strictly
speakingsincethe ernvironmentis fully obserable,eachagentcan
computea global optimal policy andthenactaccordingto its own
rolein this globalpolicy. Insteadjn orderto simulatepartialobserv-
ability andlack of communicatior(in which casethe abore scheme
maynotresultin executionof theoptimalpolicy) we forceeachagent
to modelits teammatesin otherways.

The currentexperimentsare basedon a Markov model,i.e. each
agentassumeghat the action its team-membergxecutesdepends
probabilistically(in a simpleway) on the currentstate.Specifically
the Markov modelwe useis - the team-membeactiondependson
the stateof its own “dummy agent” (i.e. attemptan opportunistic
actionwith a certaingivenprobabilityif thedummyagentis active).

4.1.1 Computingexpectedutilities

Computingexpectedutility for the globaloptimalpolicy is standard,
aswe simply usevalueiteration,andfind the expectedutility asthe

valuefunctionfor theinitial state.The casewhereeachagentcom-
putesanindividual policy is somevhatmorecomplicatedFirst,each
agentneedsto representts team-memberasindependeniMarkov

ProcessesWhat this meansis that an agentg generatests own

MDP, andsolvesit usingvalueiteration, generatinghe local poli-

cies. Assumingeachagentg actsaccordingto its local policy g,

we now have a global Markov processwith rewards,andcaneval-

uatean expectedutility. The transitionfunction P (Snew|Soia) for

this Markov processs definedas P(Snew|Ax (Sota), Sota), Where
Ax[g](So1a) = m¢(Soiq) for all agentsy.

4.2 Preliminary results

We performedexperimentson generatingglobal andlocal policies,
observingexpected utilities. We used plans with 5 steps,and 3
agentsThefollowing parametersverevariedin our obsenations:

e Plantype:we usedseveralplantypes,e.g.flat (meaningall agents
have equalfocusat all stepsof the plan),to time-varying sharply
focused.

e Theratio of rewardsfor opportunisticplansvs. initial plan.

e Probability that dummy agentsbecomeactive at eachstep(i.e.
frequeng of opportunistidriggers- denotedPopp).

e Probability that an opportunisticaction succeedsgiven that a
trigger (dummy agent)is active in the current state- denoted
Psucc.opp..

e Probabilitythattheinitial plandoesnotfail ateachstep,giventhat
all agentsattemptto remainin theinitial plan.

e Parametersf the Markov modelusedby eachagentdo represent
its team-memberdNe usedtwo suchparametersprobability that
an agentwill attemptremainin theinitial plan given thatit ob-
senesa trigger (denotedPreml|trig), andgiventhatit doesnot
obsere atrigger(denotedPrem|—trig).

Figure4 depictsoptimalglobalutility astheprobabilityof success
for opportunisticactionsandfrequeny of opportunitiess modified.
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Figure5 plots expectedutility for globalandlocal utility vs. fre-
gueng of opportunistidrigger Popp. Revardfor a successfutom-
pletion of the initial planis 100, andfor a successfubpportunistic
actionis 300.

As expected,global optimum is monotonicallyincreasingwith
increasedPopp. However, the local policies may actually achieve
worse performanceonce opportunities are introduced, because
agentsncorrectlymodelotheragentsastakingopportunisticactions,
which leadthemto alsoattemptopportunisticaction,even whenin-
appropriate.

In the other side, Figure 6 shavs howv modifying the Markov
model,representingion oneagentbelievestheotheragentswill act,
affect expectedutility for thedistributedpolicy. Althoughwe did not
introduceexplicit obserationerrors(we did notimplementPOMDP

solution, and in ary casethe distributed control problemis more
complicatedthana POMDP),the Markov model of team-matebe-
havior canbeseerasif it introducedobsenrationnoise.Notethatthe
Markov modelparametePrem|trig tendsto increasehe expected
utility whenopportunistiactionsarelik ely to fail (low Psucc.opp.),

yettendsto decreas¢he expectedutility whenopportunisticactions
arelikely to succeedThis interestingeffect occursbecausavhen
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Figure6. ExpectedUtility vs. Model Parameters

Psucc.opp. is low, the optimalglobalpolicy is to remainin theini-
tial plan.However, if Prem|trig is low theagentbelievesits team-
mateswill default,andthusbelievesit hasno choicebutto defaultas
well, resultingin low expectedutility. When Preml|trig increases,
the agentswill estimatethat their team-matesvill not default, and
thuschooseo stick with theinitial plan,resultingin betterexpected
utility. The situationis reversedwith high Psucc.opp., wherethe
optimalglobalpolicy is to try opportunisticactions.

5 DISCUSSION
5.1 RelatedWork

Mary researcherdevelopeddifferentmodelsfor multi-agentsenvi-
ronmentsbut noneof thenreferto opportunisticactionsof theagents
in thecontet of apre-plan.

Oneof the paperdnspiringour simulatorfor stochastigoint plan-
statetransitionswas SPIRE, an experimentalsystempresentedy
Sullivan,Glassetal. [18]. The authorsusedit in orderto investigate
theintentionreconciliationin thecontext of aMAS. They considered
thebehaior of anagentA in theteamwhentheagentA executesan
actionthat contradictsthe action A is expectedto do by the team.
Our treatmendiffersfrom SPIRE,in thatour individual agentsaim
to optimize global, ratherthanself utility, andin thatplan stepsare
sequentiallydependentAlso, our schemdliffers from the notion of
replanningjn thattypically opportunitiesappeaevenwhentheorig-
inal joint plancanstill be executedasopposedo replanningwhich
usuallyoccursuponplanfailure.

Durfee and Montgomery presentedMICE [6], a semi-abstract
modelthat implementsa two-dimensionalrid environmentwhere
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the agentssimulateto act and interactbut doesnot implementary
specificreasoningnethod.

Lessemtal.[16] presentstatisticaimodelof therelationshipde-
tweenlocal cooperationthe ervironment,andthe global utility, that
hassimilar with our model. The authorspresenthe notion of “self-
interested” comparablenith our “opportunisticactions”. However,
themodelis basedn negotiationbetweertheagentsandthe calcu-
lation of theglobalutility is different.

5.2 Conclusionsand futur e work

As shavn in this paper the AWOL model shavs suficient struc-
ture to be interestingand may be useful in evaluatingthe role of
opportunismin the contet of joint plans.Clearly thereis consider
ablefurtherwork to be donein the AWOL framework, startingwith
implementationrand experimentationwith true partial obserability
(ratherthanintroducingpartial obsenrability throughthe backdoor
asdonein this paper).We ervision threemodesof operationwhere
the AWOL framework canbe useful.In thefirst mode ,we attemptto
understanchown the modelfunctionsandthroughthe modelunder
standthetradeofs betweenuncertaintyrewards,andopportunity for
differenttypesof joint plansandother parametersan investigation
begunin this paperIn thesecondnode,anapplicationervironment,
suchassoccersimulationin RoboCup[10], or Unreal Tournament
[1], would be“compileddown” into an AWOL model(i.e.themodel
parametersvould be an abstractiorof the applicationervironment)
andthedecisionon opportunisticactionwould bebasedn optimiza-
tion in theresultingAWOL model.Finally, it maybe possibleto find
a compactclassifier(w.r.t. the parametersjor the decisionon op-
portunisticaction,in orderto implementthe optimal decisionmore
efficiently.

Ongoingwork aims at refinementof the AWOL model, using
BKBs in orderto solve differentapplication-relateéhstantiationof
our framework. Currently we aretrying to compile-devn coopera-
tion problemsn the UnrealTournamentomputeigameinto AWOL.
The abstraciplansandactionsof our modelareimplementedusing
scriptlanguagesuppliedby the manugcturesOuragentsactin ado-
maindefinedby themoduleCatchthe Flag,thatallows usto execute
aseriesof experimentausingdifferentdomain-specifiplans.

Additionally, we needto completethe experimentson theimpact
of obsenationuncertaintyby having theagentoptimizesomeforms
of distributed POMDPR We are also interestedin caseswherethe
agentdoesnot know all the distributions. We will needto handle
thelack of knowledgeby applyinglearningstrategies.

Finally, asmary of the applicationdomainsare adwersarial,we
intendto extend AWOL to handlethe existenceof anopposingeam
- in factourreasorfor introducing“dummy agents’into AWOL is a
handleintroducedwith thisissuein mind.
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