
Proceedings of the ECAI-04 Workshop on

Agents in dynamic and real-time environments

Ubbo Visser
Hans-Dieter Burkhard

Patrick Doherty
Gerhard Lakemeyer

(editors)

Held on August 22, 2004 in conjunction with the 16th European
Conference on Artificial Intelligence, Valencia, Spain

.

2

ECAI-04 Workshop on
Agents in dynamic and real-time environments

Held on August 22, 2004 in conjunction with the 16th European Conference on
Artificial Intelligence, Valencia, Spain

Recent developments in multiagent systems (MAS) have been promising by achieving
autonomous, collaborative behavior between agents in various environments. However,
most of the agents, both software agents and physical agents, still have problems if the
environment is dynamic and the agents have to act in real time. Examples are obstacle
avoidance with moving obstacles or world models which are composed from egocentric
views of numerous agents. Another aspect is the need for quick responses. In an en-
vironment where a number of agents build a team and both single agent decisions and
team collaborative decisions have to be made methods have to be fast and precise. This
workshop addresses various problems that occur with respect to these issues.

The main focus of this workshop will be methods from various areas such as world
modeling, planning, learning, and communicating with agents in dynamic and real-time
environments. Within this general theme we aim to bring together researchers to discuss
the following topics:

• World modeling (quantitative, qualitative)

• Coaching (one agent gives advice to a group of agents)

• Planning with resources (especially time)

• Learning (both off- and on-line)

• Cooperation between agents (robot and/or humans)

• Communication between agents (implicit, non-verbal, or verbal one)

• Real-time systems software issues (often ignored but important if serious about
real-time issues in robotics)

• Scalability and robotics interfacing issues (demands a great deal of support from
the initial design of the system)

In the last decade, a lot of effort has been invested to develop methods that can be
used with multi-agent systems. The language development in the area of communication
between agents (ACL) might act as the first example. Speech acts serve as the basic
principle and various protocols have been invented (e.g. auctions, contract-nets, etc.).
Can we transfer these results to environments where quick decisions have to be made?

3

Consider planning as another example: there are promising methods for path planning,
but do they still hold if the observed obstacles are moving? Learning is another example:
we need on-line learning in a real-time scenario to give agents the option to learn more
about their environment. Usually, learning takes a fair amount of time but sometimes
this time is not available. Can we find methods which will consider these restrictions?

This workshop addresses researchers from various areas in AI who want to discuss the
mentioned issues from their point of view. How can we develop new methods or adapt
existing methods to meet these demands?

We had ten submissions for this workshop and each of the papers have been evaluated
by three reviewers (except one paper with two reviewers). The results of the reviews were
surprisingly close. After a discussion among the organizers we decided to accept all ten
papers for oral presentation at the workshop.

The contributions can be roughly categorized into the following topics: World model-
ing, planning, learning, and behavior/collaboration. Please note that this is only a rough
categorization and that there are a number of papers that belong to more than one topic.

World modeling: A qualitative spatial knowledge representation based on ordering
information is proposed by Wagner & Hübner. They use this representation to navigate
with physical robots taking into account the egocentric perspective of the robot. Their
method also provides means to reason about the robots world model validity despite
insufficient and uncertain sensory data. The method is based on spatial representations
using landmarks.

The contribution by Merke et al. discusses important problems that occur with lo-
calization issues using physical agents that perform in real-time environments. Their
proposed approach is based on a robust particle filter method using features found in a
camera image. Those features are points on field lines and can be recognized reliably
under natural light conditions with 30fps.

Planning: The contribution of Domshlak & Lawton deals with opportunistic planning
and plan execution. They discuss how multi-agent systems can exploit shared knowl-
edge for opportunistic predictive encoding using an approach based on an abstract plan
representation called Partial Order Plan Graphs (POPGs). They also present several ap-
proaches for increasing system-level performance by improving the efficiency of the plans
containing predictively encoded opportunities (e.g. planning with shortcuts, plan repair
methods).

Le Gloannec et al. discuss planning issues that occur under uncertainty having multiple
resources. They propose an approach to control the operation of an autonomous agent
which operates under multiple resource constraints. They use a DAG of progressive tasks
using an optimal policy obtained by an MDP. Computing an optimal policy for an MDP
with multiple resources makes the search space large and therefore unusable at run-time.
The authors thus propose a solution by decomposing a large MDP into smaller ones,
compressing the state space, and constructing and recomposing local policies for the
decomposed MDPs in order to obtain a near optimal global policy.

Learning: Rettinger proposes an idea that provides a scoring policy for simulated soccer
agents. This method is able to be used in real-time in dynamic environments such as the

4

RoboCup Simulation League. The technique uses data obtained from prerecorded soccer
games for supervised neural network learning.

The second paper that discusses a learning approach within the RoboCup Soccer
Simulation proposes a symbolic learning method. Konur et al. learn decision trees for
the selection of the agents next actions. The method is used to learn the action selection
strategy of the whole team, that is, defenders, mid-fielders, and attackers, when a player
is in ball possession. The authors state that the method can also be used in a different
way. The learning method yielded a set of qualitative features to classify game situations,
which are useful beyond reactive decision making.

Behavior and collaboration: Lundh et al. study teams of autonomous robotic agents
where agents help each other out by offering information-producing resources and func-
tionalities. Depending on the current situation and tasks, the team may need to change its
functional configuration dynamically. The authors propose knowledge-based techniques to
automatically synthesize new team configurations in response to changes in the situation
or tasks.

Carrascosa et al. discuss the behavior of real-time agents with respect to reactivity
and deliberation. They introduce the concept of Reactivity Degree. This concept implies
some meta-reasoning capabilities to be available in the agent in order to dynamically
decide the amount of resources which have to be assigned to deliberation and reaction.
The paper also shows how to implement such a concept in the hard real-time, hybrid
agent architecture called ARTIS.

Dorer proposes an approach where behavior networks can be extended to model be-
havior selection of agents in dynamic and continuous domains. The paper focusses on a
mechanism for concurrent behavior selection by explicitly represent the resources which
are used by a behavior. Dorer describes further how this process can be combined with
behavior execution in continuous domains.

Shimony & Berler discuss local decision problems and how they can be solved using
Bayesian knowledge bases. The authors state that collaboration of multiple intelligent
agents on a shared task is a complex research issue. The problems become particularly
difficult when communication is limited or impossible. They developed AWOL (Abstract
World for Opportunistic Local decisions), an abstract framework with a disciplined treat-
ment of opportunistic action, in the context of an existing joint plan.

5

Program Committee and Reviewers

We are grateful to the following members of the international program committee for
helping us to make this a high quality workshop:

• Hans-Dieter Burkhard, Humboldt Universität, Berlin, GERMANY

• Thomas Christaller, AIS-Fraunhofer, St. Augustin, GERMANY

• Patrick Doherty, University of Linköping, SWEDEN

• Uli Furbach, Universität Koblenz, GERMANY

• Otthein Herzog, Universität Bremen, GERMANY

• Gerhard Lakemeyer, RWTH Aachen, GERMANY

• Paul Levi, Universität Stuttgart, Stuttgart, GERMANY

• John-Jules Meyer, Universiteit Utrecht, THE NETHERLANDS

• Frank Pasemann, AIS-Fraunhofer, St. Augustin, GERMANY

• Angel del Pobil, Jaume I, SPAIN

• Fiora Pirri, University La Sapienza, Rome, ITALY

• Alessandro Saffiotti, University of Örebro, SWEDEN

• Michael Thielscher, TU Dresden, GERMANY

• Ubbo Visser, Universität Bremen, GERMANY

• Thomas Wagner, Universität Bremen, GERMANY

6

Contents

An Egocentric Qualitative Spatial Knowledge Representation Based on Or-
dering Information for Physical Robot Navigation 9
Thomas Wagner and Kai Hübner

Line Based Robot Localization under Natural Light Conditions 19
Artur Merke, Stefan Welker, and Martin Riedmiller

Opportunistic Planning and Plan Execution 27
Carmel Domshlak and James H. Lawton

Planning under Uncertainty with Multiple Consumable Resources 37
Simon Le Gloannec, Abdel-Illah Mouaddib, and Francois Charpillet

Learning from Recorded Games: A Scoring Policy for Simulated Soccer
Agents . 43
Achim Rettinger

Learning Decision Trees for Action Selection in Soccer Agents 49
Savas Konur, Alexander Ferrein, and Gerhard Lakemeyer

Dynamic Configuration of a Team of Robots 57
Robert Lundh, Lars Karlsson, and Alessandro Saffiotti

Real-Time Agents: Reaction vs. Deliberation 63
Carlos Carrascosa, José Fabregat, Andrés Terrasa, and Vicente Botti

Extended Behavior Networks for Behavior Selection in Dynamic and Con-
tinuous Domains . 71
Klaus Dorer

Abstract World for Opportunistic Local Decisions in Multi-Agent Systems
Using Bayesian Knowledge Bases . 77
Solomon Eyal Shimony and Ami Berler

7

.

8

An Egocentric Qualitative Spatial Knowledge
Representation Based on Ordering Information for

Physical Robot Navigation
Thomas Wagner1 and Kai Huebner 2

Abstract. Navigation is one of the most fundamental tasks to be ac-
complished by many types of mobile and cognitive systems. Most ap-
proaches in this area are based on building or using existing allocen-
tric, static maps in order to guide the navigation process. In this paper
we propose a simple egocentric, qualitative approach to navigation
based on ordering information. An advantage of our approach is that
it produces qualitative spatial information which is required to de-
scribe and recognize complex and abstract, i.e., translation-invariant
behavior. In contrast to other techniques for mobile robot tasks, that
also rely on landmarks it is also proposed to reason about their valid-
ity despite insufficient and uncertain sensory data. Here we present
a formal approach that avoids this problem by use of a simple inter-
nal spatial representation based on landmarks aligned in anextended
panoramic representationstructure.

1 Introduction

Navigation is one of the most fundamental tasks to be accomplished
by robots, autonomous vehicles, and cognitive systems. Most suc-
cessful approaches in the area of robot navigation like potential fields
(see [11] and [8]) are based on allocentric, static maps in order to
guide the navigation process (e.g. [10]). This approach has an in-
tuitive appeal and gains much intuition from cognitive science: the
cognitive map(a good recent overview [17]). The main purpose is
to build up a precise, usually allocentric, quantitative representation
of the surrounding environment and to determine the robot’s position
according to this allocentric, quantitative map.

One difficulty results from the fact that the same spatial representa-
tion serves as a basis for different tasks often with heterogeneous re-
quirements. For example, more abstract reasoning tasks like planning
coordinated behavior, e.g.,counterattackanddouble pass, and plan
recognition usually rely on more abstract, qualitative spatial repre-
sentations. Generation of qualitative spatial descriptions from quan-
titative data is usually a difficult task due to uncertain and incomplete
sensory data. In order to fit heterogeneous requirements, we should
be able to represent spatial qualitative description at different levels
of granularity, i.e., invariant according to translation and/or rotation
and based on different scalings.

Based on recent results from cognitive science (see, e.g., [33]),
we present a formal, egocentric, and qualitative approach to navi-
gation which overcomes some problems of quantitative, allocentric

1 Center for Computing Technologies (TZI), Bremen, Germany email: twag-
ner@tzi.de

2 Institute of Safe Systems (BISS), Bremen, Germany email: khueb-
ner@tzi.de

approaches. By the use of ordering information, i.e., based on a de-
scription of how landmarks can shift and switch, we generate anex-
tended panoramic representation(EPR). We claim that our represen-
tation in combination with path integration provides sufficient infor-
mation to guide navigation with reduced effort to the vision process.
Furthermore the EPR provides the foundation for qualitative spatial
descriptions that may be invariant to translation and/or rotation.

Since our approach abstracts from quantitative or metrical detail
in order to introduce a stable qualitative representation between the
raw sensor data and the final application, it can for example be used
in addition to the well-elaborated quantitative methods.

2 Motivation

Modeling complex behavior imposes strong requirements on the un-
derlying representations. The representation should provide several
levels of abstraction for activities as well as for objects. For both
types of knowledge, different representations were proposed and it
was demonstrated that they can be used successfully. Activities can,
e.g., be described adequately with hierarchical task networks (HTN)
which provide clear formal semantics as well as powerful, efficient
(planning-) inferences (see e.g. [4]). Objects can be described either
in ontology-based languages (e.g., OWL [23]) or constraint-based
languages (e.g., [9]). Both types of representations allow for the rep-
resentation of knowledge at different levels of abstraction according
to the domain and task specific requirements. In physically grounded
environments, the use of these techniques requires an appropriate
qualitative spatial description in order to relate the modeled behavior
to the real world.

2.1 Allocentric and Egocentric Representations

In an egocentric representation, spatial relations are usually directly
related to an agent by the use of an egocentricframe of reference
in terms like, e.g.,left, right, in front, behind. As a consequence,
when an agent moves through an environment, all spatial relations
need to be updated. In contrast, representations based on an allocen-
tric frame of reference remain stable but are much harder to acquire.
Additionally, the number of spatial relations which have to be taken
into account may be much larger because we have to consider the re-
lations between each object and all other objects in the environment,
whereas the number of relations in egocentric representations can be
significantly smaller (see Fig. 1)3. An interesting phenomenon, when
looking into the didactic literature about, e.g., sports [13] we often

3 For reasons of clarity not all allocentric relations are drawn in diagram 1(a).

9

(a) Allocentric relations (b) Egocentric relations

Figure 1. Allocentric vs. egocentric spatial relations

find that (tactical and strategic) knowledge is described in both, ego-
centric and allocentric terms, whereas, e.g., the literature about driv-
ing lessons strongly relies on purely egocentric views. At least one
of the reasons are that the latter representation seems to provide bet-
ter support for acting directly in physically grounded environments,
since perception as well as the use of actuators are directly based
on egocentric representations. In addition, egocentric representations
provide better support for rotation and translation invariant represen-
tations when used with a qualitative abstraction (see section 3.3 and
4 for more details).

3 Related Work

3.1 Cognition: Dynamic, Egocentric Spatial
Representations

The fact that even many animals (e.g., rodents) are able to find new
paths leading to familiar objects seems to suggest that spatial re-
lations are encoded in an allocentric static“cognitive map”. This
almost traditional thesis is supported by many spatial abilities like
map navigation and mental movement that humans are able to per-
form (beginning with [28] and [15]). Nevertheless, recent results
in cognitive science provide strong evidence for a different view
([33] among many others). Instead of using an allocentric view-
independent map, humans and many animals build up a dynamic,
view-dependent egocentric representation. Although the allocentric
interpretation of thecognitive mapseems to differ radically from the
egocentric representation theory, both theories can account for many
observations and differ mainly in two points: The allocentric,cog-
nitive map-interpretation assumes that the spatial representation is
view-independent and that therefore viewpoint changes do not have
any influence on the performance of, e.g., spatial retrieval processes.
Many recent experiments provide evidence for the opposite, they
show that viewpoint changes can significantly reduce performance
in terms of time and quality (e.g. pointing errors) (among others,
[31] and [32]). The second main difference is concerned with the dy-
namic of the underlying representation. The egocentric interpretation
assumes that all egocentric relations have to be updated with each
egocentric movement of a cognitive system. The underlying assump-
tion of a sophisticated series of experiments done by Wang ([31] and
[32]) was that spatial relations have to remain stable in an allocentric,
cognitive mapindependent from egocentric movements. When errors
arise, e.g., because of path integration, the error rate (,,configuration
error”) should be the same for all allocentric relations; otherwise
they rely on an egocentric representation. The results indicate clear
evidence for egocentric representations and have been confirmed in
a series of differently designed experiments4, e.g., [3] and [5].

4 Nevertheless, these results do not allow the strict conclusion that humans
do not build up an allocentric cognitive map. On the contrary, e.g., Easton

3.2 Robot Navigation

Navigation and localization is the most fundamental task for au-
tonomous robots and has gained much attention in the robotic re-
search over the last decades. While several earlier approaches ad-
dressed this problem qualitatively [10], e.g., topological maps ([12],
[16], [1]), more recent approaches focus very successfully on prob-
abilistic methods. Famous examples are RHINO [25], MINERVA
[24] and more recently [27]. Currently, the most promising tech-
niques for robust mobile robot localization and navigation are either
based on Monte-Carlo-Localization (MCL) (see [19] for RoboCup-
application and the seminal paper [26]) or on various extentions of
Kalman-filters(e.g., [14]) using probabilistic representations based
on quantitative sensory data. MCL is based on a sample set of pos-
tures; the robot’s position can be estimated by probabilities which
allow to handle not only theposition tracking- and theglobal local-
izationproblem but also the challengingkidnapped robotproblem of
moving a robot without telling it.

Furthermore, probabilistic methods based on quantitative data
play a crucial role in handling the mapping problem, i.e., the SLAM-
problem5. Very much the same is true for many robotic approaches to
navigation, e.g., potential fields for avoiding obstacles by following
the flow of superposed partial fields in order to guide the robot to a
goal position (see [11] and [8] for a RoboCup-application) based on
quantitative data.

According to thespatial semantic hierarchy(SSH) [10], these ap-
proaches try to address the problems related to robot navigation on
thecontrol level. Besides the strong computational resource require-
ments they usually do not address the problem of generating a dis-
crete, qualitative spatial representation which for instance is required
at more abstract levels, e.g., for describing complex coordinated tac-
tical and strategic behavior either on individual- and on team level.

3.3 The Panorama Approach

The concept of panorama representation has been studied extensively
in the course of specialized sensors (e.g., omnivision, see, e.g., [34]).
We present an extended approach based on the panorama approach
by Schlieder ([20], [21]and [22]).

A complete, circular panorama can be described as a360o view
from a specific, observer-dependent point of view. LetP in Fig. 2(a)
denote a person, then the panorama can be defined as the strict or-
dering of all objects:house, woods, mall, lake. This ordering, how-
ever, does not contain all ordering information as described by the
scenario. Themall is not only directly between thewoodsand the
lake, but more specifically between the opposite side of thehouse
and thelake (the tails of the arrows). In order to represent the spa-
tial knowledge described in a panorama scenario, [20] introduced a
formal model of a panorama.

Definition 3.1 (Panorama) LetΘ= {θ1, . . . , θn} be a set of points
θi ∈ Θ andΦ = {φ1, . . . , φn} the arrangement of n-1 directed lines
connectingθi with another point ofΘ, then the clockwise oriented
cyclical order ofΦ is called the panorama ofθi.

As a compact shorthand notation we can describe the panorama in
Fig. 2(b) as the string< A, C, D, Bo, Ao, Co, Do, B >. Standard

and Sholl [3] have shown that under very specific conditions it is possible
to build up allocentric maps. Regardless these results indicate, that under
more natural conditions human navigation relies on egocentric snapshots
and a dynamic mapping between these.

5 This term is also directly connected to a set of algorithms addressing exactly
this problem (e.g., [2])

10

(a) Concrete panorama (b) Abstract panorama

Figure 2. Panorama-views

letters (e.g.,A) describe reference points, and letters with a follow-
ing o (e.g.,Ao) the opposite side (the tail side). As the panorama is
a cyclic structure the complete panorama has to be described byn
strings withn letters, withn being the number of reference points on
the panorama. In our example, the panorama has to be described by
eight strings. Furthermore, the panorama can be described as a set of
simple constraintsdl(vp, lm1, lm2)

6. Based on this representation,
[21] also developed an efficient qualitative navigation algorithm.

The panorama representation has an additional, more important
property: it is invariant with respect to rotation and translation. But
evidently, not every behavior can be described in such an abstract
manner. In order to model complex, coordinated behaviors, often
more detailed ordinal information is involved. Additionally, different
metric information (e.g., distance) is required in some situations. In
the following section, we show how the panorama can be extended
in a way that more detailed ordinal and metric information can be
introduced.

4 An Extended Panorama Representation

Instead of building an allocentric map we provide an egocentric
snapshot-based approach to navigation. The most fundamental dif-
ference between both approaches is that an egocentric approach
strongly relies on an efficient, continuous update mechanism that up-
dates all egocentric relations in accordance with the players’ move-
ment. In this section we show that this task can be accomplished by
strict use of a simple 1D-ordering information, namely an extended
qualitative panorama representation (EPR).

This update mechanism has to be defined with respect to some
basic conditions:

• Updating has to be efficient since egocentric spatial relations
change with every movement, i.e., the updating process itself and
the underlying sensor process.

• The resulting representation should provide the basis for qualita-
tive spatial descriptions at different levels of granularity.

• The resulting representation should provide different levels of ab-
straction, i.e., rotation and/or translation invariance.

• The process of mapping egocentric views should rely on a mini-
mum of allocentric, external information.

Due to the nature of ordering information, this task has to be di-
vided into two subtasks: (1) updating within a given frame of ref-
erence (short notation: FoR), i.e., the soccer field and (2) updating
of landmark representations from an external point of view, e.g., the

6 Short fordirect− left(viewpoint, landmark1, landmark2).

penalty area. In section 4.1 we briefly discuss the key properties of
the first task in relation to ordering information from a more theo-
retical point of view, whereas in section 5 these aspects are investi-
gated in more detail. In section 4.2 we describe the theoretical frame-
work underlying the mapping- and update-mechanism for egocentric
views on external landmarks.

4.1 Within a Frame of Reference

A crucial property of panoramic ordering information is that it does
not change as long as an agent stays within a given FoR, i.e., the
corners of a soccer field, do not change unless the player explicitly
leaves the field (see Fig. 3(a)). So in order to use ordering informa-
tion for qualitative self-localization we have to introduce an egocen-
tric FoR. But even with an egocentric FoR the location within this
FoR can only be distinguished into a few different qualitative states
(e.g., ego-front between front-left and front-right corner of the field,
see Fig. 3(a)). This way of qualitative self-localization is too coarse
for many domains as well as for the different RoboCup-domains. In
section 5 we demonstrate in more detail how angular distances can
be used to overcome this problem7.

A perhaps even more important property of spatial locations
within a given FoR is that they can be used as a common FoR for
the position of different landmarks in relation to each other (e.g., the
position of the penalty area can be described in within-relation to the
soccer field). This property is especially important for an egocentric
snapshot-based approach to navigation since it provides the common
frame that is required to relate different snapshots to each other (for
a more detailed discussion see [29]).

4.2 Updating Outside-Landmark Representations

In a re-orientation task we can resort the knowledge about the previ-
ous position of a player. Therefore we concentrate on an incremental
updating process, based on the following two assumptions:(1) It is
known that the configuration of perceived landmarksA, B, ... ∈ L
either form a triangle- or a parallelogram configuration (e.g. either by
vision or by use of background knowledge). (2) The positionPt−1

of an agentA in relation toL at time stept − 1 is known.The EPR
(LPT) of a triangle configuration can then be defined as follows (see
also Fig. 3(b)):

Definition 4.1 (Triangle Landmark Panorama) Let PA denote
the position of an agentA andCT (ABC) the triangle configuration
formed by the set of pointsA, B, C in the plane. The lineLPA/V P

is the line of view fromPA to VP, with VP being a fixed point within
CT (ABC). Furthermore,LOrth(PA/V P) be the orthogonal intersec-
tion of LPA/V P . The panoramic ordering information can be de-
scribed by the orthogonal projectionP (PA, V P, CT (ABC)) of the
pointsABC ontoLOrth(PA/V P).

Therefore, moving around a triangle configurationCT (ABC) re-
sults in a sequence of panoramas which qualitatively describe the
location of the observer position. A360o movement can be distin-
guished in six different qualitative states:

Observation 1 (Triangle Landmark Panorama Cycle)
The EPR resulting from the subsequent projection

7 An additional approach is to introduce more landmarks that are easy to
perceive or to introduce additional allocentric FoR when available (e.g.,
north, south, etc.)

11

P (PA, V P, CT (ABC)) by counter-clockwise circular move-
ment aroundVP can be described by the following ordered, circular
sequence of panoramas:
(CAB), (ACB), (ABC), (BAC), (BCA), (CBA)

For each landmark panorama the landmark panorama directly left
as well as at the right differ in exact two positions that are lying next
to each other (e.g.,(ABC), (BAC) differ in the position exchange
betweenA andB). These position changes occur exactly when the
view line LPA/V P intersects the extension of one of the three tri-
angle lines:LAB , LAC , LBC . Starting with a given line (e.g.,LAB)
and moving either clock- or counter-clockwise, the ordering of line
extensions to be crossed is fixed for any triangle configuration (see
Fig. 3(b)). This property holds in general for triangle configurations
but not, e.g., for quadrangle configurations (except for some special
cases as we will see below). Since (almost) each triplet of landmarks

(a) Use of Egocentric Frame of
Reference

(b) Triangle panorama construc-
tion by projection (result here:
(ACB))

Figure 3. FoR and Triangle panorama.

can be interpreted as a triangle configuration, this form of qualita-
tive self-localization can be applied quite flexibly with respect to
domain-specific landmarks. The triangle landmark panorama, how-
ever, has (at least) two weaknesses: The qualitative classification of
an agent’s position into six areas is quite coarse and, triangle con-
figurations are somewhat artificial constructs that are rarely found
in natural environments when we consider solid objects8. A natural
extension seems to be applying the same idea to quadrangles (see
Fig. 4). The most direct approach is to interpret a quadrangle as a
set of two connected triangles sharing two points by a common line
so that each quadrangle would be described by a set of two trian-
gle panoramas. With this approach, the space around a quadrangle
would be separated into ten areas and therefore it would be more ex-
pressive than the more simple triangle panorama. It can be shown
that eight of the resulting triangle landmark panorama (one for each
triangle of the quadrangle) can be transformed into quadruple that
results when we transform e.g. a rectangle directly into a landmark
panorama representation (e.g., the above given tuple ((BCA)(CDA))
can be transformed into (BCDA) without loss of information)9. The
expressiveness of the other two landmark panoramas is weaker: they
have to be described as a disjunction of two quadruple tuples. Since

8 The triangle configuration can be applied generally to any triplet of points
that form a triangle - also to solid objects. The connecting lines pictured
in Fig. 3(b) and 4(a) are used to explain the underlying concept of position
exchange (transition).

9 The detailed proof will take too much space.

the expressiveness is weaker and the landmark panorama represen-
tation of a quadruple tuple panorama representation is much more
intuitive we focus on the latter one (see Fig. 4(a)).

Definition 4.2 (Parallelogram Landmark Panorama) Let PA de-
note the position of an agentA and CP (ABC) the parallelogram
configuration formed by the set of pointsA, B, C, D in the plane.
The lineLPA/V P is the line of vision fromPA to VP, with VP being
a fixed point withinCP (ABCD). Furthermore,LOrth(PA/V P) be the
orthogonal intersection ofLPA/V P . The landmark panoramic order-
ing information can then be described by the orthogonal projection
P (PA, V P, CP (ABCD)) of the pointsABCD ontoLOrth(PA/V P).

Moving around a parallelogram configurationCP (ABCD) also re-
sults in a sequence of landmark panoramas which describe the loca-
tion of the observer position qualitatively. A360o movement can be
split into twelve different states:

Observation 2 (Parallelogram Landmark Panorama Cycle)
The panoramic landmark representations resulting from the sub-
sequent projectionP (PA, V P, CP (ABCD)) by counter-clockwise
circular movement aroundVP can be described by the following
ordered, circular sequence of panoramas:
((BCAD), (BACD), (ABCD), (ABDC), (ADBC), (DABC),
(DACB), (DCAB), (CDAB), (CDBA), (CBDA), (BCDA))

(a) Use of Egocentric Frame of
Reference

(b) Triangle panorama construction
by projection (result here: (ACB))

Figure 4. Parallelogram panorama

The two presented landmark panoramas can be mapped flexibly onto
landmarks that can be found in natural environments like a penalty
area. While solid objects often form rectangle configurations, irregu-
lar landmarks can be used in combination as a triangle configuration,
since this approach is not strictly restricted to point-like objects. An
interesting extension is to build up more complex representations by
using landmark configurations as single points in larger landmark
configurations. This allows us to build up nesting representations
which support different levels of granularity according to the require-
ments of the domain.

5 Implementation

According to the described scenarios, the EPR is meant to be a qual-
itative fundament for tasks that are important for mobile robot ex-
ploration. The latter part described in 4.2 is not adequate for the
RoboCup scenario because there is almost no structure for the robot
to move around. Here, we will show some experimental extraction

12

of EPR sequences to practically point up the idea presented in sec-
tion 4.1 and the basic idea of building panoramic ordering informa-
tion from the image data.

For our first experiments, we use theRobotControl/SimRobot[18]
simulation environment for the simulation of one four-legged robot.
This tool is shared with the GermanTeam, which is the German
national robotic soccer team participating in the Sony four-legged
league in the international RoboCup competitions. The EPR concept
presented is not proposed to be restricted to this special domain, as
discussed. The tool supports simulated image retrieval and motion
control routines that are easy to use and portable to physical robots,
while it is possible to encapsulate the EPR and adapted image feature
extraction in distinct solutions, letting other modules untouched.

Figure 5. Simulation environment of the GermanTeam (left); the standard
four-legged league field configuration (right).

5.1 Visual Feature Extraction

In order to expediently fill the EPR with information, the recogni-
tion of landmarks is necessary. Usually, the robot’s viewing angle of
57.6o degrees is not sufficient to get a reasonably meaningful EPR
with the feature extraction of goals and flags supported by theRobot-
Control tool (see [19] for a description of these features).

Even if the scene is perceived from one goal directly to the other,
there are just three landmarks that can be found. On the other hand,
the standard configuration of all landmarks as can be seen in Fig. 5
is of an unfavorable kind for the EPR. The landmarks build a convex
structure which the robot never can leave, thus the ideal EPR will
never allow to reason about the environment by permuted landmarks
(see section 4.1). For robots with common cameras, searching for
localization markers additionally inhibits from concentration on es-
sential game objects like the ball. Thus, it is only possible to either
localize the robot or to capture the ball at a point of time, accordingly
it would be more efficient to concentrate on the field for localization.
A possible and more intelligent solution could be the extraction of
field lines. We further introduced the symmetry line operator pro-
posed by Huebner [7] to address these problems by extracting 2D
field lines from the image data as additional features.

5.2 Symmetry Operator

Our line detection method is based on a compact 1-dimensional sym-
metry operator for arbitrary images [6]. For each pixel of the image,
a qualitative value of reflective symmetry in horizontal or vertical di-
rection is determined.Vertical symmetryis defined as symmetry of a
vertical axis, thus only pixels in the same image rowR = [p0, pw−1]
have to be considered for the detection of vertical symmetry of a pixel
pi ∈ R, wherew is the width of the image. The same is applied for
horizontal symmetry regarding only one column of the image. Fur-
thermore, robot vision requires processing of real images. Because

of the common image distortion in real images, an operator detect-
ing exact, mathematic symmetry fails and offers erroneous symmetry
images. Therefore, we propose the following qualitative symmetry
operator based on a normalized mean square error function:

S(pi, m) = 1 − 1

C · m

m∑
j=1

σ(j, m) · g(pi−j , pi+j)
2 (1)

wherem > 0 is the size of the surrounding ofpi in which its value
of symmetry shall be detected. Thus, the complete number of pixels
considered is2m. C is a normalization constant depending on the
used color space and onσ(j, m), which is a radial weighting func-
tion. The difference between two opposing pointspi−j andpi+j is
determined by a gradient functiong(pi−j , pi+j), which usually is
the Euclidian distance of the corresponding color vectorspi−j and
pi+j . For all presented experiments, we used 8-bit gray-scale repre-
sentation with

g(pi−j , pi+j) =

{
‖pi−j − pi+j‖ if pi−j ∈ R ∧ pi+j ∈ R

c otherwise
(2)

wherec is the maximum error available (depending on color space),
and a linear weighting function additionally depending onm

σ(j, m) = 1 − |j|
m + 1

(3)

Important symmetry axes can be found at places where not nec-
essarily high symmetry values but symmetry peaks can be detected.
Though the extraction of maxima and minima of a symmetry image
causes more distortion in resulting binary images, it is more signif-
icant than using a threshold value. Thresholds may vary from ap-
plication to application or even from image to image. Additionally,
appropriate thresholds are difficult to find for normalized symmetry.
A symmetry value of 0 corresponds to hard black-white transitions
between each pair of opposing pointspi−j andpi+j , while a value
of 1 corresponds to exact parity. Thus, high symmetry values are
more frequent and much denser, which makes threshold setting very
ineffective. Symmetry is more adapted for the application of local
extrema, since it is a regional feature characterizing the local envi-
ronment (in contrast to local features like edges). Since calculation
of vertical symmetry in one row is independent of those in other rows
or columns, maxima and minima can be detected line by line and
column by column, respectively for horizontal symmetry. Results of
this symmetry axes detection are presented in Fig. 6. Note that each
result has been achieved by only using the symmetry operator and
maximum detection, without any kind of pre- or post-processing like
Gauss filtering, segmentation, or related techniques.

Figure 6. Symmetry maxima of a RoboCup image usingm = 5 for
vertical (left) and horizontal (right) symmetry axes extraction.

13

5.3 Symmetry Line Detection

Line extraction techniques usually need some preprocessing, e.g.,
edge detection, thresholding or thinning. Using symmetry, we can
detect lines as a structure from arbitrary images. For example, a hor-
izontal line is a structure where we should continuously detect a
givenA1SA2-pattern (= Asymmetry1−Symmetry−Asymmetry2)
in each small vertical neighborhood along the line. Actually,A1S is
sufficient, because the symmetry axisS implies that there is another
A2 symmetric toA1. An example for detection of this structure is
shown in Fig. 7, where only horizontal symmetry axes usingm = 3
were detected. If the specificAS-pattern can be found in the same
environment, we can assume that it is part of a line.

Figure 7. Filtered horizontal line points of Fig. 6 byAS pattern.

In the following, two approaches are presented to extract lines
from the images resulting from the proposed symmetry line filter.
The first one is a modified Hough approach using the Wallace Muff
space [30], which represents a line by its start and end point on the
image border rectangle. The Muff parameter space (see Fig. 8) shows
that there are two lines which lead from the left to the right side of the
symmetry line image. The results seem quite acceptable, but several
adaptation were required steps, due to the difficulty to extract max-
ima in Muff space. There are further disadvantages of this approach,
for example, a line now is represented by its image border points,
thus information about line segments is lost. Additionally, curve seg-
ments may also be detected as lines with this method, which in itself
is complex enough without a modified Hough transform for circle
detection.

Figure 8. Muff parameter space of line points in 7(left). Lines found in
Muff space (right).

Because of these disadvantages, we developed another approach
which takes advantage of the fact that most feature points of the sym-
metry line image only have one or two neighboring feature points.
Simply using the number of feature points in the 3×3-neighborhood
of a pointp, each feature point can be classified as one of the follow-
ing types:

• A: if p hasno neighbor, it is not interesting for line extraction.
• B: if p hasoneneighbor, it is start or end point of a line.
• C: if p hasmore neighbors, it is part of a line.

Thus, we only have to search for feature points of type B (a line’s start
point) and recursively search the next neighboring point of type C,

until we find another point of type B (the line’s end point). Therefore,
we use the search patterns described in Fig. 9 which are rotational
invariant:

X

Y

12

3

4

5
��

X Y 1

2

3

-

Figure 9. The two search patterns for line segmentation.

SupposeX andY are points of type B or C, andY has been de-
tected as the neighbor ofX. Now we can start searching the neigh-
boring fields as proposed, until we find a new feature point. If no
feature point is found,Y is the end point of the current line, other-
wise we proceed withY in the same manner. Note that the fields left
empty can not be occupied by feature points because of the symmetry
maxima detection.

Each line segment can now be represented as the list of feature
points found by this method. Based on this representation, we can
access further information about the line, e.g. the variance of each
point to the line described by start and end point. This measure is
very useful to easily distinguish curves from straight lines, because
the maximum variance will probably not exceed a few pixels in the
case of a straight line (see Fig. 10 for an example). As proposed, the
performance of this method is quite acceptable. Additionally, it is
more compact and faster than the Muff space approach. It needs less
adaptation, but offers extraction of line segments and classification
of curves. In each presented case, we had to search for thin white

Figure 10. Screenshot of the Line Classificator Dialog.

horizontal lines. Thus, we applied the horizontal symmetry opera-
tor usingm = 3 and included an illumination threshold neglecting
those feature points having a gray-scale value smaller than 100 in the
source image. Additionally, we disregarded lines shorter than a given
threshold and implemented a heuristic to combine line segments, in
the case that they seem to belong to the same field line, but are dis-
rupted by occluding objects.

5.4 Landmarks of the EPR

The proposed method for line extraction is simple, robust, and works
without plenty of parametrization. Additionally, it offers the opportu-
nity to test the approach with natural landmarks (lines) instead of ar-

14

tifacts (colored beacons). After processing the images, lines are dis-
tinguished from curves and represented by their start and end point
in the image.

6?

6?

Figure 11. Landmarks for the EPR. Center column: Landmarks extracted
(for six representation between given start position (left) and goal position

(right): “L” for L-junctions, “T” for T-junctions, “X” for X-junctions;
horizontal lines (yellow), vertical lines(green), goals(red) and flags(blue).

Those lines can be put into the EPR by adopting these points or the
center point, for example. Anyway, a classification of edge types is
more efficient with respect to the subsequent need of recovering land-
marks. To support the panorama with a broader range of landmark
types which ideally are points on the field, we can classify each pair
of lines extracted from an image into different line pair types. In our
experiment, we extracted L-junctions, T-junctions and X-junctions
(see Fig. 11). These edge-extracted features represent the additional
landmarks that are used for the EPR.

5.5 Qualitative Representation

The simulated environment for the experiment corresponds to the
standard four-legged league field configuration with lines instead of
sideboards. One robot is instructed to move a certain path presented
by a given sequence of EPRs. Using the EPR representation and a

qualititative conversion of the feature angles, we can establish a qual-
itative EPR sequence of detected landmark configurations for a path.
Some samples of such sequences might look like the following, cor-
responding to the EPR of Fig. 11:

[(T_JUNC,FAR);(L_JUNC, SAME);(T_JUNC,SAME);
(X_JUNC,SAME);]

[(T_JUNC,FAR);(X_JUNC, SAME);(FLAG,SAME);
(T_JUNC,SAME);]

[(T_JUNC,FAR);(FLAG,SAME);(L_JUNC,CLOSE);
(T_JUNC,MEDIUM);(T_JUNC,MEDIUM);(L_JUNC,SAME);
(L_JUNC,CLOSE);]

[(FLAG,FAR);(L_JUNC,SAME);(L_JUNC,CLOSE);
(T_JUNC,MEDIUM);(L_JUNC,SAME);(T_JUNC,CLOSE);
(L_JUNC,MEDIUM);(T_JUNC,SAME);]

[(FLAG,MEDIUM);(GOAL,FAR);]
[(FLAG,MEDIUM);(GOAL,FAR);(L_JUNC,CLOSE);]

As can be seen in this example, the line landmarks appear and dis-
appear frequently in the robot’s view. This is caused by the landmark
feature extraction working on insufficient simulated image data. We
are optimistic that real images are more comfortable for the extrac-
tion of lines because they are not supposed to be fragmented like
those in simulated images. Although this is error-prone in this regard,
we claim to deal with this problem using the EPR. The representation
can generally be useful for this re-orientation task, where the agent
knows at least to some extent where it has been. Based on this in-
formation, the circular panorama landmark representation can tell us
which hypotheses are plausible according to previous information.

The same panoramic representation is additionally used in our
simulation soccer teamVirtual Werder. Although sensor problems
are neglectable since the world model is more comprehensive and
detailed, it provides a simple and intuitive interface for the genera-
tion of qualitative descriptions.

5.6 Experiments on Real Images

Finally, some experiments have been made to test the proposed fea-
ture extraction and EPR construction on real images (see Fig. 12)10

using one Sony AIBO ERS-7 model inside a common four-legged
league scenario. Without plenty of adaptation, the results are as good

Figure 12. Landmarks for the EPR on real images. Top row: image data
and extracted field / border lines. Bottom row: Landmarks extracted.

as those in the simulation examples. Problems appearing by the line

10 The difference of size in the corresponding images is caused by the differ-
ent image sizes of the old AIBO model ERS-210 to the new ERS-7.

15

extraction technique (e.g. side walls as lines, lines found over hori-
zon, optional grouping of lines to handle occlusions) will be ad-
dressed in future work to increase robustness and performance.

6 Conclusion and Future Work

Navigation, localization, planning, and reasoning for physically
grounded robots imposes strong but heterogeneous requirements on
the underlying spatial representation in terms of abstraction and pre-
cision. In contrast to many other approaches to this topic which try to
generateallocentric maps, we proposed a newegocentricapproach
based on recent results from cognition. The qualitative EPR is dy-
namic in a predictable way for outside landmarks as stated in the two
observations described above. This representation, however, provides
also interesting properties for navigation inside fixed landmarks (e.g.,
navigating within a room).

Besides the re-orientation task mentioned in the last section, the
landmark panorama can help to focus perception in a qualitative self-
allocation task. During the transition of one panorama landmark into
another exactly one position change is performed. Therefore, in this
case the perception of further landmarks is without any use for updat-
ing the qualitative position of the agent. Additionally, the panorama
landmark representation is not only useful for position updating but
also for re-orientation without knowledge about the previous posi-
tion. The perception of a partial landmark panorama of a triangle con-
figuration is sufficient to provide us with two hypotheses about the
current position. In order to validate which hypothesis holds we just
have to find out where another landmark appears in the panoramic
structure. Addionally, a landmark panorama provides a stable basis
for qualitative, spatial descriptions (e.g. left of, right of), since it is,
obviously, sensitive to rotation but invariant to transition, it is also
interesting for several outstanding applications based on qualitative
information.

Although a detailed analysis of the relation to the recent cognitive
results is out of the scope in this paper, we want to mention that the
EPR shows several properties which are observed in recent experi-
ments: e.g., translation tasks seem to be performed more easily and
accurately than rotation tasks.

Several tasks remain to be done. We are currently extending our
landmark-based (re-)orientation vision module so that it is not only
able to track EPRs but also allows active snapshot-based navigation
(first results are available). Thereby we implement the concept of
outside-landmarks that formally describes how landmarks can shift
and switch during movement (see section 4.2). This should also allow
to detect the geometric structure of previously unseen objects. After
validating our extended panorama representation in the RoboCup-
domain, we consider to transfer this method of the EPR into an om-
nidirectional vision module for mobile robot tasks.

7 Acknowledgements

The presented work is being funded by the German Research Foun-
dation (DFG) within the projectAutomatic Plan Recognition and In-
tention Recognition of Foreign Mobile Robots in Cooperative and
Competitive Environmentsas part of the Priority Research Program
SPP-1125Cooperative Teams of Mobile Robots in Dynamic Environ-
ments.

REFERENCES

[1] D. Busquets, C. Sierra, and R. L. De Mantaras, ‘A multiagent approach
to qualitative landmark-based navigation’,Autonomous Robots, 15(1),
129–154, (2003).

[2] H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista, and
S. Schelling, ‘A bayesian algorithm for simulaneous localization and
map building’, inProceedings of the 10’th International Symposium
on Robotics Research (ISRR’01)), Lorne, Australia, (2001). AAAI
Press/MIT Press.

[3] R. D. Easton and M. J. Sholl, ‘Object-array structure, frames of refer-
ence, and retrieval of spatial knowledge’,Journal of Experimental Psy-
chology: Learning, Memory and Cognition, 21(2), 483–500, (1995).

[4] Kutluhan Erol, James Hendler, and Dana S. Nau, ‘HTN planning: Com-
plexity and expressivity’, inProceedings of the Twelfth National Con-
ference on Artificial Intelligence (AAAI-94), volume 2, pp. 1123–1128,
Seattle, Washington, USA, (1994). AAAI Press/MIT Press.

[5] B. Garsoffky, S. Schwan, and F. W. Hesse, ‘Viewpoint dependency in
the recognition of dynamic scenes’,Journal of Experimental Psychol-
ogy: Learning, Memory and Cognition, 28(6), 1035–1050, (2002).

[6] K. Huebner, ‘A 1-Dimensional Symmetry Operator for Image Feature
Extraction in Robot Applications’,The 16th International Conference
on Vision Interface, 286–291, (June 2003).

[7] K. Huebner,A Symmetry Operator and its Application to the RoboCup,
7th International Workshop on RoboCup 2003 (Robot World Cup Soc-
cer Games and Conferences). Lecture Notes in Artificial Intelligence,
Springer Verlag, 2004. To appear.

[8] S. Johansson and A. Saffiotti, ‘Using the Electric Field Approach in
the RoboCup Domain’, inRoboCup 2001: Robot Soccer World Cup V,
eds., A. Birk, S. Coradeschi, and S. Tadokoro, number 2377 in LNAI,
399–404, Springer-Verlag, Berlin, DE, (2002).

[9] Ulrich John, ‘Solving large configuration problems efficiently by clus-
tering the conbacon model’, inIEA/AIE 2000, pp. 396–405, (2000).

[10] Benjamin Kuipers, ‘The spatial semantic hierarchy.’,Artificial Intelli-
gence, 119(1-2), 191–233, (2000).

[11] J. C. Latombe,Robot Motion Planning, volume 18, Kluwer Academic
Press, 1991.

[12] T. S. Levitt and D. T. Lawton, ‘Qualitative navigation for mobile
robots’,Artificial Intelligence, 44, 305–360, (1990).

[13] Massimo Lucchesi,Choaching the 3-4-1-2 and 4-2-3-1, Reedswain
Publishing, edizioni nuova prhomos edn., 2001.

[14] C. Martin and S. Thrun, ‘Online acquisition of compact volumetric
maps with mobile robots’, inProceedings of the IEEE International
Conference on Robotics and Automation (ICRA), (2002).

[15] J. O’Keefe and A. Speakman,The Hippocampus as A Cognitive Map,
Oxford, Clarendon Press, 1978.

[16] T. J. Prescott, ‘Spatial representation for navigation in animats’,Adap-
tive Behavior, 4(2), 85–125, (1996).

[17] A.D. Redish,Beyond the Cognitive Map - From Place Cells to Episodic
Memory, The MIT Press, Cambridge, Mass., 1999.

[18] T. Roefer,An Architecture for a National RoboCup Team, 417–425,
RoboCup 2002: Robot Soccer World Cup VI. Lecture Notes in Artifi-
cial Intelligence, Springer Verlag, 2003.

[19] T. Roefer and M. Juengel, ‘Vision-Based Fast and Reactive Monte-
Carlo Localization’, inProceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA-2003), pp. 856–861, Taipei,
Taiwan, (2003).

[20] C. Schlieder,Ordering information and symbolic projection, 115–140,
Schlieder, C. (1996). Ordering information and symbolic projection.
In S. K. Chang, E. Jungert and G. Tortora (Eds.), Intelligent image
database systems. Singapore: World Scientific Publishing.

[21] C. Schlieder, ‘Representing visible locations for qualitative navigation’,
523–532, In: Qualitative reasoning and decision technologies, N. Piera-
Carrete & M. Singh (Eds.) CIMNE Barcelona [http://www.iig.uni-
freiburg.de/cognition/members/cs/cs-pub.html], (1993).

[22] Christoph Schlieder,Anordnung und Sichtbarkeit - Eine Charakter-
isierung unvollsẗandigen r̈aumlichen Wissens, Ph.D. dissertation, Uni-
versity Hamburg, Department for Computer Science, 1991.

[23] Michael K. Smith, Chris Welty, and Deborah L. McGuinness, ‘Owl web
ontology language guide’, W3c candidate recommendation 18 august
2003, (2003). http://www.w3.org/TR/owl-guide/.

[24] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers, F. Del-
laert, D. Fox, D. Ḧahnel, C. Rosenberg, N. Roy, J. Schulte, , and
D. Schulz, ‘Probabilistic algorithms and the interactive museum tour-

16

guide robot minerva’,International Journal of Robotics Research,
19(11), 972–999, (2000).

[25] S. Thrun, A. B̈ucken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning,
T. Hofmann, M. Krell, and T. Schmidt,AI-based Mobile Robots: Case
Studies of Successful Robot Systems, chapter Map learning and high-
speed navigation in RHINO, MIT Press, 1998.

[26] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, ‘Robust monte carlo lo-
calization for mobile robots’,Artificial Intelligence, 128(1-2), 99–141,
(2000).

[27] S. Thrun, D. Ḧahnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Bur-
gard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker, ‘A sys-
tem for volumetric robotic mapping of abandoned mines’, inProceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), (2003).

[28] E. C. Tolman, ‘Cognitive maps in rats and men’,Psycholoical Review,
55, 189–208, (1948).

[29] Thomas Wagner, Christoph Schlieder, and Ubbo Visser, ‘An extended
panorama: Efficient qualitative spatial knowledge representation for
highly dynamic enironments’,IJCAI-03 Workshop on Issues in Des-
gning Physical Agents for Dynamic Real-Time Environments: World
Modeling, Planning, Learning, and Communicating, 109–116, (2003).

[30] R.S. Wallace, ‘A Modified Hough Transform For Lines’,IEEE Inter-
national Conference on Computer Vision and Pattern Recognition, 85,
665–667, (1985).

[31] R. F. Wang, ‘Representing a stable environment by egocentric updating
and invariant representations’,Spatial Cognition and Computation, 1,
431–445, (2000).

[32] R. F. Wang and E. S. Spelke, ‘Updating egocentric represenations in
human navigation’,Cognition, 77, 215–250, (2000).

[33] R. F. Wang and E. S. Spelke, ‘Human spatial representation: Insights
from animals’,Trends in Cognitive Science, 6(9), 176–182, (2002).

[34] J.Y. Zheng and S. Tsuji, ‘Panoramic representation for route recogni-
tion by a mobile robot’,International Journal of Computer Vision, 9(1),
55–76, (1992).

17

.

18

Line Based Robot Localization under Natural
Light Conditions

Artur Merke1 and Stefan Welker2 and Martin Riedmiller3

Abstract. In this paper we present a framework for robot
selflocalization in the robocup middle size league. This frame-
work comprises an algorithm for robust selflocalization and a
set of benchmarks which can be used offline to test other
algorithms and to compare their outcomes with our results.
The algorithm is part of our competition team Brainstormers-
Tribots which won the Robocup German Open 2004. This
is a multi agent real time environment, therefore our algo-
rithm is prepared to work with 30 frames per second, leaving
enough time for other tasks like robot control or path plan-
ning. Our approach uses a particle filter method relying on
features found in the image. The features are points on field
lines. They can be recognized reliably under natural light con-
ditions, so the is no longer a need for a well defined and con-
stant light source. Also color coded landmarks or goals are
not required for a stable selflocalization. We present results
for different runs on our benchmark suite, which is an out-
door soccer field with the size of 16x10m. This field size is
bigger then in current competitions and anticipates the trend
of using larger fields in future competitions.

1 Introduction

Since 1996, when the first Robocup competition took part,
there was a steady pursuit of making the Robocup environ-
ment more realistic and less artificial. Certainly one can argue
that there were not enough changes in this direction, as the
games are still conducted under well defined artificial flood-
light. Also different color coded landmarks are used for self-
localization on the field. The use of such color coded land-
marks strongly relies on color classifiers, which are very sen-
sitive to external light conditions. So to get a system which
works under natural light condition one has to extract more
shape oriented features from the images.

In this paper we present a method which relies on easily
extractable shape information, which can be robustly recog-
nized under different light conditions. Our method uses parti-
cle filtering and is a significant extension of the method used
in our Brainstormers-Tribots team in 2003. The old method
worked well and our team scored 5 wins, 1 draw and con-
ceived 2 defeats (scoring 26:8 goals altogether) in the world
championships in Padova 2003. But there were also foresee-
able limitations. The old method relied on color coded poles
and goals. For example distant poles were easily overlooked

1 Universität Dortmund, Germany, artur.merke@udo.edu
2 Universität Dortmund, Germany, stefan.welker@udo.edu
3 Universität Osnabrück, Germany, martin.riedmiller@uos.de

(they can be few pixel large due to the geometry of the mir-
ror) or other colored objects could be mistaken for poles or
goals.

In our new method we only detect points on lines along rays
radially arranged around the center of the omni-directional
camera image. As such points can be recognized without
highly tuned color classification (see section 4 for more de-
tails) we were able to conduct different benchmarks under
natural light conditions. Also such features are insensitive to
varying surroundings, so for example the robot cannot get
misled by different colored objects in the audience. Another
advantage is that we can now self localize on larger fields, as
we don’t rely on specific distant and therefore small features.
Using particle filter methods enables us to estimate the posi-
tion of the robot very exactly on a 16x10 meters large outdoor
field (see figure 1 in section 2). For example driving and turn-
ing the robot (using omni-directional drive) for 30 seconds
across the field with a speed of 1.5 m/s, the self-localization
deviates only approximately 20 cm on average from the ref-
erence path (with maximal deviation of 50 cm). See section 5
for further results.

The second most important aspect of this paper is the re-
producibility of the presented results. We compiled a set of
25 runs of our robot on an 16x10 meters large outdoor field.
Each run consists of all image information (e.g. 30 fps), the
gathered odometry data, and externally measured reference
robot positions during the whole run. These reference posi-
tions were measured with a laser scanner positioned outside
the field, and can be used to evaluate the accuracy of the used
algorithms.

To our knowledge it is the first benchmark in the Robocup
middle size league for self localization. We hope this will en-
courage other researchers (also such which haven’t yet partic-
ipated in Robocup, but are active in the machine vision field)
to compare their algorithms against our benchmark. The set-
ting of our benchmark excels current rules of the middle size
league (larger field, natural light). We hope that this is a
chance to test current algorithms for coming requirements,
and that this also will accelerate the process of making the
conditions in the middle size league more realistic.

2 Environment

In this section we describe the setting of our experiments.
All experiments for this paper were conducted on an outdoor
field with the length of 16 meters and the width of 10 meters,
see figure 1. We have chosen a field covered with tartan, be-

19

Figure 1. Outdoor field, 16 meters long, 10 meters wide

cause on surfaces like asphalt or concrete the omni-directional
wheels of our robot do not have enough grip and also fret ex-
tremely. Originally we looked for a field with the dimensions
16x12 meters but could not find a tartan field in such size
without disturbing lines. As the fields in Lisboa in 2004 will
have the dimensions of 12x8 meters we are still much ahead
of the current Robocup requirements.

It was very important to us to use an outdoor field, so that
we could demonstrate self-localization under natural light
conditions. As it was quite difficult to find a large enough
tartan field without disturbing lines it was even more difficult
to find one covered with green tartan. Here we decided for a
compromise, weighting the outdoor conditions and large size
more then a specific surface color. Our field is therefore col-
ored dark red with slight color intensity variations (the tartan
is quite old and soiled). Meanwhile we consider the different
surface color as an additional challenge, actually real soccer
is also played on different fields not always lawn covered, but
also covered with red ash (at least in the lower soccer leagues).

2m5m 10m

16m

18m

Laserscanner

Figure 2. Field dimensions

The dimensions of the field and positions of lines, goals
and poles conform to the current Robocup rules for the year
2004 [2], see figure 2. The poles and goals are not needed in
our algorithm, but we positioned them on the field such that
groups with other approaches could also use our benchmarks.
The outer lines are 12 cm thick, all inner lines are 6 cm thick.

Outside the field we stationary positioned a laser range
scanner. This enables us to scan the robot path for each run.
Afterwards the scanned positions (each position has an unique
time stamp) of the robot can be used to verify the obtained
algorithmic results.

Figure 3. Tribot, omni-directional drive and camera

For all runs we used our standard competition robot - the
Tribot. See figure 3 for a picture of the Tribot. It has an omni-
directional drive and can for example drive towards the ball
and rotate at the same time (see [1] for more details). During
a run the robot records camera images and odometry data. In
the collected odometry data we abstract from this particular
drive, and only collect the velocity in direction x and y and
the rotation velocity φ of the robot. So using the benchmark
one is not confined to this particular robot drive.

The images recorded by the robot are omni-directional, be-
cause the camera captures the reflections of the field produced
by a hyperbolical mirror (see [1] for more details). Due to a
calibration process one can compute for every pixel in the im-
age the corresponding real world distance. This matches the
reality as long the recognized objects stand on the ground.
The accuracy of the distance estimation decreases signifi-
cantly with the distance from the robot. In figure 4 one can
see two separate images from the camera, where one can also
clearly recognize the different light conditions.

3 Benchmarks

At the moment our benchmark suite consists of 25 different
robot runs. Currently each run is at least 11 and at most 35
seconds long. Using a frame rate of 30 frames per seconds
and storing the images uncompressed in VGA resolution it
requires between 200 and 600 megabyte disk space per run.

20

Figure 4. Two camera images showing different light
conditions.

In figure 5 we depicted four exemplary robot runs, see [8]
for a complete list. For example in figure 5 (a) the robot starts
in front of the blue (=left) goal, drives across the whole field
almost crossing the right penalty area, exits the field near
the right bottom pole and enters it again driving toward the
yellow goal. The sequence is 23 seconds long, consisting of 350
raw images (approx. 200 megabyte) taken with the frame rate
of 15 frames per second. During the run approximately 4 laser
measurements per second were recorded, resulting altogether
in approx. 100 reference positions. These externally measured
reference positions can be used to measure the quality of the
deployed algorithms. As another example the run in figure 5
(d) is 35 seconds long, consists of 1050 raw images (because
of the doubled frame rate) with approximately 160 reference
positions.

The collection of benchmarks is supposed to grow in the
future. The current set of 25 benchmarks can be found at
[8]. At this URL we also provide source code for reading and
showing the raw images and related data. We hope that this
will encourage other teams to use our benchmark suite and
maybe also to contribute in extending the existing data base.

4 Algorithm

For localizing our robot in the Robocup environment we es-
sentially rely on a camera as the primary sensor. A camera
image provides very significant input data, a human can eas-
ily estimate the position of a robot by looking at the image.
On the other hand a camera image can contain a lot of use-
less, even obstructive data such as image noise, light artifacts
, color shift, brightness or camera shutter issues. It can be a
difficult task to find an algorithm that recognizes meaning-
ful features in an image, which can be used for localization.
Most of the time a trade-off has to be made between speed
and reliability. In the past most approaches were based on
recognizing the color coded landmarks in the Robocup envi-
ronment. Due to lightning conditions it can be hard to clas-
sify pixels safely to different color classes such as blue, yellow,
green, orange or black. Therefore it is more robust to rely
on shape oriented features. We decided to use the white field
lines for localization, which can be recognized under varying
light conditions. As our incremental algorithm makes do with
even a small number of such features, lines occluded by ob-
stacles and overlooked distant lines do not present a problem
for our approach.

(a) speed 1.5 m/s, 15 fps

(b) speed 1.5 m/s, 15 fps

(d) speed 1.5 m/s, 30 fps

(c) speed 1.1 m/s, 30 fps

Figure 5. Example of different recorded robot paths.

21

4.1 Vision Architecture

With our vision system we present a fast detection method
for pixels in the image that belong to the field lines. Our
algorithm does not recognize the location and direction of
the lines and corners in the image. Also color coded land-
marks like poles and goals are not necessary. We do not use
these additional features because our self-localization algo-
rithm uses particle filtering which is a probabilistic method
and the points on white lines are sufficient to get good and
robust localization results.

To gather samples of points on lines in the image, we scan
the image along several scan lines. These lines are radially
arranged around the center of the omni-directional camera
image. See figure 6 for an arrangement of these scan lines.

To recognize a line crossing along a scan line we search for
significant variations in the color values. The variations are
measured using an euclidean distance function in the YUV
color space. By applying a threshold to these distances, we
detect possible color transitions. Two consecutive transitions
are recognized as a line transition if they are in close real
world proximity to each other and the color before and after
the transition show only a small color distance. This process
gathers all kinds of line transitions in the image. To sort out
transitions that do not belong to field lines an additional color
validation is conducted. The deployed color classifier does not
need to be non-ambiguous. The color classes may overlap and
can therefore be tolerant enough cope with changes in light
conditions during the classifying process.

The recognition of line transitions along the scan lines has
the additional advantage of using only small amounts of com-
putational resources. The image does not have to be seg-
mented as a whole. This allows to run the system with 30
frames per second at a resolution of 640 x 480 pixels.

Figure 6. Analysis of an image with scan lines and recognized
line transitions

Each line transition is a possible sensor measurement. To
make it meaningful, we need its distance and angle to the
center of the robot. To get the position of a pixel in the image
in real world coordinates, we calibrate a distance mapping
D(r, ϕ) into every direction ϕ of the robot. The process of

calibration is partially automated. A distance calibration en-
vironment has to be set up before the process. It consists
of several color coded markings that are located at defined
distances from the robot. While turning slowly, the robot rec-
ognizes these markers to gather data about the real distances
of pixels in the image. With this data a complete distance
mapping can be calculated for every pixel of the image. This
mapping is only meaningful for objects that are located on
the ground.

4.2 Self-Localization

In order to localize a robot correctly an appropriate estimate
of the robot position xt ∈ Rn at time t has to be found.
In our setting the position consists of the coordinates of the
robot on the field and its relative orientation (n = 3). We
utilize a sequential Monte Carlo method to generate the pos-
terior probability distribution πt|t of the robot state xt with
regard to the prior distribution πt−1|t−1. The former estimate
πt−1|t−1 is incrementally updated using new odometry data
at and sensor values yt. This is done in two stages.

First a prediction step is conducted using the odometry:

πt|t−1(·) =

∫
Rnx

πt−1|t−1(dxt−1)K(·|xt−1, at) (1)

where K(·|xt−1, at) denotes the Markov transition kernel
for action at.

Afterwards an update step is performed using the current
sensor values:

πt|t(·) = [

∫
Rnx

g(yt|xt)πt|t−1(dxt)]
−1 ∗ g(yt|xt)πt|t−1(·) (2)

where g(yt|xt) is the conditional probability density of the
observed sensor values with respect to the estimated position.
See [4] for more details.

In particle filtering the real probability distribution πt|t is
represented by a discrete probability measure using a set of
N (currently about 200) weighted particles. The steps from
equation 1 and 2 imply the following procedure of sequen-
tial importance sampling and resampling steps. This process
consists of

1. Predicting new positions for particles while incorporating
action information i.e. odometry

2. Updating the particle probability weights by estimating
sensors input probability

3. Normalizing the probability weights of the particles
4. Resampling from the particle distribution to get the poste-

rior distribution

In the following we will elaborate on the particularities of
the steps 1, 2 and 4 in our approach.

Step 1. To predict the particles position by action we add
the odometry reading at that consists of (xodo, yodo, ϕodo) for
each particle. To represent the uncertainty of the odometry
reading, gaussian noise is added to the particle location, pro-
portional to the length of the odometry.

Step 2. We estimate the probability of obtaining the cap-
tured camera image at the location of every particle. This is
done using an approximation which only relies on the detected

22

line transitions. For this approximation a product of all single
transition probabilities is a reasonable estimate. To compute
the probability of a single line transition, the location of the
transition is mapped to a point p in the global coordinate
system using the orientation and position of the considered
particle. The minimal distance of this point p to the existing
lines determines the probability value for the transition.

As this has to be done for every line transition and every
particle, it can be very resource consuming process. Therefore
we use a precalculated two dimensional look-up table of the
field that provides the distance of every location on the field
to the lines in O(1).

Additionally the probability value for the transition de-
pends on the distance of the point p to the position of the
particle. This is because the distance measurement error of
the vision system increases significantly for distant objects.

Step 4. To make the algorithm work the particles have to
be resampled. Resampling statistically multiplies or discards
particles at each time step to adaptively concentrate particles
on regions of high posterior probability. This process consists
of drawing N new Particles from the existing ones accord-
ing to the particle weights using a multinomial distribution.
In general this requires O(n log n) but can be done in O(n)
according to [5].

With these steps we can achieve robust incremental knowl-
edge of the robot position by determining the average of the
particle positions and headings.

5 Results

In this section we present the results for the sequences in-
troduced in section 3. In this test we assume that the initial
position of the robot is known, but our algorithm also solves
the global localization (kidnapped robot) problem.

-6000

-4000

-2000

 0

 2000

 4000

 6000

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

reference position (laser scan)

computed position (particle filter)

odometry position (dead reckoning)

Figure 7. Sequence a, 15 frames/sec, 23 seconds

Sequence (a) (see Figure 7) shows the robot starting at the
blue goal, driving across the whole field with a speed of 1.5 me-
ters per second. The run is 23 seconds long and was captured
at 15 frames per second. At the end of the run it leaves the
field turns around and enters the field again. During this run
the average deviation of the particle filter position to the laser

scan position was only 18.1 cm, the maximum absolute error
was 59.7 cm. In comparison to the large field size we only de-
viate by 1.8% of the field width and 1.1% with respect to the
field length. This high quality of the result can be also seen in
Figure 7 as the computed path lies very close to the reference
position path. Also the deviation of the self-localization is
uniformly accurate across the whole field, not only in regions
close to lines. In contrast to the self-localization by particle
filter the dead reckoning position obtained by the odometry
measurements deviates very quickly from the real path and
cannot be relied on for self-localization purposes.

-6000

-4000

-2000

 0

 2000

 4000

 6000

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

reference position (laser scan)

computed position (particle filter)

odometry position (dead reckoning)

Figure 8. Sequence b, 30 frames/sec, 35 seconds

Sequence (d) (see Figure 8) shows a run with 30 frames per
second and 35 seconds length. The robot starts at the side of
the blue goal, drives across the field into the yellow goal region
and back into the field while turning. Again the average error
is only 17.4 cm and the maximum deviation 51.6 cm. This
test run performed a little bit better which may be because
of the increased frame rate. This shows that even when only
processing half of the available image data the localization is
still sufficiently precise. In Table 1 we summarized all results

Table 1. Evaluation for test runs in figure 5

sequence length avg. error max. error

run (a) 23 sec 0.152 m 0.359 m

run (b) 23 sec 0.390 m 0.847 m

run (c) 35 sec 0.177 m 0.500 m

run (d) 35 sec 0.205 m 0.502 m

for the benchmarks presented in section 3. In all test runs
the particle filter shows similar small deviations from the real
path.

5.1 Results under reduced view range

The above results were obtained on a field without obsta-
cles. Our algorithm also does work with partly occluded lines,

23

which happens in real world applications, where obstacles can
cover significant parts of the image. We could prove this in the
Robocup German Open 2004, where our team won the compe-
tition (winning all its 8 games, scoring 44:3 goals). The robots
didn’t delocalize during the matches, although the lines were
covered by 7 other robots (3 teammates and 4 opponents) and
a human referee.

As our current benchmark suite does not yet include se-
quences with obstacles (such sequences will be included in
near future), we simulate an occluded view range using arti-
ficial black areas in the images. To this end we use different
bitmap masks which reduce the original image information.
A mask with four black areas can seen in figure 10. This mask
constantly occludes two thirds of the image.

Figure 9. Reduction of the view range

As our algorithm also makes do with few lines, the results
are only slightly worse than in the case without occlusions.
This can be seen in table 2.

Table 2. Evaluation for test runs in figure 5 with occluded view
range using mask shown in figure 9

sequence length avg. error max. error

run (a) 23 sec 0.161 m 0.354 m

run (b) 23 sec 0.393 m 0.877 m

run (c) 35 sec 0.195 m 0.466 m

run (d) 35 sec 0.231 m 0.537 m

5.2 Simulating a directed view range

An occlusion mask as used in the above section, can also be
used to simulate the view range of a directed camera. This
can be seen in figure 10.

Also the results for this case are very good concerning the
fact that only the lines and no other landmarks were used.
This is remarkable because due to the big size of the field

Figure 10. Simulation of directed view range

there are times where no lines at all are detected. But this
short periods are compensated by the odometry. In figure 11
one can see such a period, where the robot leaves the left
penalty area.

-6000

-4000

-2000

 0

 2000

 4000

 6000

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

reference position (laser scan)

computed position (particle filter)

odometry position (dead reckoning)

Figure 11. Sequence a, using directed view range

In table 3 we summarized the results for the directed view
range case.

Table 3. Evaluation for test runs in figure 5 using directed view
range from figure 10

sequence length avg. error max. error

run (a) 23 sec 0.308 m 0.775 m

run (b) 23 sec 0.856 m 0.1764 m

run (c) 35 sec 0.274 m 0.687 m

run (d) 35 sec 0.352 m 0.837 m

24

6 Conclusions

In this paper we presented a framework for self-localization
in the Robocup middle size league. This framework consists
of

• a benchmark suite for testing self-localization algorithms
and

• a newly developed algorithm for self-localization.

Using these freely available and reproducible benchmarks we
presented the results for our algorithm. The obtained results
show that our algorithm is very well suited for self-localization
under natural light conditions. This is achieved without rely-
ing on color coded features like goals or poles and does work a
16x10 meters large outdoor field. Beside the presented bench-
mark results the algorithm was deployed in our competition
team Brainstormers-Tribots, which won the Robocup German
Open 2004.

The reason for the good performance of our algorithm lies
in the combination of sequential Monte Carlo methods (par-
ticle filter) and the robust extraction of line features from the
image data.

Both mentioned parts of the presented work are innovative.
Benchmarks are extensively used in many fields of machine
learning, but to our best knowledge our benchmark is the
first considering self-localization of autonomous robots in the
Robocup environment. The presented benchmarks are con-
sidered as a starting point and will be extended in the future
(hopefully for non Robocup specific environments as well).

With respect to our algorithm and its outdoor deployment
there are similar but distinct approaches in the literature.
In [6] natural light conditions are considered, but only for
color classification, no resulting self-localization performance
tests were presented. In our work we do not heavily rely on
color classification, as the main features are obtained from
strong thresholds in color values which appear on line cross-
ings. Color classification is also used, but just for validation of
the obtained line crossings and can therefore be more fuzzy.

The work in [11] presents a robust self-localization algo-
rithm for the middle size league. It relies on the detection of
more complex line features in an homogeneously colored field.
Our algorithm makes do with less structured features which
we consider as one of the reasons of its robustness. Also the
use of a particle filter distinguishes our work from [11]. It
would be interesting to test the algorithm from [11] under the
conditions of our benchmark suite.

Maybe the algorithm presented in [9] is most similar to
ours. The extraction of line features is different, as we for
example do not rely on separate detection of a horizon line.
Also the deployment of the particle filter and the computation
of sensor probabilities differ partially from our approach. The
results presented in [9] were obtained on a quite small field
(due to the Sony legged league limitations) and under artificial
light conditions, therefore it would be interesting to see it’s
performance in our framework.

There are other approaches in the literature, see for exam-
ple [10]. The methods used therein can also be distinguished
from the work presented by us, but no qualitative compar-
isons were possible until now. We hope that our benchmark
suite will be helpful in making such qualitative comparisons
in the future. Also by using our challenging extensions of the

current Robocup environment (natural light, large field), we
hope to accelerate the progress in the Robocup environment.

The work presented in this paper would not be possible
without the foundations created by the Brainstormers-Tribots
team [1] in 2003. We would also like to thank the CoPS team
from Stuttgart [3] for their support with the laser range scan-
ner. Finally we thank our local sport facilities for providing
the environment for our experiments.

REFERENCES
[1] M. Arbatzat, S. Freitag, M. Fricke, R. Hafner, C. Heermann,

K. Hegelig, A. Krause, J. Krüger, M. Lauer, M. Lewandowski,
A. Merke, H. Müller, M. Riedmiller, J. Schanko, M. Schulte-
Hobein, M. Theile, S. Welker, and D. Withopf, ‘Creating a
robot soccer team from scratch: the brainstormers-tribots’, in
RoboCup-2003 - Proceedings of the International Symposium,
(2003).

[2] M. Asada, T. Balch, A. Bonarini, A. Bredenfeld,
S. Gutmann, G. Kraetzschmar, P. Lima, E. Menegatti,
T. Nakamura, E. Pagello, F. Ribeiro, T. Schmitt,
W. Shen, H. Sprong, S. Suzuki, and Y. Takahashi.
Middle size robot league rules and regulations for 2004,
http://www.tcsi.de/ROBOCUP/ DOCUMENTS/MSL/msl-
rules-2004.pdf.

[3] T. Buchheim, G. Kindermann, R. Lafrenz, H. Rajaie,
M. Schanz, F. Schreiber, and P. Levi, ‘Team description -
cops stuttgart’, in RoboCup-2003 - Proceedings of the Inter-
national Symposium, (2003).

[4] D. Crisan and A. Doucet, ‘A survey of convergence results on
particle filtering methods for practitioners’, in IEEE Trans-
actions on Signal Processing, (2002).

[5] Arnaud Doucet. On sequential monte carlo sampling methods
for bayesian filtering, 1998.

[6] G. Mayer, G. K. Kraetzschmar, and H. Utz, ‘Playing robot
soccer under natural light: A case study’, in 7th International
Workshop on RoboCup 2003, Lecture Notes in Artificial In-
telligence. Springer, (2004).

[7] A. Merke and M. Riedmiller, ‘Karlsruhe brainstormers - a re-
inforcement learning way to robotic soccer ii’, in RoboCup-
2001: Robot Soccer World Cup V, LNCS, eds., A. Birk,
S. Coradeschi, and S. Tadokoro, 322–327, Springer, (2001).

[8] A. Merke, S. Welker, and M. Riedmiller. Bench-
mark suite for self-localization, http://lrb.cs.uni-
dortmund.de/˜merke/robocup/sloc.

[9] Th. Röfer and M. Jüngel, ‘Fast and robust edge-based lo-
calization in the sony four-legged robot league.’, in 7th In-
ternational Workshop on RoboCup 2003, Lecture Notes in
Artificial Intelligence. Springer, (2004).

[10] E. Schulenburg, T. Weigel, and A. Kleiner, ‘Self-localization
in dynamic environments base on laser and vision data’, in
International Conference on Intelligent Robots and Systems
(IROS), volume 18, pp. 998–1004, (2003).

[11] F. v. Hundelshausen and R. Rojas, ‘Tracking regions’, in 7th
International Workshop on RoboCup 2003, Lecture Notes in
Artificial Intelligence. Springer, (2004).

25

.

26

Opportunistic Planning and Plan Execution
Carmel Domshlak 1 and James H. Lawton2

Abstract. Multi-agent opportunismrefers to the ability of agents
operating in a multi-agent system (MAS) to recognize and respond to
potential opportunities for mutual assistance in achieving individual
goals. Two major potential obstacles in operationalizing multi-agent
opportunistic assistance in real-world systems are (i) low amounts of
knowledge shared between the agents, and (ii) limited ability of the
agents to re-plan dynamically. We have previously shown that even
under these limiting conditions, systems of agents can benefit from
multi-agent opportunism. In this work we discuss how multi-agent
systems can exploit shared knowledge for opportunistic predictive
encoding using an approach based on an abstract plan representa-
tion called Partial Order Plan Graphs (POPGs). Further, we present
several approaches for increasing system-level performance by im-
proving the efficiency of the plans containing predictively encoded
opportunities, as well as the results of an empirical analysis of their
impact on the system performance.

1 Introduction

Single-agent opportunism is the ability of an agent to alter a pre-
planned course of action to pursue a different goal, based upon a
change in the environment or in the agent’s internal state – anoppor-
tunity [8, 11]. Extending this notion, multi-agent opportunism refers
to the ability of agents operating in a multi-agent system (MAS) to
assist one another by recognizing and responding to potential op-
portunities for each other’s goals [4, 12]. Naturally, multi-agent op-
portunistic behavior is feasible only when the agents have sufficient
knowledge about one another. Unfortunately, in real-world (and es-
pecially heterogeneous) MASs, the agents may not possess a sig-
nificant degree of shared knowledge (such as,e.g., shared plans [7]
or even shared goals [2]). Therefore, the two fundamental practical
questions regarding multi-agent opportunism are (i)can multi-agent
opportunism be helpful at all in situations where the amount and type
of the shared knowledge are very limited?, and, if so, (ii)what is the
best way to exploit this information both offline (in planning) and
online (during the execution)?

We consider multi-agent opportunism in systems where the agents
are required to perform non-trivial planning tasks. The planning and
execution scheme for the agents used in this study was developed
especially to support opportunistic behavior of agents in various set-
tings of shared knowledge. To preserve generality, this scheme does
not assume that the agents are using any particular, or even the same,
planning methodology. This is achieved by using a generic form of
plan representation, with which we can represent artifacts of most
(if not all) techniques used in the area of classical (STRIPS-based)
AI domain-independent planning [18]. Further, the selected planning

1 Cornell University, Ithaca, NY, USA. Email: dcarmel@cs.cornell.edu
2 US Air Force Research Laboratory, Inforation Directorate, Rome, NY,

USA. Email: lawton@ai.rl.af.mil

and execution scheme readily supports a computationally efficient
form of opportunism based onpredictive encoding[16], in which
potential opportunities are pre-computed and associated with exist-
ing plan elements.

In our work, we examine both whether and how different forms
of shared knowledge can be exploited for multi-agent opportunis-
tic behavior, and the actual impact that such exploitation may have
on performance improvements in an MAS due to multi-agent oppor-
tunism. In particular, we have focused on variants of two basic types
of knowledge that we believe could be shared even in most heteroge-
neous and complex MASs: knowledge of agents’ principal capabili-
ties (i.e., what goals can possibly be assigned to each of the agents),
and knowledge of the goals that have been actually assigned to the
agents. The results of our focused evaluation show that adopting op-
portunistic behavior for planning agents does not come for free, and
that its efficiency depends significantly on the way the shared knowl-
edge is exploited by the agents.

On the positive side, we show that multi-agent opportunism can
improve the overall performance of an MAS, even in extreme situ-
ations where the amount and type of the shared knowledge are very
limited, and when the agents have little or no ability to re-plan. How-
ever, the basic mechanism used to achieve multi-agent opportunism
often produced inefficient plans, occasionally resulting in reduced
system performance. Therefore, we introduce a set of extensions to
our original approach to multi-agent opportunistic planning and exe-
cution aiming to improve the efficiency of the plans and the system
performance. We formally describe these extensions, and present the
results of a comparative empirical analysis.

2 Computational Model of Planning and Execution

Our abstract MAS model is similar to those used in [15] and [17], but
has been extended to support opportunistic behavior. We model an
MAS as a finite set of benevolent agents{A1, · · · , An}, where each
agentAi is associated with a set of capabilitiesCi = {ci1 , · · · , cil},
and a set of resourcesRi = {r1i , · · · , rmi}. To avoid confusion due
to overloading of these two notions in the literature, in our modelthe
capabilities setCi corresponds to the goals that in general can be
assigned toAi. For example, in a team of three planetary roversA1,
A2 andA3, where bothA1 andA2 are equipped with cameras, while
A3 is not, the goal “have picture of locationL1” can possibly be in
C1 andC2, but not inC3. In contrast, the resources stand for the
physical means consumed by the agent’s actions: For1 ≤ j ≤ m,
we haverji ∈ Dom(rj), whererj is a certain type of resource (e.g.,
time, energy, etc.), andDom(rj) is the corresponding domain ofrj .

In addition to the acting agents{A1, · · · , An}, the system con-
tains a task brokerB [10]. The primary job ofB is simply to dis-
patch the goals of the system to the acting agents. Note that we
use the task broker only to simplify the description of the infor-

27

mation flow in the system: The decision process behindB, as well
as its actual implementation, are tangential to our work and thus
are not within its scope. The only thing we assume aboutB is that
it will assign goalg to Ai only if g ∈ Ci. Given a set of goals
Gi = {gi1 , · · · , gik} ⊆ Ci, agentAi plans for this set of goals,
and executes the generated planPi. However, during the actual ex-
ecution ofPi, several aspects of the world could change, impacting
the relative attractiveness ofPi. For instance, any of the following
may occur:

(a) Ai is assigned an additional goalgik+1 by B.
(b) Some other agentAj in the group fails to accomplish one of its

assigned goalsg ∈ Gj .
(c) The value of someg ∈ Gi has been changed (positively or neg-

atively).
(d) Some of the goals inGi becomes unreachable with respect to

Pi.
(e) Resource consumption by the part ofP executed so far has been

significantly different (positively or negatively) from what it was
expected during planning.

In such cases, we would likeAi to revisit its current course of action,
possibly updating its set of active goals, andsuspendinggoals it de-
termines are no longer feasible. Normally, these suspended goals are
returned to the broker for redistribution to other agents in the multi-
agent system. In our model, though,Ai may attempt to satisfy these
goals opportunistically by fitting them into its current plan, or into
the current plan of another agent in the multi-agent system, with as
little re-planning as possible (if any).

Below we describe our scheme for planning and execution (origi-
nally introduced in [4]), as well as its conceptual extension to support
multi-agent opportunism as in [13].

2.1 Planning

The qualitative part of the problem is assumed to be described using
the standard propositional STRIPS formalism in which both positive
and negative preconditions are allowed (which is exactly the formal-
ism used for the first level of the annual International Planning Com-
petition [5]). Each agent is associated with a description of its initial
state (represented as a conjunct of all the propositions valid in this
state), a set of goal propositions to be achieved, and a set of all types
of actions this agent is able/allowed to perform. In turn, the quantita-
tive part of the problem is described by the resource consumptions of
agents’ actions and the relative desirability associated with each goal.
Since in most applications resource consumption is not necessarily
deterministic, it is modeled viaconsumption distributionsassociated
with each action. Likewise, the desirability of each goalg is mod-
eled via avalue functionVg, allowing conditioning goal desirability
on deadlines reached, costs involved, etc.

Following the practical methodology developed in [3], in the plan-
ning stage for agentAi we first solve the qualitative, propositional
planning problem for all the goals inGi while ignoring the issues of
resource consumption and variance in the importance of the goals.
The main difference between our framework and that in [3] is that
the plan representation required in [3] commits planning to a certain
methodology, while our approach is planner-independent. The latter
is achieved by representing plans using a novel structure, called a
partial order plan graph(or POPG, for short).

Structurally, POPGs have some properties of both plan graphs [1]
and partial order plans [14]: As with plan graphs, POPGs consist of
two types of nodes (proposition and action nodes) interrelated via

SampleRock(L1) //

((PPPP hs(L1)

at(L1) //

88qqqqqq

&&MMMMMM Navigate(L1, L2) // at(L2) // SampleRock(L2) // hs(L2)

TakePicture(L1)

66nnnn
// hp(L1)

Figure 1. A fragment of a partial order plan graph (POPG) for theRovers
example.

causal links. Unlike plan graphs, however, POPGs are not leveled
graphs, and (like partial order plans) the alternative total-order sched-
ules of the actions in a POPG are captured by the ordering constraints
between the actions. An example POPG capturing an episode of a
plan for theRovers domain [5] is shown in Figure 1. The border-
less and rectangular nodes represent proposition and action nodes,
and the solid and dashed edges represent the causal links and or-
dering constraints, respectively. The propositionsat(p), hs(p) and
hp(p) respectively stand for “located at”, “have rock sample from”
and “have picture from” locationp. The causal links fromat(L1)
to SampleRock(L1), and fromSampleRock(L1) to hs(L1) capture
thatat(L1) andhs(L1) are the preconditions and effects of the ac-
tionSampleRock(L1), respectively. The ordering constraint between
SampleRock(L1) and Navigate(L1, L2) captures that the former
action cannot be performed after the latter. The (relevant part of the)
initial state of the agent isat(L1)∧¬hs(L1)∧¬hp(L1)∧¬hs(L2),
while the goals arehs(L1), hp(L1), andhs(L2).

For further technical details on POPGs and the precise relation
of POPGs to plan graphs and partial order plans, we refer the
reader to [4]. The only thing we would like to highlight is that
POPGs can be easily derived from any form of plan representa-
tion used in the planning community, making our framework es-
sentially planner-independent. Finally, after constructing a (POPG-
represented) “skeleton” plan for the qualitative part of the problem,
the quantitative information is added into this structure: The actions
are annotated with their resource consumption distributions and the
goal nodes are annotated with their value functions. The resulting
structure is ready to be used in the execution stage.

2.2 Execution

Given an initial state, a set of resources, and a POPG structure of the
plan annotated with the information about resource consumption of
the actions in the plan and goal values, the agent starts executing its
plan. At each intermediate state of the execution,s, the agent must
make a decision about the next action to perform. As the agent is pro-
vided with a (partial order) POPG, there may be more than one action
applicable in the states. For instance, in the initial state of the run-
ning example, both actionsSampleRock(L1) andTakePicture(L1)
are applicable. In addition, observe that the actionNavigate(L1, L2)
can be performed in the initial state as well. Clearly, if resources are
not an effective limitation, performing this action will be irrational,
as the agent will loose its ability to achieve the goalshs(L1) and
hp(L1). However, if the resources are limited and the goalhs(L2) is
very important, it might be the case that the right thing to do is to
forget abouths(L1) andhp(L1), and to performNavigate(L1, L2),
trying to achievehs(L2) with as little risk as possible. In general, for
an agent to decide which action among a set of alternative applicable
actions should be performed, requires an estimate of how much “ex-

28

Refine(P, a, s)

1. Removea fromP, together with all its outgoing edges.

2. Iteratively remove:

• All the proposition nodesp (together with their outgoing
edges), such thatp 6∈ σ(s, a), and the nodep has no incoming
edges, and

• All the action nodesa′, such that for at least one of the precon-
ditionsq ∈ prec(a′) there is no proposition node associated
with q and having an outgoing edge toa′.

Figure 2. Procedure for updating POPGP after performing actiona.

pected value” could be gained by performing each of these actions.
Computing these values exactly is intractable, as it requires taking
into account not only the probability of certain resource consump-
tion by each action to be executed in the future, but also capturing
in the model all possible results of potential future failures. How-
ever, adopting the way that resource consumption distributions are
abstracted in [3] (see below), we can perform an approximated value
estimation.

Informally, at every decision points the agent:

1. Eliminates from its current planP all the actions that are not exe-
cutable with the current resourcesρ.

2. Estimates the expected valueU(P, s, ρ) of P in the current state
s with the current resourcesρ.

3. Chooses the most cost-effective actiona ∈ P from the currently
applicable actions that actually providesU(P, s, ρ).

4. Performsa (resulting in a new states′, and some remaining re-
sourcesρ′ ≤ ρ), and updates its planP to reflect the result of
executinga.

More specifically, let

actions(P, s, ρ) = {a ∈ P | prec(a) ∈ s ∧ ρ ≥ min(a)} (1)

be the set of actions inP that are executable in states with ρ amount
of resource available. The valueU(P, s, ρ) represents our estimate of
how much value could be gained by executing planP with ρ amount
of resource, starting at the states. This value is specified by Eq. 3
via (i) the value of the plans that the agent will have after performing
one of the actionsa ∈ actions(P, s, ρ), and (ii) the value of the
goals achieved directly by the actiona; these quantities are specified
in Eq. 2 byα(P, a, s, ρ) andβ(a, ρ), respectively. The part of the
planP (= subgraph of POPGP) remaining after performing action
a in states is constructed by the procedureRefine(P, a, s), which
appears in Figure 2. The value of each such “sub-plan” generated by
theRefine procedure is evaluated with the initial stateσ(s, a), which
results from executing actiona in states, and with the amount of
resource that is expected to remain after executinga.

α(P, a, s, ρ) = U (Refine(P, a, s), σ(s, a), ρ− µ(a))

β(a, ρ) =
X

g∈effects(a)

Vg(ρ− µ(a)) (2)

whereµ(A) stands for the expected resource consumption of the ac-
tion a. Putting things together, we have:

U(∅, s, ρ) = 0

U(P, s, ρ) = max
a∈actions(P,s,ρ)

[α(P, a, s, ρ) + β(a, ρ)] (3)

Finally, notice that in step (3) of the decision process above, the
agent is selecting one of the most cost-effective actions among those
maximizing the expected value achievement. This is done to dis-
tinguish between different courses of action not only on the basis
of their expected value, but also with respect to the costs involved
in achieving this value. Thus, each sub-plan is implicitly associ-
ated with its cost, and the costs of the optimal sub-plans are back-
propagated in attachment to the values of these sub-plans calculated
by the dynamic programming procedure as in Eq. 3.

To illustrate possible outcomes of this process, consider the POPG
in Figure 1. Suppose that the properties of the actions with respect to
the resource are abstracted as in the table below, whereµ(a) and
min(a) stand for the expected resource consumption ofa and the
minimal amount of energy with which execution ofa is permitted,
respectively [3].

a µ(a) min(a)
SampleRock(L1) 3 3
TakePicture(L1) 2 2
Navigate(L1, L2) 10 15
SampleRock(L2) 5 7

Likewise, let the value functions of the goals to be constant:
Vhs(L1) = 2, Vhp(L1) = 2, andVhs(L2) = 10. If we haveρ = 19,
then we will haveU(P, s, ρ) = 12 and the action to be executed
is TakePicture(L1), as the estimated best course of action is to
perform first TakePicture(L1), then Navigate(L1, L2), and fi-
nally SampleRock(L2). However, if ρ = 18, then we will have
U(P, s, ρ) = 10 and the action to be executed isNavigate(L1, L2),
as we estimate that performing any other action will prevent us from
achieving (very valuable)hs(L2).

Observe that sudden unreachability of goals, as well as uncer-
tainty in resource consumption by the agent’s actions, is captured
by the model implicitly. Likewise, suppose that the value of some
of the (still reachable) goals that the agent had planned to achieve
have changed. The only thing that the agent has to do is update the
value functions associated in its plan with the corresponding goals
— All of the subsequent decisions will implicitly take into account
this change in the agent’s objectives. The only part of dynamics that
seems to be problematic is assigning a new goal to an agent (i.e. a
goal that is not captured by the current planP). Such a goal can be
either completely new to the multi-agent group, or one of the goals
that has been suspended by some other agent in the group. Clearly,
a complete re-planning for the extended set of goals will solve the
problem, and in many domains such a painful solution might be un-
avoidable. However, below we show that, at least for some practical
domains, we can slightly extend the above model of planning and
execution in a way that will require no re-planning at all.

3 Multi-Agent Opportunism and Shared
Knowledge

The general scheme for planning and execution described above pro-
vides an agent with flexibility in selecting its course of action. In this
section we show that this flexibility would in turn allow agents to
better adapt to dynamic environments by exploiting multi-agent op-
portunism, even in settings that severely limit potential cooperation
between the agents. We first discuss some general issues that should
be addressed while considering adopting multi-agent opportunism in
practice.3 We then describe how those issues can be handled in our
scheme for multi-agent planning and execution, and provide some
experimental results from [13] for the case without re-planning.

3 For a detailed discussion on issues involved in multi-agent opportunism,
see [11, 12]

29

3.1 Some General Concerns (Our Motivation)

In theory, multi-agent systems can clearly benefit from the ability of
agents to act opportunistically, adapting to changing environments,
unexpected events, etc. In practice, however, taking advantage of an
opportunity is far from trivial. The opportunity must first be rec-
ognized, the course of action it facilitates must be determined, and
the agent must decide whether or not it is appropriate to pursue this
course of action at the current time [6]. (To use an extreme exam-
ple, it would probably not be appropriate to stop for a drink while
being chased by a bear, no matter how thirsty you are.) Multi-agent
opportunism (i.e., exploiting opportunities at an inter-agent level) is
even more complicated: The agents should be capable of recognizing
whether a given event or situation may be an opportunity for a goal
of anotheragent in the system, and of responding appropriately to
these recognized opportunities. Two key issues below can make the
potential practical attractiveness of multi-agent opportunism some-
what questionable.

First, both recognizing opportunities and responding to them
should have low computational complexity, otherwise the MAS will
be more “socially friendly” than useful. Theoretically, if agentAi

has information that another agent in the system could benefit from
Ai achieving goalg, thenAi could try to adjust its plan to achieve
Gi ∪ {g}. The problem is that, in some domains, even small adjust-
ments to the plan can be computationally hard [20] and thus infea-
sible during the execution. Likewise, in the case of physical agents
such as robots or sophisticated hardware controllers, the qualitative
part of an agent’s plan must often be carefully verified off-line (some-
times even by human operators [19]), and thus the agent is not al-
lowed to consider completely new courses of action. This discussion
boils down to a very basic question:Can multi-agent opportunism
be effective if only minimal or no replanning at all is allowed during
execution?

The second issue is that, in order for an agent to recognize po-
tential opportunities for other agents, the agent clearly has to know
something about what these other agents are doing. However, we be-
lieve that especially in heterogeneous MASs, this “something” may
turn out to be very limited. For instance, the agents may know only
the goals that some agents can no longer achieve (i.e., suspended
goals), while knowing only little about these other agentsa priori.
If so, can we hope that multi-agent opportunism will be effective in
such cases of extremely limited shared knowledge?

We address these two questions using our scheme for multi-agent
planning and execution as a platform for the analysis. To make the
analysis as conclusive as possible, here we focus on somewhat “least
permitting” conditions, taking the system to an extreme in which
multi-agent opportunism is least likely to contribute. First, we as-
sume that no online replanning is allowed (and/or possible) what-
soever. Second, we consider two (probably the most basic) settings
of shared knowledge. In both settings, the agents communicate only
information about their suspended goals. In addition, the agents are
assumed to havea priori only very limited knowledge about the other
agents in the group: In the less informative settings, the agents know
only the “types” of the other agents in the MAS,i.e., their individ-
ual capabilities. In the more informative settings, the agents know
about the individual goals that have been assigned to the agents by
the broker. In the reminder of this section, we show how multi-agent
opportunism can be supported in our scheme of multi-agent plan-
ning and execution under these conditions, and briefly present the
results of our empirical evaluation from [13]. In the later sections,
we present our complementary work on improving the effectiveness

of this planning and execution methodology.

3.2 Making Execution Opportunistic

Consider an MAS{A1, · · · , An} as in Section 2 executing plans
P1, · · · ,Pn for the goal setsG1, · · · , Gn, respectively. Suppose
that, at some point agentAi suspends a goalg ∈ Gi, notifying the
rest of the agents that it can no longer satisfyg. Since we are as-
suming the agents in the MAS are benevolent, we would like the
other agentsAj (such thatg ∈ Cj) to at least consider whether they
can achieveg themselves and whether the corresponding changes in
their course of action would be worth it. However, if the agents are
prevented from replanning, the plansP1, · · · ,Pi−1,Pi+1, · · · ,Pn

cannot be changed, and thus any opportunistic assistance toAi (if
possible at all) must be based on them as they are.

Notice, though, that even without replanning, it might be the case
thatg is present, and thus potentially achievable, in one of the POPG-
represented plansPj (e.g., as a side-effect ofAj ’s primary activities).
To opportunistically adoptg as a new goal,Aj needs only to properly
increase the value ofg, updating the value functionVg in Pj . While
considering actions in the future, the execution module ofAj will
implicitly adjust its intention with respect to this update.

Let us consider some properties of this extension to our planning
and execution scheme to support multi-agent opportunism. First, be-
cause we are using predictive encoding, the runtime computational
complexity of some agentAj providing opportunistic assistance to
another agentAi is, as desired, kept low. In our model, updating a
value functionVg is all that is required to determine a potential op-
portunity for a suspended goalg. This process is linear in the size of
POPGPj in the worst case.

Second, the value ofg is automatically leveraged against the value
of other goals inGj . As the choice of action in our scheme of exe-
cution is based on maximizing expected value, achievingg will not
come at the expense of other goals inGj unlessg is justifiably con-
sidered to contribute more to the MAS. Finally, even if agentA is
not itself capable of single-agent opportunism, it may still be able to
provide opportunistic support for other agents, as long as the goals
suspended by these other agents are still reachable in the POPG of
A. This is interesting because we had initially considered multi-agent
opportunism strictly as an extension of single-agent opportunism.

Returning to the discussion on our approach to opportunistic exe-
cution, the alert reader may rightfully say that ifg was assigned as a
goal toAi, it is not very likely thatg will also appear in the plan of an-
other agent. (In our Mars rovers example, indeed, why would a rover
plan to sample rocks at a certain location if it was not assigned to
it?) It again appears as if multi-agent opportunism without dynamic
replanning is not very promising. However, this is not necessarily the
case.

Observe that nothing in our scheme for planning and execution
prevents agents from planning for goals that they werenot assigned
to, i.e., goals havingzerovalue from the local perspective of these
agents. Since the decision mechanism behind the execution takes into
account not only the value of the goals to be achieved, but also the
risk behind the various courses of action (encountered via cumula-
tive resource consumption), achieving a goal with a zero value will
automaticallybe postponed. Similarly, if one of the goals that the
agent has planned for becomes irrelevant, instead of removing this
goal from the plan, the agent could simply zero its value function.
Now, recall that in our model each agent is characterized by a set of
capabilities representing all the goals that can possibly be assigned
to the agent. In general, instead of planning for the set of goals that

30

WP21

WP0 WP1 WP2 WP3 WP4

WP5 WP6 WP7 WP8 WP9

WP10 WP11 WP12 WP13 WP14

WP15 WP16 WP17 WP18 WP19

WP20 WP22 WP23 WP24

Agent-0 Agent-1

Agent-3 Agent-4

Figure 3. Workspace partitioning for MAS.

have been actually assigned to the agent, one can considerplanning
for the whole set of capabilitiesand reasoning about the best course
of action during the execution, when the value of different capabili-
ties is known better than during the off-line planning. It is not hard
to see that planning for capabilities would allow an agent to readily
adapt to newly assigned goals, without re-planning, at runtime. Per-
haps more importantly, though, is that planning for capabilities could
significantly improve the performance of multi-agent opportunism,
since more opportunities may be discovered that would otherwise go
unnoticed. Of course, nothing prevents the set of capabilities from
being orders of magnitude larger than an average set of goals the
agent is actually assigned. For such cases, planning for capabilities
should beselective, restricted only to “most promising” capabilities
to plan for.

3.3 Empirical Evaluation

Suppose that agentAi considers planning not only for its assigned
goalsGi, but also for a limited set of its other, opportunity-wise
“most promising”, capabilities. CanAi estimate whether the pur-
ported overhead in planning is worth the potential contribution to the
overall achievements of its MAS? What makes certain capabilities
more promising than others?

In attempt to address these questions, we have implemented
an evaluation testbed for MASs with our planning and execu-
tion scheme. The simulation platform used in the experiments is a
discrete-event simulator, used to put the activities of different agents
on a single time scale. The benchmark problems we have used in
the evaluation are based on the standard planning benchmark do-
mainRovers (inspired by the planning problems for NASA’s Mars
Rovers), used in International Planning Competition (IPC-2002) [5].

In a nutshell, the working area of a set of rovers consists of 25
waypoints, schematically arranged at the cells of a5 × 5 grid (see
Figure 3). Each rover can navigate between 12 waypoints, and per-
form various scientific tasks such as soil sampling, rock sampling,
and taking pictures of objects of interest if they are visible from the
rover’s current location. There are total of 65 different goals that can
be assigned to the rovers by the broker, namely 13 rock samplings
(at the emphasized locations), 13 soil samplings, and 13 objects to
be photographed, where each picture can be taken at three different

levels of quality.
The evaluation was performed on problem instances involving

teams of 4 agents,A1, . . . , A4, with partially overlapping capabil-
ities: The working area of the team was divided into 4 partially over-
lapping regions (see Figure 3), and each rover could navigate only
within its designated area. The scientific tasks that a roverAi can
perform constitute its capabilitiesCi, and these are schematically
restricted to a sub-area in which this rover can navigate. This way,
each agent is capable of performing some 35 (of the 65) goals. At
the beginning of each planning/execution cycle, each agent is as-
signed by the broker a set of goalsGi, such as (i)Gi ⊆ Ci, (ii)
for 1 ≤ i ≤ n, we have|Gi| = k, and (iii)

T
i Gi = ∅. The agents

start with planning for their individual sets of goals using a domain-
independent planning methodology. In our experiments the agents
use theFF planner [9], but any “off-the-shelf” planner capable of
producing plans for the IPC-2002 domains should be applicable.

For the results reported here, an evaluation was performed on 100
randomly generated problem instances. Given a problem instance for
which the agents have generated individual plansP1, . . . ,P4, let
EC(Pi) be the expected amount of energy required forAi to ful-
fill its plan Pi completely. Each agent is allocated with a fractionδi

of EC(Pi), whereδi is randomly chosen from a uniform distribu-
tion within [0.5, 1.5]. In addition to thek assigned goals, each agent
was allowed to choose and plan for anotherk′ capabilities, basing its
choice on the knowledge available about the other agents. Recall that
the idea is to select goals that might get suspended by other agents
at runtime, thus predictively encoding potential opportunities. Since
the primary focus of the evaluation has been on potential contribu-
tions of exploiting severely limited shared knowledge, we conducted
two sets of experiments corresponding to two different levels of such
knowledge:

1. Individual Capabilities(CK): The agents have complete knowl-
edge about each other’s capabilities. Therefore, each agentAi

chooses for itselfk′ goals fromCi =
“S

j (Ci ∩ Cj)
”
\Gi, (i.e.,

from the capabilities thatAi shares with other agents).
2. Individual Goals(GK): The agents have complete knowledge

about the goals that have been assigned to every agent by the
broker. Thus, each agentAi chooses for itselfk′ goals from

Gi =
“S

j (Ci ∩Gj)
”
\ Gi, (i.e., from the assigned goals that

happen to be in the capabilities ofAi).

The experiments for CK and GK were performed under several
choice functionsfromCi andGi, respectively. First, consider the case
of CK and letCi =

Sn−1
j=1 C

j
i be a disjoint partition ofCi, such that

Cj
i consists of the capabilities ofAi that are also part of the capa-

bilities of exactlyj other agents in the system. The firstn − 1 (in
our experiments, three) choice functionsχ1, . . . χn−1 correspond to
randomly choosingk′ extra goals fromC1

i , . . . , Cn−1
i , respectively.

An additional choice function for the case of CK, denoted asχnorm,
picksk′ extra goals fromCi at random, where the random choice is
not uniform, but normalized with respect to the above partition of
Ci. Specifically, letγ =

PN−1
k=1 |Cj

i |/j. The probability of choosing
g ∈ Cj

i is given by1/γk′.
Since GK is strictly more informative than CK, we would expect

that the better choice functions for GK would be based on the addi-
tional information carried with GK. One obvious function like this,
ξmax, corresponds toAi selectingk′ capabilities with the greatest
value inGi. Two additional choice functions,ξmin andξmed, corre-
spond to choosing capabilities with the lowest and median values in
Gi, respectively.

31

Figure 4. Initial results (normalized).

The results of this evaluation are shown in Figure 4, where the
baseline corresponds to expected performance with no multi-agent
opportunism whatsoever. These results show that opportunistic pre-
dictive encoding in constrained environments can be effective after
all. However, Figure 4 shows that adopting multi-agent opportunism
was only moderately effective at the level of knowledge of individual
goals (GK), while actually beingharmfulat the level of knowledge
of individual capabilities only (CK).

At first view, given the decision-theoretic nature of the execution
module, this is a somewhat unexpected result: Since each agent acts
to maximize its (and thus global) expected payoff, having more po-
tentially valuable goals in a plan should only increase its flexibil-
ity, guaranteeing an improvement in the expected performance. Thus
planning for extra goals, using either choice function, should lead to
performance at least as good as when planning for only the assigned
goals. The pitfall here is that this claim is sound only under an “all
else being equal” assumption,i.e., only if we compare two qualita-
tively identical plans. In the case of plan-based predictive encoding,
however, achievingk assigned goals using a plan created for these
and some otherk′ goals can be far more complicated (and thus more
risky and resource consuming) than achieving thek goals using a
plan created only for them. Seeking improvement, in the next section
we address these planning shortfalls by considering various ways to
improve the result of the planning process.

4 Making POPGs More Efficient

In the previous section we noted that planning for opportunities pro-
duced less than overwhelming results because the plans created for
the k + k′ goals were inefficient for accomplishing the assignedk
goals. This is because such plans may lead an agent to execute un-
needed actions on the chance that an extra goal would be suspended
by another agent. To make the plans more efficient, we need to find a
way to create a plan that can opportunistically satisfy extra goals as
they arise, yet efficiently satisfy the assigned goals when no oppor-
tunities are present.

In this section we examine three approaches to this problem.

1. Planning with shortcuts:Each agent first generates a plan forall
of its (assigned and extra)k + k′ goals, and then augments the
structure of that plan by adding “shortcuts” to the assigned goals.
Shortcuts are actions (or short sequences of actions) that bypass
the segments of the plan devoted strictly to support predictively
encoded extra goals.

2. Predictive plan repair:Each agent creates a plan for just itsk
assigned goals, and then repairs that plan by creating and adding
subplans that take a form of “side-loops” to and from the core
plan, devoted to accomplish the extrak′ goals.

3. Reactive plan repair:Similar to predictive plan repair, but dif-
fers by postponing updating the core plan to the execution phase,
namely to the points in time when the agents learn of other agents’
suspended goals.

4.1 Planning with Shortcuts

As with our basic approach to multi-agent opportunism described in
Section 2, we assume that each agentA is assignedk goals by the

brokerB, and thatA selectsk′ additional goals to plan for on the
expectation that they may lead to opportunistic execution. Also like
in the basic approach,A creates a planP for all thesek + k′ goals.
Since the external planner cannot differentiate between the assigned
and extra goals, it will produce a plan that satisfies all of the goals
in a manner that it considers “efficient” – often based on minimizing
the number of actions. We would, however, like the agents to be able
dynamically skip those actions that do not contribute to achieving
any of the currently valuable goals.

Consider, for example, the small POPGs shown in Figure 5, where
the circled and rectangular nodes stand for proposition and action
nodes, respectively, and doubly-circled propositions stand for goals.
Figure 5(a) shows a base plan fork = 3 assigned goals, while
Figure 5(b) shows a planP for thesek and some extra chosenk′

goals. The gray nodes in Figure 5 represent the additional actions
and conditions needed to accomplish thesek′ = 2 extra goals. Fig-
ure 5(c) shows the planPs, constructed fromP by automatically
adding shortcuts devoted to bypass achieving the extra goals. The
validity of adding shortcut nodes to a POPG, creating anExtended
POPG(or EPOPG), is discussed in [4], and thus we will not go into
it further. The real question is, however, how do we determine where
to place the shortcut actions? Our approach is to trace through atotal
order of the planP, finding the start and end nodes of “skippable”
sections. For each pair of start and end nodes, we can generate a plan
fragment that bypasses the corresponding section of the core plan.

To formally specify the notion of skippable sections of a plan, as-
sume that an agentA is assignedk goalsGa = {g1, g2, . . . , gk}
(with V (gi) > 0 for 1 ≤ i ≤ k), and that it also selects addi-
tional k′ goalsGe = {gk+1, gk+2, . . . , gk+k′} (with V (gi) = 0
for k + 1 ≤ i ≤ k + k′). Further, letP be the plan generated for
all k + k′ goals, andA = {a1, a2, . . . , an} be a total order of its
n actions consistent with the ordering induced by the POPG. For
each pair of actionsai, aj ∈ A, we say thatai < aj if i < j.
This sequence of actions is implicitly associated with a sequence of
n + 1 states{s0, s1, . . . , sn}, such thats0 is the initial state, and
for 1 ≤ i ≤ n, ai moves the agent from statesi−1 to statesi. Let
a(g) be the action that actually satisfies some goalg ∈ Ga ∪ Ge,
i.e. a(g) = am is the action such thatg ∈ sm, but for0 ≤ i < m,
g 6∈ si. Consider the assigned goals{g1, g2, . . . , gk} numbered ac-
cording to their achievement alongA. That is, for1 ≤ i < j ≤ k, if
a(gi) 6= a(gj), we havea(gi) < a(gj).

Suppose that for some pair of consequent goalsgi, gi+1 ∈ Ga, we
have an extra goalg ∈ Ge, such thata(gi) < a(g) < a(gi+1). Let
a(gi) = aj anda(gi+1) = al. To allow bypassing the actions needed
only for achievingg, we can first create a plan fragmentP ′ with
s′0 = sj and the goal conjunctGP′ = sl−1, and then attachP ′ to
P, properly grounded at the appropriate proposition nodes insj and
supporting the proposition nodes ofsl−1. This will create an alternate
path around the skippable section, as illustrated in Figure 5(c) by the
segments with solid black nodes. As formalized by Proposition 1,
adding such shortcuts preserves the completeness of the plan with
respect to the assigned goalsGa.

Proposition 1 The structure resulting in replacing the actions
aj+1, . . . , al−1 in P with the plan fragmentP ′ is a valid partial
order plan that, given unbounded amount of resources, achieves all
the assigned goalsGa.

Observe further that the total set of propositions inGP′ can be
large, as it corresponds to the entire statesl−1. However, in general
there is no need to plan for all the propositions ofsl−1, since many

32

(a)

(b)

(c)

(d)

Figure 5. Example POPGs: (a) Base plan; (b) Extended plan; (c) Extended plan with shortcuts; (d) Base plan with repairs.

33

of them may have no effect on the applicability of the remaining part
{al, . . . , an} of P. Therefore, without loss of either soundness or
completeness, we can assignGP′ to contain only the propositions of
sl−1 that act as pre-conditions of some actions in{al, . . . , an}. That
is:

GP′ =
[

a≥al

sl−1 ∩ prec(a) (4)

4.2 Predictive Plan Repair

For predictive plan repair, we again assume that each agentA
is assignedk non-zero-valued goalsGa = {g1, g2, . . . , gk},
and that it also selects additionalk′ (zero-valued) goalsGe =
{gk+1, gk+2, . . . , gk+k′}. Unlike in planning with shortcuts, how-
ever, the agent initially generates a planP only for its k assigned
goalsGa, and thenexpandsP to include actions that accomplish the
goals inGe. For illustration, such a planP for achievingk = 3
assigned goals as depicted in Figure 5(a). Figure 5(d) shows an ex-
pansionPr of P, achieved by augmentingP to include extra actions
(shown in borderless gray) to satisfy the additionalk′ = 2 goals.

As with the formalism for planning with shortcuts, letA =
{a1, a2, . . . , an} be a total order of the actions of the current plan
P. To expandP with respect to an extra goalg ∈ Ge, the agent se-
lects from its action set an actiona that providesg and has the best
support inP among all such actions. That is:

a = argmax
a′ s.t. g∈effects(a′)


max

1≤i≤n

˘
|si ∩ prec(a′)|

¯ff
(5)

and withsi being the corresponding state supportinga, i.e.:

si = argmax
sj∈s0,...,sn

{|sj ∩ prec(a)|} (6)

To preserve the opportunistic nature, the agent should avoid predic-
tive encoding of extra goals having insufficient correlation with the
current plan. For instance, in our evaluation discussed in the next
section,si is required to meet at least half ofa’s preconditions, oth-
erwiseg is not considered to be a potential opportunity.

Given the core planP, and an action/state paira andsi as above,
the agent starts by creating a plan fragmentP ′ for s′o = si and
GP′ = prec(a). Let s′ be the state resulting from applyingP ′ in
si, ands′′ be the state resulting from applyinga in s′. Next, the
agent creates another plan fragmentP ′′ for s′′0 = s′′ andGP′′ = si,
and concatenatesP ′, a, andP ′′. Again, as with planning with short-
cuts, the resulting “side-loop”Pr is attached toP by linking it to the
appropriate proposition nodes insi, and executed as usual. Propo-
sition 2 states that, since the execution mechanism always picks the
most cost-effective course of action among those achieving maximal
expected value, if at runtime the value of one of these extra goals
g ∈ Ge remains zero, the “side-loop” added for achievingg will be
pruned by the execution mechanism.

Proposition 2 If during the execution ofPr all the extra goalsGe

will remain zero valued, the execution ofPr will be equivalent to
executing the core planP.

Finally, here as wellGP′′ = si can be replaced without any loss
of generality with the specification as in Eq. 4. However, as the extra
goalsGe are considered one by one, the whole process of plan re-
pair is incremental with respect toGe. Therefore,GP′′ as in Eq. 4
should be based on thecurrent plan (i.e. the core plan with all the

Figure 6. Plan Efficiency Experiments results (normalized), Goal-based
selection.

previously considered repairs), and not on the core plan for thek as-
signed goals only. This is necessary to ensure new plan repairs do not
prevent previously added repairs from satisfying their extra goals if
the corresponding opportunities arise.

4.3 Reactive Plan Repair

Planning with shortcuts and predictive plan repair are two forms of
predictive encoding that can be adopted by agents which are not
capable and/or not allowed to adjust their plans at execution time.
If, however, some degree of online plan adjustment is possible, the
agents can adjust their intentions as they learn about the suspended
goals of other agents, without having to “guess” and plan for any
extra goals in advance.

In this case, one may consider a reactive variant of predictive plan
repair. Following the reactive plan repair approach, here again we
have each agent generating a planP for its k assigned goals. Un-
like in purely offline approaches to predictive encoding, however,
the agents donot select any additional goals. Rather, when an agent
is notified about some other agent’s suspended goal, it uses the plan
repair mechanism described in Section 4.2 to fit the goal (if possible)
in to the remaining portion of its current plan.

A significant advantage of this approach is that the agents only
plan for goals that actually get suspended. They do not waste any ef-
fort preparing for goals on the chance they might lead to opportunis-
tic execution. Rather, they can focus their resources on considering
opportunities for goals that they know cannot otherwise be satisfied.
The reason we consider reactive plan repair in our analysis is two-
fold. First, this approach corresponds to what we expect is the min-
imal form of online re-planning, preserving the qualitative core of
the plan generated off-line. Second, as such, this approach provides
us with yet another reference point for evaluating attractiveness of
purely offline forms of predictive encoding, the main interest of our
work here.

5 Evaluation

To examine the impact of the various plan enhancement approaches
discussed in Section 4, we have repeated the experiments discussed
in Section 3 for each of the three techniques as above. This evaluation

34

has been performed on the same 100 problem instances4 involving
teams of 4 agents with partially overlapping capabilities as shown in
Figure 3.

The results of this evaluation for our two settings of shared knowl-
edge GK and CK are shown in Figures 6 and 7, respectively. The
left-most group of bars labeled “Basic” simply replicates the results
depicted in Figure 4 for offline predictive encoding with no efficiency
adjustments to the plan. The next two groups of bars depict the to-
tal value achieved on these problem instances under planning with
shortcuts and predictive plan repair (PPR), respectively. In both Fig-
ure 6 and Figure 7, the lower, light-colored horizontal line depicts
the total value obtained on these problem instances using the stan-
dard execution mechanism without any multi-agent opportunism. As
in Figure 4, this represents our baseline, and thus the results for all
other planning and execution strategies are normalized against it. Fi-
nally, the upper, dark horizontal line in both graphs shows the total
value obtained when the agents are allowed to adjust their plans at
runtime using the reactive plan repair (RPR) mechanism.

From Figures 6 and 7 it is easy to see that all three plan enhance-
ment techniques lead to an improvement in performance both over
the baseline plan execution mechanism with no opportunism and
over our original (Basic) approach to offline predictive encoding.
Considering Figure 6, none of the three advanced techniques seem to
dominate the other two, despite the significant differences between
them (e.g., one-shot vs. incremental planning, predictive encoding
online vs. offline, etc.) One difference, however, between these tech-
niques is in time complexity of the corresponding planning and ex-
ecution. In our experiments, the average time each agent spent per
problem instance was 7.57 minutes with planning with shortcuts,
22.87 minutes with predictive plan repair, and only 0.43 minutes with
reactive plan repair5. The dramatically shorter execution time for the
reactive plan repair approach is not surprising, since the plans are
modified only for goals that are known to be suspended. This leads
to smaller plans to execute, with fewer contingency branches to con-
sider, which in turn allows for faster execution. However, recall that
reactive plan repair is feasible only if some degree of online replan-
ning is allowed. Otherwise, our results favor the use of planning with
shortcuts.

In some ways, the results obtained with plan enhancement tech-
niques while exploiting the less informative CK knowledge (see Fig-
ure 7) may be considered even more impressive than the GK results.
Recall that our basic approach to multi-agent opportunism actually
produced a reduction in system performance as compared to not
adopting opportunism at all (see the Basic group of bars in Figure 7).
The results for CK with plan enhancements, however, show that we
can significantly reduce the overhead involved in opportunistic plan-
ning, making adopting multi-agent opportunism attractive even in
cases of extremely limited shared knowledge.

As with the GK results, neither planning with shortcuts or pre-
dictive plan repair was dominant when exploiting CK knowledge.
Both produced moderate performance improvements compared to
the baseline of not exploiting opportunities (and average of≈3%
for planning with shortcuts, and≈4% for predictive plan repair). But
again the time complexity of these approaches (and average of 12.77
minutes per problem instance for planning with shortcuts, and 26.65
minutes for predictive plan repair) suggests a preference for planning
with shortcuts. Of course, if the agents are able to replan at execution

4 At the time of this submission, the CK/PPR experiments were still running.
The results reported use only the first 75 of the 100 problem instances.

5 Since these experiments were run on comparable, but not identical comput-
ers, the precise relation between these numbers may slightly vary.

Figure 7. Plan Efficiency Experiments results (normalized),
Capability-based selection.

time, reactive plan repair would again be the preferred choice.
It might be argued that, even with our plan enhancement tech-

niques, the improvements obtained by using multi-agent oppor-
tunism may not be worth the additional computational burden in-
curred. Indeed, Figure 6 shows that predictive encoding results
in ≈7% average improvement over the baseline, non-opportunistic
planning and execution, while in Figure 7 the improvement is only
≈3% on average. However, notice that each problem instance has a
total of 16 goals assigned to the system of 4 agents. The value of each
goal is selected at random from the uniform distribution between 1
and 100. Thus, the expected value of a goal is 50, and the expected
total value of the 16 goals (if all were satisfied) is 800. Hence, a
7% improvement means an average increase of 56, or the equivalent
of 1 goal that would have otherwise not been accomplished. Even
a 4% improvement would provide an average increase of 32, which
would likely indicate the accomplishment of an additional, lesser-
valued goal that otherwise would have been unsatisfied. Our statis-
tical analysis verifies that such qualitative improvements do in fact
take place, and that they are statistically significant6.

6 Summary

Through our study we have shown that with limited shared knowl-
edge, and even with no re-planning or plan repair capabilities, real-
world systems of heterogeneous agents can assist one another oppor-
tunistically in accomplishing their goals. Conversely, we have also
shown that adopting opportunistic behavior for planning agents does
not come for free, and that its efficiency depends significantly on the
way the shared knowledge is exploited by the agents.

We have presented a general scheme for multi-agent opportunistic
planning and execution, which is based on selective predictive encod-
ing of opportunities and the principle of planning for capabilities. To
overcome some computational limitations, we have presented three
techniques for plan enhancement that allow the agents to avoid per-
forming unneeded actions. In particular, we have examined two post-
planning methods of enriching the core structure of a plan: one that

6 As measured with a paired t-Test. For the worst case (χ3, Shortcut),
p < 0.15, thus a significant difference cannot be claimed with reason-
able confidence. However, for the others in CK experimentsp < 0.06, and
in the GK experimentsp < 0.0006 in the worst case.

35

adds “shortcuts” bypassing the segments of the plan devoted strictly
to support predictively encoded extra goals, and one that predictively
repairs the core plan to include subplans achieving the extra goals.
We have also examined an online approach that assumes the agents
possess limited runtime plan repair capabilities. Using this approach,
the agent attempts to enhance its core plan only at the time it learns
of a goal suspended by another agent.

Finally, we have presented the results of an empirical analysis of
our plan enhancement approaches. These results demonstrate that
when we take simple measures to augment our core plans, multi-
agent opportunism is indeed feasible in that it produces results as
least as good as, and often better than, not using multi-agent oppor-
tunism. Further, this improvement can be obtained even when the
agents have only very limited knowledge of each other’s capabilities,
and even when the agents have no ability to re-plan at runtime.

ACKNOWLEDGEMENTS

James Lawton would like to thank Elise Turner and Roy Turner of the
University of Maine for supporting his work in this project. The work
of Carmel Domshlak was supported by the Intelligent Information
Systems Institute, Cornell University (AFOSR grant F49620-01-1-
0076). The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the
U.S. Government.

REFERENCES

[1] A. Blum and M. Furst, ‘Fast planning through planning graph analysis’,
Artificial Intelligence, 90, 281–300, (1997).

[2] P. Cohen and H. Levesque, ‘Intention is choice with commitment’,Ar-
tificial Intelligence, 42(3), 213–261, (1990).

[3] R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and R. Wash-
ington, ‘Contingency planning for planetary rovers’, in3rd Int. NASA
Workshop on Planning & Scheduling for Space, Houston, (2002).

[4] C. Domshlak and J.H. Lawton, ‘On planning for multi-agent oppor-
tunistic execution’, inIJCAI-03 Workshop on Issues in Designing Phys-
ical Agents for Dynamic Real-Time Environments, Acapulco, Mexico,
(2003).

[5] M. Fox and D. Long, ‘The third international planning competition:
Temporal and metric planning’, inProc. of AIPS-02, pp. 333–335,
(2002).

[6] A. Francis,Memory-Based Opportunistic Reasoning, Ph.d. thesis pro-
posal, College of Computing, Georgia Institute of Technology, 1995.
ftp.cc.gatech.edu/pub/ai/students/centaur/proposal.ps.Z .

[7] B. Grosz and C. Sidner, ‘Plans for discourse’, inIntentions in Commu-
nication, eds., P. Cohen, J. Morgan, and M. Pollack, MIT Press, (1990).

[8] K. Hammond, ‘Opportunistic memory’,The Journal of Machine Learn-
ing, 10(3), (March 1993).

[9] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast
plan generation through heuristic search’,Journal of Artificial Intelli-
gence Research, 14, 253–302, (2001).

[10] M. Klusch and K Sycara, ‘Brokering and matchmaking for coordination
of agent societies: A survey’, inCoordination of Internet Agents, ed.,
A.Omicini et al. Springer Verlag, (2001).

[11] J.H. Lawton, ‘Opportunism in planning agents’, inThe Seventh World
Multiconference on Systemics, Cybernetics and Informatics (SCI-03),
Orlando, Florida, (July 2003).

[12] J.H. Lawton and C. Domshlak, ‘Towards multi-agent opportunism with
planning agents’, inAAMAS-03 Workshop on Autonomy, Delegation,
and Control, Melbourne, (2003).

[13] J.H. Lawton and C. Domshlak, ‘On the role of knowledge in multi-
agent opportunism’, inThird International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, New York, (2004).

[14] D. McAllester and D. Rosenblitt, ‘Systematic nonlinear planning’, in
Proc. of AAAI-91, pp. 634–639, (1991).

[15] V. Ogston and S. Vassiliadis, ‘Matchmaking among minimal agents
without a facilitator’, inProc. of Agents-01, pp. 608–615, Montreal,
(2001).

[16] A. Patalano, C. Seifert, and K. Hammond, ‘Predictive encodings: Plan-
ning for opportunities’, inProc. of the 15th Conf. of the Cognitive Sci-
ence Society, pp. 800–805, (1993).

[17] O. Shehory and S. Kraus, ‘Formation of overlapping coalitions for
precedence-ordered task execution among autonomous agents’, in
Proc. of ICMAS-96, pp. 330–337, (1996).

[18] D. Smith, ed.Special Issue on the 3rd International Planning Compe-
tition, volume 20, 2003.

[19] B. Williams and P. Nayak, ‘A reactive planner for a model-based exec-
utive’, in Proc. of IJCAI-97, pp. 1178–1185, Nagoya, Japan, (1997).

[20] Q. Yang, D.S. Nau, and J. Hendler, ‘Merging separately generated plans
with restricted interactions’,Computational Intelligence, 8(2), 648–
676, (1992).

36

Planning under uncertainty with multiple consumable
resources

Simon Le Gloannec1 and Abdel-Illah Mouaddib1 and François Charpillet2

Abstract. Most work on planning under uncertainty in AI as-
sumes rather simple action models, which do not consider multiple
resources. This assumption is not reasonable for many applications
such as planetary rovers which much cope with uncertainty about
the duration of tasks, the energy, and the data storage necessary. In
this paper, we outline an approach to control the operation of an au-
tonomous rover which operates under multiple resource constraints.
We consider a directed acyclic graph of progressive processing tasks
with multiple resources, for which an optimal policy is obtained by
solving a corresponding Markov Decision Process (MDP). Comput-
ing an optimal policy for an MDP with multiple resources makes
the search space large. We cannot calculate this optimal policy at
run-time. The approach developed in this paper overcomes this dif-
ficulty by combining: decomposition of a large MDP into smaller
ones, compression of the state space by exploiting characteristics of
the multiple resources constraint, construction of local policies for
the decomposed MDPs using state space discretization and resource
compression, and recomposition of the local policies to obtain a near
optimal global policy. Finally, we present first experimental results
showing the feasibility and performances of our approach.

1 Introduction

There has been considerable work in AI on planning under uncer-
tainty. However, this work generally assumes an extremely simple
model of action that does not consider continuous time and multiple
resources[3]. These assumptions are not reasonable for many appli-
cation domains such as space mission and planetary rovers which
much cope with uncertainty about the duration of tasks, the energy
required, the data storage necessary and limited communication ca-
pacity. Limited communication capacity combined with multiple re-
source constraints require that the remote spacecraft or planetary
rover operates autonomously. The need of autonomy and robustness
in the face of uncertainty will grow as rovers become more capable
and as missions explore more distant planets.

Planning systems that have been developed for planetary rovers
and similar applications typically use a deterministic model of the
environment and action effects. Such a planning system produces
a deterministic sequence of actions to achieve a set of tasks under
nominal conditions. These current planning systems, which rely on
re-planning to handle uncertainty , are myopic and do not model the
uncertainty in the planetary applications. As the mission complex-
ity (the set of tasks grows) and communication constraints grow, the
weakness of these approaches will become critical.

1 GREYC-Université de Caen Campus II - BP 5186 F-14032 Caen Cedex
2 LORIA, BP 239 F-54506 Vandœuvre-lès-Nancy

Decision Theory is a framework for reasoning under uncertainty,
rewards, and costs. This framework allows to find a tradeoff between
uncertainty on the multiple resources consumption, the value gained
when achieving a goal and the cost of consuming resources. This
framework combined with the progressive processing that allows a
rover to trade off execution resources against the quality of the re-
sult similar to resource-bounded reasoning provides a suitable frame-
work. The objective of this paper is to complete previous decision-
theoretic approaches on controlling progressive processing to over-
come new requirements of the rover applications that we illustrate by
an example of plans in the next section. These plans present several
new requirements that have not been previously addressed:
• Task inter-dependency: Task execution may depend on the out-
come of previous actions.
• Multiple resources: The controller must optimize its operation
with respect to multiple resources.

The contribution of this paper is twofold. First, we generalize pre-
vious decision-theoretic control techniques [6, 4] to handle multi-
ple resources under uncertainty by using a Markov Decision Process
using multidimensional utility and value functions. Second, we ex-
amine the effect of increasing the size of plans (the acyclic graph)
on the MDP. We address the problem of the large size of the MDP
by using classical techniques of decomposition of the large MDP
into smaller ones that are easy to solve and then recompose the local
policies to obtain an optimal or near optimal global policy. The re-
maining of the paper describes these different steps of our approach
that consisting of formalizing the problem of planning under multiple
resources constraints with a Markov Decision Process with multidi-
mensional value and utility functions, examining the complexity of
solving the obtained MDP to construct an optimal policy and then
tackling this difficulty : (1) decomposing a large MDP into smaller
ones [7], (2) compressing the states of multiple variables that are not
significantly different, that is, that have the same transition proba-
bilities to other states, and thus the same expected return, under the
optimal policy, (3) constructing local policies of small MDPs under
the model of discretization of state space of multiple resources using
a minimal partition of the state multiple resources using point 2 and
(4) re-composing local policies to obtain a near optimal global policy
[5]. The rest of the paper describes in detail all these steps.

2 Progressive task planning

2.1 General definitions

Definition 1 An exploration graph G is a directed acyclic graph of
P progressive processing units PRU1, PRU2, . . . , PRUP .

in the rest of the paper, we assign p or PRUp as the pth PRU in the
exploration graph (figure 1)

37

Figure 1. An exploration graph

Definition 2 A progressive processing unit (PRU), PRUp con-
sists of a set of Lp levels, Lp = {lp,1, lp,2, . . . , lp,Lp}.

Definition 3 A level lp,l in PRUp consists of a set of Mp,l modules,
Mp,l = {mp,l,1, mp,l,2, . . . , mp,l,Mp,l

}.

A level corresponds to a specific task. The PRUp in figure 3 is di-
vided into 3 levels (Lp = 3), which can be for example lp,1: arm
camera, lp,2: take a picture and lp,3: save the picture.

Definition 4 The module mp,l,m of the level lp,l in PRUp consists
of a quality Qp,l,m and a probability distribution Πp,l,m over the
consumed resources when the module is executed

A module is a specific way to execute a level task. For example,
mp,2,1: take a low resolution picture and mp,2,2: take a high resolu-
tion picture (Mp,2 = 2) in the level lp,2 of PRUp in figure 3, and
which means Qp,2,1 < Qp,2,2. An example of module is given in
figure 2.

2.2 Extension to multiple resources

The main contribution of our work is the extension of progressive
task planning to multiple resources. The problem is that we do not
know exactly how many resources will be consumed by a specific
task. We represent this uncertainty with a resource probability distri-
bution. A task can for example consumes between 8 and 12 units of
energy.

2.2.1 Resource dependency

In this problem, we must take into account all resources. There con-
sumption may be sometimes dependent. We distinguish two kinds of
dependency : internal and external dependencies. We can have an in-
ternal dependency when the energy consumption depends on the time
consumption for a specific task. For example, the more the robot digs
a hole, the more it takes time and energy. We can easily express this
with a dependency mapping f such that energy = f(time).

An external dependency happens when a resource consumption
for a given task affects a later task. For example, if the rover takes
a picture during the night, it has to use the flash, which consumes
energy, but he can also wait until the day. It has to make a choice
between two resources, that can have consequences for the rest of
the plan.

The rover will evolve in a real environment, and resource con-
sumption may also depend on some external factors like temperature
or sunshine. For the moment, we do not take these factors into ac-
count.

2.2.2 Resource vector

We have chosen to work with resource vector, for example if we are
dealing with energy and time, we denote it as

−→
R = {energy, time}.

In general, for r resources, we note
−→
R = {R1, R2, ...Rr}, where Rρ

the ρth resource, 1 ≤ ρ ≤ r. We assume that we know in real time
the amount of remaining resource and we note it

−→
R rem.

Definition 5 To model the evolution of the remaining resource vec-
tor, we introduce the following notation :

−→
R rem ≤

−→
R

′

rem ⇔ ∀ρ ∈ [1; r], Rρ ≤ R
′
ρ (1)

Definition 6 It is not physically possible to have a single resource
with negative value. In such situation we denote

−→
R rem =

−→
R∅ ⇔ ∃ ρ ∈ [1; r], Rρ < 0 (2)

The resources we are dealing with, like time and energy, are contin-
uous variables. The better for us would be to take into account this
continuous dimension as long as we can. But realistically we need to
use a discretization.

Definition 7 A discrete probability distribution of the possible con-
sumption of the resources vector for the module mp,l,m is :
Πp,l,m = {(Pp,l,m,1,

−→
Rp,l,m,1), . . . , (Pp,l,m,X ,

−→
R p,l,m,X)} where

X is the number of possible consumed resource vector,
−→
R p,l,m,x is

a consumed resources vector, and
∑X

x=1
Pp,l,m,x = 1,

m p , l, mmodule

Quality: Q = 10

Probability distribution:

0.2 0.1

0.1

0.1

0.1

0.05 0.05

0.050.05 0.02

0.020.02

0.02

0.06 0.06

4

5

6

8 9 10 11 12 Energy

Time

Figure 2. A module descriptor

The module described in figure 2 has a quality of 10 and consumes
two resources, energy and time. The execution of this module can for
example consume 9 units of energy and 5 units of time with proba-
bility 0.1. We denote it as (Pp,l,m,x = 0.1,

−→
Rp,l,m,x = {9, 5}). In

this example X = 3 × 5 = 15

2.3 Task selection

Definition 8 The progressive processing control problem is to se-
lect at run-time the set of tasks that maximizes the global utility.

When the rover has executed a module for a given level lp,l, he has
to choose between two actions :

• select a module of the next level lp,l+1 and execute it,
• skip the remaining levels in the PRUp to move to another PRUp′

accessible from PRUp in the exploration graph.

The optimal decision is the one that maximizes the global utility.
The sequence of decisions will determine the set of modules to be
executed. The global utility is the cumulative reward of the executed
modules (reward is measured by the qualities associated to modules).
Since the rover decision process only depends on the quality of the
next modules and the current remaining resources, the problem of
module selection respect the Markov property. We can control the
rover with a Markov Decision Process (MDP).

38

3 Markov Decision Process Controller

3.1 Definitions

An MDP is a quadruplet {S,A, T , R} where S is a set of states A
is a set of actions, T is a set of transitions, R is a reward function. In
the following, we define what {S,A, T , R} means in our context.

Definition 9 The accumulated quality Qacc is the sum of the previ-
ously executed module quality Qp,l,m in the current PRU .

Definition 10 A state, s = [lp,l, Qacc,
−→
R rem], consists of the last

executed step, the accumulated quality and the remaining resources
vector

−→
R rem.

Definition 11 there are two different kinds of terminal states

• A failure state [lp,l, Qacc,
−→
R ∅] = [failure,

−→
R ∅] is reached when

one resource is totally consumed(see definition 6)
• A final state is reached when a task of a terminal PRU has been

executed (a PRU with no successor in the exploration graph)

Definition 12 There are two possible actions (see figure 3): exe-
cute Em

p,l+1 and move Mp→p′ . The action Mp→p′ moves the MDP
to the PRUp′ . The action Em

p,l+1 execute the mth module mp,l+1,m

of level lp,l+1 (if l < Lp).

Execute

Move

level

module

p − p’M

l

E p, 3
1

E p, 3
2

p − p’M

E p, l
mPRU p

PRU

l

p’

p, 3, 1 p, 3, 2lp, 3

p, 1 p, 1, 1

p’, 1 p’, 1, 1

lp, 2 p, 2, 2p, 2, 1

m m

m

m

m m

Figure 3. 2 PRU and the two possible actions E and M

Definition 13 the transition model is a mapping from S × {E, M}
to a discrete probability distribution over S . The move action is de-
terministic :

Pr([lp′,0, 0,
−→
R]|[lp,l, Qacc,

−→
R], Mp→p′) = 1

The execution action is probabilistic, the distribution is given by the
module descriptor Πp,l,m (Definition 4 and 7),

if ∀rρ ∈
−→
R

′
, rρ ≥ 0

Pr([lp,l+1, Q
′
acc,

−→
R

′
]|[lp,l, Qacc,

−→
R], Em

p,l+1) = Pl+1,m,l

where Q′
acc = Qacc + Qp,l+1,m and

−→
R

′
=

−→
R −

−→
R l+1,m,l,

else ∀
−→
R

′
, ∃rρ ∈

−→
R

′
, rρ < 0:

Pr([failure,
−→
R

′
]|[lp,l, Qacc,

−→
R], Em

p,l+1) =
∑

−→
R

′

≤
−→
R ∅

Pl+1,m,x

Definition 14 Rewards are associated with each state based on the
quality gain by executing the most recent module Mp,l,m.

Rew([lp,l, Qacc,
−→
R]) =

{

0 ifl < L

Qacc ifl = L
(3)

3.2 State’s value

We adapt the Bellmann equation to our problem

V (s = [lp,l, Qacc,
−→
R]) = Rew(s) + max

a

∑

s′

Pr(s′|s, a).V (s′) (4)

= max











Rew(s) + max
m

(a = Em
p,l+1)

X
∑

x=1

Pr(s′|s, Em
p,l+1).V (s′)

Rew(s) + max
p′

(a = Mp→p′) 1.V (s′′)

with

{

s′ = [lp,l+1, Qacc + Qp,l+1,m,
−→
R rem −

−→
R p,l+1,m,x]

s′′ = [lp′,1, 0,
−→
R]

However s′ could be the state [failure,
−→
R] that does not appear in

the equation because it’s value is 0. For terminal states :

V ([lp,Lp , Qacc,
−→
R]) = Rew([lp,Lp , Qacc,

−→
R]) (5)

V ([failure,
−→
R]) = Rew([failure,

−→
R]) = 0 (6)

Rrem

Qacc

S = [l , 2, {4, 3}] 2

state

Q = 2

t

e

Q = 15

t

e

Q = 6

t

e

t

e

Q = 2 Q = 6

e

t

Q = 0

e

t

Q = 10

t

e

Q = 11

t

e

e

t

Ep, 3
1

E
2
p, 3

Level

States

Level

States

Level

States

Action

Transition

 starting resources state space

Q = 4

Q = 4

Q = 9

Q = 2 Q = 6

Figure 4. State representation for a single PRU

3.3 Optimal policy computation

We are dealing with a finite-horizon MDP with no loops. Transitions
with E and M move forwards in the state space by always increment-
ing level or unit number. Although there are a lot of states due to the
number of resources, this kind of MDP can easily be solved because
the value function is calculated in one sweep (backward chaining,
beginning with terminal states); But we have two problems:

• The MDP is large, i.e there is a lot of states and transitions. Al-
though we calculate each state value only once, the computation
time increases exponentially in the number of resources with the
number of PRU . Therefore we cannot calculate the global opti-
mal policy at run-time.

• We cannot add ore remove any PRU to the exploration graph
without recalculating the entire new MDP. This global approach
is not adapted to our problem.

39

The rover has to choose his action at run-time. But it can not calcu-
late at run time the entire MDP values : when the number of PRU

increases , the number transitions corresponding to a Move action
increases too. We decide to approximate the MDP, to allow dynamic
task selection. In the next section, we address the problem of solving
this large MDP.

4 Solving the large MDP

4.1 Principle

To overcome these difficulties we decompose the large MDP into
smaller ones, that we later recombine to construct a nearly optimal
policy. The goal of the decomposition is to avoid calculation of the
MDP states values that are not directly accessible from the current
state. We just want to focus on the states that are in the current PRU .
The states in the next PRU are not evaluated at run-time, to avoid
combinatorial explosion. We evaluate all PRU initial states before
run-time. At run-time the agent evaluates the states values in the cur-
rent PRU , and chooses the best action between M and E. We explain
now the way we decompose the global MDP.

Since the transition corresponding to an action M is deterministic,
a natural way to decompose the MDP is to calculate a local policy
for each PRU (figure 5.b). We keep only the action E and we obtain
as many local policies as there are different PRU in the graph. For
one PRU , we do not store the entire state space, but only the start-
ing level state space (see the top of figure 4), because an action M
can only reach the starting level of the next PRU . Once all the states
have been pre-evaluated, we store this starting state space and its val-
ues for each PRU (figure 5.c) in a library, before execution time.
At run-time, we dynamically recompose the MDP. The question is
to decide if it is better to remain or to leave the current PRU . We
examine the local policy of the current PRU , we compare the ex-
pected value for the best execution action VE to the value for the best
move action VM. Since it is not feasible to calculate VM at run-time,
we make an approximation that we denote VMdec

(for decomposi-
tion)(figure 6.c).
The remaining of this section explain how we managed to calculated
VMdec

. We also have problem with the number of resources, with
which the starting state space we store for each PRU grow. We find
a way to improve the state space storage. Finally, in section (5), we
compare VM to VMdec

.

��������	�
����
 ���������	������
 �������	��

��
��������
�������

�������

Figure 5. Decomposition

4.2 Decomposition

To estimate a PRU we calculate the estimated value for all the states
in its starting level (figure 7), S = {[lp,0, Qacc = 0,

−→
R rem]}(figure

5.b). We calculate also the estimated consumed ressources (
−→
R est)

�
�

��
�

�

�

�������	

���

��
����

�
������������������� �����	�����������

Figure 6. Recomposition

for each possible starting state. The algorithm we use to estimate
resource consumption is the same that we use for estimating the state
value (see section 3.2). To do it, we accumulated the total consumed
ressources

−→
R cons as we did with Qacc previously. Vest = V .

Figure 7. Starting states values for a PRU with 2 ressources

−→
R est =

∑

−→
R

′

≥
−→
R ∅

Pr(s′ = [ll+1, Q
′
acc,

−→
R

′
]|s, Em

p,l+1).
−→
R

′
est

+
∑

−→
R

′

≤
−→
R ∅

Pr(failure|s, Em
p,l+1).(

−→
R p,l+1,m,x +

−→
R cons)

and for the last level lL:
−→
R est =

−→
R cons.

property :

∀s, s
′
, Vest(s) = Vest(s

′) ⇔
−→
R est =

−→
R

′

est (7)

4.3 State data storage and space compression

We are dealing with multiple ressources and facing a new problem:
how can we store the starting state space for each PRU (figure 5.c)?
We can however quickly find the expected value for a given state,
which is necessary for the run-time recomposition. This section ex-
plain first how the transformation T : S → Sstored works. In a
second time, we explain T−1 : Sstored → S . A starting state cor-
respond to s = [lp,0, Qacc = 0,

−→
R], only

−→
R varies. so we project

the starting state space on [
−→
R]. This state space correspond to a r-

dimensionnal cartesian product with one dimension for each resource

40

that T tranforms into a 1-dimensionnal space (corresponding to val-
ues). Since we have a monotonic function ∀s, 0 ≤ V (s) ≤ Vmax =
V ([

−→
Rmax] = {(rmax)1, . . . , (rmax)r}), we project the state space

on the value space (figure 8 is the projection of figure 7). For each
value, we make groups of states with the same value in Sv. And
in each group we only keep the states with minimal resources in
(Sv)min. Notice that there can be several states with minimal re-
sources in a Sv set. Formally :

Sv = {s = [
−→
R]; V (s) = v} (8)

(Sv)min = {s ∈ Sv, !∃ s
′ ∈ Sv, ∀ρ ∈ [1; r], r

′
ρ ≤ rρ} (9)

and we finally store the set of groups :

Sstored = {s ∈ (Sv)min, 0 ≤ v ≤ Vmax} (10)

:estV

maxV0

Lower bounds

e

Stored states

energy

T−1

T

ttime

All starting states

Sstored

Values :

Remaining resources
Estimated resources
Expected value V

Figure 8. multi resource data compression

The transformation T−1 is very simple. We want to know a state
value, given

−→
R . We just have to pass through the Sstored vector

and stop when we reach a state with more resources. The last en-
countered state give us the value. We managed to transform S =
{[{0, 0}], ..., [{29, 29}]}(size = 900) into Sstored with a length of
20.

4.4 Recomposition

The goal of this paragraph is to recompose dynamically at run-time
a policy that approximate the optimal one. To do it, we need to cal-
culate the expected value VMdec

for a M action from a state, given
the exploration graph and the stored data. Therefore we have to re-
compose the MDP (figure 6). We calculate VMdec

by maximizing
the sum of the expected state values in last PRU . The first thing to
do is to calculate each PRU depth in the exploration graph, keep for
each depth the PRU with the best global expected value in a queue.
Then, we sort the PRU queue, we put the best PRU to the top.
From a state s = [l, Q,

−→
R], we take all the available resources

−→
R ,

we add the value given by the first PRU . Then we remove the esti-
mated resources

−→
R =

−→
R −

−→
R est. We continue with the next PRU

until the queue is empty. In fact, we just make d additions, where d

is the size of the queue, or the depth of the graph.

VMdec
(s = [p,

−→
R]) = Vest(s) + (VMdec

([p + 1,
−→
R −

−→
R est]))

and for the last PRU :

VMdec
(s = [p,

−→
R]) = Vest(s) (11)

We are currently searching for new heuristics to improve this re-
composition algorithm, but it already works well, as we will see.

5 Experiments

5.1 Methods comparison

We compare the optimal policy with the policy obtained by decom-
position. The advantages of the second method are the short compu-
tation time, and the small state space. However, we need to analyze
how good the policy obtained by decomposition approaches the op-
timal policy.

To do so we calculate two error values: the mean error emean, and
the decision error. The mean error indicates if the values obtained by
decomposition and recomposition are close to the optimal policy. The
decision error counts the times the error exceeds a fixed threshold.
The measure our result in term of graph depth, so we experiment
only on queues of PRU . We show in the next section that the mean
error is small and that the decision error converge toward zero.

5.2 Error measure

We denote
−→
Rmax as the amount of resources required to execute all

tasks for the whole plan. We denote Vopt(
−→
R) as the value obtained

with the optimal policy for a state s with
−→
R remaining resources, and

Vdec(
−→
R) the value obtained with the decomposition method.

e(
−→
R) =

|Vopt(
−→
R) − Vdec(

−→
R)|

Vopt(
−→
R)

(12)

The mean and the max error for R = {{0, . . . , 0}, . . . ,
−→
Rmax} are

emean =

∑

−→
R∈R

e(
−→
R)

Card(R)

and emax = max
−→
R∈R

e(
−→
R)

For the decision error, we take a threshold of 20%, considering that
the rover could make a bad decision if the error exceeds this value.

5.3 Results

We first experiment on a queue with identical PRUs.

Graph depth 1 2 3 4 5 10 20 40
Mean error (%) 0 7.4 7.1 6.7 7.1 8.0 8.0 8.4
Max error (%) 0 28 28 28 28 28 28 28
Decision error (%) 0 1.6 4.4 3.3 2.6 1.3 0.6 0.3

We also used queues with different PRUs.
Graph depth 1 2 3 4 5 10 20 40
Mean error (%) 0 2.6 2.8 2.7 2.8 2.7 3.9 2.5
Decision error (%) 0 5.0 5.8 4.4 5.5 2.7 1.3 0.6

5.4 Discussion

Errors are made when the PRU queue is short, but the goal of our
algorithm is to treat very large PRU queues. For short PRU queues,
we can calculate the optimal policy without any approximation.

In each case the mean error stays constant. The more resources
and PRU are left, the better is our approximation. The decision error
decreases toward zero. The max error is high, and it stays constant.
This is the main problem of our algorithm. Errors are locally high,
so we intend to search for better approximation methods to reduce
them.

41

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60

resources

Est Value

Optimal
Decomp+Recomp

Figure 9. Values for 4 PRUs and 1 resource

6 Conclusion and perspectives

We have presented a solution to the problem of planning under un-
certainty with multiple resources. This approach relies on solving
a corresponding MDP, generalizes earlier work on MDP controller
[6, 4]; it permits for the first time to deal with multiple resources.
Moreover, our approach addresses effectively the problem of limited
amount of memory required for creating and solving the large ob-
tained MDP and storing the resulting policy. Using decomposition
of the large MDP into smaller ones, we managed to reduce the size
of MDPs to create and to solve, using a compression data technique,
we managed to store the resulting policies and using re-composition
approach based on an approximation technique of value functions,
we managed the construction of a global policy with a small loss de-
cision quality (less than 1% for large problems). Future works will
allow us to develop more precise estimates of the value function.
This will include state decomposition, policy decomposition, and ac-
tion decomposition [1] [2]. We are also developing new techniques
to deal with dynamic operation by recomposing local policies of in-
dividual PRUs when new PRUs should be added or removed.

REFERENCES
[1] C. Boutilier, R. Brafman, and C. Geib. Prioritized goal decomposition of

markov decision processes: Toward a synthesis of classical and decision
theoretic planning. In IJCAI 97, 1997.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Struc-
tural assumptions and computational leverage. In Journal of AI Research
(JAIR), pages 11:1–94, 1999.

[3] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and
R. Washington. Planning under continuous time and resource uncertainty
: A challenge for ai. In UAI, 2002.

[4] S. Cardon, A. Mouaddib, S. Zilberstein, and R. Washington. Adaptive
control of acyclic progressive processing task structures. In IJCAI, pages
701–706, 2001.

[5] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. Kealbling, T. Dean,
and C. Boutilier. Solving very large weakly coupled markov decision
processes. In UAI-98, 1998.

[6] A.-I. Mouaddib and S. Zilberstein. Optimal scheduling for dynamic pro-
gressive processing. In ECAI-98, pages 499–503, 1998.

[7] R. Parr. Flexible decomposition algorithms for weakly coupled markov
decision process. In UAI-00, 2000.

42

Learning from Recorded Games:
A Scoring Policy for Simulated Soccer Agents

Achim Rettinger1

Abstract.
This paper outlines the implementation of a new scoring policy for

the agents of the Simulated Robot Soccer team from the University of
Koblenz, called RoboLog. The applied technique is capable of acting
in real time in the dynamic environment of the RoboCup Simulation
League and uses data obtained from prerecorded soccer games for
supervised neural network learning. The benchmark used for testing
this approach is the Optimal Scoring Problem stated as finding the
point in the goal where the probability of scoring is the highest when
the ball is shot to this point in a given situation. Goalshot situations
from numerous logfiles are extracted and employed for the training
of two independent multi layered perceptrons. Beside the usage as
training patterns the gained data is evaluated statistically and pro-
vides interesting general insights into goalshots carried out lately in
Simulated Robot Soccer.

The results obtained after extensive testing of the new policy are
presented. Furthermore, general issues of learning from observed
logfile data and starting points for future work are discussed.

1 INTRODUCTION

Scoring goals is essential for winning games not only in real soc-
cer but also in the RoboCup Simulated Soccer League. The purpose
of the RoboCup Simulated Soccer League is to provide a standard-
ized problem domain for Artificial Intelligence research based on a
soccer simulation called the RoboCup Soccer Server [2]. Teams of
soccer agents programmed by researchers from all over the world
can compete with each other by using this simulator.

This paper outlines the implementation of a new scoring policy
for the RoboLog team from the University of Koblenz. Searching for
a scoring policy is a comparably simple task. Although the proper-
ties of the environment provided by the RoboCup Soccer Server are
inaccessible, non-deterministic, dynamic and continuous (see [6]),
the success of a goalshot can directly be evaluated. In most other
problems within the RoboCup domain the outcome of actions cannot
be estimated as simple because the actions only result in intermedi-
ate and therefore not easily evaluable states. Contrary to that, a goal
is definitely a success for the attacking team and final reward can
be assigned. This makes the Optimal Scoring Problem a well suited
benchmark for various techniques.

Accordingly, we chose the Optimal Scoring Problem for evaluat-
ing the innovative use of supervised learning from existing data. The
data needed for this kind of inductive learning was obtained by an-
alyzing relevant situations in prerecorded games. The automatically
learned heuristic was intended to replace the analytical algorithm ap-
plied so far in the RoboLog team which based its decision whether to

1 University of Koblenz, Koblenz, Germany email: achim@uni-koblenz.de

shoot and where solely on human consideration. In the old approach,
manually adjusted thresholds gave the striker the positions, relative
to goal and opponents, in which he was supposed to shoot.

1.1 Problem statement

The Optimal Scoring Problem is stated as follows (see [4]):”Find
the point in the goal where the probability of scoring is the highest
when the ball is shot to this point in a given situation.”

When observed in more detail another side of this problem appears
to be essential for finding an optimal scoring policy:Given the point
to shoot, determine the probability of scoring if the ball is shot to
this point in a given situation.Although, this heuristic is especially
interesting for deciding whether to shoot or not, it is not mandatory
for finding the point to shoot in our approach.

Both problems can be correlated to each other. If you can solve the
first problem you know which point to test for the second problem.
But if you can solve the second problem you can also find a good
solution to the first problem by comparing numerous different points
and taking the one with the highest probability of scoring. Thus, the
second problem seems to be an intermediate step to solve the first
statement of the Optimal Scoring Problem.

In this paper solutions to both problems will be presented which
are not dependent on each other.

1.2 Related work

As the Optimal Scoring Problem is well suited for Machine Learning
techniques previous work has been carried out in this area.

A detailed implementation of the scoring policy used by the UvA
Trilearn 2001 team is described in [4]. Here, data is generated from
repeated experiments where a striker is placed somewhere in front
of the goal, the opponent goalie somewhere in the goal. Then the
ball is shot to some position in the goal. The outcome of this shot
is evaluated statistically. In the end, a function is presented that can
calculate the probability of scoring if shot to a given point in the
goal. Finally, the best point to shoot at is determined by computing
the probability for some discretized scoring points on the goal line
and by choosing the global maximum of the results.

In comparions to [4] our approach differs in three major points.
First, the training data is not generated by simulating situations but
by extracting already existing data from prerecorded soccer games
(logfiles). Second, far more influencing factors of a goalshot situ-
ation, not just one forward and one goalie are taken into account.
Third, two separate modules are developed to solve both in section
1.1 mentioned problems independently from each other. Thus, there
is no need for testing discretized shooting points.

43

In [1] high level actions are based on Neural Networks which are
trained to learn success rates. In this case the ”shoot2goal” action
will compute the probability of scoring which is later on used for
decision support by ranking the success rates of all actions in a pri-
ority list. This paper does not mention how to find the best point to
shoot at. Again, training data was obtained by repeated generations
of situations.

In contrast to that, a tool for the analysis of games played by a
certain soccer team is presented in [5]. Special game situations (like
goalshots) are identfied in logfiles on this selected team only. The
patterns obtained are fed into a decision tree induction algorithm re-
sulting in a set of rules which describe classes of successful scoring
attempts and classes of unsuccessful attempts, respectively. After-
wards, those rules are used for a perturbation analysis that can give
recommendations for changes in the goalshot heuristic used in this
certain team.

Although logfiles were used for obtaining data in [5] and, among
others, goalshot situations were extracted the crucial difference to
the method outlined here is that the knowledge obtained was used
for recommending changes to an already existing behavior (like the
scoring policy) of a certain team. In contrast to that, we intended to
find a universal and optimal scoring policy from scratch.

By combining data acquisition from logfiles with neural network
learning two promising techniques are combined in the approach de-
scribed in this paper. In addition to that, not only are success rates
learned, but the best point in the goal to aim at is determined di-
rectly by a module independent from the success rate module. This
redundantizes the test of several different scoring points as done in
previous work.

2 APPLICATION

The application of our approach can be separated in three phases.
First obtain the training data by extraction from logfiles, second an-
alyze this data by supervised neural network learning and last eval-
uate the performance of the heuristic, in this case the feed forward
networks.

2.1 Extraction of data

To obtain training samples, goalshot situations must be identified in
logfiles. It is not enough to find successful scoring attempts because
positive and negative training samples are required for classifying the
success rate. The characteristics of a potential goalshot, identifiable
from logfile data, are:

• A forward has kicked the ball.
• The forward is in a reasonable distance to the opponent goal.
• The shot has the potential to reach the opponent goal (reasonable

power and direction).

Even if all those conditions apply, further tests need to be done to
make sure that it is a valid goalshot and to obtain information about
the outcome of this scoring attempt. To determine that, the successive
cycles are scanned and checked individually:

• Can the situation be classified as goal, out, goalie catch or offsite?
In this case it is a valid shot and the outcome is known.

• But, if the ball was kicked by another player it could also be clas-
sified as passing (if kicked by a player from the own team) or
dribbling (if kicked by the same striker again) and thus not as a
scoring attempt. If kicked by an opponent defender or opponent

goalie though, it is interpreted as a valid but unsuccessful goal-
shot.

total ratio

games analyzed 996
goalshots extracted 9315 shots/game 9.352

successful
successful goalshots 3745 goals/game 3.760

unsuccessful
intercepted by goalie 4305 goalie/game 4.322

intercepted by defender 993 defender/game 0.997
out 203 out/game 0.204

other reasons for miss 69 others/game 0.069

Table 1. Statistical evaluation of analyzed goalshots

All those heuristics can be no guarantee for identifying and classi-
fying all scoring attempts correctly, as the internal state of the striker
cannot be reconstructed from logfiles precisely. It is impossible to
restore the intentions of a player in a specific situation only by ob-
serving the visual outcome of its actions. Nevertheless evaluation by
hand showed that most of the shots a human observer would clas-
sify as scoring attempts were equally categorized by the automatic
extractor. Besides that, the classification accuracy is, in that case, not
essential for the purpose of neural network learning as long as the ac-
tion holds valuable information. On this account, successfull shots,
never intended to be scoring attempts (but e.g. passes), are important
as well.

20 30 40 50 60
0

5

10

15

20

25

30

35

player_c.y

20 30 40 50 60
0

5

10

15

20

25

30

35

player_c.x

Figure 1. Position of striker while kicking; successful shots

Those heuristics were finally applied to all recorded games from
the last RoboCup in Padua (2003) and games from the Simulated
Soccer Internet League. Plenty of interesting information can be

44

gained from statistical analysis of the obtained goalshot situations.
An overview is given in Tab 1.

It is interesting to know that 40.2% of the identified scoring at-
tempts were successful and 77.3% of the unsuccessful ones were
caught by the goalie. As expected, the goalie is the main factor in
intercepting goalshots but it also becomes apparent that the opponent
defenders should not be neglected. After all, they are responsible for
17.8% of the inhibited attempts.

The extracted goalshot data can give even more interesting in-
sights. Fig 1 shows the upper right quarter of a soccer field when
looked at in top view and landscape format. One half of the oppo-
nent goal is drawn as a filled black rectangle in portrait format at the
lower right part of the figure. Accordingly, one of the corners is pre-
sumed in the top right. The white lines denote parts of the goal line,
the side line, the goal area and the penalty area, respectively. The
axis refer to the coordinates used in the Soccer Server. The scattered
black dots indicate the position of the forward at that point in time
when the successful goal kick was carried out.

In contrast to that, Fig 2 marks the position of the forward at the
moment of a goal kick that turned out to be unsuccessful. Obviously
the dots are spread more widely as expected.

20 30 40 50 60
0

5

10

15

20

25

30

35

player_c.y

20 30 40 50 60
0

5

10

15

20

25

30

35

player_c.x

Figure 2. Position of striker while kicking; unsuccessful shots

Note that all goalshot situations are mirrored to this upper right
quarter of the soccer field not only for visualization reasons, but mir-
roring is also essential for avoiding the aliasing problem. While train-
ing, the network could get confused if apparently different patterns
have the same outcome, if mirrored.

Fig 3 shows where successful goalshots crossed the goal line.
Darker areas denote more crossings. This time the goal is drawn in
landscape format as a white rectangular boundary; scaling and mir-
roring is applied accordingly. As it can be easily seen, most of the
shots were aimed at the corners of the goal, especially to the goal
pole which was closer to the attacker.

-8-7-6-5-4-3-2-1012345678

51

55

Figure 3. Goal line crossings: dark areas denote more crossings

2.2 Learning

As mentioned before, two basic 3-layered backpropagation neural
networks were trained to solve the two tasks. The first network is
required for predicting the point to shoot at that maximizes the like-
lihood of scoring in a specific situation. The second network should
be able to classify the success rate of scoring, given a specific sit-
uation and the point to shoot. Diverse issues need to be addressed
concerning the pragmatics of neural learning.

In the following, some considerations of the decisions that needed
to be made shall be presented. One main issue is whether to use ob-
jective world data taken from the logfiles directly (accessible envi-
ronment) instead of trying to simulate the subjective world model
of a specific soccer agent (inaccessible environment). In the later
case, the objective world data from logfiles like the exact ball po-
sition would have to be reduced und altered according to the limited
subjective world model of an agent. On the one hand, it seems rea-
sonable to use incomplete and noisy data for training because in a
real simulated soccer game an agent would only get incomplete data
as well. There is already previous work providing a method for es-
timating the internal state of RoboLog agents in a specific situation
from logfile data only. Thus, it would be easy to use this data as in-
put to the machine learning technique, every agent could be prepared
with a specific decision module for its specific procedure of con-
structing its world knowledge. Unfortunately, it is still impossible to
make sure that the reconstructed subjective world model precisely
matches the original model from the recorded situation. Thus it is
likely that the recorded action is not appropriate to the interpreted
world model. Additionally, there is another fundamental shortcom-
ing of using subjective data. As soon as the way a player constructs
his world knowledge is changed, all the training needs to be redone.
Therefore objective world data was used for learning to take advan-
tage of this more general approach.

Another issue is the question which format of the input data would
be the most suited one for this kind of problem. A polar representa-
tion of the positions was favored over a Cartesian representation be-
cause polar coordinates implicitly express relations between objects
which could be more useful for the networks to generalize over the
seen examples.

Besides that, the search for the most significant relations in the
data remains a challenge, independent from the representation. As
most design decisions involved in neural learning are still consid-
ered an empirical art (see [3]), the final selection and representation
of inputs was found by comparing the results of numerous trained
networks using three set cross-validation. A visualization of the fi-
nal inputs is given in Fig 4. The indices refer to Fig 6. The attacker is
drawn in yellow, the goalie in dark grey, the ball is a white circle. De-
fender 1 to Defender 3 (marked blue) are the three opponents which

45

can reach the ball first2. All variables were scaled to range between
0 and 1 and assigned to one input node each.

2c/d

2e/f 2g

2j/k

1a/b

1c

1d/e

1f/g

1h/i

1j/k

1l/m

1n/o

2a/b

2h/i

2l/m

2n/o

2p/q

2r/s

Figure 4. Visualization of input variables; left: best-scoring-point net,
right: success-rate net

The target value of the best-scoring-point network is the y-
coordinate on the goal interval. The output, goal or no-goal, of the
success-rate network is a binary class variable. As the classes are
separable, two output nodes - one for goal and the other one for
no goal - are used. In the end, both values are combined again to
get a success rate between 0 and 1 by using the simple formula:
(((output for no goal)− (output for goal))/2) + 0.5.

The final topology of the best-scoring-point network and the
success-rate network derived from cross validation, is 15-53-1 and
19-80-2, respectively. For the first network only positive samples
were used partitioned into three data sets for cross validation
purposes (sample size: 2060, 936 and 748). The stratified sets of the
second network contained equal proportions of positive and negative
samples (sample size: 4494, 1693 and 1302). The stopping criteria
is based on a calibration interval of 200 (total of training patterns
processed per event), where training stops when the last minimum
on the testing set (second data set) has occurred 50000 events ago.

After tweaking the various parameters involved in neural network
learning, the prediction accuracy of both networks on the evaluation
set (third data set) showed promising results.

The best-scoring-point network gave a mean average error of 1.4
units, which is reasonable if taken into account that the goal is more
than 14 units wide. So the deviation on average is 10%. Fig 5 visu-
alizes the performance using a scattered graph. The horizontal axis
denotes the actual value and the vertical axis the interpreted output.
Optimal predictions would result in a line from bottom left to top
right. It can be observed that there is no bias towards a certain point
in the predictions. The success-rate network achieved a remarkable
85.4% classification accuracy of the goal/no-goal patterns.

Calculating the contribution factor for each input variable is an-
other way to get information about the networks’ performance3. Fig

2 Those three defenders are determined by using a method from the RoboLog
code, based on a Newton iteration.

3 Contribution factors are a rough measure of the importance of a variable in

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8
Network(1)

Figure 5. performance of the best-scoring-point net

6 exemplarily shows the contribution factors for the success-rate net-
work. ”X” denotes a Cartesian x-coordinate and ”Y” denotes a Carte-
sian y-coordinate, respectively. A ”D” denotes distance in polar co-
ordinates and ”A” angle in polar coordinates. This nomenclature also
corresponds to Fig 4.

Most of the values correspond to common sense. For instance
the most important input is the angle and the distance between the
ball and the goalie. Regarding the opponent defenders, the distance
is more important than the angle and the closest defender has the
biggest influence.

2.3 Evaluation

A feed forward version of both networks, using the learned weights,
was finally integrated in the RoboLog framework. Two methods are
provided to the soccer agents. If an agent decides that he is in a po-
sition where it makes sense to consider a goalshot he makes use of
both methods. The first is required to find the best-scoring-point and
the second to get the probability of scoring with this shot.

The threshold indicating whether an agent risks a shot or not has
to be found by experiment. An observation that thereby needs to be
taken into account is the following: The closer the striker gets to the
goal the more unlikely it is that he can improve his position for a
goalshot. This is because the resistance of the defenders is more con-
centrated around the goal. This fact cannot be taken into account by
a neural network as used here. There is no temporal component that
could give feedback about the quality of future states. Consequently,
a region model was introduced. From the plot of the coordinates of
successful goalshots (see Fig 1) we specified three regions according
to the number of goalshots. Region 1 is closest to the goal and most
of the goals were scored here. Region 2 is more spacious but still

predicting the network’s output, relative to the other input variables in the
same network.

46

0.00

0.05

0.10

0.15

0.20

0.25

2s: D lowerGoalPole

2r: A lowerGoalPole

2q: D upperGoalPole

2p: A upperGoalPole

2o: D defender3

2n: A defender3

2m: D defender2

2l: A defender2

2k: D defender1

2j: A defender1

2i: D goalie

2h: A goalie

2g: Y target

2f: D target

2e: A target

2d: D player

2c: A player

2b: Y players

2a: X player

2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l 2m 2n 2o 2p 2q 2r 2s

Figure 6. Contribution factors of the success-rate net

covers lots of goalshots. Region 3, finally, is the most wide-spread
only containing a few positive data patterns (see Fig 7). From Re-
gion 3 down to Region 1 we gradually decreased the threshold that
is used for the final decision whether to shoot or not. We observed
that these rules could successfully prevented the agent from trying to
score a goal when he is far from the goal and there is enough time
and space to improve its scoring position.

Figure 7. Zone model

For the purpose of finetuning and evaluating the performance, 400
test games were played. To allow for a meaningful comparison this
was done by letting the conventional RoboLog team play against a
RoboLog team with the new neural modules. As the performance

of an agent is dependent on the available computational power the
goalshot extraction heuristic described in section 2.1 was once again
used for automatically evaluating all games played. Thus, the ratio of
scored goals to scoring attempts could also be calculated and so the
real performance without the deviation of server related performance
losses could be determined.

Tab 2 shows the average performance over the 440 test games
played. Statistics of all games played are summarized on the left half
and the final 60 games on the right half of the table. This distinction
is due to the fact, that we tried different parameter-settings for the
networks and the zone model in the first 380 games. This resulted
in fluctuations of the performance. The best set of parameters was
finally used for the last 60 games.

average test average final
conventional ANN conventional ANN

games total 440 60
games won 121 130 11 21

ratio won/total 0.275 0.295 0.183 0.35
shots total 578 556 75 83

shots goals 172 216 23 33
ratio goals/shots 0.298 0.388 0.307 0.398

Table 2. Results for test phase and final settings

The ratio of successful shots to scoring attempts is significantly
better for the team with the neural networks. Although most of the
games still were a draw, in the end the new goalshot module could
clearly outperform the conventional module by winning twice as of-
ten.

Another indication for the potentials of this approach is the per-
formance of the RoboLog team at the RoboCup German Open 2004
where the new module was used in a competition for the first time.
Even though, the overall results were not good and therefore don’t
look promising on the first sight the performance of the module
becomes obvious after having a closer look at the logfiles. There
were hardly any chances to score for the RoboLog team because
the RoboLog strikers rarely got close to the opponent goal. So once
more the ratio of goals to scoring attempts was calculated by using
the goalshot extractor described in section 2.1. This more signifcant
benchmark turned out to be exactly 50% which means that every sec-
ond shot was successfull. In addition to that, a RoboLog agent for the
first time managed to score against the Brainstormers04 team. Brain-
stormers04 ranked third in the end and conceded only two more goals
in the whole competition.

3 CONCLUSION

This paper outlined a technique that uses data obtained from pre-
recorded soccer games for supervised neural network learning. The
benchmark used for testing this approach is the Optimal Scoring
Problem. The problem was tackled by decomposing it into two sub
problems which where both individually addressed with one multi-
layered perceptron each, resulting in a variety of applications. The
results show that observational learning from logfiles using neural
networks delivers a promising performance while providing a series
of advantages compared to previous work on this field.

• The time consuming step of generating training data from repeated
experiments is not required.

47

• Training patterns obtained from prerecorded games provide uni-
versal information about the observed situations. The data is not
limited by a specific agent used for data generation.

• The features used for training can be easily extended. There is no
fundamental limitation due to complexity if further input variables
are added to the networks.

Besides that, the extensive statistical analysis of goalshots pro-
vided in this paper should arouse interest of everyone dealing with
simulated robot soccer.

3.1 Future work

It is obvious that the presented work is not able to provide a really
optimal scoring policy.

First of all, there are starting points to improve the module with-
out making fundamental changes. More sophisticated inputs to the
networks, like speed, acceleration and body/view-angle of moving
objects on the field, would most likely result in more accuracy. In
addition, putting more effort into the learning process and providing
more training data would also help the networks to better generalize
over the seen samples.

But it becomes apparent, that all those straightforward improve-
ments will never be able to result in an optimal scoring policy. To
achieve that all future situations on the soccer field and the strategies
of both teams would have to be taken into account. The work intro-
duced in this project would in that case only provide a solution to a
sub task in a broad decision support system. For a holistic solution, a
prediction of the next actions of the opponent team (opponent model-
ing) and the own team needs to be made in order to set up an optimal
scoring strategy. Only then, would it be possible to decide whether
there will be a better position to score if the attacker performs some
action, like dribbling first, and then tries to score instead of shooting
right away. This cannot be achieved by a simple zone model with
thresholds.

Steps in this direction could be to rank success rates of various
actions of all team-mates (see [1]) or to use an auction protocol to
decide on the next action to be carried out. However, it is very dif-
ficult to take all relevant future actions into account in this rapidly
changing environment. But a one-step optimization has not the po-
tential of being optimal.

Besides that, there are other interesting aspects to think about. Ob-
taining data by generation as done in previous work has the capability
of finding situations not observed in prerecorded games. This could
help to round off areas with sparse logfile training data or test uncon-
ventional strategies. Thus, if possible, a combination of both kinds of
data acquisition seems to be the most promising approach.

Finally, a policy more specific to an opponent team could be ad-
vantageous and achieved in two ways. For one thing, training data
from shots against one specific team could be emphasized in the
training process to bias the network. This would result in a specific
network for each opponent team. For another thing, online learning
could most dynamically handle new situations and is as promising as
challenging.

ACKNOWLEDGEMENTS

I would like to thank Oliver Obst for all his motivating support.

REFERENCES
[1] Sebastian Buck and Martin Riedmiller.Learning Situation Dependent

Success Rates Of Actions In A RoboCup Scenario. In R. Mizoguchi and
J. Slaney, editors, PRICAI 2000 Topics in Artificial Intelligence, num-
ber 1886 in Lecture Notes in Artificial Intelligence, Springer Verlag,
page 809, 2000.

[2] Mao Chen, Klaus Dorer, Ehsan Foroughi, Fredrik Heintz, ZhanXiang
Huang, Spiros Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Jan
Murray, Itsuki Noda, Oliver Obst, Pat Riley, Timo Steffens, Yi Wang
and Xiang Yin: Users Manual, RoboCup Soccer Server, for Soccer
Server Version 7.07 and later; February 11, 2003

[3] Vojislav Kecman.Learning and Soft Computing: Support Vector Ma-
chines, Neural Networks, and Fuzzy Logic Models, page 267, Bradford
Book, MIT Press, Cambridge, Massachusetts, 2001.

[4] Jelle Kok, Remco de Boer and Nikos Vlassis.Towards an optimal scor-
ing policy for simulated soccer agents. In M. Gini, W. Shen, C. Torras,
and H. Yuasa, editors, Proc. 7th Int. Conf. on Intelligent Autonomous
Systems, pages 195-198, IOS Press, California, March 2002. Also in G.
Kaminka, P.U. Lima, and R. Rojas, editors, RoboCup 2002: Robot Soc-
cer World Cup VI, Fukuoka, Japan, pages 296-303, Springer-Verlag,
2002.

[5] Tayler Raines, Milind Tambe and Stacy Marsella.Towards Automated
Team Analysis: A Machine Learning Approach. Third international
RoboCup competitions and workshop, 1999.

[6] Michael Wooldridge.Intelligent Agents. In Gerhard Weiss, editor, Mul-
tiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence, page 30, MIT Press, Cambridge, Massachusetts, 2000.

48

Learning Decision Trees for Action Selection
in Soccer Agents

Savas Konur � and Alexander Ferrein and Gerhard Lakemeyer �

Abstract.
In highly-dynamic domains such as robotic soccer it is important

for agents to take action rapidly, often in the order of a fraction of
a second. This requires, a possible longer-term planning component
notwithstanding, some form of reactive action selection mechanism.
In this paper we report on results employing decision-tree learning to
provide a ball-possessing soccer agent in the SIMULATION LEAGUE

with such a mechanism. The approach has payed off in at least two
ways. For one, the resulting decision tree applies to a much larger set
of game situations than those previously reported and performs well
in practice. For another, the learning method yielded a set of quali-
tative features to classify game situations, which are useful beyond
reactive decision making.

1 Introduction

In highly-dynamic domains like robotic soccer it is important for
agents to take action rapidly, often in the order of a fraction of a
second. This is especially true in the application domain considered
in this paper, the ROBOCUP SIMULATION LEAGUE with 11 players
per team on a 2D playing field. Such tight time constraints require,
a possible longer-term planning component notwithstanding, some
form of reactive action selection mechanism. By reactive we mean,
roughly, that decisions are made solely on the basis of a description
of the current situation or world model. In particular, this precludes
any evaluation of different possible courses of actions as in planning.

When presented with a game situation in the SIMULATION

LEAGUE, humans are usually quite capable of choosing a reason-
able action for, say, the ball-possessing agent. However, it is not at
all easy to encode this “expert” knowledge in a way suitable for an
artificial soccer agent for at least two reasons:

1. It is not clear what the salient features of a game situation are,
which determine the action to be chosen. Presumably, these fea-
tures would include qualitative descriptions such as the team
member or opponent closest to the ball. But what the relevant
ones?

2. Even if we were given those features, it is not clear how to trans-
late them into rules for decision making. We could try to hand-
code them, but this approach is likely error-prone, not to mention
the difficulty of eliciting the rules from the human expert.

Perhaps the best way to overcome these problems is to use
machine-learning techniques. Deciding what action to take next in

� Free University of Amsterdam Artificial Intelligence Department, Amster-
dam, The Netherlands, skonur@cs.vu.nl,

� RWTH Aachen, Knowledge-Based Systems Group, Aachen, Germany,
�ferrein,gerhard�@cs.rwth-aachen.de

robotic soccer can be thought of as a classification problem, where
a game situation is classified according to the best next action.
Machine-learning techniques suitable for classification are decision-
tree learning such as ��� [8] or ���� [9]), neural networks [12, 18]
and reinforcement learning [15, 18, 16].

For our work we have chosen decision-tree learning, in particular,
����, as it is capable to deal well with both issues raised above. For
one, given a sufficiently large set of training examples, the system au-
tomatically builds a decision tree, which encodes the rules for action
selection. Compared to other techniques like neural networks, deci-
sion trees also have the well-known benefit that they can be inspected
and understood by humans. For another, it is not necessary to decide
beforehand what the relevant features are for classification. All that
is needed is that the system is given a sufficiently large set. The rel-
evant features are produced as a side-effect of building the decision
tree in the sense that only those features or attributes that eventually
appear as nodes in the decision tree are thought of as relevant.

We remark that we applied learning to all types of players (ex-
cept the goalie) anywhere on the field, but we restricted ourselves to
players in ball possession.

We believe that our results are noteworthy for at least the fol-
lowing reasons. For one, the resulting decision tree covers a much
wider range of game situations and actions than in previous work
such as [7, 17]. For another, as we will see in the discussion of ex-
perimental results, a team using this decision tree, but which is oth-
erwise not optimized at all, performs surprisingly well. Finally, as
already noted above, while decision-tree learning by itself does not
come up with qualitative world descriptions, it is nevertheless useful
in pruning irrelevant attributes from a given set.

This rest of the paper is organized as follows. In Section 2 we
briefly discuss existing learning methods applied to robotic soccer.
In Section 3, we describe our approach to decision-theoretic learning
of action selection for a soccer agent in the SIMULATION LEAGUE,
followed by a discussion of experimental results in Section 4. The
paper ends with a brief summary and concluding remarks.

2 Related Work

In this section we present some of the work on applying machine
learning techniques to robotic soccer and action selection. One focus
is learning of basic agent skills such as dribbling, passing, and inter-
cepting. [11], for example, use reinforcement learning for this pur-
pose. In [13, 17] a form of so-called Layered Learning is proposed.
It provides a bottom-up hierarchical approach to learning agent be-
haviors. In this framework, the learning at each level is directly used
in the learning at the next higher level. The bottom layer considers
low-level individual agent skills such as ball interception or drib-

49

bling. In contrast to [11], the behaviors are learned using a neural net-
work. At higher levels, action selection of the ball-possessing agent
is learned using multi-agent reinforcement learning. We remark that
the authors consider only eight kicking actions, which is much more
limited than in our case. (A comparison of multi-agent reinforce-
ment learning methods in the soccer domain can be found in [?].) In
earlier work, Matsubara et al. [7] considered action selection using
neural networks. There the scope was even more limited, as they re-
strict themselves to the decision of whether to shoot directly to the
goal or to pass to a better positioned player. Decision-tree learning
has been applied in robotic soccer as well. For example, Visser and
Weland [19] recently applied ���� to learning aspects of the strategy
of the opposing team in the SIMULATION LEAGUE.

Outside of the soccer domain, action selection for robots is often
addressed using reinforcement learning. For example, [?] proposes
hierarchical Q-learning for action selection, where the control task
of a robot is divided into a set of simpler problems each learned sep-
arately. Another reinforcement learning approach to the action selec-
tion problem was proposed by Humphrys [?]. Each behavior module
proposes an action with a certain weight of which the action with the
highest weight is executed. The weights of the actions are modified
based on the difference between the weight of the action being ex-
ecuted and the action a behavior module proposed using a form of
reinforcement learning. The application domain presented in [?] is a
simulated environment of a house keeping robot.

3 Learning the Decision Tree

In this section we present how we applied ���� to our SIMULATION

LEAGUE agent. We start with an overview of the categories which
should be learned, i.e. the action which the agent should perform. In
Section 3.2, we present the attributes which turned out to be appropri-
ate for the SIMULATION LEAGUE before we show how we instructed
the agent in Section 3.3. The consulting procedure in on-line games
is represented in Section 3.4.

3.1 Skill Hierarchy and Meta-Level Actions

As ���� cannot deal with parameterized categories to be learned [9],
we implemented special behaviors which are to be selected by the de-
cision tree. Figure 1 gives an overview of the skill hierarchy we use in
our reactive soccer agent. The low-level action layer comprises basic
actions like dashing to a position, accelerating the ball to a certain
velocity, or freezing the ball. Those commands are translated into the
SOCCERSERVER commands, such as dash, kick, turn, etc. The in-
termediate action layer defines actions like moving to a position, or
kicking the ball to a certain point, which are based on the low-level
action layer. High-level actions use the intermediate actions for the
desired behavior. dribbling and passing the ball to a teammate are
two examples of high-level actions taken from [1].
���� requires that output values (categories) of decision trees must

be discrete and specified in advance. This means action categories
which we use in the learning process should not take any argument in
order to satisfy the ���� requirements. Therefore, we cannot directly
use the high-level actions in the learning process since they require
some arguments in order to be executed. For that reason, we need
new actions which should have the form of a argument-free discrete
category. In order to accomplish this purpose we have introduced
the meta-level actions which use the high-level actions to generate
the desired behavior. These skills are parameterless encapsulations
of skills from the other layers suitable to deal as a category for ����.

Figure 1. Skill hierarchy

The meta-level actions calculate necessary arguments before calling
the corresponding high-level actions. In our current implementation,
we have defined 15 meta-level actions (see below). An example for
such an action is the dribble action depicted in Fig. 2. Some decisions
like with which angle and speed the agent should dribble are made.
For the supervision process it is very important that the supervisor
has the semantics of the respective meta-level action in mind in or-
der to give the right advice. The high-level dribble action in turn is
responsible for correctly determining when to kick and intercept the
ball in order to move player and the ball to the demanded position on
the field.

���������
if ball is not in kickable margin then

return �������	���
else

if path toward opponent goal is free then
���� direction to opponent goal
����� ������� ���	

else if path toward goal is fairly free then
���� direction to opponent goal
����� ������� ��
�

else
����
�����������
���������
����
if ��� � wide then

����� ������� ���	

else
����� ������� ��
�

end if
end if

end if
return ������������ �����

Figure 2. The dribble action which is executed by the decision tree

In the following, we give an overview of the categories (meta-level
actions) which were used.

� Outplay Opponent The ball is played into the opponent’s back
followed by an intercept action.

� Dribble calculates the angle relative to the agent where it should
dribble to. A second argument is the speed with which the agent
should dribble. Two different speeds are distinguished: slow and
fast.

50

� Direct Pass comprises several actions. It is distinguished between
direct passes of an attacker and between a defensive player and
a midfielder. Moreover, there exists a pass action for back passes
and passes in front of the player. We have to split the direct pass
action because the different aspects (playing a pass to a player in
front or to the back) does not fit in one pass action model. ����
is not able to determine the differences in the semantics only by
looking at the attributes. Each different instance of a direct pass
share the calculation of the “least congested team-mate”. Heuris-
tically, this team-mate is chosen. The heuristics is based on the
number of opponents in a certain distance around the player, there
exists a free pass-way to that respective player, and some more.

� A Through Pass is a pass which is played behind the opponent
defense. A free space behind the defensive line is found where a
team-mate is able to receive.

� A Leading Pass is a pass in the run-way of the respective team-
mate. It is calculated if a team-mate can intercept the ball after the
pass in a certain amount of time.

� The Shoot at Goal action calculates a point on the opponent goal
line with maximum distance to the opponent goal keeper.

� With Clear Ball the player simply kicks the ball as far away as
possible. For instance, if a defender is not able to dribble or pass
the ball to a team-mate it seem reasonable to bring the ball as far
away from the own goal as possible.

� Turn to Opponent Goal When the agent is in ball possession and
cannot see the opponent goal in order to perceive the opponent’s
goal keeper position, this action enables the agent to turn towards
the goal without leaving the ball.

3.2 Constructing the Attribute Set

In order to generate a good classification by the ���� algorithm
choosing an appropriate attribute set is a crucial task. Having irrel-
evant attributes in the attribute set is the main reason for overfitting
[8, 9]. Another difficulty for finding an appropriate set lies in the na-
ture of the soccer domain. As there are different player types and
situations during a game where each player has to react in different
ways according to its type and location on the field, we have to ac-
count for this by dividing the field into different regions. One such
possible division is depicted in Figure 3 which was proposed in [1].
One approach to the problem could have been to learn different trees
for different player types, such as attacker, midfielder, defender, by
constructing the test sets with only the relevant information. How-
ever, this approach raises several problems: (1) it is not trivial to rec-
ognize all relevant regions; statically dividing the field into defense,
midfield and attack is not sufficient because also a defender might
sometimes be located in a midfield region, (2) a separate construction
of the training set for each region and player type is a tedious task
and available data from the LOGPLAYER3 consists of whole game
information, (3) different decision trees for each player type accord-
ing to the game situations demand a selection mechanism that tells
which tree should be consulted; this would take the same problem to
a higher level.

Therefore, we decided to use only one decision tree containing
the distinguishing features like player types and playing region as
attributes. We also restrict the consulting of the decision tree to game
situations where players are in ball possession.

From the considerations above and from many experiments we
arrived at 35 attributes, which can be summarized as follows:

� The LOGPLAYER is a tool coming with the SIMULATION LEAGUE simula-
tion server to replay recorded games.

Figure 3. Possible regions a player can be in.

� Type of player is a discrete attribute and distinguishes between
defender, midfielder, and attacker.

� Playing region is a discrete attribute representing in which region
the player is located. The different regions are depicted in Figure
3.

� Closest teammate to ball is a boolean attribute denoting if the
player is the closest player to the ball.

� Distance and angle to ball, goals and opponent goal keeper are
continuous attributes determining the agent’s distance and angle to
the ball, the own as well as the opponent goal, and to the opponent
goal keeper.

� Distances and angles to the visible teammates and opponents are
a number of attributes denoting the visible teammates and oppo-
nents of an agent.

� Closest team to the ball is a boolean attribute which is true if one
player of our team is the closest player to the ball and false other-
wise.

� Ball possessing team takes three values corresponding to whether
the ball is in kickable range for our team, for the opponent team,
or for none.

� Ball distances and angles to both goals are continuous attributes
representing the distances and angles of the ball to both of the
goals.

� Opponent goalie’s distances and angles to its goal posts is a num-
ber of attributes representing the the distance and angle of the op-
ponent goalie to the opponent goal posts.

The reader should note that it was the decision-tree learning algo-
rithm that ultimately decided that these are the relevant attributes of a
game situation for a player in ball possession, as only these attributes
were used in the decision tree. For example, it turns out that only
the five nearest players to the ball are ever considered relevant. One
possible explanation for this are the restrictions due to two dimen-
sions of the current SIMULATION LEAGUE, where passes across the
opponent defense are impossible. Other attributes which were used
during tests were not contained in the resulting tree and therefore
deemed irrelevant.

We also remark that the choice of attributes may likely be different
for players other than the one in ball possession. For example, one
would not expect the goalie to care much about the distance to the
opponent’s goal.

The reader should note that many of the above attributes have a
continuous domain. We make use of ����’s ability to discretize con-
tinuous attributes given the training set. This discretization some-
times results in wrong classifications during the consulting phase,
as hard bounds on the attributes are drawn. Nevertheless these errors
seem acceptable in practice.

51

...
MyPlayerType = 2:
| BallDistanceToOpponentGoal <= 18.2609 :
| | MyCurrentPlayingRegion = 4: 9 (6.0/1.2)
| | MyCurrentPlayingRegion = 5:
| | | MyDistanceToOpponentGoal <= 12.4953 :
| | | | MyDistanceToOurGoal <= 92.6233 : 1 (3.0/2.1)
| | | | MyDistanceToOurGoal > 92.6233 :
| | | | | MyDistanceToOpponentGoalie > 18.5529 : 9 (3.0/2.1)
| | | | | MyDistanceToOpponentGoalie <= 18.5529 :
| | | | | | OpponentGoalieGoalRightCornerAngle <= 47.7002 : 11 (40.0/2.6)
| | | | | | OpponentGoalieGoalRightCornerAngle > 47.7002 :
| | | | | | | MyAngleToBall <= 26.746 : 11 (4.0/1.2)
| | | | | | | MyAngleToBall > 26.746 : 10 (2.0/1.0)
| | | MyDistanceToOpponentGoal > 12.4953 :
| | | | MyDistanceToOpponentGoalie <= 6.47349 :
| | | | | OpponentGoalieGoalRightCornerDistance > 16.9349 : 9 (5.0/2.3)
| | | | | OpponentGoalieGoalRightCornerDistance <= 16.9349 :
| | | | | | MyDistanceToSecondVisibleOpponent <= 5.27978 : 4 (3.0/1.1)
| | | | | | MyDistanceToSecondVisibleOpponent > 5.27978 : 11 (11.0/2.5)
| | | | MyDistanceToOpponentGoalie > 6.47349 :
| | | | | MyAngleToOpponentGoal <= -103.167 : 10 (3.0/1.1)
| | | | | MyAngleToOpponentGoal > -103.167 :
| | | | | | MyDistanceToThirdVisibleOpponent <= 8.71111 :
| | | | | | | MyDistanceToOpponentGoal <= 14.6303 : 9 (2.0/1.0)
| | | | | | | MyDistanceToOpponentGoal > 14.6303 :
| | | | | | | | MyAngleToFirstVisibleTeammate > 53.8028 : 8 (5.0/2.3)
| | | | | | | | MyAngleToFirstVisibleTeammate <= 53.8028 :[S7]
| | | | | | MyDistanceToThirdVisibleOpponent > 8.71111 :
| | | | | | | ClosestTeamToBall = 0: 1 (0.0)
| | | | | | | ClosestTeamToBall = 2: 11 (2.0/1.0)
| | | | | | | ClosestTeamToBall = 1:
| | | | | | | | MyDistanceToOurGoal > 95.9754 : 9 (5.0/2.3)
| | | | | | | | MyDistanceToOurGoal <= 95.9754 :
| | | | | | | | | MyDistanceToThirdVisibleTeammate <= 14.797 :[S8]
| | | | | | | | | MyDistanceToThirdVisibleTeammate > 14.797 :[S9]
| BallDistanceToOpponentGoal > 18.2609 :
| | MyAngleToOpponentGoal <= 98.1456 :
| | | MyAngleToOpponentGoal <= -89.512 :
| | | | MyDistanceToFirstVisibleOpponent <= 1.87341 : 8 (21.0/2.5)
| | | | MyDistanceToFirstVisibleOpponent > 1.87341 :
| | | | | MyAngleToOpponentGoal <= -118.357 :
| | | | | | OpponentGoalieGoalRightCornerAngle <= 12.9107 : 10 (53.0/3.8)
| | | | | | OpponentGoalieGoalRightCornerAngle > 12.9107 : 8 (3.0/1.1)
| | | | | MyAngleToOpponentGoal > -118.357 :
| | | | | | MyAngleToFirstVisibleTeammate <= -113.017 : 4 (7.0/2.4)
| | | | | | MyAngleToFirstVisibleTeammate > -113.017 :
| | | | | | | MyDistanceToThirdVisibleTeammate <= 13.8264 :
| | | | | | | | MyDistanceToThirdVisibleOpponent <= 14.2218 : 8 (9.0/2.4)
| | | | | | | | MyDistanceToThirdVisibleOpponent > 14.2218 : 1 (4.0/2.2)
| | | | | | | MyDistanceToThirdVisibleTeammate > 13.8264 :
| | | | | | | | MyDistanceToOurGoal <= 74.9802 : 10 (15.0/4.7)
| | | | | | | | MyDistanceToOurGoal > 74.9802 : 4 (2.0/1.8)
| | | MyAngleToOpponentGoal > -89.512 :
| | | | BallAngleToOpponentGoal <= 32.6327 :
| | | | | ClosestTeamToBall = 0: 1 (0.0)
...

Figure 4. Excerpt from the resulting decision tree.

52

3.3 Gathering the Training Data

For the supervision process we extended the LOGPLAYER to be able
to associate the actions described in Section 3.1 to players. This
supervisor monitor generates the training examples by storing the
output category (actions) together with the input categories (world
model information).

It is important to note that while calculating the attribute values we
cannot use the global information from the LOGPLAYER directly. In-
stead, we must calculate the supervised agent’s relative world model
from the global information and derive the attribute values from
it. This is important because while the agent consults the decision
tree in on-line games, the world model information comes from the
SOCCERSERVER,which supplies the agent with relative information
about the world model. Therefore, in the supervision process by cal-
culating the relative information from global view, it is guaranteed
that our training and test data are almost from the same distribution.

Another important point to be noted is that the supervisor should
have a good idea of how soccer is played in order to give advice to the
agent. For humans it is easier to classify a given situation including
qualitative measures and give advices of what to do than to formalize
a good action selection scheme. In the supervision process, the idea
to specify the action classification of a play situation was that a player
should select the most suitable action which provides him with the
best advantage among alternatives actions. In this case, we can say
that each action has a priority which depends on the player type and
the region the agent plays in. Below is some part of the scheme that
we used in the supervision process while advising the agents:

if scoring prob. is very high then
goalshot

else if agent in defensive region close to our goal then
if no opponent close and agent faces our goal then

turn to opponent goal
else if there is a very free teammate ahead then

pass ball directly to this teammate
else if trajectory to opponent goal is fairly free then

dribble forward
else

clear ball
endif

� � �

else if agent in wings close to opponent goalie then
� � �

One might ask why we simply did not implement the above
scheme instead of using a learned decision tree. As motivated in
the introduction human beings are good in classifying the world into
qualitative categories but encoding this as agent control software is
much harder. As one can see from the scheme it uses qualitative state-
ments like “very” or “fairly”. When supervising “fairly” is evaluated
by the supervisor in the complex situation the agent is in. On the
other hand, by having a qualitative world model it would be inter-
esting to compare an agent using the supervision scheme as action
selection with the decision tree learned by ����.

Naturally, the supervisor makes mistakes in the classification or
decides on the border line, giving contradictory advices. But as ����
is very robust against such mistakes they do not matter that much as
they would in a hand-coded variant of the scheme.

3.4 Consulting the Decision Tree

In the previous sections, we considered how the attribute and data
sets are gathered through the supervision process (the training
phase). After the training phase the model generation phase starts in
which these input files are passed through the ���� system, and the
decision tree model is produced by executing the ���� program. That
is, at the end of these phases we have acquired a model which can be
used by an agent to classify unseen cases. In the ROBOCUP context,
classification means offering a convenient action to the agent as it is
playing an on-line game in the SOCCERSERVER. This task is done
in a different process which we call the consult phase in which an
agent consults the resulting decision tree to select an action in a play
situation. An agent consults the decision tree model when the ball is
kickable for him. In this case, a new process is started in which the
attribute values are calculated according to the world situation. Based
on these values the decision tree offers an action category which will
be performed by the agent in this particular world situation, and the
consult process halts for this time instance. Whenever the agent is in
the ball-kickable margin, this process is started again. This process
repeats until the game finishes. The hierarchical relationship between
these phases is shown in Figure 5.

Figure 5. Overview of processing the Reactive Component for our soccer
agents

Figure 4 shows parts of the resulting decision tree for a midfield
player. Attributes are the nodes in this tree, e.g. MyPlayerType or
BallDistanceToOpponent Goal. The leaves of the tree can be identi-
fied by numbers which correspond to a respective meta-level action,
e.g. action 1 stands for dribble, 4 represents a through pass, and 11
means shoot to goal. The pair which follows an action shows the
number of training instances and the number of misclassifications.
The numbers in square brackets represent another subtree which is
not shown here for readability.

4 Empirical Results

For assessing the quality of the learned decision tree we conducted
several experiments.

The first question of interest was the accuracy of our training data.
In total, we collected 3000 training examples and grouped them in
training sets in steps of 500 examples up to the largest set contain-
ing the whole number of training examples (see Table 1). For each set
size we built several instances choosing randomly from the whole set
of training data. Table 2 shows the classification error rates. The col-
umn Tree size reflects the number of nodes the tree contains. Based
on this table we can make the following observations:

53

First, the results show a (slightly) decreasing error rate with an
increasing number of examples. The fact that we are left with an er-
ror rate of almost 9 % even before pruning has at least two reasons.
One reason is that the supervisor makes mistakes giving contradic-
tory examples. The other is that we use a large number of contin-
uous attributes. For a continuous attribute, ���� finds a split value
which maximizes information gain for the respective attribute. This
discretization leads to misclassifications.

Second, in each category, we see the error rate of the pruned tree is
higher than that of the original tree. Actually, this result is expected
since in the pruning process some branches of the tree are replaced
by a leaf node, yielding misclassification of some of the examples
which were previously classified correctly.

Finally, it should be noted that the size of the trees gradually in-
creases as the size of training data gets bigger, since C4.5 adds new
branches to the decision trees in order to correctly classify the data
instances.

Category 1 2 3 4 5 6
Set Size 500 1000 1500 2000 2500 3000

Table 1. Sizes of the test sets.

Cat. Before Pruning After Pruning
Tree size Error(%) Tree size Error

1 174 8.40 144 9.74
2 353 7.82 296 9.40
3 493 8.76 422 9.94
4 672 8.60 588 9.75
5 846 8.20 722 9.50
6 979 8.02 847 9.30

Table 2. Error rates for the training set.

The next interesting question was how good the decision tree clas-
sifies unseen examples. We therefore played a large number of games
against several teams with a different tree for each category from our
training set (For each category we collected 1500 test examples). For
assessing “ground truth” we classified for each logged game the sit-
uations according to the supervision scheme we presented in Section
3.3. The results over the training games are presented in Table 3 and
Figure 6

Category 1 2 3 4 5 6
Classification Ratio (%) 35.1 46.3 59.8 64.1 66.8 66.5

Table 3. Results of training games.

By looking at the table and figure we can see that there is a sharp
increase in the correctness between the Category 1 and Category
3. However, the performance increases only slightly between Cat-
egories 3 and 5. In the last category we even see a small reduction
in the correctness of the classification. This suggests that the optimal
size of the training set is reached at around 2500 examples.

The highest ratio of correct classifications we obtained is 66.8 %
(Category 5). If we take the RoboCup’s domain characteristics and

Figure 6. Learning curve of the agent

restrictions into account, we can say that this value is quite reason-
able. Especially our results seem to compare favorably with other
case studies. For example, Matsubara et. al. [7] performed an exper-
iment, in which only the simple situation of two attackers attempting
to score a goal against a single opponent is examined. In this exper-
iment, the attackers learned when to select either ‘pass’ or ‘shoot’
actions. The ratio of the correct classification that the results showed
was 68 %. Note also that the choices in this experiment are far sim-
pler than in our case where we consider all skills for all types of
players.

AllemaniACs: Robolog 2 : 0
AllemaniACs: VirtualWerder 1 : 0
AllemaniACs : UvaTrilearn 0 : 9
AllemaniACs : WrigthEagle 0 : 0

Table 4. Some test game results

We played several games against SIMULATION LEAGUE teams
from 2003 showing the performance of the learned decision tree. Ta-
ble 4 shows the results of some of these games. Against mediocre
teams like Robolog or Virtual Werder we are able to win. Against
the world champion Uva Trilearn our approach leaves room for im-
provement. One has to note that for these games the agent used the
decision tree when a player was in ball possession and executed some
standard behavior like “move to strategic position” or “search ball”
otherwise. The agent was not highly tuned as we wanted to see the
performance of the decision tree.

5 Conclusions

In this paper we described an application of the decision-tree learn-
ing method ���� to RoboCup’s SIMULATION LEAGUE. The method
was used to learn the action selection strategy of the whole team,
that is, defenders, midfielders, and attackers, when a player is in ball
possession. We were able to obtain decision trees which performed
surprisingly well in real game situations. Moreover, the method is
suitable for selecting the relevant attributes from a given set of qual-
itative world descriptors.

While this paper focusses on reactive action selection, we believe
that cooperative team-play cannot be achieved by reactive control
alone, taking only the current game situation into account. Consider,
for example, the situation where a wing-change would be necessary

54

because one side of the field is blocked by opponents. A good choice
would be to shift the game to the other wing of the field. It is hard to
imagine how such behavior could come about without some form of
deliberation where different possible courses of action are considered
and evaluated.

For this purpose we have developed an architecture which pro-
vides for reactive control as well as a deliberative component using
the logic-based language Golog [6]. Golog is a language for reason-
ing about actions and change and is based on the situation calculus
[14]. Recent extensions like dealing with a continuously changing
world [5] and the integration of a form of decision-theoretic planning
[2] to account for the uncertainty arising in the soccer domain makes
it a suitable language to reason about scenarios like a wing-change
and to coordinate the agents accordingly (cf. [3] for an example in
the soccer domain).

When using deliberation one needs a symbolic representation of
the environment. Therefore, we are interested in building up a qual-
itative world model which can be used for the deliberative compo-
nent. One of the central problems is finding the appropriate attributes
to describe the environment in a qualitative way. Recently, Dylla et
al. [4] approached this problem by looking at the issue of specifying
soccer moves based on the knowledge from a domain expert’s (from
[10] in their case) for different ROBOCUP leagues. As soccer theory
is described in a very abstract fashion, qualitative descriptions clearly
seem important, but the theory itself does not answer the question of
which qualitative descriptions are most suitable.

The present paper can perhaps be thought of as one step in this
direction. As we saw, one interesting outcome is that for the player in
ball possession only the five nearest team-mates and opponents seem
to matter. Applying the presented approach also for other players
like the goal keeper one probably can learn more about the relevant
information in robotic soccer.

We believe that the proposed method for reactive action selection
is not restricted to the ROBOCUP domain. Highly dynamic domains
have in common that actions must be performed rapidly, even if
those actions seem to be sub-optimal. Applying decision-tree learn-
ing yields one method for implementing a reactive action selection
mechanism. In future work we will apply this approach to other
dynamic real-time domains, for instance to soft-bots in computer
games, to get comparable results. Also the suitability of decision-
tree learning for achieving good attribute sets for qualitative world
modeling will be further investigated.

Acknowledgments

This work was supported by the German National Science Founda-
tion (DFG) in the Priority Program 1125, Cooperating Teams of Mo-
bile Robots in Dynamic Environments. We would like to thank the
anonymous reviewers for their comments.

REFERENCES
[1] R.de Boer and J.Kok, The Incremental Development of a Synthetic

Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simula-
tion Team, Master’s thesis, University of Amsterdam, 2002.

[2] Craig Boutilier, Ray Reiter, Mikhail Soutchanski, and Sebastian Thrun,
‘Decision-theoretic, high-level agent programming in the situation cal-
culus’, in Proc. of AAAI-00, pp. 355–362. AAAI Press, (July 30– 3
2000).

[3] F. Dylla, A. Ferrein, and G. Lakemeyer, ‘Specifying multirobot co-
ordination in ICPGolog – from simulation towards real robots’, in
Proc. of the Workshop on Issues in Designing Physical Agents for Dy-
namic Real-Time Environments: World modeling, planning, learning,
and communicating (IJCAI 03), (2003).

[4] Frank Dylla, Alexander Ferrein, Gerhard Lakemeyer, Jan Murray,
Oliver Obst, Thomas Röfer, Frieder Stolzenburg, Ubbo Visser, and
Thomas Wagner, ‘Towards a League-Independent Qualitative Soccer
Theory for Robocup’. accepted at 8th RoboCup International Sympo-
sium as poster.

[5] Henrik Grosskreutz and Gerhard Lakemeyer, ‘On-line execution of cc-
Golog plans’, in Proc. of IJCAI-01, (2001).

[6] H.Levesque, R.Reiter, Y.Lesperance, F.Lin, and R.Scherl, ‘Golog: A
logic programming language for dynamic domains’, Journal of Logic
Programming, (1997).

[7] H.Matsubara, I.Noda, and K.Hiraki., ‘Learning of cooperative actions
in multi-agent systems: a case study of pass play in soccer’, In S. Sen,
editor, AAAI Spring Symposium on Adaptation, Coevolution and Learn-
ing in multi-agent systems, (1996).

[8] J.Quinlan, ‘Induction of decision trees’, Machine Learning, Kluwer
Academic Publishers, (1986).

[9] J.Quinlan, C4.5 Programs for Machine Learning, Morgan Kaufmann,
1993.

[10] Massimo Lucchesi, Coaching the 3-4-1-2 and 4-2-3-1, Reedswain Pub-
lishing, 2001.

[11] M.Riedmiller, A.Merke, D.Meier, A.Hoffman, A.Sinner, O.Thate, and
R.Ehrmann, ‘Karlsruhe brainstormers - a reinforcement learning ap-
proach to robotic soccer’, in RoboCup 2000, Lecture Notes in Artificial
Intelligence, Springer-Verlag, (2001).

[12] P.Antognetti and V.Milutinovic, Neural Networks: Concepts, Applica-
tions, and Implementations, Vol. II, Printice Hall, 1991.

[13] P.Stone, Layered Learning in Multiagent Systems: A Winning Approach
to Robotic Soccer (Intelligent Robotics and Autonomous Agents), MIT
Press, 2000.

[14] R. Reiter, Knowledge in Action, MIT Press, 2001.
[15] R.Sutton and A.Barto, Reinforcement Learning: An Introduction, MIT

Press, 1998.
[16] P.Norvig S.Russell, Artificial Intelligence: A Modern Approach-Second

Edition, Printice Hall, 2002.
[17] S.Whiteson and P.Stone, ‘Concurrent layered learning’, in Proceedings

of the second international joint conference on Autonomous agents and
multiagent systems, pp. 193–200. ACM Press, (2003).

[18] T.Mitchell, Machine Learning., McGraw-Hill, 1997.
[19] U.Visser and H.G.Weland, ‘Using online learning to analyze the oppo-

nent’s behavior’, in RoboCup 2002, Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, (2003).

55

.

56

Dynamic Configuration of a Team of Robots
Robert Lundh and Lars Karlsson and Alessandro Saffiotti1

Abstract. We study teams of autonomous robotic agents in which
agents can help each other by offering information-producing re-
sources and functionalities. Depending on the current situation and
tasks, the team may need to change its functional configuration, that
is, which agents provide which functionalities to whom. We pro-
pose to use knowledge-based techniques to automatically synthesize
new team configurations in response to changes in the situation or
tasks. This note summarizes our approach, and reports our prelimi-
nary steps in this direction.

1 Introduction

Consider a society of autonomous robotic systems embedded in a
common environment. By anautonomous robotic systemwe mean
here any computer-controlled system able to sense the environment,
take decisions about actions to perform in the environment, and per-
form those actions. These include mobile robots, like the one pictures
in Fig. 1, as well as simpler devices like domestic appliances or mon-
itoring apparatuses. We do not assume that the systems in the society
are homogeneous: they may have different sensing, acting, and rea-
soning capacities.

From an abstract point of view, this society can be seen as one
distributed robotic system. The system usually includes a number of
functionalitiesorganized in some way, for instance, in a generic two-
layer hybrid architecture like the one shown in Fig. 2 (left). In these
architectures, the top layer implements higher cognitive processes for
world modeling (M) and for planning and deliberation (D). The bot-
tom layer implements sensori-motor processes for sensing and per-
ception (P) and for motion control (C), which are connected to a set
of sensors (S) and actuators (A).

In practice, the above functionalities can be distributed across dif-
ferent physical units in the society (robots, devices, etc). Each unit
includes several functionalities in each one of the{P, M, D, C, S,
A} classes, which it can use to perform the tasks assigned to it. In
addition, each unit may use functionalities from other units in order
to compensate for some one that it is lacking, or to improve its own.
Consider for example the following scenario involving a pair of out-
door robots, A and B, equipped with pan-tilt stereo cameras. Robot
A needs to perform the action to cross a gate in a metalic fence, as
shown in Fig. 1. To do so, it must have a P functionality to measure
the relative position and orientation of the gate, since this informa-
tion is needed by the controller. Robot A can use its stereo camera
to observe the edges of the gate during the crossing, but the mea-
sure obtained when these edges are near is not very reliable. Robot
B, however, could observe the entire scene from a distance and com-
pute a better estimate of the relative position and orientation between

1 Center for Applied Autonomous Sensor Systems, University ofÖrebro,
Sweden.{robert.lundh, lars.karlsson, alessandro.saffiotti}@aass.oru.se

robot A and the gate. Robot B can therefore offer this functionality
to A so that A can perform its task more reliably — see Fig. 2 (right).

In general, the same task can be performed by using different func-
tionalities in different robots and connected in different ways. For ex-
ample, the previous gate-crossing task can be achieved by either (1)
connecting the camera functionality in A to the gate-crossing func-
tionality in A, or (2) connecting the camera functionality in B to the
gate-crossing functionality in A. We informally callconfiguration
any way to allocate and connect the functionalities of a distributed
multi-robot system. Note that we are interested in functional soft-
ware configurations, as opposed to the hardware configurations usu-
ally considered in the field of reconfigurable robotics (e.g., [7, 12]).
Clearly, which configuration should be preferred depends on the task,
situation and resources. This suggests that the system should be able
to switch to a new configuration whenever these conditions change.

The focus of our work is to study configurations of a society of
robotic agents. Our objective is threefold:

1. To define the concept of functionalconfigurationof a robot soci-
ety: which robot is providing which functionalities to which one,
and how.

2. To study how todynamically changethe configuration of a robot
society in response to changes in the environment, in the tasks, or
in the available resources.

3. To use knowledge-based techniques (e.g., planning and monitor-
ing) to automaticallydetectwhen a configuration is not adequate
any more, andsynthesizea new one for the current situation.

Figure 1. An outdoor robot about to cross a gate in a fence.

57

M D

S A

P C

Environment

Robot B

��
��
��

��
��
��

���
�
�
�

S SA

P

D

P C

A

C

M M D

Robot A Robot B

Environment

Figure 2. Left: abstract view of a team as a distributed robotic system. Right: a simple team configuration consisting of two-robots: Robot B is providing a
missing perceptual functionality to Robot A.

At this initial stage of our work, we focus on the first objective: to
define a concept of configuration which is adequate from the point of
view of the other two objectives above. The rest of this paper outlines
our first steps in this direction.

2 Related work

There are several relevant areas from which one might take inspira-
tion to address the above objectives. In the area of multi-robot sys-
tems, much work has been done on the problem of multi-robot task
allocation, that is, how to allocate a number of tasks to a number of
robots taking into account that different robots may be differently ad-
equate for different tasks (see, e.g., [9] for an overview and analysis).
Some examples are the ALLIANCE architecture [13] and Local El-
igibility approach [25] based on local utility estimates, and the M+
[2] andMURDOCH [8] approaches. Closely related to task allocation
are the issues of robotic team configuration and of dynamic role as-
signment [23, 21, 11]. Chaimowiczet al [3] consider roles as the part
of an individual agent in a cooperative task. They define a role as a
control mode in a hybrid automaton, and a role assignment is a tran-
sition in that automaton. The approach that we propose in this paper
departs from the above works since we focus on the distribution and
— in particular — the interconnection of atomic (action and percep-
tion) functionalities. These are combined to form behaviors, which
achieve tasks.

The problem of distributing the performance of a task across a
number of agents according to their respective capabilities has been
widely addressed in the Distributed AI (DAI) and in the Multi-Agent
Systems (MAS) communities. Early work in DAI considered dis-
tributed problem solving settings with a precedence order among
sub-tasks [6]. Later work has included the notion of coalitions be-
tween sub-groups of more closely interacting agents [17]. The no-
tions of team-work [14], capability management [22] and norms [1]
have also been used in the MAS community to account for the dif-
ferent forms of interactions between the sub-tasks performed by the
agents in a team. These works, however, typically assume software
agents, and are not concerned with issues of physical action, mobil-
ity, and perception, which play a central role in our work.

Another area of interest is program supervision, where program
modules are combined, tuned and evaluated in order to solve specific
computational tasks such as image processing, often using planning
techniques [10, 4, 18]. Our work adds several dimensions to program

supervision since we deal with multiple physical agents with both
sensing and acting capabilities.

In a paper more similar in spirit to this one, Simmons et al [20]
consider a task involving a heterogeneous team of robots — a crane,
a robot with a manipulator, and a robot with stereo cameras — solv-
ing a construction task where a beam is placed on top of a stanchion.
This task requires tight cooperation between the robots involved. Co-
operation between the robots is hand-coded, although the authors de-
clare their intention to use planning techniques to set up the coopera-
tion. For specifying tasks, they use TDL (task description language)
[19], an imperative language which is a superset of C++. This lan-
guage does not appear to be adequate for automatic reasoning about
configurations by, e.g., a planner.

3 Framework

The first goal in our research program is to develop a definition of
configuration that is adequate for the three objectives presented in
the introduction. In general, a configuration of a team of robots may
include interconnected functionalities of two types: information pro-
viding functionalities, that is, functionalities that change the inter-
nal state by providing or processing information; and action exe-
cutions, that is, functionalities that change the state of the environ-
ment. (Some functionalities can have both aspects.) In the work pre-
sented here we focus on the information providing functionalities,
since these are a less studied aspect in the planning literature. The
extension of our framework to include action functionalities is left as
a second step.

To define our notion of configurations, a clarification of the three
concepts of functionality, resource and channel is in order.

3.1 Functionality

A functionalityis an operator that uses information provided by other
functionalities to produce additional information. Each instance of
a functionality is located in a specific robot (or other agent). The
functionality consists of:

• a specification of inputs, to be provided by other functionalities.
For each input, it contains information about domain (e.g. video
images) as well as timing information (e.g. every 100 ms).

58

• a specification of outputs, to be provided for other functionalities.
They also contain domain and timing information.

• a specification of relations between inputs to outputs.
• a set of causal preconditions, that is conditions in the environment

that have to hold in order for the functionality to be operational.
• a set of causal postconditions, that is conditions in the environment

which the functionality is expected to achieve.
• possibly also a specification of costs in terms of e.g. computation

and energy.

3.2 Resource

A resourceis a special case of a functionality. There are two different
types of resources: sensing resources and action resources. As men-
tioned previously, only sensing resources will be considered in this
paper. Asensing resourcehas no input from other functionalities, and
is typically a sensor that gives information about the current state of
the surrounding environment (e.g., a camera) or perhaps information
about the internal state of the robot.

3.3 Channel

A channeltransfers data from one functionality to another. A channel
can be in terms of either inter-robot or intra-robot communication,
and be on different mediums (radio, network, internal connections).
A channel may have requirements of band width, speed and reliabil-
ity.

3.4 Configuration

A configurationis the set of functionalities and the set of channels
that connects functionalities to each other. Each channels connects
the output of one functionality to the input of another functionality.

In the context of a specific world state, a configuration isadmissi-
ble if the following conditions are satisfied:

• each input of each functionality is connected via an adequate
channel to an output of another functionality with a compatible
specification (information admissibility).

• all preconditions of all functionalities hold in the current world
state (causal admissibility).

• the combined requirements of the channels can be satisfied.

3.5 Examples

In order to illustrate the above concepts, we consider a concrete ex-
ample inspired by the scenario described in the introduction. In order
to more easily test the example on real robots (see next section), we
consider an indoor office building. A robot is assigned the task of
moving from one room to another one by crossing a door between the
two rooms. The “cross-door” action requires information about posi-
tion and orientation of the door with respect to the robot performing
the action. The resources available are two indoor robots (including
the one crossing the door) each one equipped with a camera and a
compass. The door to cross is equipped with a wide-angle camera.

Figure 3. Four different configurations that provide the position and
orientation of a given door with respect to robotA. See explanation in the

text.

59

Two functionality operators from this scenario are shown below:

(Op Measure_Door (?Y)
Inputs: Image (?X)
Outputs: Door position & orientation

of ?Y relative to ?X
Preconds: Door ?Y fully visible

in image from ?X
Postconds: -
Transform: measuring door procedure
)

(Op Camera (?X)
Inputs: -
Outputs: Image (?X)
Preconds: CameraOn
Postconds: -
Transform: image retrieval procedure
)

The input and output of a functionality represent the data flow as-
sociated with the functionality. In theMeasure_Door example we
have an image taken by camera?X as input and from that we are able
to compute the position and orientation of the door?Y relative to?X
as output. The second example is an operator for a camera. Output
from Camera is an image taken by camera?X. SinceCamera is a
sensing resource no input is specified. There are also certain condi-
tions that need to be satisfied in order for the functionality to operate,
and conditions that will be satisfied if the functionality is executed.
This causal flow is represented as preconditions and post-conditions
in the operator. For instance the precondition forMeasure_Door
is that the door?Y is fully visible in the input image and the pre-
condition forCamera is that the camera is switched on. The body
of the operator describes the computations performed on the input in
order to generate the specified output provided that the preconditions
are satisfied. Notice that the output ofCamera matches the input
of Measure_Door . Intuitively, this means that a channel between
these two functionalities can legally be created.

Fig. 3 illustrates four different (admissible) configurations that
provide the information required by the action “cross-door”, which
include the functionalities above.

The first configuration involves only the robot performing the ac-
tion. The robot is equipped with a panoramic camera that makes it
possible to view the door even during the passage. The camera pro-
duces information to a functionality that measures the position and
orientation of the door relative to the robot.

The second configuration in Fig. 3 shows the other extreme, when
all information is provided by the door that the robot is crossing
and the robot is not contributing with any information. The door is
equipped with a camera and functionalities that can measure the posi-
tion and orientation of the robot relative to the door. This information
is transformed into position and orientation of door with respect to
the robot before it is delivered to robotA.

The third and fourth configurations in Fig. 3 consist of two robots
(A andB), each with its own set of resources and functionalities.

In the third configuration, robotA (the robot performing the
“cross-door” action) only contributes with one resource, a compass.
RobotB’s resources are a compass and a camera. The camera pro-
vides information to two functionalities: one that measures the dis-
tance and orientation to the door, and another one that measures the
distance to robotA. All these measurements are computed relative
to robotB. In order to compute the position and orientation of the
door relative to robotA, we need to use a coordinate transformation.

This in turn requires that we know the relative position and orienta-
tion of robotA relative toB. The relative position is obtained from
the camera information. The relative orientation can be obtained by
comparing the absolute orientations of the two robots, measured by
their two on-board compasses.

The fourth configuration in Fig. 3 is similar to the third one, ex-
cept that the orientation of robotA relative toB is obtained in an-
other way, i.e., no compasses are used. Both robots are equipped with
cameras and have a functionality that can measure the bearing to an
object. When the robots are looking to each other, each robot can
measure the bearing to the other one. By comparing these two mea-
surements, we obtain the orientation of robotA relative to robotB.

4 A Simple Experiment

In order to test whether sharing of functionalities in different config-
urations would actually allow us to solve simple coordination exam-
ples, we have conducted a series of experiments using a pair of real
robots equipped with different sensors. These experiments were also
aimed at assessing the mechanisms for the switching between con-
figurations. In these first experiments, the configuration generation
and configuration switches were hand-coded. We intend to eventu-
ally make both aspects automatic.

We present here a simple experiment based on the third and fourth
configurations in Fig. 3. The platform used were two Magellan Pro
robots from iRobot, shown in Fig. 4. Each robot runs an instance of
the layered hybrid architecture Thinking Cap [16].

Both robots are equipped with compasses and fixed color cameras.
They have additional sensors (e.g., sonars, laser, and an electronic
nose) not used in our experiments. Since the cameras are fixed, they
can only measure distances to objects further away than 2 meters.
The environment consists of two rooms (R1 and R2) with a door
connecting them. The door and the robots have been marked with
uniform colors in order to simplify the vision task (see Fig. 4).

The following scenario describes how the two configurations were
used, and demonstrates the importance of being able to reconfigure
dynamically. RobotA and robotB are in room R1. RobotA wants
to go from room R1 to room R2. Since the camera can only measure
distances to objects further away than 2 meters, robotA is not be able
to perform the action on its own. RobotB is equipped with the same
sensors as robotA, but since robotB is not crossing the door it is
able to observe both the door and robotA from a distance during the
whole procedure. We therefore configure our team according to the
third configuration in Fig. 3, and execute the task. RobotA continu-
ously receives information about the position and orientation during
the execution of “cross-door”.

When robotA enters room R1 it signals that the task is accom-
plished. This signal is received by robotB and the current config-
uration is played out. Next, robotB is assigned the task of going
from room R1 to room R2. The same configuration as before is used
to solve this task, but with the roles exchanged — i.e., robotA is
now guiding robotB. This time, however, during the execution of
the “cross-door” behavior a compass fails due to a disturbance in the
magnetic field. This makes the current configuration not admissible,
and a reconfiguration is necessary to proceed. The fourth configura-
tion in Fig. 3 is still admissible even with no compass, and we there-
fore use this one to carry out the remaining part of the task. Fig. 5
shows the trajectories performed by the robots in a sample run of this
experiment. In the picture, robotA is standing still at the observing
position and robotB has just accomplished its task.

60

Figure 4. RobotB is guiding robotA through the door.

5 Conclusions

This paper has shown the first steps toward our goal to automatically
synthesize a team configuration using knowledge-based techniques.
Differently from most current works on team formation, our atomic
unit of decomposition is not a task or a role, but a single functional-
ity that a robot can make available to another one. The preliminary
experiments indicate that we can achieve flexible forms of cooper-
ations in this way. Moreover, we are able to describe information-
and action-producing functionalities as abstract operators similar to
the ones which are customary in planning systems. This suggests the
possibility to build a system that uses planning techniques [24, 5]
to automatically create team configurations given the current tasks,
resources, and situation. We would like this system to be able to de-
termine the most adequate configuration in terms of a set of criteria,
like efficiency, reliability, or cost of resources and communication.
Our research efforts are in this direction.

The distributed nature of our configuration is expected to be an
important aspect in configuration planning. For instance, the cost and
unreliability of inter-robot communications should be taken into ac-
count when evaluating alternative configurations. Moreover, config-
uration planning may have to be done in a distributed manner, or
if centralized it must be preceded and followed by information ex-
changes between the robots.

Automatic re-configuration of a robotic team will be important as
the task, environment and maybe also the composition of the team
change dynamically. An important issue to consider here is how to
decide when it is time to change configuration. A reconfiguration
may be needed if the available functionalities change (e.g., due to
malfunctioning), if the external conditions change, if the current task
is completed, or if a new task is given. From an experimental perspec-
tive, we intend to apply automatic reconfiguration online on robots
in increasingly complex and dynamic environments (e.g. 4-legged
robotic soccer [15]).

ACKNOWLEDGEMENTS

This work was supported by the Swedish KK Foundation, the
Swedish National Computer Graduate School in Computer Science
(CUGS), and the Swedish Research Council.

Figure 5. RobotA andB have both reached room R2. Circles show robot
A’s trajectory and dots show robotB’s trajectory.

REFERENCES

[1] G. Boella, ‘Norms and cooperation: Two sides of social rationality’, in
Agent Autonomy, eds., H. Hexmoor, C. Castelfranchi, and R. Falcone,
Kluwer, Boston/Dordrecht/London, (2003).

[2] S. Botelho and R. Alami, ‘M+: a scheme for multi-robot cooperation
through negotiated task allocation and achievement’, inProceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 1234–1239, (1999).

[3] L. Chaimowicz, M. Campos, and V. Kumar, ‘Dynamic role assignment
for cooperative robots’, inProc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pp. 293–298, (2002).

[4] S. A. Chien and H. B. Mortensen, ‘Automating image processing for
scientific data analysis of a large image database.’,IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(8), 854–859, (1996).

[5] M. E. desJardins, E. H. Durfee, C. L. Ortiz, Jr, and M. J. Wolverton,
‘A survey of research in distributed continual planning’,AI Magazine,
20(4), 13–22, (1999).

[6] E.H. Durfee, V.R. Lesser, and D.D. Corkill, ‘Coherent cooperation
among communicating problem solvers’, inReadings in Distributed AI,
eds., A.H. Bond and L. Gasser, 268–284, Morgan Kaufmann, San Ma-
teo, CA, (1988).

[7] T. Fukuda and S. Nakagawa, ‘Approach to the dynamically reconfig-
urable robot systems’,Intelligent Robtics Systems, 1, 55–72, (1988).

[8] Brian P. Gerkey and Maja J Matarić, ‘Sold!: Auction methods for multi-
robot coordination’,IEEE Transactions on Robotics and Automation,
18(5), 758–768, (October 2002).

[9] Brian P. Gerkey and Maja J Matarić, ‘Multi-Robot Task Allocation: An-
alyzing the Complexity and Optimality of Key Architectures’, inPro-
ceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), Taipei, Taiwan, (May 2003).

[10] L. Gong and A.C. Kulikowski, ‘Composition of image analysis pro-
cesses through objectcentered hierarchical planning’,IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 17(10), (1995).

[11] J. S. Jennings and C. Kirkwood-Watts, ‘Distributed mobile robotics by
the method of dynamic teams’, inProc. of the Intl. Symp. on Distributed
Autonomous Robotic Systems (DARS), Karlsruhe, Germany, (1998).

[12] F. Mondada, M. Bonani, S. Magnenat, A. Guignard, and D. Floreano,
‘Physical connections and cooperation in swarm robotics’, inProc. of
the 8th Int. Conf. on Intelligent Autonomous Systems (IAS8), pp. 53–60.
IOS Press, (2004).

[13] L. Parker, ‘ALLIANCE: An architecture for fault tolerant multi-robot
cooperation’,IEEE Trans. on Robotics and Automation, 14(2), (1998).

[14] D.V. Pynadath and M. Tambe, ‘Automated teamwork among heteroge-
neous software agents and humans’,Journal of Autonomous Agents and
Multi-Agent Systems, 7, 71–100, (2003).

[15] A. Saffiotti, A. Björklund, S. Johansson, and Z. Wasik, ‘Team Swe-
den’, inRoboCup 2001, eds., A. Birk, S. Coradeschi, and S. Tadokoro,
Springer-Verlag, Germany, (2002).

61

[16] A. Saffiotti, K. Konolige, and E. H. Ruspini, ‘A multivalued-logic
approach to integrating planning and control’,Artificial Intelligence,
76(1-2), 481–526, (1995).

[17] O. Shehory and S. Kraus, ‘Methods for task allocation via agent coali-
tion formation’,Artificial Intelligence, 101, 165–200, (1998).

[18] C. Shekhar, S. Moisan, R. Vincent, P. Burlina, and R. Chellappa,
‘Knowledge-based control of vision systems’,Image and Vision Com-
puting, 17, 667–683, (1998).

[19] R. Simmons and D. Apfelbaum, ‘A task description language for robot
control’, in Proceedings of the Conference on Intelligent Robotics and
Systems, Vancouver Canada, (October 1998).

[20] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith, ‘First
results in the coordination of heterogeneous robots for large-scale as-
sembly’, inProceedings of the International Symposium on Experimen-
tal Robotics (ISER), Honolulu Hawaii, (December 2000).

[21] P. Stone and M. Veloso, ‘Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork’,
Artificial Intelligence, 110(2), 241–273, (1999).

[22] I. J. Timm and P-O Woelk, ‘Ontology-based capability management
for distributed problem solving in the manufacturing domain’, inMul-
tiagent System Technologies – Proceedings of the First German Confer-
ence, (MATES 2003), eds., M. Schillo and et al., pp. 168–179. Springer
Verlag, (September 2003).

[23] D. Vail and M. Veloso, ‘Multi-robot dynamic role assignment and coor-
dination through shared potential fields’, inMulti-Robot Systems, eds.,
A. Schultz, L. Parker, and F. Schneider, Kluwer, (2003).

[24] D. S. Weld, ‘Recent advances in AI planning’,AI Magazine, 20(2), 93–
122, (1999).

[25] B. B. Werger and M. J Matarić, ‘Broadcast of local eligibility for multi-
target observation’, inDistributed Autonomous Robotic Systems, eds.,
L. E. Parker, G. Bekey, and J. Barhen, pp. 347–356. Springer Verlag,
(2000).

62

Real-Time Agents: Reaction vs. Deliberation1

Carlos Carrascosa, José Fabregat, Andrés Terrasa and Vicente Botti
Deptartamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/n, 46022, Valencia, Spain

{carrasco,jfabregat,aterrasa,vbotti}@dsic.upv.es

Abstract. In agents theory, it is commonly accepted that reactiv-
ity is one of the main features of an agent. Reactivity can be defined
as the capability of an agent to respond to significant changes in its
environment. Traditionally, reactivity has been confronted with the
agent’s capability of deliberation, in the sense that the most reac-
tive an agent is, the least time it spends deliberating (and vice-versa).
Agent architectures normally present a fixed proportion between re-
action and deliberation, normally implemented by assigning a given
amount of resources to each of them at design time, with no possibil-
ity of further adaptation at run time. In this way, the agent may work
well for certain environments/problems, but it can poorly adapt this
feature to changes in such initial conditions.

Therefore, if the agent could accommodate its reactivity to the cur-
rent situation of the environment, its adaptability would be consider-
ably enhanced and its behavior would be closer to humans. Further-
more, if the agent has real-time requirements, the agent’s ability to
adapt its reactivity becomes essential, because the environment will
typically undergo periods of different stress conditions. In this sense,
this paper introduces the concept of Reactivity Degree. This concept
implies some meta-reasoning capabilities to be available in the agent,
in order to dynamically decide the amount of resources which have to
be assigned to deliberation and reaction. The paper also shows how
to implement such concept in a hard real-time, hybrid agent archi-
tecture named ARTIS, as well as some experimental results which
demonstrate the usefulness of this new concept.

1 Introduction

Reactivity is a general feature of live organisms, at both organic and
cell level. It consists of producing a reaction to every physical or
chemical stimulus of the environment. This reaction allows for the
survival and development of such beings.

In the context of software systems, a reactive system is consid-
ered as a system that interacts with some independent “environment”,
which can be either physical (belonging to the real world) or sim-
ulated by another software system. In any case, the reactive sys-
tem will need some sensors to detect changes in the environment,
to which they have to produce responses of some kind. Normally,
these responses will modify the internal state of the system and/or
the environment itself.

In agents theory, it is commonly accepted that reactivity is one of
the main features of an agent. Reactivity can be defined as the capa-
bility of an agent to respond to significant changes in its environment.

1 Work partially funded by grants DPI2002-04434-C04-02 and TIC2003-
07369-C02-01 of the Spanish government.

This feature is present in all the alternative agent definitions in the lit-
erature, from the simplest [13] to the most complex ones [17]. Tradi-
tionally, reactivity has been confronted with the agent’s capability of
deliberation, in the sense that the most reactive an agent is, the least
time it spends deliberating (and vice-versa). In fact, these confronted
concepts have been used to classify the agent architectures in the
literature into three groups (as established in [17]): reactive, delib-
erative and hybrid. Reactive and deliberative agent architectures are
in opposite extremes, defining agents which either react to stimuli
immediately (without deliberation) or spend all their time elaborat-
ing the best possible answer, with little or no computational and time
restrictions.

Hybrid architectures, on the other hand, do consider an agent to
possess both characteristics (reaction and deliberation). The propor-
tion of reaction and deliberation in the agent definition may vary in
different agent architectures, but, in every one of them, this propor-
tion is a fixed trait in the agent. Such architectures normally imple-
ment this fixed proportion by assigning some given computational re-
sources to the agent’s reactive and deliberative layers at design time,
with no possibility of dynamically reallocate such resources at run
time. In this sense, each agent architecture is better suited to deal
with certain problem domains and environments, depending on the
amount of deliberation and reaction required, but they are all unable
to adjust this feature to changes in the initial conditions of the prob-
lem.

As a result, if the agent could accommodate its reactivity to the
current situation (including both its internal state and the status of the
environment), its adaptability would be considerably enhanced. In
this sense, it would behave closer to humans. For example, if a person
sees an important paper starting to burn, she can spend a moment to
think how to avoid the paper to be consumed by the flames; however,
if her own hand is burning, she will not even think of what to do, she
will just take the hand away from the fire immediately. This basic
example presents a human being solving the same problem in two
scenarios with different reactivity requirements.

Moreover, if the agent has to deal with a real-time environment,
the ability to adapt its reactivity becomes essential, since some (or
all) of the agent responses may have hard real-time restrictions. In
such cases, the amount of time the agent may spend in deliberating
is not only strictly bounded, but it may greatly vary depending on
how stressed is the environment at the present moment. If the agent
is statically designed to cope with the most stressed conditions at all
times, it will waste its resources when such conditions do not apply.
Conversely, underestimating the resources for dealing with the worst
case may result in the agent missing a vital deadline because it spent

63

too much time calculating the solution.
With all this, the adaptive chances of the agent would be greatly

improved if its reactivity was considered as a dynamic feature, which
could be adapted to the current environmental situation. In this sense,
this paper introduces the concept of Reactivity Degree. This concept
implies some meta-reasoning capabilities to be available in the agent,
in order to dynamically decide the amount of resources which have to
be assigned to deliberation and reaction. The paper also shows how
to implement such concept in a hard real-time, hybrid agent archi-
tecture named ARTIS, as well as some experimental results which
demonstrate the usefulness of this new concept.

The rest of the paper is structured as follows: next section presents
the concept of real-time agent and its base in the real-time sys-
tems field; Section 3 presents an overview of an specific real-time
agent architecture, the ARTIS agent architecture; after that, Section 4
presents the concept of meta-reasoning and its application in the AR-
TIS architecture is presented, paying special attention to the concept
of reactivity degree; Section 5 shows an application example of the
new functionalities of the ARTIS architecture; last section presents
the conclusions of the paper and some ongoing work.

2 Real-Time Agents

Real-time agents are agent-based software systems which have real-
time requirements. In the Artificial Intelligence area, it is a common
misunderstanding that a real-time system is a system which is contin-
uously connected to some real environment, calculating its solution
in non-simulated time; another typical misinterpretation of the term
consider a real-time system as a system which has to provide a fast
result. In fact, a real-time system (RTS) is a system which correction
depends not only of the computation results, but also of the moment
at which these results are produced [15]. In a RTS, the usual way of
specifying the valid interval for a solution is by assigning a deadline
to the task which is calculating this solution, meaning that if the solu-
tion is provided after that deadline, the solution loses quality or even
it is completely invalid. In this sense, a RTS must try to achieve its
objectives while also meeting its deadlines.

There are two types of RTS [15]:

² Hard Real-Time Systems (HRTS). These are systems which have
strict time requirements. In systems of this kind, if a task misses
a single of its deadlines, the consequences may be grave (typi-
cally involving the integrity of the system itself, monetary loss or
human lives).

² Soft Real-Time Systems (SRTS): These are systems in which miss-
ing a deadline normally supposes a degradation in the system’s
quality response, but not intolerable loss.

According to this, real-time agents may be classified into hard and
soft real-time agents, depending on whether they have strict temporal
requirements or not.

In the RTS field, some research lines have been conducted toward
the objective of adjusting the behavior of the system to changes in
the environment (or in the system’s internal state). This research line
includes developments such as the mode changes [11], which pro-
pose a safe mechanism by which the system may change the set of
tasks at run time without missing any hard deadline. An example
of such techniques in the field of real-time agents can be found in
the CIRCA/SA-CIRCA architecture [7, 8, 6], where a simple syn-
chronous mode change is used. The problem with mode changes is
that they are very drastic, in the sense that maybe it is not necessary
to change the entire set of tasks.

3 ARTIS Agent (AA)

This section provides a short description of the ARTIS Agent (AA)
architecture, for hard real-time environments (a more detailed de-
scription can be found in [3] [14] [4]). In accordance with existing
agent architectures [17], the AA architecture could be labeled as a
vertical-layered, hybrid architecture with added extensions to work
in a hard real-time environment [3].

The ARTIS agent architecture guarantees an agent response that
satisfies all the critical temporal restrictions of the system while also
trying to obtain the best answer for the current environment status.
This is due to its capacities for problem-solving, adaptability and
proactivity, which have been added to the architecture.

The architecture of an AA can be viewed from two different
perspectives: the user model (high-level model) [3] and the system
model (low-level model) [16]. The user model offers the developer’s
view of the architecture, while the system model is the execution
framework used to construct the final executable version of the agent.

To translate the user model’ specification into the system model
a toolkit, called InSiDE [14], is used. This toolkit allows the agent’s
designer to define the AA’s user model and to convert this model to
the corresponding system model automatically [5]. The result is an
executable AA.

3.1 User Model

From the user model point of view, the AA architecture is an exten-
sion of the blackboard model [9] which has been adapted to work in
hard real-time environments. This model is formed by the following
elements:

1. A set of sensors and effectors allowing the agent to interact with
the environment. Due to the environment’s restrictions, the per-
ception and action processes are typically time-bounded.

2. A set of in-agents which model the AA behavior. The main rea-
son to split the whole problem-solving method into smaller en-
tities is to provide an abstraction which organizes the problem-
solving knowledge in a modular and gradual way (see figure 1).
There exists a CLIPS-like language of entities allowing the de-
signer to specify these in-agents.

Figure 1. Modular division of an AA into in-agents

Each in-agent periodically performs an specific task. Each in-
agent has to solve a particular subproblem, but all the in-agents

64

of a particular AA cooperate to control the entire problem, and an
in-agent may use information provided by other in-agents.
In-agents can be classified into critics and acritics. The first ones
are in charge of solving the essential problems of the AA, so their
execution are guaranteed at least for calculating a minimal qual-
ity answer. The last ones are in charge of solving non-essential
problems of the AA in order to improve its performance quality.
A critic in-agent is characterized by a period and a deadline.
The available time for the in-agent to obtain a valid response is
bounded and, in this time, it must guarantee a basic response to
the current environment situation.
From a functional point of view, an in-agent consists of two layers
(see Figure 2): the reflex layer and the real-time deliberative layer.

² The reflex layer assures a minimal quality response (an off-line
schedulability analysis of the AA, considering all the in-agents
in the AA, guarantees that this reflex layer will be fully exe-
cuted). The reflex layer of all the in-agents make up the AA
mandatory layer.

² The real-time deliberative layer tries to improve this response
(this layer will be executed in slack time). The real-time delib-
erative layers of all the in-agents form the AA optional layer.
An acritic in-agent only has the real-time deliberative layer.

3. A set of believes comprising a world model (with all the domain
knowledge which is relevant to the agent) and the internal state,
that is, the mental states of the agent. This set is stored in a frame-
based blackboard [2]. In a similar way as the in-agents, there is a
CLIPS-like language of classes to specify this set.

4. A control module that is responsible for the real-time execution
of the in-agents that belong to the AA. The temporal requirements
of the two in-agent layers (reflex and deliberative) are different.
Thus, the control module must employ different execution criteria
for each one. In fact, the control module is divided into two sub-
modules [4], Reflex Server –RS– and Deliberative Server –DS–, in
charge of the reflex and deliberative parts of the AA respectively.

re
fl
e
x

real-time
deliberative

in-agent

control module

reflex server

deliberative server

ARTIS AGENT

Perception Action

Figure 2. ARTIS Agent architecture

One of the main features of the AA architecture is its hard real-
time behaviour. It guarantees the execution of the entire system’s
specification by means of an off-line analysis of the specification.
This analysis is based on well-known feasibility analysis techniques
in the RTS community, and it is described in [5].

3.2 System Model

The system model provides a software architecture for the AA that
supports all the high level features expressed in the user model. The
main features of this model are [5]:

² A task Model that guarantees the critical temporal restrictions of
the environment. So, the user model’s in-agents are translated into
system model’s tasks. In this model, a generic task may have three
parts:

– Initial: It is in charge of checking the system state with regards
to the subproblem it knows. It also calculates a first answer to
its problem, with low quality, but in a bounded time.

– Optional: It improves the quality of the answer calculated in
the initial part, but this improvement may use time-unbounded
methods.

– Final: It carries out the best answer calculated.

According to this model, only the initial and final parts of a critical
task will have hard real-time restrictions, and also will be in charge
of the interaction with the environment (by means of the sensor
and effectors).

² Off-line schedulability analysis. This off-line analysis only en-
sures the schedulability of real-time tasks (corresponding to in-
agents with critical restrictions). However, it does not build a plan
with the task execution sequence. There is a scheduling policy,
compatible with the off-line analysis, that is used to decide the
next task to be executed at run-time. This allows the AA to adapt
itself to environment changes, and to take advantage of the tasks
using less time than their worst-case execution time (wcet).

² Some slack extraction method to on-line calculate the available
time for executing the real-time deliberative layer.

² A set of extensions to the Real-Time Operating System incorpo-
rating features for managing real-time capabilities.

It is very important to emphasize that there exists an automatic
translation process between the user and system models, according
to the correspondence that can be seen in figure 3.

The integration of intelligence in an AA lies in the effective man-
agement of the slack time by the control module.

The current version of the system model of an AA is implemented
in RT-Linux 3.2-pre1 over Linux kernel 2.4.18.

4 Meta-Reasoning

In its most general meaning, meta-reasoning is any process interested
in the operation of other computational process inside the same entity
[12]. According to the nomenclature used in [10], an agent should be
able to make two different types of decisions:

² Meta or Macro-level decisions managed by the meta-level con-
troller. This controller must be designed to take quick and cheap
decisions about how many resources are dedicated to domain ac-
tions and how many to control actions.

² Scheduling or Micro-level decisions managed by the domain-level
controller.

The main purpose of the meta-level control activities is to optimize
the agent execution. To do this, it allocates, in the proper moment and
quantity, the processor and other resources between the control and
domain activities.

65

�
��������	
���

�
������

�������
�����

�������

����

�����
���
���
��

������
���������

�����������

�������	��
������

���
���
����
��

� ���	
�!�

��

" ��	�
��
��

����

#�����	
�������

�
�$�
$��	%�&�
������������

����������
�$�
$����� ����

&�

���!��	�����
�� �����������

����

&	���	��� ���
�$�
$��������

��"��������

'�� �
��

�()��"(��(����

�	���	��*
��	����

�

Figure 3. Correspondence between User and System Models

In the AA architecture, the Control Module includes all these con-
trollers above mentioned, but also has to deliver with the peculiari-
ties of this architecture. Due to its two reasoning layers, there are two
domain-level controllers, that is, two schedulers:

² First-Level Scheduler (FLS), in charge of the reflex layer. It is part
of the Reflex Server.

² Second-Level Scheduler (SLS), in charge of the real-time deliber-
ative layer. It is part of the Deliberative Server.

This Control Module also incorporates the meta-level controller
that must decide, among other things, how many time is dedicated
to macro-level decisions as one of its possible meta-level decisions.
All these decisions are carried out by a set of meta-rules that may
be specified at design time by means of a control language. This
language is also CLIPS-like to look like the rest of languages of the
AA’s user model.

4.1 Reactivity Degree

As it was presented in previous sections, the Reactivity must be seen
as a degree rather than a trait. In this way, the Reactivity Degree of
an agent must be defined.

The Reactivity Degree of an agent is a feature that indicates how
much effort is going to dedicate such agent to deliberate. This de-
gree defines two extreme situations with infinite intermediate states.
These extreme situations are:

² If the reactivity degree is zero, the agent works in reflex mode: it
doesn’t spend time to deliberate, to improve the first answer it has
got.

² If the reactivity degree is 1, the agent works in deliberative mode:
it dedicates all its time to calculate the best answer to its problem.

As the reactivity degree is closer to 0 the agent is more sensitive to
changes in the environment, whilst if the reactivity degree is closer
to 1, it is more self-centered.

So, the reactivity degree allows an agent to move along the Arkin’s
robot control spectrum [1] to get the proper features to face the cur-
rent situation.

4.1.1 AA’s Reactivity Degree

This point centers the question of how to manage the reactivity de-
gree of an agent, in the particular case of an AA.

Focusing on the AA system model, after executing an initial part
of a task, if there is available slack, the DS takes control of the AA
during this slack time. One of the DS functions is to use the available
time to schedule the execution of all the active optional parts (the
ones whose initial parts have been executed and their final parts have
not yet been executed).

If the DS finishes its operations before all the slack time is con-
sumed, it returns the execution control to the RS. In this case, the RS
is able to get the most out of this available time bringing forward part
of the critical tasks execution2.

This same method will be used to modify the Reactivity Degree of
an AA.

The Reactivity Degree of an AA is defined as the maximum avail-
able slack percentage that may be used for the agent to improve its
answer (to deliberate) (figure 4). If the reactivity degree is zero, the
agent works in reflex mode (it doesn’t spend time to deliberate, to
improve the first answer it has got), whilst if the reactivity degree is
1, the agent works in real-time deliberative mode (all its available
slack time is dedicated to improving its answers).

Though it will have a default value, the reactivity degree is a dy-
namic value. So, for instance, an initial part of a task could detect if
the agent must go to an emergency mode where it has to act immedi-
ately. In this case, the slack should be temporally annulated, and the
whole system’s execution would be bringed forward (suppressing the
DS and optional parts execution).

2 This method is even used by some second level scheduling policies used
by the DS to join several slack gaps to improve the possibilities of optional
parts execution

66

1000

50

7525

Reflex Real-Time

Deliberative

Reactivity

Degree

Figure 4. AA’s Reactivity Degree

Moreover, if the situation is not so extreme, it couldn’t be needed
to wholly eliminate the slack, only just to reduce it. That is, the slack
may be seen as a value in the interval [0, original slack]. Thus, there
are two extreme execution modes (the one with 0 slack correspond-
ing to the emergency mode or reflex mode, and the one with the
original or maximum slack corresponding to the cognitive mode or
real-time deliberative mode) with an indeterminate number of inter-
mediate execution modes.

The use of this execution modes doesn´t violate the schedulability
of the system, because it only changes the way of slack management.

Anyway, the proper management of the reactivity degree allows
the AA to adapt to changes in the environment.

This management is one of the actions that may be carried out
by the meta-reasoning done by the Control Module. This meta-
reasoning process is able to adjust several parameters to change the
AA reasoning process [4], as the reactivity degree, the second level
scheduling policy, . . .

4.2 Meta-Rules

Part of the meta-reasoning process is specified by the designer by
means of a meta-rule language named control language. So, this lan-
guage is used to establish the situations in front of which the agent
has to change the reasoning process and how is this change carried
out. For this reason, one meta-rule is triggered by an event (usually
a modification of an agent’s belief). Moreover, it has a condition that
must be fulfilled to execute the actions specified in its right-hand side.
This condition must check if the agent is facing a situation where it
must change to face it.

The actions of these meta-rules establish the different ways the
agent can adapt its way of behaving, allowing to change not only the
reactivity of the agent, but also the usage of its process time.

Figure 5 presents an example of a meta-rule according to the syn-
tax of the control language.

The Meta-Rules are translated to a data structure that is stored in
a shared memory accessible from both parts of the Control Module.
They are interpreted and executed at running time.

The decision of managing the Meta-Rules this way is to allow
to meta-reason about the meta-reasoning process. This meta-meta-
reasoning (that, nowadays, is one of the open issues in this work)
will be able to learn and to forget meta-rules. The learning method
used here will have to take into account its working in bounded time.
Moreover, the agent will have to take into account not to fall in di-
gressing while meta-meta-reasoning, that is, not to spend too much
time in meta-reasoning and/or meta-meta-reasoning that there is not
enough time left to execute nothing more.

(defMetaRule level 3
(MODIFICATION tank.tankA.level)
(tank.tankA.level >= 200)
(tank.tankA.level < 400)
=>
(SetReactivityDegree (0.75))

)

Figure 5. Example of meta-rule

�

Figure 6. Simulated tanks in LabView 7

5 Example: Sewage Tanks

The main purpose of the following example is to show the possibili-
ties of adaption using this new dynamic Reactivity Degree capability.

5.1 Problem Description

The objective of the agent of this example is to control some sewage
tanks interconnected between them. The AA must control that the
liquid level in all this tanks remain within an interval. This interval
may be changed by the user even at running time.

It has to be taken into account that the system to control (the above
mentioned tanks) will be simulated in a computer connected to the
one of the AA by the serial port. So, though it is a simulated process,
from the AA’s point of view, it acts like a real physical process to
control. The program used to make the simulation is LabView 73 (as
shown in figure 6).

In fact, the AA has to control three water tanks: A and B, both with
5000 litres of capacity, and C with 10000 litres of capacity. There are
five sensors at each tank to control their levels. These sensors are
located every 20 % of the tank volume.

The water inputs to the system come from 4 taps with 10, 20, 40
and 80 litres per second of flow, respectively. Each one of these taps
can just be open or closed but their sending flow can’t be regulated
(there are taps all/nothing).

3 Program generator of virtual instrumentation developed for National In-
struments allowing the simulation of physical processes and their real-time
control

67

A and B tanks have one controlled output with a valve allowing
them to empty their contents over tank C in a controlled way (by
means of such valves). The flow of these outputs is 95 litres per sec-
ond each one. On the other hand, there is valve to control the output
flow of tank C, being of 180 litres per second. All these valves are
also all/nothing.

Some additional inputs and outputs not automatically controlled
have been added to introduce perturbations in the system. So, tanks
A and B have one input tap, or noise, each one with 20 litres of flow
and an output tap, or leak, of 10 litres per second of flow. The water
proceeding of the leak doesn’t go to tank C as in the automatic taps.
It also has some controls to establish the interval of stored volume.
These controls are represented by turning controls for each tank with
the following meaning:

Position Minimum Level Maximum Level

0 0% 20%

1 20% 40%

2 40% 60%

3 60% 80%

4 80% 100%

5.2 AA’s Design

The AA designed to control all the system is formed by three in-
agents, one for each tank. This is the reason for in-agents in charge
of A and B tanks to be identical.

Each in-agent is formed by three parts:

1. Sensorization: it is in charge of reading the sensors indicating the
level of its respective tank. It is also in charge of reading the but-
tons of choosing the level (the ones in the control panel, and the
emergency ones in the same simulator). This is the initial part of
this critical in-agent.

2. Cognition: to calculate the actions to do (opening and closing of
the corresponding tap). This part has three levels, the critical level
0 and two optional levels. The level 0 implements an algorithm to
calculate a quick but low-quality answer:

² If the stored volume is under the asked one, open all the input
taps and close the output valve of the corresponding tank.

² If such volume is above the asked one, close all the input taps
and open the output valve.

3. Action: to carry out the actions calculated by the previous part,
that is, to send the proper actions to the simulator to open or to
close taps and valves.

The main time features of the critical in-agents of this AA are the
following4:

in-agents Deadline Period Optionals WCET*

In Agent A 2500000 2500000 T6–T9 200000

In Agent B 2700000 2700000 T10–T13 200000

In Agent C 2900000 2900000 T14–T17 200000

The column WCET* indicates the worst-case execution time for
the initial and final parts of the corresponding in-agents in this exam-
ple, it is the same quantity for both cases).

4 All the time features are in micro-seconds (because Linux works in this
magnitude).

The purpose of this example is to check the improvement in the
flexibility of the AA time management. For this reason, some Meta-
Rules to change the AA’s Reactivity Degree has been defined (for
instance, to change it to 0 when some tank arrives to its maximum
level, or the one in figure 5).

It has to be underlined that when the execution of a Meta-Rule
changes the Reactivity Degree to 0, it will accomplish that no more
optional parts will be executed and the execution of the tasks’ final
part will be advanced, that is, the AA will act as soon as possible to
avoid the tanks overflow.

5.3 Execution Example

At this point, some chronograms are shown5 to show how the above
presented example works.

The AA’s debugging toolkit uses to visualize chronograms kiwi6.
When this toolkit is used, it stores in memory during the execution of
the AA a set of trace events explaining this exection. After the AA
has finished its execution, this events are translated into a file con-
taining a kiwi chronogram. The chronograms included in this paper
are captured from real executions of the AA’s debugging toolkit. For
this reason, the images include more information than the explained
here. The necessary information to take into account in the following
chronograms is:

² The uppest row, labelled as Kernel, shows the execution intervals
of the RS.

² The next rows, and always in strictly decreasing priority order,
show the critical tasks (corresponding to the user’s model in-
agents).

² After that, it appears a row labelled as Linux representing Linux
execution (during this time the AA is not executing nothing).

² The next row corresponds to the DS.
² The last part of the chronogram is composed by the rows corre-

sponding to the optional tasks of the AA, sorted also by priority.

Ev 4

ini

Ev 256FIFO

Ev 256Ev 4
Ev 4

Ev 256

final

ini

Ev 256FIFO

Ev 256

Reset 6

Ev 256Ev 4

Ev 256

final

ini

Ev 256FIFO

Ev 256Ev 256
Ev 4

final

Kernel

In_agent_A

In_Agent_B

In_Agent_C

Linux

DS

T6

Ev 4

ini

Ev 256FIFO

Ev 256Ev 256Ev 4Ev 4
Ev 4

1 2

3

4

Figure 8. Kiwi’s execution chronogram

To finish the explanation about the way tasks are represented in a
chronogram, it is only necessary to indicate the highlighted parts of
the figure 8:

5 The AA has been executed over a Pentium III computer to 600 MHz with
128 Mb of RAM.

6 Toolkit to visualize chronograms developed in Tcl/Tk by Agustı́n Espinosa.
It is freely available in http://rtportal.upv.es/rtportal/apps/kiwi/

68

0.600 000 000 1.100 000 000 1.600 000 000 2.100 000 000 2.600 000 000 3.100 000 000

WAKE_FIFO

EoS 100

Ev 4

ini

Ev 256FIFO

 EM Ev 256Ev 4
MRA 0

SLS 1

MRA 1

ERate 10

 SLS
Ev 4
 EM Ev 4

ERate 5

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS SLS
EoS 100

WAKE_FIFO

Ev 256

final

ini

Ev 256Ev 256

final

ini

Ev 256Ev 256

final

FIFOERate 40

 EM Ev 256

SLS 1

Reset 7

Ev 256Ev 256Ev 256Ev 256

ERate 20

 SLS

WAKE_FIFO

EoS 0

Ev 4

ini

Ev 256Ev 256

final

FIFOERate 40

 EM Ev 256Ev 256Ev 4

ERate 20

 SLS

WAKE_FIFO

EoS 0

ini

Ev 256Ev 256

final

FIFOERate 40

 EM Ev 256Ev 256

ERate 20

 SLS

WAKE_FIFO

EoS 0

ini

Ev 256Ev 256

final

FIFOERate 40

 EM Ev 256Ev 256

ERate 20

 SLS

WAKE_FIFO

Kernel

In_agent_A

In_Agent_B

In_Agent_C

Linux

DS

T6

T7

Width 3.292 968 750 s Grid 0.100 000 000 s

Figure 7. Execution 1 during 4 seconds

1. Activation of the task In Agent B. This task may be executed from
this instant till its deadline.

2. Deadline of the task In Agent B.
3. Execution of the task In Agent C. These rectangles indicate the

time when the different tasks are being executed.
4. The execution of the optional task T8 is interrupted. Later, if the

DS decides it so, its execution would be resumed (if there is avail-
able time before its deadline).

The most important aspect to notice in the chronogram of the fig-
ure 7 is a total change of the Reactivity Degree of the agent. Thus,
during the execution of the optional parts of the first task, the agent
detects an emergency situation (the level of one of the sewage tanks
has surpassed the upper allowed limit), and then the Reactivity De-
gree is changed to 0. This change is made by means of the corre-
sponding Meta-Rule that is activated by a modification in the tank
level. The change makes the AA to react immediately (opening out-
going valves and closing implied taps). Like it can be observed, this
makes that in the rest of the execution no more optional parts of the
tasks are executed, since the finishing parts are executed immediately
after the initial parts.

In the figure 9 it can be seen the same example as before, same
duration also, but where the Reactive Degree goes to 50 % instead
of 0, and then the variation of the execution of the other tasks can be
observed, also the DS and the levels chosen by it for execution. This
Reactivity Degree change is made by another Meta-Rule at which
condition part checks that the level of the tank is in a range that rec-
ommends of not using all the available slack, but is enough to use
50 %.

This example also illustrates the empower that having a variable
Reactivity Degree does to the AA, allowing to adjust the time dedi-
cated to deliberate about the current situation by using also the Meta-
Rules. With these extensions, the AA manages to face new situations
changing its behaviour very quickly, as seen in the emergency exam-
ple changing to 0 the Reactivity Degree, making the agent answer as
quick as possible. Moreover, it may adjust its behaviour not only to
critical changes (emergency), but to any significant change chosen

by the designer.

6 Conclusions

The present paper presents a new approach to the reactivity concept
within the agent paradigm. In this approach, the reactivity is defined
as a degree instead of a feature. This allows to define different reac-
tivity degrees having different ways of reacting to the environment.
This approach also allows to dynamically change the reactivity de-
gree of an agent to adapt to significant changes in the environment.

This approach can be considered of greater importance when
speaking of hard real-time agents. It has been implemented in a hard
real-time agent architecture (ARTIS agent) and its increase in flexi-
bility and adaptiveness has been checked.

Currently, the ARTIS agent architecture is being applied to other
examples, including a mail-delivering robot in an office building.

References
[1] R. C. Arkin. Behavior-Based Robotics. The MIT Press, 1988.
[2] F. Barber, V. Botti, E. Onaindı́a, and A. Crespo. Temporal reason-

ing in reakt: An environment for real-time knowledge-based systems.
AICOMM, 7(3):175–202, 1994.

[3] V. Botti, C. Carrascosa, V. Julián, and J. Soler. Modelling agents in hard
real-time environments. In MAAMAW’99 Proceedings, volume 1647 of
LNAI, pages 63–76. Springer-Verlag, 1999.

[4] C. Carrascosa, M. Rebollo, V. Julián, and V. Botti. Deliberative server
for real-time agents. In Multi-Agent Systems and Applications III:
3rd International Central and Eastern European Conference on Multi-
Agent Systems, CEEMAS 2003, volume 2691 of LNAI, pages 485–496.
Springer, 2003.

[5] A. Garcı́a-Fornes, A. Terrasa, V. Botti, and A. Crespo. Analyzing the
schedulability of hard real-time artificial intelligence systems. Engi-
neering Applications of Artificial Intelligence, pages 369–377, 1997.

[6] R. P. Goldman D. J. Musliner, and K. D. Krebsbach. Managing online
self-adaptation in real-time environments. In Proc. of Second Inter-
national Workshop on Self Adaptive Software, Balatonfured, Hungary,
2001.

[7] D. Musliner, E. Durfee, and K. Shin. Circa: a cooperative intelligent
real-time control architecture. IEEE Transactions on Systems, Man and
Cybernetics, 23(6), 1993.

69

0.600 000 000 1.100 000 000 1.600 000 000 2.100 000 000 2.600 000 000 3.100 000 000

FIFOERate 40

 EM

ERate 20

 SLS

WAKE_FIFO

EoS 100

Ev 4

ini

Ev 256FIFO

 EM Ev 256Ev 4MRA 0

SLS 1

MRA 1

ERate 10

 SLS
Ev 4
 EM Ev 4

ERate 5

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS
EoS 100

Ev 256

final

ini

Ev 256FIFO

 EM Ev 256

SLS 1

Reset 7

ERate 4

 SLS

FIFO

 EM Ev 256

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS SLS

WAKE_FIFO

EoS 50EoS 50

Ev 256

final

ini

Ev 256FIFO

 EM Ev 256

SLS 1

Reset 10

ERate 4

 SLS

FIFO

 EM Ev 256

ERate 2

 SLS
Ev 4

 EM Ev 4

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS
EoS 50EoS 50

Ev 256

final

FIFOERate 40

 EM Ev 256

SLS 1

Reset 14

ERate 20

 SLS

WAKE_FIFO

EoS 50

Ev 4

ini

Ev 256FIFO

 EM Ev 256Ev 4

ERate 10

 SLS
Ev 4

 EM Ev 4

ERate 5

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 16

 SLS

WAKE_FIFO

EoS 50

Ev 256

final

ini

Ev 256FIFO

 EM Ev 256

SLS 1

Reset 7

Ev 256

ERate 8

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS EM

ERate 4

 SLS
EoS 50

Ev 256

final

ini

Ev 256FIFO

 EM Ev 256

SLS 1

Reset 10

Ev 256

ERate 2

 SLS
Ev 4

 EM Ev 4

ERate 1

 SLS EM

ERate 4

 SLS EM

ERate 2

 SLS EM

ERate 1

 SLS SLS

WAKE_FIFO

EoS 50

ERate 40

 EM

SLS 1ERate 20

 SLS

Kernel

In_agent_A

In_Agent_B

In_Agent_C

Linux

DS

T6

T7

T8

T9

T10

T11

T12

T13

T14

Width 3.281 347 656 s Grid 0.100 000 000 s

Figure 9. Execution 2 during 4 seconds

[8] D. J. Musliner. Safe learning in mission-critical domains: Time is of
the essence. In Working Notes of the AAAI Spring Symposium on Safe
Learning Agents, Stanford, California, 2002.

[9] P. Nii. Blackboard systems: The blackboard model of problem solving
and the evolution of blackboard architectures. The AI Magazine, pages
38–53, Summer 1986.

[10] A. Raja and V. Lesser. Real-time meta-level control in multi agent sys-
tems. In Proceedings of Multi-Agent Systems and Applications - ACAI
2001 and EASSS 2001 Student Sessions. Also Adaptability and Em-
bodiment Using Multi-Agent Systems: AEMAS 2001 Workshop. Prague,
Czech Republic, 2001.

[11] J. V. Real. Protocolos de Cambio de Modo Para Sistemas de Tiempo
Real. PhD thesis, Departamento de Informática de Sistemas y Com-
putadores. Universidad Politécnica de Valencia, Enero 2000.

[12] S. Russell. Metareasoning. In The MIT Encyclopedia of the Cognitive
Sciences, MIT Press, 1998.

[13] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall International Editions, 1995.

[14] J. Soler, V. Julián, C. Carrascosa, and V. Botti. Applying the ar-
tis agent architecture to mobile robot control. In Proceedings of IB-
ERAMIA’2000. Atibaia, Sao Paulo, Brasil, volume I, pages 359– 368.
Springer Verlag, 2000.

[15] J. Stankovic. Misconceptions about real-time computing. IEEE Com-
puter, 12(10):10–19, 1988.

[16] A. Terrasa, A. Garcı́a-Fornes, and V. Botti. Flexible real-time linux.
Real-Time Systems Journal, 2:149–170, 2002.

[17] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prac-
tice. The Knowledge Engineering Review, 10(2):115–152, 1995.

70

Extended Behavior Networks for Behavior Selection in
Dynamic and Continuous Domains

Klaus Dorer1

Abstract. In this paper we present how behavior networks can be
extended to model behavior selection of agents in dynamic and con-
tinuous domains. More precisely, the focus is on a mechanism for
selection of concurrent behaviors by explicit representation of re-
sources a behavior makes use of. Further it describes how the be-
havior selection process can be coupled with behavior execution in
continuous domains. Behaviors may be influenced by the decided-
ness of the behavior selection as is the case in biological systems.
Empirical results in the RoboCup domain show that both extensions
improve the performance of soccer playing agents significantly.

1 INTRODUCTION

Behavior selection in dynamic domains is complicated by the fact
that the deciding agent has limited amount of time for its decision
before the situation has changed. This is usually addressed by im-
proving the speed of the decision mechanism for dynamic domains.
However, this does not take into account the possibility to improve
the agent’s performance by conducting multiple actions concurrently.
Moreover, in some domains, concurrent actions are not simply a way
of improving agents’ performance, but they can become a necessary
condition to perform tasks. For driving a car, for example, it is at least
necessary to turn the steering wheel and accelerate or break concur-
rently. Most action selection mechanisms result in a single action to
be performed. To overcome this limitation two possibilities exist: (1)
either the decision mechanism is provided with a (usually huge) set
of combined actions like ‘turnLeft’, ‘turnLeftAndBreak’, ‘turnLeft-
AndAccelerate’, etc., or (2) the decision mechanism decides on more
complex behaviors like ‘drive’ that combine actions appropriately
leaving the detailed decision to the execution module of the agent.
The later is usually the preferred option accepting the disadvantage
of more complex behaviors.

This situation is even complicated in continuous domains, where
actions may be performed with variable strength, degree, duration.
For example, the ‘turnLeft’ action of the above example would have
to be split into ‘turnLeft5Degrees’, ‘turnLeft10Degrees’, ... Again it
is usually preferred to put the decision of the degree with which an
action is performed into the low level behavior execution module.
Behavior selection and behavior execution is usually strictly sepa-
rated.

Extended behavior networks [2, 3] (EBNs) are a means to carry
out behavior selection in dynamic and continuous domains. They ex-
tend original behavior networks [5, 6, 7] by explicit representation
of goals with dynamic, i.e. situation-dependent, utility function and

1 Living Systems GmbH, Humboldtstrasse 11, D-78168 Donaueschingen
Germany, email: kdorer@living-systems.com

by the introduction of continuous state-propositions to represent at-
tributes of continuous domains. In this paper we describe how EBNs
are able to select multiple behaviors in a single decision cycle to
be performed concurrently. We also show how the decidedness of
behavior selection can be used to control the intensity with which
behaviors are performed as is the case in biological systems [4].

The remainder of this paper is organized as follows: Section 2 de-
scribes the basic concept of behavior selection using extended be-
havior networks. In section 3 this concept is extended by introducing
concurrent behavior selection. Section 4 explains how behaviors can
be parametrized by the decidedness of the behavior selection. In sec-
tion 5 we summarize empirical results gained in the RoboCup simu-
lated soccer domain. Finally, in section 6 we discuss possible future
work directions before concluding.

2 EXTENDED BEHAVIOR NETWORKS

Extended behavior networks [5, 2, 3] have been introduced to com-
bine reactive and goal-directed behavior selection in dynamic and
continuous domains. This section gives a short overview on the struc-
ture of extended behavior networks and the behavior selection mech-
anism using activation spreading. The next two sections will then
describe two further extensions of EBNs, selection of concurrent be-
haviors and behavior parametrization, to improve action selection in
dynamic and continuous domains.

2.1 Network Definition

Extended behavior networks consist of goals and so called compe-
tence modules that are linked into a network.

Definition 1 A goalconsists of a tuple (GCon, ι, RCon) with

• GConthegoal condition(conjunction of propositions, i.e. possibly
negated atoms), the situation in which the goal is satisfied,

• ι ∈ [0..1] the (static)importanceof the goal,
• RCon the relevance condition(conjunction and disjunction of

propositions), i.e. the situation-dependent (dynamic) importance
of the goal.

Definition 2 A competence moduleconsists of a tuple (Pre, b, Post,
a) with

• Prethepreconditionande = τP (Pre, s) theexecutabilityof the
competence module in situations whereτP (Pre, s) is the (fuzzy)
truth value of the precondition in situation s;

• b the behaviorthat is performed once the module is selected for
execution;

71

• Posta set of tuples (Eff,ex), where Eff is an expected effect (a
proposition) andex = P (Eff |Pre) is theprobabilityof Eff get-
ting true after execution of behaviorb,

• a theactivation∈ IR, representing a notion of the expected utility
of the behavior (see below).

Definition 3 An extended behavior network(EBN) consists of a tu-
ple (G,M, Π), whereG is a set of goals,M is a set of competence
modules andΠ is a set ofparametersthat control activation spread-
ing (see below)

• γ ∈ [0..1[controls the influence of activation of modules,
• δ ∈ [0..1[controls the influence of inhibition of modules,
• β ∈ [0..1[the inertia of activation across activation cycles,
• θ ∈ [0..â] the activation threshold that a module has to exceed to

be selected for execution, witĥa the upper bound for a module’s
activation,

• ∆θ ∈]0..θ] the threshold decay.

2.2 Behavior Selection

The decision of which behavior to adopt should be based on the the
expected utility out of executing such behavior. In EBNs, the ex-
pected utility of a behavior is approximated by a mechanism called
activation spreading. The competence modules are connected to the
goals and other competence modules of the network. Across those
links activation is spread from the goals to the competence modules
and among competence modules.

A competence module receivesactivationdirectly from a goal if
the module has an effect that is equal to a proposition of the goal
condition of that goal. The amount of activation depends on the prob-
ability ex of the effect to come true and the utility of the proposition
in the goal condition. Activation from a goal represents the expected
utility of the behavior to reach that goal. The utility of propositions
that are part of a goal condition can be directly derived from the im-
portance and relevance of the goal [2].

A competence module isinhibited by a goal if it has an effect
proposition that is equal to a proposition of the goal condition and
one of the two propositions is negated. Inhibition represents negative
expected utility and is used to avoid the execution of behaviors that
would lead to undesired effects.

A competence modulex is linked to another competence module
y if x has an effect that is equal to a proposition of the precondition
of y. y is called asuccessormodule ofx. Modulex gets activation
from the successor the amount of which depends on the utility of the
precondition and the probability of the effect to come true. The utility
of propositions that are not part of a goal condition is not available
directly. It can be determined indirectly using the activation of the
containing module and the truth value of the proposition [2]. In this
way, unsatisfied preconditions get implicit sub-goals of the network.
Their utility directly depends on the utility of the competence module
itself.

Finally a competence modulex is linked to another competence
moduley if it has an effect that is equal to a proposition of the pre-
condition ofy and one of the two propositions is negated.y is called
a conflictor of x, because it has an effect that destroys an already
satisfied precondition ofx. Again, a conflictor link fromx to y is
inhibiting (negative activation) to avoid undesired effects.

The activation of a modulek at timet is then the sum of all in-
coming activation and the previous activation of the module decayed

by β (defined in the set of parametersΠ):

at
k = βat−1

k +
∑

i

at
kgi

, (1)

whereat
kgi

is the maximal activation modulek receives at timet
from goal gi to which the module is linked directly or indirectly
across incoming successor and conflictor links of other competence
modules. For more details on activation spreading see [2, 3].

Behavior selection is done locally in each competence module in
a cycle containing the following steps:

1. Calculate the activationa of the module.
2. Calculate the executabilitye of the module.
3. Calculate the execution-valueh(a, e), which is a monotonically

increasing function of the activation and executability of a module
(calculated e.g. by multiplication) [2].

4. If the highest valueh(a, e) of all competence modules lies above
a thresholdθ (defined in the set of parametersΠ), execute the cor-
responding competence module’s behaviorb, resetθ to its original
value inΠ and go to 1.

5. Otherwise reduceθ by ∆θ (also defined inΠ) and go to 1.

In the first cycle of activation spreading, only competence modules
that directly have links to goals get activation. Activation by succes-
sor and conflictor links is zero at that time, because no module has
activation initially. So only behaviors that directly satisfy a goal will
be taken into account for selection. In the second cycle also com-
petence modules get activation that may reach the goal within two
actions. They got activation through successor and conflictor links to
modules that got activation in the first cycle. The more cycles activa-
tion is spread the longer is the (timely) horizon of action sequences
taken into account that lead to goals. This cyclic approximation of ex-
pected utility of a behavior in EBNs is somewhat similar to a growing
horizon when solving a Markov Decision Process (see e.g. [1]). For
behavior selection a good trade-off is therefore necessary between
running enough activation spreading cycles to look far enough into
the future and acting fast enough.

3 CONCURRENT BEHAVIOR SELECTION

A shortcoming of the above described mechanism for behavior se-
lection is that behavior selection results in a single behavior to be
performed at any time. Humans on the other side are able to per-
formed well trained behaviors concurrently if they do not use the
same resources [10, 8]. A typist, for example, is able to type a text
she is reading and speak aloud a text she is listening to at the same
time [10]. Performing behaviors that use the same resources usually
ends with no behavior performed successfully. For instance, when a
human is undecided between the words ’close’ and ’shut’ it may end
up pronouncing a non existing word ’clut’ [9]. The common resource
‘language processing’ may not be used by multiple behaviors. It may,
however, be influenced by multiple goals.

Sequential behavior selection of Maes networks [5] avoids the
problem of resource conflicts. The disadvantage is on the one side
a reduced performance in domains where multiple behaviors may be
performed in parallel. On the other side it may prevent the comple-
tion of tasks completely for which concurrent behavior execution is
essential (like car driving).

To perform multiple behaviors in parallel the agent needs knowl-
edge about the resources used by the behaviors. The definition of
competence modules and extended behavior networks has therefore
to be extended with the notion of resources.

72

LetR be the set of all resources andτR : R×S → IR+ a function
that assigns to each element ofR an amount of available resources
in the domain in state s. The functionτU : M×R×S → IR+, with
M the set of all competence modules, defines the expected amount
of resource units used by the corresponding competence module in
state s to reach its effects.

Definition 4 A resource nodeis a tuple (res, g, θRes) with

• res ∈ R theresourcerepresented by the node,
• g ∈ IR+ the amount ofbound resource units, i.e. units that are

bound by a currently executing competence module and
• θRes ∈]0..θ] the resource specificactivation threshold(whereθ

is the global activation threshold of the network).

The definition of a competence module can then be extended to:

Definition 5 A competence modulek consists of a tuple (Pre, b,
Post, Res, a) with Pre, b, Postand a as defined above andRes is
a set ofresourcesres ∈ R used by behaviorb. τU (k, res, s) is the
situation-dependent amount of resource units expected to be used by
behaviorb.

Definition 6 An extended behavior networkEBN consists of a tuple
(G,M,U , Π), whereG is a set of goals,M a set of competence
modules,U a set ofresource nodesand Π a set ofparameters(see
section 2).

To coordinate concurrent behaviors the competence modules of
M are connected with resource nodes inU . A competence module
has for each resourceres ∈ Resa link to the corresponding resource
node. This link enables the competence module to check the avail-
ability of the resource. Concurrent behavior selection may therefore
be calculated locally in each competence module. It is done in a cycle
containing the following steps:

1. Calculate the execution-valueh of the module as described above.
2. For each resourceres used by competence modulek, starting with

the previously unavailable resource

(a) Check ifh exceeds the activation thresholdθResi of the corre-
sponding resource node.

(b) Check if enough resource units are available in the current sit-
uation, i.e. check ifτU ≤ τR(res, s). If so, bind the resource-
units, i.e. increase the number of used resource-units of the re-
source node by the number of expected units the behavior will
use.

3. If all tests in 2 succeeded

(a) Execute the corresponding behavior.

(b) Reset the activation thresholds of all resources used.

4. Release all bound resource-units, i.e. reduce the number of bound
resource units of the resource node by the number of previously
bound units.

5. Repeat from 1.

The activation thresholdθResi ensures that the competence module
with highest execution-value will be performed.θResi linearly de-
creases over time so that eventually a module exceeds the threshold
and may be performed. If modules have equal execution-values in a
range of∆θ, the threshold reduction, the module that first binds the
resource is performed. If the execution of the module with highest

activation value is prevented by a missing resource, another module
with less activation not using the missing resource may be performed.
Modules with a disjunct set of resourcesRes may be performed con-
currently.

Besides allowing concurrent behavior selection, this algorithm
overcomes another limitation of original behavior networks. Behav-
ior selection has previously been done by selecting the most active
executable competence module for execution. Unfortunately, this in-
formation can not be calculated locally in a competence module.
Therefore, the process of action selection could not be calculated
distributively in each competence module. By introducing resource
nodes, a competence module is now able to perform action selection
locally. All information is available within the node or within linked
nodes. The information a competence module gets across a link to a
resource node is the current activation threshold and the number of
bound resource units. Information a resource node gets from a com-
petence module using the resource includes the number of resource
units to bind and release and when to reset activation threshold.

4 BEHAVIOR PARAMETRIZATION

Most decision mechanisms for agents only have influence on the
decision which behavior the agent should perform, but not on the
behavior execution itself. In biological systems, however, the deter-
minedness of a decision has influence on the execution of a behavior.
“Intensity and endurance of an activity is determined by the voli-
tion strength of the goal intention”[4]. Of course different intensities
(i.e. strength/degree of execution) of the same basic behavior could
also be modeled by distinguishing these as different behaviors and
let the decision mechanism decide between those. Obviously, at least
in continuous domains, this would increase the number of behav-
iors considerably making the decision process much more complex.
Therefore it would be desirable if the determinedness of the agent’s
decision would directly influence the execution of the behavior itself.
The behavior ‘run to ball’ of a soccer agent, for example, could be
more or less intens depending on the determinedness of the agent to
run. The higher the expected utility and the executability of the be-
havior the more effective it should be to spend resources (stamina) on
this behavior. An adequate measure for determinedness in extended
behavior networks is the execution-valueh of a competence module
(see section 2.2). It reflects the expected utility for reaching the goals
of the agent as well as the executability of the behavior with respect
to the situation.

The problem of using the execution-value is that its absolute value
depends on the goals defined in the behavior network. This is be-
causeh is a function of the sum of all activation received by the
goals it is contributing to directly or indirectly. In an extreme case
all effects of a behavior might be defined as goals resulting in a
high execution-value. In another network, none of the effects might
be defined as goals and the module only receives activation indi-
rectly through other modules. A parametrized behavior on the other
side should be independent on the specific network architecture. It
is therefore necessary to normalize the execution-value adequately.
Following we describe three approaches to map execution-values to
the codomain of[0..1].

One obvious approach to normalize the execution-value is to di-
vide it by the number of goals|G| of the behavior network. How-
ever,|G| is not available within a competence module. A competence
module only knows the number of goals it (directly or indirectly) re-
ceives activity from. Normalization by using division by the number
of goals violates the locality principle and is therefore inappropriate.

73

Another approach is to use the maximal (ĥ) and minimal (̌h)
execution-value. It can be calculated locally within a competence
module. The influence parameterp of a module can then be calcu-
lated as

p =
h− ȟ

ĥ− ȟ
(2)

whereh is the current execution-value of the competence module.
This approach, however, is vulnerable to extremely high or low
execution-values.

This does not matter if instead of extreme values the distribution
of execution-values is taken into account. Assuming that execution-
values are normally distributed it is enough to calculate mean
and standard deviation of the execution-values. Mapping execution-
values to an influence parameterp is then done by

p =

 0 : h < µ− k · s
h−(µ−k·s)

2k·s : µ− k · s ≤ h ≤ µ + k · s
1 : µ + k · s < h

(3)

wherek defines the range of the normal distribution that is mapped
to the interval[0..1]. The calculation ofµ ands can be done incre-
mentally:

µn+1 = µn +
h− µn

n + 1
and (4)

s2
n+1 = (n + 1) · (µn+1 − µn)2 +

(n− 1) · s2

n
(5)

Section 5.2 presents empirical results of behavior parametrization
gained in the RoboCup domain.

5 EMPIRICAL RESULTS

Empirical tests have been conducted in the RoboCup simulated soc-
cer environment. In this domain agents represent soccer players. Two
Teams of eleven soccer players each play against each other in a sim-
ulated dynamic and continuous soccer domain.

The domain is dynamic from the perspective of a single agent,
because 21 other agents change the domain without this agent doing
anything. Also the decision cycle within which an agent has to decide
is quite short (100ms). Within one decision cycle an agent may de-
cide for concurrent actions. Dashing, kicking or turning the agent’s
body may be done concurrently with turning the agent’s head and
talking to other agents. The RoboCup domain is therefore quite well
suited for testing concurrent behavior selection.

The domain is continuous in most of the underlying attributes.
Examples are the position and velocity of players and the ball and
the view and body direction of the agents. Also most actions of
the agents are continuous. Dashing is done with variable strength,
turning with continuous momentum and kicking with continuous
strength and direction. This makes the RoboCup domain an ideal
testbed for behavior parametrization.

5.1 Concurrent Behavior Selection

Section 3 explained how extended behavior networks are able to
decide on multiple concurrent behaviors. This enables the agent to
reach a goal faster or to pursue multiple goals at once. This should
lead to improved behavior control of the agent especially in dynamic
domains where success also depends on the time an agent needs to
decide and act.

Since version 5 of the RoboCup-soccerserver, commands can be
executed concurrently, if they do not use the same resources. Asay -
command, for example, can be executed concurrently with akick -,
dash -, or turn -command and aturn neck -command. The con-
current execution of such actions should improve the speed and re-
activity of an agent.

This has been examined in a series of 30 soccer-games. Two iden-
tical teams of 11 agents played against each other. The only differ-
ence was that one team used concurrent behavior selection, while the
other team used serial action selection. For the serial team only the
action with highest execution-value within a cycle was executed. The
concurrent team’s agents were able to execute communication, head
turning and running or kicking actions concurrently. An example for
competence modules the behaviors of which may be performed con-
currently is shown in figure 1.τR has been defined independent of
the situation asτlegs = 2, τneck = 1 andτmouth = 1. Since no
commands using legs may be performed concurently,τU was set to
2 for all behaviors using legs.

The soccer agents turned their head in direction of the ball in case
the ball left the visible area of the agent (mindBall). This way the
agent can run in an angle of up to135◦ relative to the ball and keeping
it in the visible area. Without turning the head this would only be
45◦. This is especially useful for all positioning behaviors. An agent
is only able to run forward and backward in body direction. If, for
example, an offender positions itself in the middle of the field while
the ball is on the wing it can run towards the goal while keeping
the head turned to the ball. An agent that runs and turns the head in
consecutive cycles is much slower than an agent that is dashing each
cycle and turns its head concurrently. Separate turning of the head
relative to the body was performed in about 8% of all cycles. This is
not surprising since turning the head is only necessary once the ball
is close to leave the visible area.

Also the agents communicated to each other their position and
positions of some other players (sayPosition). The number of cycles
an agent can communicate is restricted to 4% of all cycles by the
soccerserver to restrict the bandwidth of communication. Only one
agent is allowed to say something every second cycle in the server
version 7 used for the experiments. The agents used a simple round
robin scheduling that effectively allowed an agent to talk each 22
cycles. Again the agents of the concurrent team were able to talk
while running or kicking. The agents of the serial team only talked if
that behavior had higher activation as all other behaviors.

Since separate turning of the head was done in 8% and communi-
cation in 4% of the simulation cycles, concurrent behavior selection
effectively only took place in 2% of the cycles. Despite this, the team
using concurrent behavior selection scored significantly2 more goals
than the team using serial behavior selection (see table 1).

serial parallel p (n = 30)

Mean no of goals 2.4 4.3 < 0.001

Table 1. Comparison of serial and parallel behavior selection of EBNs in
the RoboCup domain.

2 two samples t-test withα = 0.01.

74

Figure 1. Parts of the network used for concurrent behavior selection in the RoboCup domain. Modules runToBall, sayPosition and mindBall may be
performed concurrently. Modules relax and runToBall use the same resource legs and may not be performed concurrently.

5.2 Behavior Parametrization

In section 4 we described how the execution of behaviors may be
influenced by the decidedness of the action selection. This can ensure
that the execution of a behavior is more appropriate to the current
situation. The intensity of behavior execution can be adjusted to the
importance of the current situation. The usage of resources is focused
to these situations.

These effects can be shown by experiments in the RoboCup do-
main. Agents have limited stamina for running on the soccer field.
They have to make pauses in order to recover from running. If an
agent runs out of stamina it gets very slow. The faster an agent runs
the more stamina is consumed. For the experiments the ‘run to ball’
behavior has been parametrized. A normalized execution-value of
0.0 was translated to 60% dash power a value of 1.0 to a dash power
of 100% with linear interpolation. Relevance conditions in the goals
(see [2]) ensure that the decidedness in important situations like be-
ing close to one of the goals is high. This should ensure that the
agent consumes less stamina in less important situations and has
more stamina available in important situations.

5.2.1 Normalization of the Execution-Value

Section 4 explained the need for normalization of the execution-
value. Two approaches have been mentioned that can be used for
normalization without violating the principle of locality. One pos-
sibility is to store the minimal and maximal execution-values of a
competence module and map it to the interval[0..1] (MinMax). An-
other possibility is to calculate the mean execution-valueµ and its
standard deviations (incrementally). Then a range of values from
µ− k · s to µ + k · s can be mapped to normalized execution-values
in the interval[0..1] (distribution).

Since MinMax normalization is vulnerable to extreme values one
would expect to get worse results with this approach. This was em-
pirically evaluated in 30 games of 2 Robocup soccer agent teams.
One team played with MinMax normalization the other team played
with distribution normalization. Besides that both teams have been

exactly identical. For the distribution normalization we chosek = 1.
As shown in table 2, the team with distribution normalization scored
significantly more goals than the team with MinMax normalization.

MinMax distribution p (n = 30)

mean number of goals 4.2 6.0 0.008

Table 2. Comparison of the MinMax normalization and normalization
using the distribution of values.

5.2.2 Comparison of Parametrized and Static Behavior

As mentioned above, parametrized behavior execution should im-
prove the utilization of resource ‘stamina’ in the Robocup domain.
This should improve the overall performance of a team measured
by the number of goals scored. This can be verified by experiments
running Robocup games where one team uses parametrized behav-
iors and the other does not (static). Normalization of execution-
values was done using the distribution method. The parameter for
the execution-value of the static team was constant during one game.
It was varied in the interval[0..1], however, for different series of
games. In this way parametrized behaviors can be compared with
growing static parameter values. The hypothesis is that for low static
values the disadvantage of being too slow (e.g. to reach a ball) out-
weighs the advantage of being less tired. For high static values the
disadvantage of fast exhaustion should outweigh the advantage of
being faster at the ball.

First it is interesting to look at the number of pauses an agent takes
during a game. This is a measure for the consumption of stamina of
the agent. As expected the number of pauses of the static team grows
with increasing parameter values (Fig. 2).

It is interesting to compare the two teams at the intersection of
both curves at value 0.7. Although both teams’ agents have to make

75

Figure 2. Mean number of pauses of the static and parametrized team

the same number of pauses on average, the team with parametrized
behaviors scored significantly more goals (Tab. 3). Although the
average usage of resources of both teams is equal the team with
parametrized behaviors makes more use out of it. It uses the re-
sources in situations in which the goals of the agent are more rel-
evant. In such situations the execution-values of behaviors directed
towards such goals are higher.

pstaticteam = 0.7 static parametrized p (n = 45)

mean scored goals 8.9 11.2 0.003

mean number of pauses 130.6 130.2 0.950

Table 3. Comparison of the mean number of goals and pauses of players
of static (parameterp = 0.7) and parametrized behavior execution.

The comparison of scored goals for the static and parametrized
team shows significantly better results for the parametrized team for
all parameter values used for the static team (Fig. 3).

6 CONCLUSION

In this paper, we describe a mechanism that can be used for an agent
to select multiple actions to be performed concurrently using ex-
tended behavior networks. The concurrent action selection mecha-
nism is calculated distributively in the competence modules (nodes)
of the EBN. Conflicts between actions are moderated by resource
nodes that are explicitly represented in the EBNs. In addition, we
introduce a mechanism for EBNs to influence behavior execution us-
ing the execution-value of a competence module as a measure of the
decidedness of the agent to perform the action. Both extensions im-
proved the performance of agents in the RoboCup simulated soccer
domain significantly.

Figure 3. Mean number of goals of the static and parametrized team

Future work will mainly have to examine if these results generalize
to other dynamic and continuous domains. Especially domains will
be interesting, where the amount of available resources depends on
the current situation. The stamina resource in the RoboCup domain
that resembles how much ’energy’ is left for dashing can not be used
in this sense, because although enough stamina would be available
for different behaviors the server does not allow concurrent dashing
behaviors.

Also it would be interesting to examine the stability of the pro-
posed concurrent behavior selection in cases where the estimated
amount of resources used by a competence module’s behavior may
differ from the effectively used resources. The behavior selection it-
self should still work in such occasions, the performance of the agent,
however, is expected to decrease.

References
[1] C. Boutilier, T. Dean, and S. Hanks, ‘Decision–theoretic planning:

Structural assumptions and computational leverage’,Journal of Arti-
ficial Intelligence Research, 11, 1–94, (1999).

[2] K. Dorer, ‘Behavior networks for continuous domains using situation–
dependent motivations’,Proceedings of the Sixteenth International
Conference of Artificial Intelligence, 1233–1238, (1999).

[3] K. Dorer, Motivation, Handlungskontrolle und Zielmanagement in au-
tonomen Agenten, PhD thesis, Albert-Ludwigs University, Freiburg,
2000.

[4] H. Heckhausen,Motivation und Handeln, Springer, Berlin, 1989.
[5] P. Maes, ‘The dynamics of action selection’,Proceedings of the Inter-

national Joint Conference on Artificial Intelligence, 991–997, (1989).
[6] P. Maes, ‘How to do the right thing’,Connection Science Journal, 1(3),

(1990).
[7] P. Maes, ‘Situated agents can have goals’,Journal for Robotics and

Autonomous Systems, 6(1), 49–70, (1990).
[8] D. Navon and D. Gopher, ‘On the economy of the human processing

system’,Psychological Review, 86(3), 214–255, (1979).
[9] D. A. Norman, ‘Categorization of action slips’,Psychological Review,

88(1), 1–15, (1981).
[10] L. H. Shaffer, ‘Multiple attention in continuous verbal tasks’, inAtten-

tion and Performance V, eds., P. M. A. Rabbit and S. Dornic, Academic
Press, New York, (1975).

76

Abstract World for Opportunistic Local Decisionsin
Multi-Agent SystemsUsingBayesianKnowledgeBases

�
SolomonEyal Shimony and Ami Berler �

Abstract. Collaborationof multiple intelligentagentson a shared
taskis a complex researchissue,which hasnumerousimportantap-
plications,suchasbattle-fieldsimulation,web-basedagents,andAI
in games.The problemsaddressedare particularly difficult when
communicationis limited or impossible.A common solution in
multi-agentsystemsis to commit a team of collaboratingagents
to a joint plan. Sinceany deviation from the plan by an agentis
hazardous,thesesolutionsfaceup to potentialunplanned“oppor-
tunistic” actionsby ignoring them,or by ad-hocrulesdetermining
whetherto acceptsuchopportunities.

Sinceneitherof thesesolutionsisdesirable,wedevelopedAWOL3

(Abstract World for Opportunistic Local decisions),an abstract
framework with a disciplinedtreatmentof opportunisticaction, in
thecontext of anexisting joint plan.

The ideais to modelthe (stochastic)tradeoff of opportunismvs.
continuedcommitmentto thejoint plan,while abstractingawayfrom
the stateof the world. The abstractmodel is evaluatedusingstrict
decision-theoreticcriteria,with thegoalof applyingtheoptimalde-
cision on whetherto acceptan opportunisticaction in the original
domain.

Whenthisabstractdomainis modeledasanMarkov DecisionPro-
cess(MDP) (and to an even greaterextent, a Partially Observable
MDP (POMDP),the complexity of finding an optimal decision,al-
thoughmany ordersof magnitudelower thanin a real or simulated
domain,is still high.

In order to reducethis complexity, we implementa compact,
context-specificindependencerepresentationfor thetransitionprob-
abilities. Our representationusesrules, in a probabilistic model
known asBayesianKnowledgeBases(BKB). Sincethe latter area
compactly-representedgeneralizationof BayesNetworks(BN), our
schemeshouldhave representationsizeandcomplexity advantages
in representingdistributionsin therespective decisionproblem.

1 INTR ODUCTION

Collaborationof severalintelligentagentsona sharedtaskis a com-
plex researchissue.Evenwhenthereis aglobalteamutility, theenvi-
ronmentmayforcedecisionsto bedecentralizeddueto limited com-
municationanduncertaintyaboutthe environment.Effective agent
interactionsin suchdomainsraisevariousresearchchallenges,in ad-
dition to thetraditionalsingleagentsystems.�

We acknowledgethe supportof the Lynn andWilliam Frankel Centerfor
ComputerSciencesandthe partial supportof the Paul IvanierCenterfor
RoboticsandProductionManagementatBGU.�
Departmentof ComputerScienceBen-GurionUniversity of the Negev
email: shimony@cs.bgu.ac.il; ami@cs.bgu.ac.il�
Unlike the military term AWOL (AbsentWithOut Leave), herethe agent
defaultsonly in orderto increase(expected)teamutility.

A commonsolutionin multi-agentsystemsis to commita teamof
collaboratingagentsto someform of prior joint commitment,such
asJointPlans[3, 4] andSharedPlans[9, 8, 7].

StoneandVeloso[17] presented“Set-Plays”,aspartof thelocker
roomagreement- thesearemulti-step,multi-agentplansfor execu-
tion in specificsituations.However, anagentwhich actsin thecon-
text of a pre-plan,may encounteropportunitiesthat have not been
previously consideredin the team plan or even contradict it. Al-
thoughtakingadvantageof unexpectedopportunitiesoccurringdur-
ing planexecutionis possible,noneof theexisting mechanismsare
intendedto handlesuchbeneficialoccurrences.The practicalsolu-
tion in systemsinvolving joint commitmentsareeitherto ignoreop-
portunities,or to usead-hocrulesfor whento breaka commitment.

Yet clearlyneithersolutionis desirable,thereshouldbea way to
compute,or at leastapproximate,expectedteamutility for theseac-
tions, and act basedon the result.Naturally, in evaluatingthe ex-
pectedutility of anopportunisticactiononeshouldtake into account
undesirablepossibleconsequencesof opportunism,suchasconfus-
ing theotherteam-mates,etc.

Thispaperis aninitial attemptto introduceopportunism,in a dis-
ciplinedmanner, by aimingata formalestimateof theexpectedutil-
ity of applyingunplannedopportunisticactions,assuggestedabove.
In orderto focusspecificallyon plansandopportunism,we present
theAWOL framework, thatabstractsaway from aspectsof theenvi-
ronmentthatareirrelevantto theissueof opportunisticactions.

The framework is a stochasticmodel,consistingof a setof joint
plans,whereeachplan is a sequenceof joint steps.Eachjoint step
assignsaroleto eachagent,andanagentactionis selectionof aplan.

Although we wish to abstractaway from the environment,we
still needto modelunplannedopportunitiesthatmayappearduring
planexecution.This is doneby introducing“opportunityvariables”
thatchangesstaterandomly- which we call “dummy agents”in our
framework.

Currently, we areexaminingtheimpactof opportunismin theab-
senceof communication(althoughcommunicationcanbe handled
in AWOL), exceptat the initial stageswhenthe initial joint plan(s)
is established.Quality of the resultingdecisionsandtheir sensitiv-
ity are measuredfor simulation runs as the following parameters
aremodified:probability of successof opportunisticplans,theway
eachagentmodelsits team-mates’behavior, anddistributionof roles
within plans.

While thetypeof approximationswe examineabove arenot nec-
essarilynew, they arenovel, asfarasweknow, within theframework
of opportunisticactionsunderjoint plans.Obviously, computingex-
pectedutility in multi-agentsystemsis non-trivial, and in fact not
always well defined[2]. Additionally, the environment in applica-
tions further complicatestreatmentof this issue.Although several

77

strongcommitmentsweremadeabove aboutthestatespace,actions,
etc.thedomainis still too expansive to beableto definemeaningful
empiricalevaluation,evenwhenwemake severalfurtherrestrictions
thatallow usto specificallyfocuson theissueof opportunismin the
context of plans.Anotherproblemwe encounteredis that the com-
putationalcomplexity of theAWOL modelitself is still high.

In our implementationof AWOL, we make use of a context-
specificindependencerepresentationof the transitionprobabilities.
We introducetheuseof BayesianKnowledgeBases(BKB) [14, 15],
a ruled-basedprobabilisticmodel that extendsthe BayesNetworks
model [11]. We believe that this representationshouldmake solu-
tion of thedecisionproblemmoreefficient. Thereareothermodels
which exploit context-specificindependencein probabilisticreason-
ing [12, 13]. Nevertheless,our useof BKB, to representtransition
probabilitiesin decisionmodels,is novel, asfar aswe know, within
thescopeof multi-agentsystems.

Therestof thepaperis organizedasfollows: Section2 describes
the AWOL framework, and the specific choicesmadewithin the
framework. Section3 introducestheBKB modelandits implemen-
tationin our framework. Section4 presentsthedesignof severalex-
perimentson themodel,andsomepreliminaryresults.We conclude
with a discussionof relatedwork, andfutureresearch.

2 THE AWOL FRAMEW ORK

In most applications,the complexity of the domain, number of
agents,a spacestatetoo largeandtheincompleteinformationabout
theteammembersresultin aproblemimpossibleto analyzeformally.
In orderto supportsuchanalysis,we constructtheAWOL (Abstract
World for OpportunisticLocal decisionin multi-agentsystems)ab-
stractenvironment.In addition,we make provisionsto performex-
perimentsin theabstractdomain.To thatend,AWOL consistsof two
mechanisms:

1. A decentralizedcontrol problem,whereeachagentreceives an
observationandsubsequentlydecidesaboutthenext action.

2. A problemgeneratorandsimulatorthatallowsusto setupparam-
etersfor aninstanceof AWOL, applyvarioussolutionmethodsto
thecontrolproblem,andevaluatetheresults.

The control problem is a Markov process,controlled by several
agents,with partial observability and (in the basicAWOL model)
nocommunication.

2.1 Definition of the control problem

In the general framework the domain is modeled as a tuple:���	��

, � ,
 , � , � ���������

where:
�

is thesetof N agentsthatactin the
domain,

is theabstract“plan-state”space,� is thesetof M plans

in thedomain,
 is thesetof abstractactionsin thedomain, � is a
finite setof observations,� is a tableof observationprobabilities,

�
is a transitiondistribution,and

�
is a rewardfunction.

The State of the world � is an N-tuple consistingof the agents
states:��� ������� ���"!#!#!#�$�%� &��'�

wheretheStateof an agent (is: � � (� ��*)��,+-�
, with

)
an index into thesetof plans � , and

+
the stepin the

plan.
A planis a functionassigningto eachagenta role at eachstepin

theplan.Formally, if . is thesetof roles,aplan /102� is afunction:/13"465 �87:9 .
Abstractagentaction selectsa plan

) 0;� , andjoint action < is
a tuple

� < ��� ���"!#!#!#� < � &��'�
of agentactions.

Eachagentreceivesinformationaboutits teammatesby observa-
tion. In ourmodeltheobservedvariablesarejust theindividualstate
of the agents,subjectto noise.Sincethereare only two observed
variablesfor eachagent,theidentifierplannumberandthestep,the
observation function � in our abstractdomainis relatively simple:�=3
 5
>9?�

0,1
�
.

TheTransition distrib ution is definedin thegeneralcaseas:
� 3
 5@
BAC5
C9D�

0,1
�
. In our domain,the rolesof the teammates

in the plansareimplicit in thestate,andarecritical in definingthe
actualtransitionprobabilities,asshown below.

The reward function
�

in our framework dependonly on the
stateof world, andwithin thestateon the rolesof theagentsin the
active plans.

2.2 Assumptionsfor the test-bed

In orderto build a disciplinedempiricaltest-bed,we needfurtherre-
strictions.Wealsoexplainourchoicefor statevariablesmadeabove.

For simplicity, we will be assumingthat the agentsaresynchro-
nized, i.e. if they areexecutingthe sameplan, they arealso in the
samestep(how to achieve thatin a realenvironmentis notnecessar-
ily trivial, wearemakingthisassumptionasachieving stepsynchro-
nizationis beyondthescopeof this paper).For eachworld state�FE ,
we denoteby �GEBHI� thesetof plansactive in this state,i.e. theset
of plansexecutedby at leastoneagent.

Failureof any sortin executingaplanis representedby forcingall
“f ailing” agentsto executeanespeciallyintroducednull plan,which
hasonly onestepcalled J , andfrom which thereis (usually)noway
out.Usually, stateswith teammembersin thenull planhavevery low
rewards.

In orderto focusspecificallyonopportunismandfurthersimplify
the analysis,we actually limit eachagentactionsto two possibili-
ties:attemptingto remainin thesameplanasin thecurrentstate,and
theopportunisticactionof attemptingto selecta differentplanfrom
theonetheagentis executingin thecurrentstate.(In this paper, we
actuallydo not allow the agentto selectbetweendifferent “oppor-
tunistic” actions- eachagent(will have its own single, predefined
“opportunistic”plan K � (� , which it selectswhenever it attemptsnot
to follow thecurrentplan).Additionally, weassumethatanagental-
readyexecutinganopportunisticplancannotmove to any otherplan
(exceptfor thenull plan).

Whentheagentactionis to attemptto stick with its currentplan,
therearetwo possibleoutcomes:one,theactionsucceeds(theagent
movesto thenext stepin theplan),or two, it fails (thenext statefor
theagentis theNull plan).

Likewise,whenanagentactionis opportunistic(selectnew plan)
), thepossibleresultsare:one,theactionsucceeds(theagent’s next

statebeingthenew plan),otherwise,theactionfails: theagentnext
stateis theNull plan.However, in this casethecurrentplandoesnot
necessarilyfail (however, it usuallyhasahigherprobabilityof failing
dueto oneor moreof theagentsdefaultingonthejoint commitment).

As we areignoringtheissueof synchronization,if thereareother
agentsexecutingstep

+
of plan

)
in thecurrentstate,thenext agent

statewill be
�*)��,+MLN�O�

(thesameastheotheragentsexecutingplan)
)

2.3 The transition distribution

With the above assumptions,we can now write down the form of
thetransitiondistribution.We will needto introducesomenotation,

78

denotingspecificsetsof agents,asafunctionof thecurrentstate(de-
noted �:PRQ S) andnext state(denoted�UTWVYX), whenexecutinga joint
action < . First,Gr denotestheagentsthattry to remainin their cur-
rentplan

)
whentheteamis in state� andthejoint actionis < :

Gr
�*)�� � � < �[ZN\ (F] � � (� � �*)��,+-�$� < � (� �)Y^

where< � (� denotestheactionby agent(in thejoint action < . Like-
wise Go denotesthe setof agentsexecutingplan

)
in state � and

attemptanopportunisticaction:

Go
�*)�� � � < �_ZN\ (F] � � (� � �*)��R+`�$� < � (�_a�)�^

The setof agentsthat attemptto executean opportunisticaction
andsucceedis denoted:

Gob � �UTWVYX � < � �:PRQ S � �\ (F] c)���d �:PRQ S � (� � �*)��,+-�Fe �UTWVYX � (� � � < � (����d"���Fe < � (�_a�)Y^
Thesetof agentsthatattemptto remainin their currentplansis de-
noted:

Gr b � �UTWVYX � < � �:PRQ S � �\ (F] �:P$Q S � (� � � < � (����+-�Fe �UTWVYX � (� � � < � (���,+fLI�O�,^
Thesetof agentsthatattemptto executeanopportunisticactionand
fail (andthuslandin theNull plan)is denoted:

Gog � �FThV�X � < � �UPRQ S � �\ (F] c) � PRQ S � (� � �*)��R+-�Fe � TWVYX � (� � ��&ji:klkm� J �ne < � (�[a�)Y^
Thesetof agentsthatattemptto continuein theircurrentplanbut fail
(andthuslandin theNull plan)is denoted:

Gr g � � ThV�X � < � � PRQ S � �\ (F] �:PRQ S � (� � � < � (���,+`�ne �FThV�X � (� � ��&ji:klk�� J �,^
As ashorthand,we omit theargumentsin thelastfour functionse.g.
we useGr g to denoteGr g � � TWV�X � < � � PRQ S � .

Wefurtherassumethatdependenceexistsonly betweentheagents
thatarein thesameGr set,andthatthetransitiondistribution for the
restof the agentsis independentof their teammates.The transition
distributionundertheabove assumptionsis thefollowing:o � �FThV�Xp] < � �:PRQ S � � qr*s%tFu�v�w:x r qy s Go z r�{ |�{ }F~ x y (1)

where ��PRQ S is the set of (non-null, non-opportunistic)plansbeing
executedby someagentin state� PRQ S , theproductover a null setis 1
by convention,and:

x r ��� o:���O�Y� � P Th� �*)�� � PRQ S � < �
Gr

�*)�� � PRQ S � < � H Gr b��7 o ���O�Y� � P TW� �*)�� �UPRQ S � < �
Gr

�*)�� �UPRQ S � < � H Gr g� �����-�O���)Y� �
x y ��� o:���O�Y� P��R� � (� � PRQ S � < � (�0 Gob�p7 o:�Y���m� P��$� � (� �:PRQ S � < � (�0 Gog� �������"���)m� �

whereo ���O�Y� � P Th� �*)�� � � < �
is afunctionthatrepresentsthethecon-

tributionof theset ��� of agentsparticipatingin plan
)
, to theproba-

bility thattheplanwill successfullymove to thenext step.Likewiseo:���O�Y� P��R� � (� � � < �
representsthe probability that an agentmaking

anopportunisticwill successfullybegin to executeanopportunistic
plan.

3 USING BAYESIAN KNOWLEDGE-B ASES

In orderto simplify decisionproblems,DeanandWellman[5], use
the well-known BayesNetworks (BN) to decomposethe transition
probability tablesinto much smallerconditionalprobability tables
(CPT),usingconditionalindependenceassumptions.

Santoset al. [14, 15] presenteda robust and flexible model
for knowledge representationunder uncertainty called Bayesian
Knowledge-Bases(BKB). BKBs are a ruled-basedprobabilistic
model that extendBNs in a mannervery similar to Poole’s proba-
bilities rules[12]. BKB representsobjects/world statesandtheirmu-
tualrelationships,usingadirectedgraph.Thegraphconsistsof nodes
whichdenotevariousrandomvariableinstantiations,while theedges
representconditionaldependencies.

WearguethatusingBKBs cansignificantlyreducerepresentation
sizeandcomputationtime in AWOL. Figure1 describestheuseof
probabilisticnetworks, suchasBNs andBKBs to modela Markov
DecisionProcess(MDP).

States
Step 0

States
Step 1

States
Step N−1 States

Step N

Actions Actions

BN

BKB

or

BN

BKB

or

Figure1. Overall description

The randomvariablesin the BKB are the statesof the agentsin
the team,dummyagentsin eachstepin theplan,andtheir actions.
As definedin our framework, thestateof theagentcanbe:plan,op-
portunism,or null. A “dummy” agentcaneitherbeactiveor passive,
in eachstepin the plan.Eachagentcanonly executetwo possible
actions:remain,or opportunistic.

Action Agent1=
remain

opportunistic
Action Agent1=

State Agent1=
plan

State Agent1=
plan

State Agent2=
opportunism

null
State Agent2=

null
State Agent1=

Dummy2=0

Dummy2=1

State Agent2=
opportunism

Step i Step i+1

R3

R4

R5

R6

0.1

0.35

0.3

0.4

R1

R2

0.3

0.2

Figure 2. Fragmentof BKB for two agentsin theteam

Figure2 shows a fragmentof a BKB for a teamwith two agents,
whereovalsrepresentstatesof agents(includingdummyagents),and

79

rectanglesrepresentactions.Thestateof theworld is atupleof agent
statesasdefinedin thesection2. Blackenedcirclesrepresentrulesin
theBKB, where � r is thenameof therule,andthenumberon each
nodeis theconditionalprobabilityassociatedwith therule.

Figure3 detailsonespecificrule,whichrepresentstheconditional
probability that Agent2 is in an opportunisticplan at Stepi+1, de-
pendingon variablesin the previous Step i (stateof Agent2, its
dummyagentvalueandaction).

opportunistic
Action Agent1=

State Agent2=
opportunism

Dummy2=0

State Agent2=
opportunism R3

0.4

Figure 3. Therule representstheconditionalprobabilityP(Agent2=
opportunism� Agent2= opportunism,Dummy2= 0, Action2 =

opportunistic)= 0.4

We observe that thenumberof rulesnecessary, in orderto repre-
sentthe transitionprobabilities,is smallerthanthe completetable.
Thus,we canbuild a sparseBKB which includesonly the relevant
rulesfor thedomain.

4 EMPIRICAL EVALUATION

Initial experimentationin AWOL isusedto testwhethertherestricted
modelis sufficiently rich to representinterestingbehavior resulting
from opportunisticaction.

4.1 Experimental setup

At this initial stage,we make the following additionalassumptions
in theexperimentalsetup:� In the initial state,all agentsexecute(the first stepof) the same

plan.� Transitionprobability to an opportunisticplan is non-zeroonly
if a specific“dummy agent”is in the “active” state.Thedummy
agentsareall independentMarkov processes.For eachagentin an
opportunisticplan,theteamreceivedanimmediate“opportunity”
reward.For the initial plan, the teamis rewardedat the last step
of theplan,dependingon theagentsstill executingtheplanat the
laststep.� Thedomainis fully observable.Thus,onecancomputeanoptimal
globalpolicy by solvinganMDP (althoughin the futurewe will
runexperimentswith partialobservability).

As statedabove,opportunitiesduringplanexecutionaremodeled
by Markov processdummy agents.We add a “dummy agent” for
eachagentin theteam.In addition,ratherthaninventdifferenttypes
of roles, werepresenttherolesusinga focus, which is a realnumber
within therange[0,1], to representhow importanteachagentis to a
givenplan.

We compareexpectedjoint utility undervariousschemeswhere
eachagentmakesassumptionsaboutits team-members.As AWOL
includesa centralizedsystemthat receives total informationabout
the domain, it can computea theoreticallyoptimal global policy.
However, AWOL canalsomodeltheindividualagent,eachof which

canmakeonly its own decisionsandreceiveonly partialinformation
abouttheteammatesthroughobservation.

In theexperiments,we usefinite horizon(teamutility is just sum
of all rewardsreceived).For controlpurposes,we computea global
optimalpolicy andits expectedutility. Wecomparethiscontrolresult
to theexpectedutility receivedfrom thefollowing “distributed” pol-
icy: eachagentgeneratesits own individual policy, andthe individ-
ualpoliciesareconcatenatedto createthedistributedpolicy. Strictly
speaking,sincetheenvironmentis fully observable,eachagentcan
computea global optimal policy andthenact accordingto its own
role in thisglobalpolicy. Instead,in orderto simulatepartialobserv-
ability andlack of communication(in which casetheabove scheme
maynotresultin executionof theoptimalpolicy) weforceeachagent
to modelits teammatesin otherways.

Thecurrentexperimentsarebasedon a Markov model,i.e. each
agentassumesthat the action its team-membersexecutesdepends
probabilistically(in a simpleway) on thecurrentstate.Specifically,
the Markov modelwe useis - the team-memberactiondependson
the stateof its own “dummy agent” (i.e. attemptan opportunistic
actionwith a certaingivenprobabilityif thedummyagentis active).

4.1.1 Computingexpectedutilities

Computingexpectedutility for theglobaloptimalpolicy is standard,
aswe simply usevalueiteration,andfind theexpectedutility asthe
valuefunction for the initial state.Thecasewhereeachagentcom-
putesanindividualpolicy is somewhatmorecomplicated.First,each
agentneedsto representits team-membersasindependentMarkov
Processes.What this meansis that an agent (generatesits own
MDP, andsolves it usingvalue iteration,generatingthe local poli-
cies.Assumingeachagent (actsaccordingto its local policy � y ,
we now have a global Markov processwith rewards,andcaneval-
uatean expectedutility. The transitionfunction ��� � � ThV�X] � PRQ S � for
this Markov processis definedas � � �UTWVYXp] < � � �:PRQ S �$� �:P$Q S � , where< � � (��� �:PRQ S � �I� y � �:P$Q S � for all agents(.

4.2 Preliminary results

We performedexperimentson generatingglobal andlocal policies,
observingexpectedutilities. We used plans with 5 steps,and 3
agents.Thefollowing parameterswerevariedin ourobservations:� Plantype:weusedseveralplantypes,e.g.flat (meaningall agents

have equalfocusat all stepsof theplan),to time-varyingsharply
focused.� Theratioof rewardsfor opportunisticplansvs. initial plan.� Probability that dummy agentsbecomeactive at eachstep(i.e.
frequency of opportunistictriggers- denoted�GK o�o).� Probability that an opportunisticaction succeeds,given that a
trigger (dummy agent) is active in the current state- denoted� ��i�d d�! K o�o ! .� Probabilitythattheinitial plandoesnotfail ateachstep,giventhat
all agentsattemptto remainin theinitial plan.� Parametersof theMarkov modelusedby eachagentsto represent
its team-members.We usedtwo suchparameters:probabilitythat
an agentwill attemptremainin the initial plan given that it ob-
servesa trigger (denoted� �W�"�] �Y�) (), andgiven that it doesnot
observe a trigger(denoted� �W�"�] � �Y�) ().

Figure4 depictsoptimalglobalutility astheprobabilityof success
for opportunisticactionsandfrequency of opportunitiesis modified.

80

P succ. opp. 0.2

P succ. opp. 0.5

P succ. opp. 0.7

P succ. opp. 0.9

Utility

P(opp.)

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

155.00

160.00

165.00

170.00

175.00

180.00

185.00

190.00

195.00

200.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure 4. Optimalglobalexpectedutility

Global

Local

Utility

Popp.
86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

106.00

108.00

110.00

112.00

114.00

116.00

118.00

120.00

122.00

124.00

126.00

128.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure 5. Globalexpectedutility vs.distributedopportunityutility

Figure5 plotsexpectedutility for globalandlocal utility vs. fre-
quency of opportunistictrigger �GK oWo . Rewardfor a successfulcom-
pletion of the initial plan is 100,andfor a successfulopportunistic
actionis 300.

As expected,global optimum is monotonically increasingwith
increased�GK oWo . However, the local policies may actually achieve
worse performanceonce opportunities are introduced, because
agentsincorrectlymodelotheragentsastakingopportunisticactions,
which leadthemto alsoattemptopportunisticaction,evenwhenin-
appropriate.

In the other side, Figure 6 shows how modifying the Markov
model,representinghow oneagentbelievestheotheragentswill act,
affectexpectedutility for thedistributedpolicy. Althoughwedid not
introduceexplicit observationerrors(wedid not implementPOMDP

solution, and in any casethe distributed control problem is more
complicatedthana POMDP),the Markov modelof team-matebe-
havior canbeseenasif it introducedobservationnoise.Notethatthe
Markov modelparameter� �W�"�] �Y�) (tendsto increasetheexpected
utility whenopportunisticactionsarelikely to fail (low � ��i�d$dh! K o�o !),
yet tendsto decreasetheexpectedutility whenopportunisticactions
are likely to succeed.This interestingeffect occursbecausewhen

P succ. opp. 0.2

P succ. opp. 0.5

P succ. opp. 0.55

P succ. opp. 0.6

P succ. opp. 0.65

P succ. opp. 0.7

Utility

Prem|trig

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

155.00

160.00

165.00

170.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure6. ExpectedUtility vs.ModelParameters

� ��i�d$dh! K o�o ! is low, theoptimalglobalpolicy is to remainin theini-
tial plan.However, if � �W�"�] �Y�) (is low theagentbelievesits team-
mateswill default,andthusbelievesit hasnochoicebut to defaultas
well, resultingin low expectedutility. When � �h�"�] ���) (increases,
the agentswill estimatethat their team-mateswill not default, and
thuschooseto stick with theinitial plan,resultingin betterexpected
utility. The situationis reversedwith high � ��i�d$dh! K o�o ! , wherethe
optimalglobalpolicy is to try opportunisticactions.

5 DISCUSSION

5.1 RelatedWork

Many researchersdevelopeddifferentmodelsfor multi-agentsenvi-
ronments,but noneof thenreferto opportunisticactionsof theagents
in thecontext of a pre-plan.

Oneof thepapersinspiringoursimulatorfor stochasticjoint plan-
statetransitionswas SPIRE,an experimentalsystempresentedby
Sullivan,Glasset al. [18]. Theauthorsusedit in orderto investigate
theintentionreconciliationin thecontext of aMAS. They considered
thebehavior of anagentA in theteamwhentheagentA executesan
action that contradictsthe actionA is expectedto do by the team.
Our treatmentdiffers from SPIRE,in thatour individual agentsaim
to optimizeglobal,ratherthanself utility, andin thatplanstepsare
sequentiallydependent.Also, our schemediffers from thenotionof
replanning,in thattypically opportunitiesappearevenwhentheorig-
inal joint plancanstill beexecuted,asopposedto replanning,which
usuallyoccursuponplanfailure.

Durfee and Montgomery presentedMICE [6], a semi-abstract
model that implementsa two-dimensionalgrid environmentwhere

81

the agentssimulateto act and interactbut doesnot implementany
specificreasoningmethod.

Lesseratal. [16] presentastatisticalmodelof therelationshipsbe-
tweenlocal cooperation,theenvironment,andtheglobalutility, that
hassimilar with our model.Theauthorspresentthenotionof “self-
interested”,comparablewith our “opportunisticactions”.However,
themodelis basedonnegotiationbetweentheagents,andthecalcu-
lationof theglobalutility is different.

5.2 Conclusionsand futur e work

As shown in this paper, the AWOL model shows sufficient struc-
ture to be interestingand may be useful in evaluating the role of
opportunismin thecontext of joint plans.Clearly thereis consider-
ablefurtherwork to bedonein theAWOL framework, startingwith
implementationandexperimentationwith true partial observability
(ratherthanintroducingpartial observability throughthe backdoor
asdonein this paper).We envision threemodesof operationwhere
theAWOL framework canbeuseful.In thefirst mode,weattemptto
understandhow the modelfunctionsandthroughthe modelunder-
standthetradeoffs betweenuncertainty, rewards,andopportunity, for
differenttypesof joint plansandotherparameters,an investigation
begunin thispaper. In thesecondmode,anapplicationenvironment,
suchassoccersimulationin RoboCup[10], or UnrealTournament
[1], wouldbe“compileddown” into anAWOL model(i.e. themodel
parameterswould beanabstractionof theapplicationenvironment)
andthedecisiononopportunisticactionwouldbebasedonoptimiza-
tion in theresultingAWOL model.Finally, it maybepossibleto find
a compactclassifier(w.r.t. the parameters)for the decisionon op-
portunisticaction,in orderto implementtheoptimaldecisionmore
efficiently.

Ongoing work aims at refinementof the AWOL model, using
BKBs in orderto solve differentapplication-relatedinstantiationsof
our framework. Currently, we aretrying to compile-down coopera-
tion problemsin theUnrealTournamentcomputergameinto AWOL.
Theabstractplansandactionsof our modelareimplementedusing
scriptlanguagesuppliedby themanufactures.Ouragentsactin ado-
maindefinedby themoduleCatchtheFlag,thatallowsusto execute
a seriesof experimentsusingdifferentdomain-specificplans.

Additionally, we needto completetheexperimentson theimpact
of observationuncertainty, byhaving theagentsoptimizesomeforms
of distributed POMDP. We are also interestedin caseswhere the
agentdoesnot know all the distributions.We will needto handle
thelackof knowledgeby applyinglearningstrategies.

Finally, as many of the applicationdomainsare adversarial,we
intendto extendAWOL to handletheexistenceof anopposingteam
- in factour reasonfor introducing“dummyagents”into AWOL is a
handleintroducedwith this issuein mind.

REFERENCES

[1] RogelioAdobbati,Andrew N. Marshall,Andrew Scholer, andSheila
Tejada.Gamebots:A 3dvirtual world test-bedfor multi-agentresearch.

[2] D.S. Bernstein,S. Zilberstein,andN. Immerman,‘The complexity of
decentralizedcontrol of markov decisionprocesses’,Mathematicsof
OperationsResearch., (2001).

[3] P. CohenandH. Levesque,‘Teamwork’, Nous,SpecialIssueonCogni-
tive ScienceandAI, 4(25),487–512,(1991).

[4] P.R.Cohen,H.J.Levesque,andI. Smith,‘On teamformation’, in Con-
temporary ActionTheory, eds.,J.Hintikka andR Tuomela,(1997).

[5] ThomasL. DeanandMichaelP. Wellman,Planningandcontrol, Mor-
ganKaufmann,1991.

[6] E. DurfeeandT. Montgomery, ‘Mice: A flexible testbedfor intelligent
coordinationexperiments’,in In Proceedingsof theNinthWorkshopon
DistributedAI, pp.25–40,Rosario,Washington,(1989).

[7] Barbara Grosz and Sarit Kraus, ‘The evolution of sharedplans’,
in Foundationsand Theoriesof Rational Agents, eds.,A. Rao and
M. Wooldridge,227–262.

[8] BarbaraGroszandSaritKraus,‘Collaborative plansfor complex group
actions’,Artificial Intelligence, 82(2), 269–357,(1996).

[9] Karen E. Lochbaum,BarbaraGrosz,and CandiceL. Sidner, ‘Mod-
elsof plansto supportcommunication:An initial report’, in Proceed-
ingsof theEighthNationalConferenceon Artificial Intelligence, eds.,
ThomasDietterich andWilliam Swartout,pp. 485–490,Menlo Park,
CA, (1990).AAAI Press.

[10] Itsuki Noda and Hitoshi Matsubara,‘Soccer server and researches
on multi-agentsystem’,in Proceedingsof the IROS-96Workshopon
Robcup, Osaka,Japan,(November1996).

[11] JudeaPearl,Probabilistic Reasoningin Intelligent Systems,Networks
of PausibleInference, MorganKaufmannPublishers,Palo Alto, CA,
1988.

[12] David Poole,‘Probabilisticpartialevaluation:Exploiting rule structure
in probabilisticinference’,in Proc. FifteenthInternationalJoint Con-
ferenceon Artificial Intelligence(IJCAI-97), pp. 1284–1291,Nagoya,
Japan,(August1997).

[13] David PooleandNevin LianwenZhang,‘Exploiting contextual inde-
pendencein probabilisticinference’,Journal of Artificial Intelligence
Research, 18, 263–313,(2003).

[14] T. Rosen,S.E.Shimony, andE. SantosJr., ‘Reasoningwith bkbs-al-
gorithmsandcomplexity’, Annalsof MathematicsandArtificial Intel-
ligence, (40),403–425,(2004).

[15] EugeneJr. Santosand EugeneS. Santos,‘A framework for building
knowledge-basesunderuncertainty’,Journalof ExperimentalandThe-
orical Artificial Intelligence, (11),265–286,(1999).

[16] JiayingShen,XiaoqinZhang,andVictor Lesser, ‘Degreeof localcoop-
erationandits implicationonglobalutility’, in In Proceedingsof Third
InternationalJoint ConferenceonAutonomousAgentsandMultiAgent
Systems(AAMAS2004), (July 2004).

[17] PeterStoneandManuelaVeloso,‘Taskdescomposition,dyanmicrole
assignment,and low-bandwidthcommunicatinfor real-timestartegic
teamwork’, Artificial Intelligence, 2(110),241–273,(June1999).

[18] D. G. Sullivan, A. Glass,B. J. Grosz,andS. Kraus,‘Intention recon-
ciliation in thecontext of teamwork: An initial empiricalinvestigation’,
Lecture Notesin ComputerScience, 1652, 149–162,(1999).

82

.

83

