
Constraint Satisfaction Problems

In which we see how treating states as more 
than just little black boxes leads to the 
invention of a range of powerful new search 
methods and a deeper understanding of 
problem structure and complexity.
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Constraint-Problems

• Regular search problems 
– Structure of states of problem space not used by search algorithms. 
– Goal state is either valid or invalid. 

• Constraint Satisfaction Problem 
– Goal condition consists of a set of sub-conditions. All have to be 

valid in a goal state. 
– Difference: satisfiable / partly satisfiable / not satisfiable. 
– Constraint-Solver make use of this difference.

CSPs
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Constraint Satisfaction Problem

• Defined by 
– a set of variables X1,X2,…,Xn 

– a set of constraints C1,C2,…,Cm 

• Each variable Xi has a non-
empty domain Di of possible 
values. 

• Each constraint Ci involves some 
subset of the variables and 
specifies the allowable 
combinations of values for that 
subset.

• A state of the problem is defined by 
an assignment of values to some or 
all of the variables {Xi=vi , Xj=vj ,…}.  

• An assignment that does not violate 
any constraints is called a consistent 
or legal assignment. 

• A complete assignment is one in 
which every variable is mentioned, 
and a solution to a CSP is a 
complete assignment that satisfies 
all the constraints. 

• For some CSPs any solution will do, 
but others require a solution that 
maximizes an objective function.

CSPs
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Example: map coloring

• Coloring of states can be defined as 
CSP. 

• Goal: coloring each region either red, 
green, or blue in such a way that no 
neighboring regions have the same 
color.

• Constraint-Graph (CG) 
– variables as nodes 
– constraints as arcs

CSPs



6

• Variables are regions 
– WA, NT, Q, NSW, V, SA, T 

• Domain for each variable 
– {red, green, blue} 

• Constraints 
– E.g. for WA and NT 

{(red,green),(red,blue),(green,red),
(green,blue), (blue,red),{blue,green)} 

• Multiple solutions, e.g. 
– {WA=blue, NT=green, Q=blue, 

NSW=green, SA=red, T=green, V=blue}

CSPs
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Example: map coloring
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Properties

• Treat problems as CSPs has 
advantages. 

• Representation of states as 
patterns (set of variables with 
values). 

– Thus, successor function can be 
described generic. 

– Effective heuristics can be 
developed, because additional 
domain knowledge is not needed. 

– Finally, the structure of the 
constraint graph can be used to 
simplify the solution process, in 
some cases giving an exponential 
reduction in complexity.

• CSP can be given an 
incremental formulation as a 
standard search problem as 
follows: 
– Initial state: the empty 

assignment {}, i.e., all variables 
are unassigned.  

– Successor function: a value can 
be assigned to any unassigned 
variable, provided it does not 
conflict with previously assigned 
variables.  

– Goal test: the current 
assignment is complete.  

– Path cost: a constant cost (e.g., 
1) for every step. 

• Every solution must be a 
complete assignment and 
therefore appears at depth n if 
there are n variables. 

• Depth- first search algorithms 
are popular for CSPs

CSPs
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Properties (2)

• Path by which a solution is 
reached is irrelevant. 

• Simplest kind of CSP involves 
variables that are discrete and 
have finite domains. 

• E.g.: map-coloring, 8-queens 
problem 

• If max(domain) = d, then the 
number of possible complete 
assignments is O(dn) — that is, 
exponential in the number of 
variables.

• Finite domains include Boolean 
CSPs 

• Boolean CSPs can be NP-
complete (e.g., 3SAT problem) 

• In the worst case, therefore, we 
cannot expect to solve finite-
domain CSPs in less than 
exponential time. 

• In most practical applications, 
however, general-purpose CSP 
algorithms can solve problems 
orders of magnitude larger than 
those solvable using the 
general-purpose search 
algorithms.

CSPs
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Properties (3)

• Discrete variables can also 
have infinite domains—for 
example ! 

• Example: Job scheduling 
– With infinite domains, no 

sense to list all 
combinations! use 
constraint language 

– Job1 needs 5 days and has 
to precede Job3, use 
algebraic description: "
StartJob1 + 5 < StartJob3

• Special solution algorithms exist 
for linear constraints on integer 
variables—that is in which each 
variable appears only in linear 
form,  

• None for continuous constraints 
• Constraint satisfaction problems 

with continuous domains are 
very common in the real world 
and are widely studied in the 
field of OR. 

• Example: Timing of experiments 
for the Hubble Telescope

CSPs
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Types of Constraints
• Unary, assigns one value to one variable (e.g. SA = 

red) 

• Binary, (e.g. SA-NSW), can be represented as CG 

• High-order constraints have three or more variables 
(e.g. crypt-arithmetic-problem) 

– Each letter represents a digit 

– alldiff(F,T,U,W,R,O) 

– Constraints: 
O + O = R + 10 * X1 
X1 + W + W = U + 10 * X2 
X2 + T + T = O + 10 * X3 
X3 = F 
with 
X1, X2, X3 as auxiliary variables {0,1} 

– Constraint Hypergraph 

• Each high-order constraint can be transformed into 
multiple binary constraints 

• Preferences via costs

CSPs
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Commutativity

• Each search algorithm from 
chapters 3+4 can be used. 

• Assumption: breath-first, b on level 
0 is nd, because each of the d  
values can be assigned to each of 
the variables. 

• Next level: (n-1)d, i.e. n!dn, despite 
the dn possible assignments. 

• ! Important feature: 
Commutativity 

• A problem is commutative if the 
order of application of any given set 
of actions has no effect on the 
outcome.

Backtracking-Search

• ! Successor: all possible 
assignments only for ONE variable 
per node 

• Example: SA=red, SA=blue, but not 
SA=red, NSW=green 

• With this restriction dn
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Backtracking-Search for CSPs

• The term backtracking 
search is used for a 
depth-first search that 
chooses values for one 
variable at a time and 
backtracks when a 
variable has no legal 
values left to assign. 

• Differences: 
– Expansion of 

assignment, no copying 
– No initial state, 

successor function, 
goal test 

• Part of search tree

Backtracking-Search



Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example
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Ranking of variables and values

• Plain backtracking is an uninformed 
algorithm, so we do not expect it to 
be very effective for large problems. 

• Knowledge about problems (h) can 
help to make search more efficient. 

• Here: efficiency without domain-
specific knowledge 

• Instead methods, that can answer 
the following questions:

1. Which variable should be assigned 
next and in what order should its 
values be tried? 

2. What are the implications of the 
current variable assignments for 
the other unassigned variables? 

3. When a path fails—that is, a state 
is reached in which a variable has 
no legal values— can the search 
avoid repeating this failure in 
subsequent paths?

Backtracking-Search



Ranking of variables and values

• Minimum Remaining Values (MRV)  
– Variable with least legal values first 
– Ex: WA=blue, NT=green ! only one option 

for SA (red) 
– SA instead of Q  
– Factor 3-3000 better than BT 
– also: heuristic of the least restricting variable 

• MRV does not do well in the beginning ! 
Degree Heuristic 

– Reduction of b through selection of variable 
that is involved in most constraints to other 
free variables 

– Ex.: SA=5, T=0, NSW=3

Backtracking-Search 18



Ranking of variables and values

• Least Constraining Value (LCV) 
– Variable is selected 
– Values have to be assigned 
– Preference: Value that rules out the fewest 

choices for neighbor variables 
– Ex.: suppose WA=blue, NT=green, next 

choice is Q: Red no good ! last legal 
choice for SA, thus blue 

• In general: LCV Heuristic tries to keep max 
flexibility for assignments

Backtracking-Search 19



Complexity

• Complexity of algorithms 
– Worst-case behavior, e.g. 

sorting in O(n2) 
– Delivers upper bound for best 

algorithm 
– Does not show that there 

might be a better algorithm, 
e.g. sorting in O(n log n)

• Complexity of problems 
– Worst-case behavior 
– Coarse classification 
– Efficiently solvable: 

tractable 
– Not efficiently solvable: 

intractable 
– Delivers lower bound for 

best algorithm

Backtracking-Search 20



NP-Completeness

• Idea 
– NP-complete problems are 

hardest problems in NP 
– If efficient algorithm for one 

NP-hard problem would be 
found  
! P = NP.

Decidable problems

NP

NP-complete

P Constraint 
Propagation

Constraint 
Instantiation

Tackle NP-complete problems through 
polynomial preprocessing

Backtracking-Search 21



Inference in CSPs

• Constraint propagation instead of search 
• Local consistency (nodes, arcs) 
• Interleaving search and inference  
• Simple form: forward checking

22



Forward Checking

• So far: Select-Unassigned-Variable 
• Reduction of state space in a different way 

! Forward checking 
• Forward checking (FC) 

– If variable X assigned, FC looks on all free 
variables that is connected to X

Backtracking-Search

WA NT Q NSW V SA T
1. Begin RGB RGB RGB RGB RGB RGB RGB

2. WA=red R GB RGB RGB RGB GB RGB

3. Q=green R B G RB RGB B RGB

4. V=blue R B G R B RGB

• 3. NT and SA only 
one value: 
elimination of 
branching with 
information 
propagation, MRV 
selects NT and SA 
automatically 

• 4. SA is empty ! 
inconsistency 
detected

23



Constraint Propagation

• Forward checking does not find all inconsistencies, e.g. 
3. if WA=red & Q=green, there is only blue for NT and 
SA ! neighbors! 

• Forward checking does not predict far enough 
• Constraint propagation is an expression for implications 

of a constraint from one variable to others 
• Ex.: check NT- and SA-conditions in addition

Backtracking-Search

WA NT Q NSW V SA T
1. Begin RGB RGB RGB RGB RGB RGB RGB

2. WA=red R GB RGB RGB RGB GB RGB

3. Q=green R B G RB RGB B RGB

4. V=blue R B G R B RGB

24



Arc-Consistency

• Fast method for constraint propagation 
• Arc is directed, e.g. SA – NSW 
• Arc is consistent if for every value x of SA there is at least one 

value y of NSW that is consistent with x (given: actual domains 
from SA and NSW 

• 3. SA=blue, NSW={red,blue}. For SA=blue exists a consistent 
assignment NSW=red, thus, the arc SA-NSW is consistent 

• Opposite: inconsistent: NSW=blue, no value for SA

Backtracking-Search

WA NT Q NSW V SA T
1. Begin RGB RGB RGB RGB RGB RGB RGB

2. WA=red R GB RGB RGB RGB GB RGB

3. Q=green R B G RB RGB B RGB

4. V=blue R B G R B RGB

25



Arc-Consistency

• Arc consistency can be used 
– as preprocessing for search and 
– as propagation step (as FC) 

• Repeat until inconsistencies are gone

Backtracking-Search

• AC-3 as algorithm 
• Time complexity O(cd3) (with c binary constraints) 
• But: also this function does not find all 

possible inconsistencies

26



Special Constraints

• Resource constraint (also atmost 
constraint) 

• Ex.: P1,…,P4 is number of personnel that 
work on each of four tasks 

• Constraint: no more than 10 personnel 
are assigned in total  
atmost(10,P1,P2,P3,P4) 

• Inconsistency checking by checking the 
sum of the minimal values of the current 
domain, e.g. if each variable has the 
domain {3,4,5,6}, atmost cannot be 
satisfied 

• Enforce consistency by deleting values, 
e.g. {2,3,4,5,6} !5,6 can be deleted to 
ensure consistency

Backtracking-Search

• Big resource problems (e.g. logistics) 
almost impossible to keep domain as set 
of integers 

• Upper and lower bounds 
• Bounds propagation as solution 
• Ex.: Two flights 271 and 272 with the 

capacities of 165 and 385 passengers, 
domains in the beginning: 

– Flight271 ∈ [0,165] 
– Flight272 ∈ [0,385] 

• Constraint: both flights have to 
transport at least 420 passengers 

– Flight271 + Flight272 = 420 
• With bounds propagation we get 

– Flight271 ∈ [35,165] 
– Flight272 ∈ [255,385] 

• High relevance in practice!
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Sudoku example

• Excellent example for CSP, people use CSP but might not 
know this. 

• Board consists of 81 squares, some initially filled with 1-9. 
• Puzzle is to fill all remaining digits with constraints. 
• Exactly ONE solution. 
• Puzzle can be considered a CSP with 81 variables, one for 

each square. We use the variable names A1 through A9 for 
the top row (left to right), down to I1 through I9 for the 
bottom row.
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Sudoko example (2)

• Empty squares have the domain {1, 2, 3, 4, 5, 6, 7, 8, 9} 
• 27 different Alldiff constraints: one for each row, column, 

and box of 9 squares.
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Sudoku example (3)

30
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Remarks

• AC-3 works only for the easiest Sudoku puzzles. 
• Slightly harder ones can be solved by PC-2. 
• Larger computational cost: there are 255,960 

different path constraints to consider. 
• Solving the hardest puzzles and to make efficient 

progress, more intelligence is needed.

31



Intelligent Backtracking

• BT also called chronological BT 
• Takes last marked variable 
• Better: intelligent selection 
• Ex.: Fixed order Q, NSW, V, T, SA, WA, NT, partial 

assignment {Q=red, NSW=green,V=blue,T=red} 
• Next variable SA: problem! 
• Backtracking to T and new assignment ! not a good 

choice 
• Better: go back to set of variable that caused the 

problem !conflict set 
• Here: conflict set for SA is {Q,NSW,V} 

• Backjumping instead of Backtracking

Backtracking-Search

?
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Local Search: min-conflict heuristic

• Local search effective with CSPs 

• Heuristic: select value that minimizes 
the number of conflicts

Local search for CSP

• Very effective, n-queens problem 
in less than 50 steps, also with 1 
million queens 

• Relevant for practice

33



Example: Min-conflict Heuristic

• Solution for 8-queens problem in 2 
steps 

• Each step, one queen is selected for 
new assignment 

• Shown: number of conflicts

• Algorithm follows minimal 
conflicts 

• > 1 minimum: random selection

Local search for CSP 34



Comparison of CSP-Algorithms

• Algorithms 
– Simple Backtracking 
– Backtracking with MRV Heuristic 
– Forward checking 
– Forward checking with MRV Heuristic 
– Minimum conflicts local search 

• Problems 
– Color mapping for USA 
– Number of checks to solve n-queens 

problem for (n=2-50) 
– Zebra-Puzzle 
– Two artificial problems

• Median over consistency checking (5 
runs) for problem solution 

• () = no solution found within number of 
checks 

• Result: 
– FC with MRV better than BT algorithms 
– Does not always hold for Min-Conflicts

Local search for CSP 35



Structure of problems

• Independent sub-problems (e.g. 
Tasmania and main land)

• Can be achieved by looking for 
components that have 
connections in graph

• Component = sub-problem 
• If assignment Si solution of sub-

problem, ⋃i Si is a solution for ⋃i 
CSPi 

• Why is this important?

• Assumption: CSPi  has c 
variables of a total of n, c is a 
constant, then there are n/c sub-
problems with minimal dc time 
for the solution

• In total: O(dc n/c), i.e. linear in n
• Without decomposition O(dn), 

i.e. exponential
• Concrete: a decomposition of a 

boolean CSP with n=80 in four 
sub-problems with c=20 reduces 
the problem in the worst-case 
from lifetime of universe to less 
than 1 second!

Structure of problems 36



Structure of problems

• Mostly, sub-problems in 
CSPs not independent 

• Simple case: CG forms a 
tree 

• Time complexity for tree-like 
CSPs is linear in n

Structure of problems 37



Structure of problems

Algorithm: O(nd2) 
• Select root arbitrary and order 

all variables such that the 
parents of a node are in front of 
the children (b) 

• For j from n down to 2 
  arc-consistency (Xi,Xj), with 
Xi = parent node of Xj 

• For j from 1 to n  
  Value assignment all values to 
 Xj that are consistent with 
value from Xi, with Xi = parent 
node of Xj

• This knowledge: try to reduce general problems to trees. Two 
approaches: 

• Cutset conditioning 
• Tree decomposition

Structure of problems 38



Cutset conditioning

• Ex.: Elimination of SA, fixed value, value 
will be deleted for all variables 

• We get a tree 

• “Cutset”, because algorithm selects a 
subset S, so that CG becomes a tree, S 
also labeled “cycle cutset”

Structure of problems 39



Tree decomposition
• Idea: decompose CG in subsets, 

which are connected 
• Each sub-problem will be solved 

separately and then results are 
combined 

• Works well as long as sub-
problems get not too big (like 
divide-and-conquer) 

• Here: five sub-problems

• Conditions 
– Every variable in the original problem appears in at least one of the sub-problems. 
– If two variables are connected by a constraint in the original problem, they must 

appear together (along with the constraint) in at least one of the sub-problems. 
– If a variable appears in two sub-problems in the tree, it must appear in every sub-

problem  
– along the path connecting those sub-problems. 

Structure of problems 40



Tree decomposition
• Width of a tree defined as size of 

largest sub-problem-1 

• Width of CG defined through minimal 
tree of all tree decompositions 

• When graph has width w and we have 
corresponding tree decompositions, we 
can solve the problem in O(ndw+1) 

• ! CSPs with constraint graphs of 
bounded tree width are solvable in 
polynomial time! 

Structure of problems 41



Summary

• Constraint satisfaction problems (or CSPs) consist of variables 
with constraints on them. Many important, real-world problems can be 
described as CSPs. The structure of a CSP can be represented by its 
constraint graph. 

• Backtracking search, a form of depth-first search, is commonly used 
for solving CSPs.  

• The minimum remaining values and degree heuristics are domain-
independent methods for deciding which variable to choose next in a 
backtracking search. The least-constraining-value heuristic helps in 
ordering the variable values. 

• By propagating the consequences of the partial assignments that it 
constructs, the back-tracking algorithm can reduce greatly the 
branching factor of the problem. Forward checking is the simplest 
method for doing this. Arc consistency enforcement is a more 
powerful technique, but can be more expensive to run.  
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