
Constraint Satisfaction Problems

In which we see how treating states as more
than just little black boxes leads to the
invention of a range of powerful new search
methods and a deeper understanding of
problem structure and complexity.

1

2

Content

1. Constraint Satisfaction Problems (CSP)

2. Backtracking-Search for CSPs

3. Local Search for CSPs

4. The structure of problems

5. Summary

3

Constraint-Problems

• Regular search problems
– Structure of states of problem space not used by search algorithms.
– Goal state is either valid or invalid.

• Constraint Satisfaction Problem
– Goal condition consists of a set of sub-conditions. All have to be

valid in a goal state.
– Difference: satisfiable / partly satisfiable / not satisfiable.
– Constraint-Solver make use of this difference.

CSPs

4

Constraint Satisfaction Problem

• Defined by
– a set of variables X1,X2,…,Xn

– a set of constraints C1,C2,…,Cm

• Each variable Xi has a non-
empty domain Di of possible
values.

• Each constraint Ci involves some
subset of the variables and
specifies the allowable
combinations of values for that
subset.

• A state of the problem is defined by
an assignment of values to some or
all of the variables {Xi=vi , Xj=vj ,…}.

• An assignment that does not violate
any constraints is called a consistent
or legal assignment.

• A complete assignment is one in
which every variable is mentioned,
and a solution to a CSP is a
complete assignment that satisfies
all the constraints.

• For some CSPs any solution will do,
but others require a solution that
maximizes an objective function.

CSPs

5

Example: map coloring

• Coloring of states can be defined as
CSP.

• Goal: coloring each region either red,
green, or blue in such a way that no
neighboring regions have the same
color.

• Constraint-Graph (CG)
– variables as nodes
– constraints as arcs

CSPs

6

• Variables are regions
– WA, NT, Q, NSW, V, SA, T

• Domain for each variable
– {red, green, blue}

• Constraints
– E.g. for WA and NT

{(red,green),(red,blue),(green,red),
(green,blue), (blue,red),{blue,green)}

• Multiple solutions, e.g.
– {WA=blue, NT=green, Q=blue,

NSW=green, SA=red, T=green, V=blue}

CSPs

WA
Q

NSWSA

V

T

NT

Example: map coloring

7

Properties

• Treat problems as CSPs has
advantages.

• Representation of states as
patterns (set of variables with
values).

– Thus, successor function can be
described generic.

– Effective heuristics can be
developed, because additional
domain knowledge is not needed.

– Finally, the structure of the
constraint graph can be used to
simplify the solution process, in
some cases giving an exponential
reduction in complexity.

• CSP can be given an
incremental formulation as a
standard search problem as
follows:
– Initial state: the empty

assignment {}, i.e., all variables
are unassigned.

– Successor function: a value can
be assigned to any unassigned
variable, provided it does not
conflict with previously assigned
variables.

– Goal test: the current
assignment is complete.

– Path cost: a constant cost (e.g.,
1) for every step.

• Every solution must be a
complete assignment and
therefore appears at depth n if
there are n variables.

• Depth- first search algorithms
are popular for CSPs

CSPs

8

Properties (2)

• Path by which a solution is
reached is irrelevant.

• Simplest kind of CSP involves
variables that are discrete and
have finite domains.

• E.g.: map-coloring, 8-queens
problem

• If max(domain) = d, then the
number of possible complete
assignments is O(dn) — that is,
exponential in the number of
variables.

• Finite domains include Boolean
CSPs

• Boolean CSPs can be NP-
complete (e.g., 3SAT problem)

• In the worst case, therefore, we
cannot expect to solve finite-
domain CSPs in less than
exponential time.

• In most practical applications,
however, general-purpose CSP
algorithms can solve problems
orders of magnitude larger than
those solvable using the
general-purpose search
algorithms.

CSPs

9

Properties (3)

• Discrete variables can also
have infinite domains—for
example !

• Example: Job scheduling
– With infinite domains, no

sense to list all
combinations! use
constraint language

– Job1 needs 5 days and has
to precede Job3, use
algebraic description: "
StartJob1 + 5 < StartJob3

• Special solution algorithms exist
for linear constraints on integer
variables—that is in which each
variable appears only in linear
form,

• None for continuous constraints
• Constraint satisfaction problems

with continuous domains are
very common in the real world
and are widely studied in the
field of OR.

• Example: Timing of experiments
for the Hubble Telescope

CSPs

10

Types of Constraints
• Unary, assigns one value to one variable (e.g. SA =

red)

• Binary, (e.g. SA-NSW), can be represented as CG

• High-order constraints have three or more variables
(e.g. crypt-arithmetic-problem)

– Each letter represents a digit

– alldiff(F,T,U,W,R,O)

– Constraints:
O + O = R + 10 * X1
X1 + W + W = U + 10 * X2
X2 + T + T = O + 10 * X3
X3 = F
with
X1, X2, X3 as auxiliary variables {0,1}

– Constraint Hypergraph

• Each high-order constraint can be transformed into
multiple binary constraints

• Preferences via costs

CSPs

11

Commutativity

• Each search algorithm from
chapters 3+4 can be used.

• Assumption: breath-first, b on level
0 is nd, because each of the d
values can be assigned to each of
the variables.

• Next level: (n-1)d, i.e. n!dn, despite
the dn possible assignments.

• ! Important feature:
Commutativity

• A problem is commutative if the
order of application of any given set
of actions has no effect on the
outcome.

Backtracking-Search

• ! Successor: all possible
assignments only for ONE variable
per node

• Example: SA=red, SA=blue, but not
SA=red, NSW=green

• With this restriction dn

12

Backtracking-Search for CSPs

• The term backtracking
search is used for a
depth-first search that
chooses values for one
variable at a time and
backtracks when a
variable has no legal
values left to assign.

• Differences:
– Expansion of

assignment, no copying
– No initial state,

successor function,
goal test

• Part of search tree

Backtracking-Search

Backtracking example

13

Backtracking example

14

Backtracking example

15

Backtracking example

16

17

Ranking of variables and values

• Plain backtracking is an uninformed
algorithm, so we do not expect it to
be very effective for large problems.

• Knowledge about problems (h) can
help to make search more efficient.

• Here: efficiency without domain-
specific knowledge

• Instead methods, that can answer
the following questions:

1. Which variable should be assigned
next and in what order should its
values be tried?

2. What are the implications of the
current variable assignments for
the other unassigned variables?

3. When a path fails—that is, a state
is reached in which a variable has
no legal values— can the search
avoid repeating this failure in
subsequent paths?

Backtracking-Search

Ranking of variables and values

• Minimum Remaining Values (MRV)
– Variable with least legal values first
– Ex: WA=blue, NT=green ! only one option

for SA (red)
– SA instead of Q
– Factor 3-3000 better than BT
– also: heuristic of the least restricting variable

• MRV does not do well in the beginning !
Degree Heuristic

– Reduction of b through selection of variable
that is involved in most constraints to other
free variables

– Ex.: SA=5, T=0, NSW=3

Backtracking-Search 18

Ranking of variables and values

• Least Constraining Value (LCV)
– Variable is selected
– Values have to be assigned
– Preference: Value that rules out the fewest

choices for neighbor variables
– Ex.: suppose WA=blue, NT=green, next

choice is Q: Red no good ! last legal
choice for SA, thus blue

• In general: LCV Heuristic tries to keep max
flexibility for assignments

Backtracking-Search 19

Complexity

• Complexity of algorithms
– Worst-case behavior, e.g.

sorting in O(n2)
– Delivers upper bound for best

algorithm
– Does not show that there

might be a better algorithm,
e.g. sorting in O(n log n)

• Complexity of problems
– Worst-case behavior
– Coarse classification
– Efficiently solvable:

tractable
– Not efficiently solvable:

intractable
– Delivers lower bound for

best algorithm

Backtracking-Search 20

NP-Completeness

• Idea
– NP-complete problems are

hardest problems in NP
– If efficient algorithm for one

NP-hard problem would be
found
! P = NP.

Decidable problems

NP

NP-complete

P Constraint
Propagation

Constraint
Instantiation

Tackle NP-complete problems through
polynomial preprocessing

Backtracking-Search 21

Inference in CSPs

• Constraint propagation instead of search
• Local consistency (nodes, arcs)
• Interleaving search and inference
• Simple form: forward checking

22

Forward Checking

• So far: Select-Unassigned-Variable
• Reduction of state space in a different way

! Forward checking
• Forward checking (FC)

– If variable X assigned, FC looks on all free
variables that is connected to X

Backtracking-Search

WA NT Q NSW V SA T
1. Begin RGB RGB RGB RGB RGB RGB RGB

2. WA=red R GB RGB RGB RGB GB RGB

3. Q=green R B G RB RGB B RGB

4. V=blue R B G R B RGB

• 3. NT and SA only
one value:
elimination of
branching with
information
propagation, MRV
selects NT and SA
automatically

• 4. SA is empty !
inconsistency
detected

23

Constraint Propagation

• Forward checking does not find all inconsistencies, e.g.
3. if WA=red & Q=green, there is only blue for NT and
SA ! neighbors!

• Forward checking does not predict far enough
• Constraint propagation is an expression for implications

of a constraint from one variable to others
• Ex.: check NT- and SA-conditions in addition

Backtracking-Search

WA NT Q NSW V SA T
1. Begin RGB RGB RGB RGB RGB RGB RGB

2. WA=red R GB RGB RGB RGB GB RGB

3. Q=green R B G RB RGB B RGB

4. V=blue R B G R B RGB

24

Arc-Consistency

• Fast method for constraint propagation
• Arc is directed, e.g. SA – NSW
• Arc is consistent if for every value x of SA there is at least one

value y of NSW that is consistent with x (given: actual domains
from SA and NSW

• 3. SA=blue, NSW={red,blue}. For SA=blue exists a consistent
assignment NSW=red, thus, the arc SA-NSW is consistent

• Opposite: inconsistent: NSW=blue, no value for SA

Backtracking-Search

WA NT Q NSW V SA T
1. Begin RGB RGB RGB RGB RGB RGB RGB

2. WA=red R GB RGB RGB RGB GB RGB

3. Q=green R B G RB RGB B RGB

4. V=blue R B G R B RGB

25

Arc-Consistency

• Arc consistency can be used
– as preprocessing for search and
– as propagation step (as FC)

• Repeat until inconsistencies are gone

Backtracking-Search

• AC-3 as algorithm
• Time complexity O(cd3) (with c binary constraints)
• But: also this function does not find all

possible inconsistencies

26

Special Constraints

• Resource constraint (also atmost
constraint)

• Ex.: P1,…,P4 is number of personnel that
work on each of four tasks

• Constraint: no more than 10 personnel
are assigned in total
atmost(10,P1,P2,P3,P4)

• Inconsistency checking by checking the
sum of the minimal values of the current
domain, e.g. if each variable has the
domain {3,4,5,6}, atmost cannot be
satisfied

• Enforce consistency by deleting values,
e.g. {2,3,4,5,6} !5,6 can be deleted to
ensure consistency

Backtracking-Search

• Big resource problems (e.g. logistics)
almost impossible to keep domain as set
of integers

• Upper and lower bounds
• Bounds propagation as solution
• Ex.: Two flights 271 and 272 with the

capacities of 165 and 385 passengers,
domains in the beginning:

– Flight271 ∈ [0,165]
– Flight272 ∈ [0,385]

• Constraint: both flights have to
transport at least 420 passengers

– Flight271 + Flight272 = 420
• With bounds propagation we get

– Flight271 ∈ [35,165]
– Flight272 ∈ [255,385]

• High relevance in practice!

27

Sudoku example

• Excellent example for CSP, people use CSP but might not
know this.

• Board consists of 81 squares, some initially filled with 1-9.
• Puzzle is to fill all remaining digits with constraints.
• Exactly ONE solution.
• Puzzle can be considered a CSP with 81 variables, one for

each square. We use the variable names A1 through A9 for
the top row (left to right), down to I1 through I9 for the
bottom row.

28

Sudoko example (2)

• Empty squares have the domain {1, 2, 3, 4, 5, 6, 7, 8, 9}
• 27 different Alldiff constraints: one for each row, column,

and box of 9 squares.

29

Sudoku example (3)

30

4

7

1

Remarks

• AC-3 works only for the easiest Sudoku puzzles.
• Slightly harder ones can be solved by PC-2.
• Larger computational cost: there are 255,960

different path constraints to consider.
• Solving the hardest puzzles and to make efficient

progress, more intelligence is needed.

31

Intelligent Backtracking

• BT also called chronological BT
• Takes last marked variable
• Better: intelligent selection
• Ex.: Fixed order Q, NSW, V, T, SA, WA, NT, partial

assignment {Q=red, NSW=green,V=blue,T=red}
• Next variable SA: problem!
• Backtracking to T and new assignment ! not a good

choice
• Better: go back to set of variable that caused the

problem !conflict set
• Here: conflict set for SA is {Q,NSW,V}

• Backjumping instead of Backtracking

Backtracking-Search

?

32

Local Search: min-conflict heuristic

• Local search effective with CSPs

• Heuristic: select value that minimizes
the number of conflicts

Local search for CSP

• Very effective, n-queens problem
in less than 50 steps, also with 1
million queens

• Relevant for practice

33

Example: Min-conflict Heuristic

• Solution for 8-queens problem in 2
steps

• Each step, one queen is selected for
new assignment

• Shown: number of conflicts

• Algorithm follows minimal
conflicts

• > 1 minimum: random selection

Local search for CSP 34

Comparison of CSP-Algorithms

• Algorithms
– Simple Backtracking
– Backtracking with MRV Heuristic
– Forward checking
– Forward checking with MRV Heuristic
– Minimum conflicts local search

• Problems
– Color mapping for USA
– Number of checks to solve n-queens

problem for (n=2-50)
– Zebra-Puzzle
– Two artificial problems

• Median over consistency checking (5
runs) for problem solution

• () = no solution found within number of
checks

• Result:
– FC with MRV better than BT algorithms
– Does not always hold for Min-Conflicts

Local search for CSP 35

Structure of problems

• Independent sub-problems (e.g.
Tasmania and main land)

• Can be achieved by looking for
components that have
connections in graph

• Component = sub-problem
• If assignment Si solution of sub-

problem, ⋃i Si is a solution for ⋃i
CSPi

• Why is this important?

• Assumption: CSPi has c
variables of a total of n, c is a
constant, then there are n/c sub-
problems with minimal dc time
for the solution

• In total: O(dc n/c), i.e. linear in n
• Without decomposition O(dn),

i.e. exponential
• Concrete: a decomposition of a

boolean CSP with n=80 in four
sub-problems with c=20 reduces
the problem in the worst-case
from lifetime of universe to less
than 1 second!

Structure of problems 36

Structure of problems

• Mostly, sub-problems in
CSPs not independent

• Simple case: CG forms a
tree

• Time complexity for tree-like
CSPs is linear in n

Structure of problems 37

Structure of problems

Algorithm: O(nd2)
• Select root arbitrary and order

all variables such that the
parents of a node are in front of
the children (b)

• For j from n down to 2
 arc-consistency (Xi,Xj), with
Xi = parent node of Xj

• For j from 1 to n
 Value assignment all values to
 Xj that are consistent with
value from Xi, with Xi = parent
node of Xj

• This knowledge: try to reduce general problems to trees. Two
approaches:

• Cutset conditioning
• Tree decomposition

Structure of problems 38

Cutset conditioning

• Ex.: Elimination of SA, fixed value, value
will be deleted for all variables

• We get a tree

• “Cutset”, because algorithm selects a
subset S, so that CG becomes a tree, S
also labeled “cycle cutset”

Structure of problems 39

Tree decomposition
• Idea: decompose CG in subsets,

which are connected
• Each sub-problem will be solved

separately and then results are
combined

• Works well as long as sub-
problems get not too big (like
divide-and-conquer)

• Here: five sub-problems

• Conditions
– Every variable in the original problem appears in at least one of the sub-problems.
– If two variables are connected by a constraint in the original problem, they must

appear together (along with the constraint) in at least one of the sub-problems.
– If a variable appears in two sub-problems in the tree, it must appear in every sub-

problem
– along the path connecting those sub-problems.

Structure of problems 40

Tree decomposition
• Width of a tree defined as size of

largest sub-problem-1

• Width of CG defined through minimal
tree of all tree decompositions

• When graph has width w and we have
corresponding tree decompositions, we
can solve the problem in O(ndw+1)

• ! CSPs with constraint graphs of
bounded tree width are solvable in
polynomial time!

Structure of problems 41

Summary

• Constraint satisfaction problems (or CSPs) consist of variables
with constraints on them. Many important, real-world problems can be
described as CSPs. The structure of a CSP can be represented by its
constraint graph.

• Backtracking search, a form of depth-first search, is commonly used
for solving CSPs.

• The minimum remaining values and degree heuristics are domain-
independent methods for deciding which variable to choose next in a
backtracking search. The least-constraining-value heuristic helps in
ordering the variable values.

• By propagating the consequences of the partial assignments that it
constructs, the back-tracking algorithm can reduce greatly the
branching factor of the problem. Forward checking is the simplest
method for doing this. Arc consistency enforcement is a more
powerful technique, but can be more expensive to run.

42

