
The volume and
number of data sets
about Earth are
rapidly growing.
However, sharing
and integrating
them is difficult due
to incompatible data
formats and
platforms. We
propose an abstract
model for
information sharing
and integration and
use it to develop an
architecture for
building open,
component-based,
interoperable
systems.

A
geographic information system is a
computer-based tool for mapping
and analyzing geospatial relation-
ships between data sets. GIS data

sets tend to have complex formats and large file
sizes. Moreover, the volume of data about Earth
is rapidly increasing. Due to the enormous costs
involved in acquiring, producing, exploiting, and
disseminating geospatial data such as satellite
imagery, it’s practically impossible for a single
organization to own all the data it needs.

Current GISs are monolithic and platform-
dependent applications containing redundant
functions and databases, and it’s difficult to share
GIS data and geoprocessing methods among dif-
ferent software and hardware platforms. They also
require excessive training because of the diverse
user interfaces and they lack facilities to easily
accommodate new methods and data types as they
become available. Recent development of Internet
map servers lets organizations build Web-based
GISs in which users can view geospatial data via
Web browsers. However, these proprietary GISs
don’t provide an easy way to integrate data among

map servers or between the user’s local data sets
and map servers. To achieve integration, the user
usually must download the data and process them
locally. The exchange of data at the file level is
inefficient, cumbersome for updating, and may
involve complicated data conversions.1

A new computing paradigm for geoprocessing
is necessary to move spatial information
exchange from file transfer to a higher level. A
new method should overcome barriers caused by
incompatible GIS application platforms and mul-
tiple data sources and enable users to share,
extend, and integrate functionality from different
GISs in a distributed environment. To do just
that, we propose an architecture for building
open and interoperable GIS applications. An open
and interoperable GIS adopts industry standards
to create and manage GIS objects that perform
spatial tasks in a distributed environment.
Furthermore, encapsulating geospatial data and
methods in a GIS object makes it possible for
users to access information regardless of the loca-
tions of data sources and the application plat-
forms involved in the implementation. (See the
“Previous Work” sidebar for other approaches.)

Proposed architecture
Our architecture is based on an abstract model

for information sharing and integration that
enables peer-to-peer, object-oriented communica-
tion among data-handling applications via an
object bus. In the proposed architecture, client
applications access common object request broker
architecture (Corba) objects for services. Thus, data
sharing moves from the file-transfer level to the
level of distributed objects conducting heavy trans-
actions between multiple clients and servers.
Corba interfaces in the middleware let server-side
object implementations be transparent to clients.
System implementation may involve using Java or
other computer languages, as well as proprietary
vendor applications. Consequently, the proposed
middleware architecture provides a new way for
GISs to share data and functionality in a platform-,
vendor-, and location-neutral environment.

In addition, both users and developers benefit
significantly from our techniques. Users have time-
ly access to geospatial data and geoprocessing
methods in a single, integrated, and virtual system.
Developers gain the power of sharing and inte-
grating GIS objects on the network through stan-
dard object interfaces. Another contribution is
using Enterprise JavaBeans. We implement Corba
objects with EJBs in the middleware. A major

62 1070-986X/02/$17.00 © 2002 IEEE

A Middleware
Architecture for
Open and
Interoperable
GISs

Steven H. Wong and Steven L. Swartz
National Oceanic and Atmospheric Administration

Dilip Sarkar
University of Miami

Feature Article

advantage of EJBs is that the bean developer and
the client application programmer don’t need to
be concerned with service details such as transac-
tion support, security, remote object access, and
many other complicated error-prone issues.

Thus, taking advantage of the component-
based feature of EJBs and Corba compatibility, our
proposed architecture improves a GIS’s flexibility
and extensibility. We can also add functionality to
a GIS by adding new components—GIS beans in
the middleware. Clients can be Web browsers or
any client application built around the Corba
objects’ distributed services, such as C++ and Java
applications.

An abstract model
To provide a technology-independent frame-

work that shares a variety of GIS data sets in a dis-
tributed, object-oriented, and peer-to-peer
fashion, we’ve designed an abstract model for
information sharing and integration (see Figure
1). In this model, both data holders and value-
adders are data handlers that create program-
ming objects to encapsulate data and processing
methods to share and integrate information and
services. Data holders might be government
agencies, for example, that own raw data while
value adders might be vendors that enhance the
data’s usability. Object interfaces are comparable
across boundaries of data handlers. Data handlers
make objects available by plugging them into the
object bus. The plug-in capability of the objects
is achieved by publishing them with a protocol
that can be transported on the network.

Client applications serve as middlemen
between end users and the services offered on the
object bus. Data holders, value adders, or third
parties can create client applications in several
forms. Examples of these clients are Java applets
that can run in Web browsers and C++ applica-

tions. Specifically, client applications

❚ collect information from objects on the object
bus,

63

Raw data Data holder Value adder

Client application

End user

Object bus

Figure 1. An abstract model for information

sharing and integration. There can be multiple

data holders, value adders, and client

applications.

Previous Work
The Geospatial and Imagery Access Services (GIAS) specification from

the US National Imagery and Mapping Agency (NIMA) is a milestone pro-
ject dealing with geoprocessing interoperability. GIAS is a component in
the US Imagery and Geospatial Information Service (USIGS) architecture
(see http://164.214.2.59/sandi/arch/). GIAS defines an object-oriented
application-programming interface (API) using Corba to remotely access
and manipulate geospatial imagery.1 Applying a subset of GIAS,
Coddington et al.2 have implemented a prototype distributed system for
managing and accessing a digital library of geospatial imagery over a wide-
area network. Cobb et al.3 have investigated a system design for a Web-
based object-oriented mapping database in which a Java client
communicates with map applications in Smalltalk servers through a Corba
interface. Wang and Jusoh4 built a Web-based experimental GIS capable of
integrating data from multiple servers via Corba interfaces. Abel et al.5 pro-
posed an architecture for a virtual GIS.

The OpenGIS Specification from the OpenGIS Consortium6 is a com-
prehensive specification of a software framework for distributed access to
geospatial data and geoprocessing resources. OGIS represents the GIS
industry’s most ambitious effort to facilitate the sharing and interoperabil-
ity of spatial data so far. Among the more than 200 members of the
OpenGIS Consortium are the Environmental Systems Research Institute,
Microsoft, Oracle, and Sun Microsystems. NetGIS7 experimentally imple-
ments OpenGIS Simple Features Specification for Corba8 on the client side
using a Java applet.

References
1. USIGS Geospatial and Imagery Access Services (GIAS) Specification, version 3.1,

US National Imagery and Mapping Association, 1998.

2. P.D. Coddington et al., Implementation of a Geospatial Imagery Digital Library

Using Java and Corba, tech. report DHPC-047, http://www.dhpc.adelaide.

edu.au/reports/index.html, 1998.

3. M.A. Cobb et al., “An OO Database Migrates to the Web,” IEEE Software, vol.

15, no. 3, May/June 1998, pp. 18-21.

4. F.J. Wang and S. Jusoh, “Integrating Multiple Web-Based Geographic

Information Systems,” IEEE MultiMedia, vol. 6, no. 1, Jan.–Mar. 1999, pp. 49-

61.

5. D. Abel et al., “Towards Integrated Geographical Information Processing,”

Int’l J. Geographical Information Science, vol. 12, no. 4, June 1998, pp. 353-

371.

6. The OpenGIS Guide, 3rd ed., Open GIS Consortium Technical Committee,

http://www.opengis.org/techno/guide.htm, 1998.

7. J. Kahkonen, “Interactive Visualisation of Geographical Objects on the

Internet,” Int’l J. Geographical Information Science, vol. 13, no. 4, June 1999, pp.

429-438.

8. OpenGIS Simple Features Specification for Corba, revision 1.0, Open GIS

Consortium, http://www.opengis.org/techno/specs.htm, 1998.

❚ present information to the end user through a
user interface,

❚ incorporate information into the user’s local
data sets,

❚ let the user send local data to data handlers
that create and publish new objects encapsu-
lating the user’s data, and

❚ enhance the data with a set of processing
methods.

In the real world, the data-holder and value-
adder roles become indistinct, especially in an envi-
ronment in which multiple data handlers exist.
Objects published by these data handlers comple-
ment and interact with one another through
dynamic transactions at a peer-to-peer level. In
other words, an object can both request and pro-
vide services. In the process, new data are generated
and stored in servers operated by data handlers.
Note that transactions conducted among objects
on the object bus are transparent to end users.

Integrating geospatial data and functionality
with mainstream business software is a shift in
the GIS industry.2 Together with other business
objects on the object bus, GIS objects provide
data and services in a distributed client–server
environment represented by our model’s frame-
work. To design system architecture based on the
abstract information model, we must adopt
industry standards and define object interfaces to
ensure interoperability and connectivity among
applications across enterprises.

Corba interfaces for GIS objects
The goal for open and interoperable comput-

ing is to let applications communicate with one
another no matter where they’re located or who
designed them. Corba can address this goal. Two
important aspects of Corba3 facilitate the inter-
operable computing paradigm:

❚ The Interface Definition Language (IDL) and
the application programming interfaces (APIs)
enable client–server object interaction within
a specific implementation of an object request
broker. The ORB serves as an object bus that
handles all communication between a client
and a server object.

❚ The Internet interORB protocol (IIOP) makes
any Corba-conformant ORB instantly usable

across the Internet without requiring any
additional programming. IIOP’s speed and
efficiency lets it easily handle transaction-
based functions. Companies like Netscape and
AOL, Oracle, IONA, Inprise, IBM, Computer
Associates, and dozens of others are incorpo-
rating Corba/IIOP in their products.4 In fact,
Netscape has incorporated ORBs in its
Netscape Communicator 4.x.

For applying Corba to GISs, the OpenGIS
Simple Features Specification for Corba5 provides
Corba IDL interfaces that define GIS Corba object
attributes and behaviors. This specification lets
developers create interoperable GIS applications to
access and manipulate geospatial features with
“simple” geometry (points, lines, and polygons).
In the future, OpenGIS will likely formulate Corba
specifications for more spatial types such as 3D fea-
tures and raster coverages. (For brevity, the phrase
OpenGIS for Corba in this article stands for the
OpenGIS Simple Features Specification for Corba.
OpenGIS for Corba might occasionally include
future specifications for additional spatial types.)

The current paradigm for GIS applications
represents the view that geoprocessing function-
ality is tightly coupled to its internal data mod-
els and structures. With GIS objects conforming
to OpenGIS for Corba, GIS applications become
temporary collaborations of GIS Corba objects
that hide data models and structures.

We can implement Corba objects using Java,
C++, or other computer languages. The advan-
tages of using Java as the implementation lan-
guage include portability across platforms,
robustness through runtime memory manage-
ment, easy program development and mainte-
nance, easy client integration with Web browsers,
object orientation, security, and multithreading.

EJBs are a component-based Java technology
for server-side object implementation. The EJB
specification6 lays out the format of a bean and a
set of services that the EJB container in which the
bean runs must provide. This makes EJBs a pow-
erful development methodology for component
and distributed applications. Neither the bean
developer nor the client application programmer
need to be concerned with service details such as
transaction support, security, remote object
access, or many other complicated error-prone
issues. The EJB server and container transparent-
ly provide these services for developers.
Furthermore, EJBs offer portability. A bean devel-
oped on one EJB server should run on other EJB

64

IE
EE

 M
ul

ti
M

ed
ia

servers that meet the EJB specification, which was
designed to be 100 percent Corba compatible. An
EJB is actually a Corba server object defined using
Java remote method invocation semantics.4

Our proposed architecture uses OpenGIS for
Corba as an interface for communication
between clients and GIS objects via the Corba
ORB object bus. We can implement these objects
using EJBs in the middleware servers that can
obtain data from backend database servers. We
can assemble and reuse the GIS beans without
much difficulty, a benefit of a component archi-
tecture. To the best of our knowledge, researchers
haven’t adequately addressed applying EJBs to
geospatial processing in the GIS community.

Figure 2 elaborates on how data holders and
value adders can benefit from the model in
Figure 1. Information services from both data
holders and value adders are published through
Corba objects. A data holder adopts middleware
EJBs to implement the services and obtain infor-
mation drawn from the raw data. In the process,
we can create and archive derivative data. EJBs
can also request services from Corba objects on
the bus. This lets a value adder

❚ connect to Corba objects from data holders,

❚ add functionality to the objects, and

❚ publish new Corba objects.

Moreover, we can add additional derivative data
to the value adder’s database.

GIS beans can communicate with database
servers through Java database connectivity
(JDBC) and OpenGIS for Structures Query
Language (SQL). The OpenGIS for SQL specifica-
tion defines a standard SQL schema that supports
storage, retrieval, query, and update of geospatial
feature collections via the open database con-
nectivity (ODBC) or JDBC API. (The OpenGIS
Simple Features Specification for SQL is currently
available.7 The commercial products that con-
form to this specification are Oracle Spatial
Option8 and ESRI Spatial Database Engine.9)

System architecture
Figure 3 (next page) depicts our architecture for

building open and interoperable GISs. It’s a Corba-
based implementation of the abstract model for
information sharing and integration. In this archi-
tecture, objects in clients and servers communicate
through the Corba ORB object bus using the IIOP.

The architecture’s core components are Corba
objects in middleware Corba subsystems. EJBs and
object wrappers in middleware servers capture the
Corba objects’ characteristics and implement their
business logic. We propose to connect the EJBs to
backend database servers through JDBC and
OpenGIS for SQL. Clients interact with the GIS
through Corba or HTML interfaces.

Corba subsystems
The Corba subsystems are OpenGIS Corba,

Metadata Corba, Security Corba, and
OpenVendor Corba. These subsystems publish
Corba objects for clients to use. A client can be
an application or an object accessing the Corba
objects. Therefore, an object in one Corba sub-
system can be a client of an object in another
Corba subsystem.

To enable easy communication between
Corba objects and EJBs, we use Java classes to
materialize Corba objects. One of the software
products that accomplishes that is VisiBroker for
Java from Borland/Visigenic.10 The Corba objects
in the form of Java classes can delegate tasks to
EJBs through Java naming and directory inter-
faces (JNDIs).

OpenGIS Corba subsystem. The OpenGIS for
Corba specification5 defines GIS Corba objects in
this subsystem. Client applications interact with
these objects through their interfaces to access and
manipulate spatial information comprised of geo-
metric features such as points, lines, and polygons.
The OpenGIS for Corba contains three groups of
interfaces: feature interfaces, spatial reference sys-
tem interfaces, and geometry interfaces.

A Feature object represents a real-world entity
or an abstraction of the real world. It’s constructed
from geometry objects, attributes (properties), a
spatial referencing system, and associated meth-

65

A
p

ril–Jun
e 2002

Database EJBs

(Data holder)

(Raw data and
derivative data)

Corba objects

Database

(Derivative
data)

EJBs or other
implementations

(Value adder)

Corba objects

Java applets, C++, and so on

End user

Corba ORB IIOP (Object bus)

(Client applications)

Figure 2. An

implementation of the

abstract model for

information sharing

and integration with

Corba-based

specifications. The

thin arrow between

EJBs and the object

bus indicates that

EJBs can request

information and

services from objects

on the bus.

ods. A Geometry object has coordinates that can
be mapped into real-world positions by a
SpatialReferenceInfo object representing a spatial
reference system. A GIS layer is a collection of fea-
tures. For example, a GIS layer might contain
topographical features such as elevation contours
(lines). A ContainerFeatureCollection or
QueryableContainerFeatureCollection object rep-
resents a GIS layer. Each GIS layer exposes itself to
clients through either Corba naming or Corba
trader (catalog) services (the white and yellow

pages, respectively, of a Corba service). More than
50 interfaces are defined in OpenGIS for Corba,5

providing a rich set of geospatial characteristics.
The OpenGIS object server in the middleware

(see [5] in Figure 3) implements the GIS Corba
objects. We use EJBs (GIS beans) as components
containing the business logic for geospatial data
access and manipulation. The GIS beans accept
and process requests from GIS Corba objects. The
EJBs obtain necessary information from backend
database servers through JDBC and OpenGIS for

66

IE
EE

 M
ul

ti
M

ed
ia

Value-adding
vendor application

Web browsers with
HTML and forms

HTTP ORB IIOP

TCP/IP

HTTP ORB IIOP

Web client

Corba
client/server
[11]

[1]

Web browsers
with Java applet

OpenVendor
Corba

HTTP
server

Java
servlets

Object
wrappers

Vendor
GIS objects

Vendor APIs

Web/Corba
client [2]

Customized
application

Corba
client [3]

OpenGIS Corba

OpenGIS SOL

JDBC JDBC

Security Corba

Metadata Corba

OpenGIS
object

server [5]

GIS
EJBs

Vendor
GIS

objects

Metadata
EJBs

Security
EJBs

[10]

Metadata
server [6]

Security
server [7]

[4] Web server

Vendor
GIS application

[9]

Database server
[8]

Database server
[8]

Client
applications

Internet/
intranet
protocols

Middleware
Corba
subsystems

Middleware
servers

Database
interfaces

Database
servers

Figure 3. An

architecture for open

and interoperable GIS.

Dotted lines with

hollow arrows denote

requests for services.

Solid lines with solid

arrows denote

implementations of

services.

SQL interfaces. These GIS beans can be clients of
Corba objects outside of the OpenGIS Corba sub-
system (see the dotted line between GIS EJBs [5]
and the ORB object bus in Figure 3). Through this
client–server mechanism, GIS beans can request
services from Corba objects published by GISs in
other organizations. GIS beans can also delegate
certain implementations to objects in the Open-
Vendor Corba subsystem that maintains vendor
GIS applications (see [9] in Figure 3) noncompliant
with the OpenGIS specifications. (See the “Sample
Mechanism” sidebar, next page, for an example.)

Vendor GIS applications that comply with the
OpenGIS for Corba specification may be plugged
into the middleware to implement some of the
functionality of the OpenGIS Corba subsystem.
This mechanism, along with the OpenVendor
Corba subsystem we discuss later, provides exten-
sibility to the system on the server side, which lets
the GIS systematically incorporate commercial
technology advances. Thanks to Corba interfaces,
all implementations of vendor applications are
transparent to clients regardless of vendors’ com-
pliance to the OpenGIS for Corba specifications.

Metadata Corba subsystem. The Metadata
Corba subsystem contains metadata Corba
objects that let users access information about
GIS layer attributes and methods. The metadata
objects contain attributes that are mapped to cer-
tain attributes defined in the Federal Geographic
Data Committee (FGDC) metadata standard.11

Clients access these metadata objects to search
available GIS databases and database schema
descriptions. Metadata EJBs in the metadata serv-
er (see [6] in Figure 3) implement the business
logic of metadata Corba objects. The metadata
EJBs obtain information about available GIS lay-
ers through two mechanisms:

❚ by accessing the backend database server via
JDBC and

❚ by accessing FeatureType objects contained in
GIS layers in the OpenGIS Corba subsystem.

The dotted line between the metadata EJBs and
the ORB object bus in Figure 3 indicates the lat-
ter mechanism.

Most of the metadata for a GIS layer can be
found in its FeatureType object. However, the
metadata in the FeatureType object might not be
organized according to the FGDC metadata stan-
dard. Metadata EJBs in the metadata server query

the FeatureType object to obtain a GIS layer’s
metadata and present the information to clients
in compliance with the FGDC metadata standard.

The Metadata Corba subsystem presents meta-
data held by the database servers to the GIS users.
The users can then make out the meanings
(semantics) of attributes in the GIS layers
(OpenGIS Corba objects) and make informed
choices for spatial and nonspatial features. The
Metadata Corba subsystem, however, doesn’t
interact with metadata from other GISs to discov-
er useful GIS layers from other GISs. This would be
the task of the OpenGIS catalog services currently
under development,12 raising the GIS interoper-
ability from a syntactic to a semantic level.13

In the future, we expect to replace Metadata
Corba objects with OpenGIS catalog Corba inter-
faces.14 With the catalog services playing the role
of the interface between clients and metadata,
the metadata’s format becomes transparent to
the clients. We can reuse the metadata EJBs in
the current architecture to implement part of the
catalog service interfaces in the improved archi-
tecture. We expect

❚ the catalog services to return metadata infor-
mation about GIS layers held in its database
servers in response to requests from catalog
services of other GISs. To this end, we can
reuse most of the metadata EJBs from the cur-
rent middleware servers to serve the catalog
Corba objects.

❚ the catalog services to discover useful geospa-
tial features from other GISs by querying cat-
alog interfaces of other GISs dynamically. We
must create new metadata EJBs to help the
catalog Corba objects with this task.

❚ the OpenGIS Catalog Service to be a major
mechanism to dynamically resolve semantic
heterogeneity between attributes from GIS
layers held in different GISs.

Security Corba subsystem. The Security
Corba subsystem contains security Corba objects
that facilitate the authorized access of certain GIS
databases. EJBs in the security server implement
the security objects (see [7] in Figure 3). The secu-
rity EJBs access the security database via JDBC.
The system manager manages the security data-
base from a database management system
(DBMS) or a client application that communi-
cates with the Security Corba objects.

67

A
p

ril–Jun
e 2002

68

This hypothetical example demonstrates an application inter-
operating with an ArcView application in a distributed environ-
ment. In this example, a Corba client requests and obtains services
on behalf of a MapInfo (from MapInfo Corporation) user from the
OpenGIS Corba subsystem (see Figure A). The GIS application
that provides the service is an ArcView application, most likely in
a different computer system. ArcView GIS (from ESRI) doesn’t con-
form to the OpenGIS for Corba specification. Therefore, we can’t

plug it into the OpenGIS Corba subsystem in a straightforward
manner as in item [10] in Figure 3. Within our proposed archi-
tecture’s framework, the GIS EJBs in item [5] of Figure 3 delegates
the requests from the Corba client to the OpenVendor Corba sub-
system that connects to the ArcView application.

The ArcView project (application) named Miami_Land_Project
contains database tables, database displays (views), ArcView
scripts (Avenue1 codes), and so on for land-use information of

Miami, Florida. The data
include attributes for par-
cel polygons, aerial pho-
tos covering the Miami
area, and zoning division
polygons. ArcView pro-
vides a C library called
AVExec to facilitate pro-
grams written in C or
C++ to execute ArcView
Avenue statements.1 We
created an OpenVendor
Corba object called
Miami Land with C++.
It’s an instance of the
Corba class ArcView
Corba (see the “Example
IDL Descriptions for
Corba Interfaces”on
page 74 sidebar for a
partial description). Arc
ViewCorba delegates its
method calls to the C++
class ArcViewObject
Wrapper that has meth-
ods executing ArcView
Avenue statements
through the AVExec C
library. ArcViewCorba
OpenVendor Corba

ORB IIOPHTTP

HTTP

TCP/IP

ORB IIOP

Miami Land Info
OpenGIS layer

ArcViewCorba
Wrapper C++ class

Mapinfo Java
customized application

Corba
client

AVExec ArcView
vendor API

ArcView application
Miami_Land_Project

Miami Land OGIS catalog Corba

Security Corba

JDBC

Client
applications

Internet/
intranet
protocols

Middleware
Corba
subsystems

Middleware
servers

Database
interfaces

Database
servers

ArcViewCorba
OpenVendor
Corba object

QueryableContainerFeature-
Collection Corba object

[1]

[8]

[5]
[7] [2] [4]

[3]

[6]

ArcViewCorba
Connector

GIS EJBs

Metadata
EJBs

Security
EJBs

Security
server

Metadata
server

[9]

Vendor
GIS objects

Database serverDatabase server

Figure A. A MapInfo

client accesses data in

ArcView through

OpenGIS Corba inter-

faces. Dotted lines

with hollow arrows

denote requests for

services. Solid lines

with solid arrows

denote implemen-

tations of services.

Sample Mechanism

The Security Corba subsystem acts as a gate-
keeper for the Corba objects in other subsystems.
Client applications must be authenticated by
security objects before they can interact with GIS
Corba objects.

OpenVendor Corba subsystem. The
OpenVendor Corba subsystem enables vendor-
neutral use of vendor GIS applications and legacy
geospatial data that don’t comply with the OpenGIS
specifications. The GIS EJBs in the OpenGIS object

69

A
p

ril–Jun
e

object can provide geospatial services from multiple types of GIS
layers from an ArcView project, which the current OpenGIS spec-
ifications don’t support. In this example, these multiple types of
GIS layers include vector polygons (parcels and zoning divisions)
and raster images (aerial photos).

The following steps show how the MapInfo application user
obtains a parcel polygon from the remote ArcView application
through an OpenGIS Corba interface:

1. The MapInfo user asks for a parcel polygon in the Miami area
to overlay on some GIS layers in the user’s local computer.
The end user doesn’t know where the parcel polygon is.

2. We can customize certain MapInfo applications, such as
MapXtreme Java Edition, with Java (see http://www.
mapinfo.com/software/mapxtreme/java/index.html).
Therefore, a MapInfo application itself can be a Corba client
written in Java. The client contacts an OpenGIS Catalog
Corba object (likely in a remote server transparent to the
client) with the request for retrieval of the parcel given its
extent and spatial reference system (see [1] and [2] in Figure
A). The Catalog Corba object sends the request to metada-
ta EJBs (see [3] in Figure A) that search the information from
a backend database. The metadata EJB finds out dynamical-
ly that an OpenGIS Corba object called Miami Land Info can
provide the polygon. This mechanism helps resolve the
semantic variability of GIS data sets. The Miami Land Info
object is an instance of the QueryableContainerFeature
Collection Corba class (see the “Example IDL Descriptions
for Corba Interfaces” sidebar, on page 74).

3. After the authentication process involving the Security
Corba objects (see [4] in Figure A), the client requests the
parcel polygon from the Miami Land Info Corba object by
issuing a method call get_geometry of the Corba object,
supplying the parcel’s extent as a rectangle and the spatial
reference system as a string for input parameters (see [5] in
Figure A). Note the client is unaware of the location or the
name of the server where the Corba object is deployed.

4. The Miami Land Info Corba object has an attribute
(ImplementorEjbName) indicating that the GIS EJB
ArcViewCorbaConnector implements the Corba object.
Another attribute (OpenVendorCorbaObjName) in the
Miami Land Info Corba object indicates it’s associated with
the Miami Land OpenVendor Corba object. The Miami Land

Info Corba object relays the get_geometry request to the
ArcViewCorbaConnector EJB (see [6] in Figure A) along with
the name of the OpenVendor Corba object (Miami Land).

5. The ArcViewCorbaConnector EJB obtains a reference to the
Miami Land OpenVendor Corba object and passes the
get_geometry request to it (see [7] in Figure A).

6. The Miami Land object relays the get_geometry request
to the C++ class ArcViewObjectWrapper, along with the
name of the ArcView project (Miami_Land_Project, stored
in the ArcViewProjectName attribute) with which the
Corba object is associated (see [8] in Figure A).

7. The C++ object ArcViewObjectWrapper has a get_geome-
try method that calls the ArcView project (Miami_
Land_Project) through AVExec, supplying the parcel’s extent
and the spatial reference system (see [9] in Figure A).

8. The ArcView application understands the statements from
the ArcViewObjectWrapper carried by AVExec, finds the par-
cel, transforms the parcel polygon into the specified spatial
reference system, and returns the parcel polygon as a string
containing the coordinates of the polygon’s nodes.

9. ArcViewObjectWrapper repackages the returned polygon
string into a WKSGeometry object.2 The WKSGeometry
object is eventually returned to the Java client through the
Miami Land OpenVendor Corba object, the
ArcViewCorbaConnector EJB, and the Miami_Land_Info
OpenGIS Corba object.

10. The Java client integrates the WKSGeometry object into the
MapInfo application by, possibly, converting the
WKSGeometry parcel object into a polygon in MapInfo for-
mat. The user sees the parcel overlaid on other GIS layers.
The user can perform a geospatial operation on the parcel
polygon object like any local geographical object, such as
computing the polygon’s area.

References
1. Using Avenue, Environmental Systems Research Institute, 1996.

2. OpenGIS Simple Features Specification for Corba, revision 1.0, Open

GIS Consortium, http://www.opengis.org/techno/specs.htm,

1998.

server (see [5] in Figure 3), along with other clients,
can take advantage of the functionality provided in
vendor GIS packages through OpenVendor Corba
objects. Vendor neutrality is achieved because
clients only communicate with the Corba inter-
faces. Clients don’t need to be concerned about the
data models and structures of vendor applications
used to implement these interfaces.

Some vendor GIS applications provide geospa-
tial functionality unavailable in the current
OpenGIS specifications such as 3D mapping.
OpenVendor Corba objects can complement the
current OpenGIS specifications by providing
clients the special geospatial functionality
through Corba interfaces. When OpenGIS speci-
fication for the functionality is available, we can
create new OpenGIS Corba objects and link them
to the OpenVendor Corba objects to provide the
functionality through standard interfaces.

Server-side implementation of the OpenVendor
Corba objects involves using object wrappers writ-
ten in Java, C, C++, or other languages that are
mapped to Corba. The object wrappers are objects
that access the functionality in vendor applications
through APIs the vendors provide.

Placing the OpenVendor Corba objects
between clients and vendor APIs makes it possible
for most vendor applications to plug into the GIS.
As a result, the GIS can maintain a heterogeneous
vendor environment to fill functionality gaps that
might exist in the OpenGIS Corba subsystem.
Through the OpenVendor Corba interfaces, a ven-
dor application can implement the business logic
of some GIS EJBs in the OpenGIS Corba subsystem.
This approach promotes reusing functionality and
increases the system’s responsiveness to new com-
mercial methodologies. (See the sidebar “Sample
Mechanism” for an example that illustrates access-
ing a proprietary GIS through this subsystem.)

Client applications
Client applications perform one or both of

these tasks: creating a user interface to interact
with the user or requesting services from Corba
objects or HTTP servers on the user’s behalf.

Three types of client applications are Web,
Corba, and Web/Corba clients. A Web client (see
[1] in Figure 3) follows guidelines in the OpenGIS
Web Map Server Interface Implementation
Specification,15 a product of the OpenGIS Web
Mapping Testbed (see http://www.opengis.org/
wmt/index.htm), to access geospatial data from
multiple servers in different sites. It uses HTML
pages for the user interface. Java servlets dynami-

cally create these HTML pages (see [4] in Figure 3).
These Java servlets are actually Corba clients
because they obtain services from GIS objects in the
Corba subsystems, which the dotted line between
the Java servlets and the ORB object bus in Figure
3 indicates. The Java servlets generate and render
display elements from these GIS objects. The Web
client may also connect to Web servers operated by
value-adding vendors (see [11] in Figure 3).

A Corba client implements a customized user
interface using a computer language with map-
ping to Corba interfaces. Typical Corba clients
include Java servlets and customized client appli-
cations written in C, C++, Java, and so on (see [4]
and [3] in Figure 3). Java servlets request services
from Corba objects on behalf of Web clients and
return results in HTML format to Web clients.
Customized client applications can create flexible
and powerful user interfaces because they are
only limited by the capacity of the computer lan-
guages used for client-side implementation. A cus-
tomized client application enables client–server
integration of GIS data. In addition to being able
to incorporate geospatial information from Corba
objects into local data sets, an end user can create
GIS layers from local data sets and publish the GIS
layers through the OpenGIS Corba subsystem.
The published GIS objects encapsulate data from
the end user’s local data sets and contain a set of
geoprocessing methods. This information inte-
gration mechanism is a powerful tool by which a
GIS application can spatially enable end users’
data sets, enhance the data with processing meth-
ods, and facilitate data sharing.

The Corba client/server (see [11] in Figure 3)
is a Corba client and a server that provides ser-
vices beyond those offered by Corba objects of
which it’s a client. To provide the extended ser-
vices to its clients, the value-adding Corba
client/server might let users connect to it either
through its Web server or its Corba interfaces.
The Corba client/server provides extensibility to
the architecture on the client side. In fact, under
this setting, any GIS can be a Corba client/server
to another GIS. Services offered by objects from
different GISs complement one another regard-
less of the software and hardware platforms
involved in their implementations.

A Web/Corba client runs in a Corba-enabled
Web browser (see [2] in Figure 3). It loads Java
applets from a Web server. These Java applets can
interact with the user through its graphical user
interface (GUI) and communicate with Corba
objects to obtain services. Similar to a customized

70

IE
EE

 M
ul

ti
M

ed
ia

client application, an end user of a Web/Corba
client application can integrate GIS Corba objects
into local data sets and create new GIS layers from
local data sets. However, because of restrictions the
Java security model imposes, this is relatively dif-
ficult to accomplish because it involves running
trusted applets signed by “trusted” servers.16

Implementation
We carried out a prototype implementation of

our architecture to demonstrate its feasibility and
validity. The implementation focuses on the
middleware in which we implemented a subset
of OpenGIS for Corba5 using Java, EJBs, and a
DBMS. Implemented objects include GIS Corba
objects that can be published on the Internet or
an intranet for clients to use as well as GIS EJBs
that implement the business logic of the Corba
interfaces and access spatial data from databases
compliant with the OpenGIS for SQL specifica-
tion. On the client side, we implemented a sim-
ple customized Java application to access and
query published GIS Corba objects.

We used real-world data on oceanography for
this implementation. The oceanographic data
sets are a subset of data from the study of Florida
Bay conducted by the Southeast Fisheries Science
Center of the National Oceanic and Atmospheric
Administration (NOAA) Fisheries.

We created these four GIS layers from the four
data sets using methods we explain next:

❚ a point GIS layer (Station), corresponding to
locations of water property sampling stations;

❚ a polygon layer (Sub-basin), corresponding to
division of Florida Bay into sub-basins;

❚ a line layer (Tidal Amp), corresponding to con-
tours of the bay’s tidal amplitudes; and

❚ a line layer (Effort), corresponding to routes
helicopters use for surveying wading-birds and
large-fish survey.

Figure 4 (next page) shows both the logical and
physical configuration of the prototype imple-
mentation.

Server-side implementation
In this implementation, we retrieved GIS data

from an Oracle database using an Oracle spatial
option8 that conforms to the OpenGIS Simple
Features Specification for SQL.7 According to the

SQL schema defined in the specification, each GIS
layer is stored as a feature table. Oracle spatial pro-
vides utilities for creating, loading, and indexing
spatial feature tables (GIS layers) from the real-
world oceanographic data sets. We can query all
tables for a GIS layer like any table in a relational
database management system. Spatial queries on a
feature table can be performed by the SQL func-
tions that have been implemented using the
OpenGIS Simple Features Specification for SQL.

GIS EJBs that implement GIS Corba objects
access GIS feature tables and spatial SQL functions
in the Oracle database through JDBC and the
OpenGIS Simple Features Specification for SQL.

We have implemented several necessary Corba
interfaces for client applications to access GIS lay-
ers in the Internet/intranet environment. These
interfaces include QueryableContainerFeature-
Collection, QueryResultSetIterator, and Corba-
ObjManager. All Corba interfaces are in Java
classes.

CorbaObjManager is a new Corba interface we
defined to function as a gatekeeper. All client
applications must go through this interface to
obtain handles for other Corba objects. Its
getGisLayer method takes the user’s name and
password and the name of a GIS layer as strings
and returns a reference to a QueryableContainer-
FeatureCollection object to the client. If data for
the GIS layer don’t exist, the method throws a
LayerNotCreated exception. CorbaObjManager
is part of the security Corba subsystem.

QueryableContainerFeatureCollection and
QueryResultSetIterator Corba interfaces are defined
in OpenGIS for Corba. We implement methods of
these Corba objects with EJBs. A Queryable
ContainerFeatureCollection object represents a GIS
layer. Given a query string and other parameters
to define a query’s scope, a client application can
invoke the evaluate method of the GIS layer to
obtain information in the GIS layer. The evalu-
ate method returns a QueryResultSetIterator
object for the client to navigate the query’s result
set. We can deploy these Corba objects (in the
form of Java classes) to any server that has a Java
virtual machine. Figure 4 shows the deployment
of Corba objects in a Windows NT server.

SpLayer is a GIS EJB that we create to implement
the business logic of the QueryableContainer-
FeatureCollection Corba object, which delegates all
requests from client applications to methods in the
SpLayer. SpLayer can communicate with other GIS
EJBs to fulfill requests from QueryableContainer-
FeatureCollection objects. The QueryResultSet-

71

A
p

ril–Jun
e 2002

Iterator EJB implements methods in Query-
ResultSetIterator Corba interface. The EJB holds and
navigates the result set for a spatial query.

We implemented two methods with this GIS
bean: advance and get_geometry_by_name.
The advance method advances the iterator to the
next record in the result set. Initially, the iterator
is positioned before the first record. Calling the
get_geometry_by_name method of the Query-
ResultSetIterator EJB with the geometry field’s
name as the input parameter returns a
WKSGeometry object. The WKSGeometry object
defined in the Open GIS Consortium’s specifica-

tion5 is used as a basic object representing geom-
etry of simple features (points, lines, and poly-
gons, and so on) and is exchanged between client
and server objects. Methods in the SpLayer GIS
bean perform these tasks:

❚ process requests from clients and carried by
the QueryableContainerFeatureCollection
Corba object,

❚ fetch data from an Oracle server using spatial
functionality in the Oracle spatial option, and

72

IE
EE

 M
ul

ti
M

ed
ia

ORB IIOP

TCP/IP

ORB IIOP

QueryResultSet-
Iterator

QueryResultSet-
Iterator

GIS
EJBsSpLayer

Java applicationCorba
client

End user

OpenGIS SQL

JDBC

CorbaObjManager

Database

Oracle8i database server
installed on Sun Enterprise server

Client
applications

Internet/
intranet
protocols

Middleware
Corba
subsystems

Middleware
servers

Database
interfaces

Database
servers

QueryableContainerFeature-
Collection (OpenGIS layers)

Effort,
Station,
Subbasin,
Tidal Amp

OpenGIS
Corba objects
(Java classes)

Security Corba
objects
(Java classes)

Windows NT server

[2]

[3]

[4]

[5]

[9] [6], [10]

[8] [1][7], [11]

Figure 4. Logical and

physical configuration

of the prototype

implementation.

Dotted lines with

hollow arrows denote a

request for services.

Solid lines with solid

arrows denote

implementation of

services. Dotted lines

with solid arrows

denote returning objects

once a service is

rendered.

❚ return results to the QueryableContainer-
FeatureCollection Corba object through
QueryResultSetIterator EJB and QueryResult-
SetIterator Corba object.

Corba objects and GIS EJBs communicate
through the JNDIs protocol. We used Oracle8i
Enterprise Database Server as an EJB server and a
container in which GIS EJBs are deployed (see
Figure 4).

Client-side implementation
We have developed a customized Java applica-

tion (see [3] of Figure 3) with a minimal GUI. It can
connect to GIS Corba objects and invoke a subset of
methods in these objects. The purpose in this imple-
mentation phase is to ensure middleware compo-
nents of the architecture work in a coordinated
manner. Our future implementation will include
significant improvements in both the user interface
and interactions with the Corba subsystems.

The GUI has a window to display GIS maps
and tool buttons for the user to interact with
these maps. The tool buttons perform these tasks:

❚ zoom in and out,

❚ pan,

❚ overlay GIS layers from different sources,

❚ display the cursor’s coordinates in a status bar
as the cursor moves over the layers on the
screen, and

❚ move a layer upward or downward in relation
to other layers.

In a real query, the Corba client interacts with
the middleware Corba interfaces, and GIS EJBs
assist the Corba objects to access a GIS layer
stored in a feature table in the database (see
Figure 4). To access GIS Corba objects, the Java
client first contacts the CorbaObjManager Corba
object that is published on the Internet or an
intranet. The Corba ORB IIOP facilitates this
communication. The client requests a reference
to a GIS layer, such as the Tidal Amp, by sending
a GetGisLayer call defined in the CorbaObj-
Manager interface (see [1] in Figure 4 and the
“Example IDL Desciptions for Corba Interfaces”
sidebar, next page). The client presents a user
name, a password, and the name of requested
GIS layer (Tidal Amp) as input parameters.

In the current implementation, the Corba-
ObjManager stores a set of valid user names and
passwords in its Java class. A future implementa-
tion will let the CorbaObjManager access user
information from a database through JDBC. Once
the validity of a user is confirmed by Corba-
ObjManager, the client obtains a reference to the
Tidal Amp Corba object, an instance of the
QueryableContainerFeatureCollection OpenGIS
Corba interface. The client then invokes the eval-
uatemethod of the GIS layer Tidal Amp (see [2] in
Figure 4), starting a query. The Tidal Amp Corba
object delegates the query task to the evaluate
method of a SpLayer GIS EJB, along with the nec-
essary information (for example, the
FeatureTableName attribute) for the EJB to locate
the feature table for the Tidal Amp GIS layer in the
Oracle database (see [3] in Figure 4 and the
“Example IDL Desciptions for Corba Interfaces”
sidebar). This is done through the JNDI protocol,
without the client’s awareness. The SpLayer EJB
queries the feature table through JDBC and
OpenGIS Simple Features Specification for SQL
interfaces (see [4] in Figure 4). The Query-
ResultSetIterator EJB that holds the result set of the
query (see [5] in Figure 4) is wrapped inside a
QueryResultSetIterator Corba object (see [6] in
Figure 4) and returns to the client (see [7] in Figure
4). This lets the client navigate all spatial features
of the GIS layer Tidal Amp, using the combination
of the advance and get_geometry_by_name
methods of the QueryResultSetIterator Corba inter-
face (see [8] in Figure 4). Keeping transparent to the
client, the QueryResultSetIterator Corba object del-
egates the method calls to QueryResultSetIterator
EJB (see [9] in Figure 4), which holds the result set
of the evaluate query. The advancemethod iter-
ates through the records in the result set. The
get_geometry_by_name method returns a
WKSGeometry object (see [10] and [11] in Figure
4). The WKSGeometry Java objects encapsulate
spatial features of the Tidal Amp GIS layer that can
be used to generate display elements to be passed
to the Java client’s GUI for rendering. Other GIS
layers (Effort, Station, and Sub-basin) can also be
accessed in the same way and overlaid on one
another.

In the next implementation phase, we pro-
pose to use WKSGeometry objects to wrap spatial
data on the end user’s computer. These
WKSGeometry objects can be passed to a
QueryableContainerFeatureCollectionFactory
Corba object5 that then creates new GIS layers on
the server side for publication on the network.

73

A
p

ril–Jun
e 2002

74

We only define some of the attrib-
utes and methods we mention in this
article in the interfaces here. In this
sidebar, we provide an explanation of
Figure B and then give two other
examples (see Figures C and D) for
further reference. For detailed docu-
mentation on the standard Corba IDL,
see the Open GIS Consortium’s spec-
ification.5

Figure B gives the Queyable-
ContainerFeatureCollection Corba
interface. We added the three read-
only attributes to the interface for
our architecture:

❚ readonly attribute string

ImplementorEjbName; is the
name of the EJB that implements
this Corba object.

❚ readonly attribute string

OpnVendorCorbaOjbName; is
the name of the OpenVendor
Corba object from which this
Corba object can obtain services
through the EJB. It can be an
empty string meaning no
OpenVendor Corba object is
needed for service.

❚ readonly attribute string

FeatureTableName; is the
name of the feature table in
DBMS that stores data for the GIS
layer. It can be an empty string if
this Corba object depends totally
on the OpenVendor Corba object
for services.

The subsequent operation
(Geometry get_geometry(in

NVPairSeq geometry_context)

raises (InvalidParams);) is
inherited from Feature interface that
is inherited by FeatureCollection.
Geometry context can be information
on a spatial reference system, a
bounding polygon, and so on. This
final operation in Figure B is inherited
from QueryEvaluator.

Example IDL Descriptions for Corba Interfaces

module OGIS {

interface QueyableContainerFeatureCollection :

FeatureCollection, QueryEvaluator {

readonly attribute string ImplementorEjbName;

readonly attribute string OpnVendorCorbaOjbName;

readonly attribute string FeatureTableName;

Geometry get_geometry(in NVPairSeq geometry_context) raises

(InvalidParams);

QueryResultSetIterator evaluate(in string query,in QLType

q1_type, in

NVPairSeq params) raises (QueryLanguageTypeNotSupported,

InvalidQuery, QueryProcessingError);

};

};

Figure B. The QueyableContainerFeatureCollection Corba interface.

#include “OGIS.idl”

module GisCorba {

interface CorbaOjbManager {

exception LayerNotCreated { string why; };

OGIS::QueryableContainerFeatureCollection getGisLayer(

in string username, in string password, in string

GisLayerName) raises (LayerNotCreated);

};

};

Figure C. The CorbaOjbManager Corba interface.

#include “OGIS.idl”

module OpenVendorCorba {

interface ArcViewCorba {

readonly attribute string ArcViewProjectName;

OGIS::WKSGeometry get_geometry (in OGIS::NVPairSeq

geometry_context);

};

};

Figure D. The ArcViewCorba Corba interface.

We can convert the Java application into a
Java applet, so that users can use a Corba-enabled
Web browser (such as Netscape Navigator 4.x, see
[2] in Figure 3) to access and interact with GIS
Corba objects. Future implementations on the
client side will improve the client GUI and
include more types of clients such as a
Web/Corba or C++ client. Client applications will
provide users reliable and timely access to a sin-
gle, virtual GIS with spatial and nonspatial infor-
mation from a network of geographically
distributed, physically separated servers.

The proposed system architecture is the foun-
dation for the design and implementation of an
interoperable GIS: the Spatially Enabled Fisheries
and Environmental Database System (SEFEDS) at
the Southeast Fisheries Science Center.1

Performance issues
We ran several tests to study a prototype sys-

tem’s performance. In one test, we deployed all
Corba objects, EJBs, and spatial databases in an
Oracle8i database server running on a Sun
Enterprise 250 server with a single CPU at 400
MHz and a 256-Mbyte main memory. On our
LAN T1 line (100 Mbits per second), it took an
average of 4 seconds for the Java client applica-
tion running on a number of Intel desktops to ini-
tialize a connection to the Oracle database and
the CorbaObjManager Corba object deployed in
the Oracle8i database. It took about 2 seconds for
the CorbaObjManager object to connect to a
QueryableContainerFeatureCollection Corba
object that initializes its corresponding SpLayer
EJB. After that, the CorbaObjManager object
returned a reference to the QueryableContainer-
FeatureCollection Corba object to the client that
can then invoke methods of the latter Corba
object. The method calls to query and iterate
geospatial features of a relatively small GIS layer
(less than 1-Mbyte file size) completed within a
second. The performance for connections degrad-
ed moderately in the Internet environment,
adding extra seconds depending on the network
setup. The connections are only necessary once
for each client per processing session.

In another test, we deployed Corba objects in
one Windows NT server. We deployed EJBs and
spatial databases in the Oracle8i database server
we just mentioned, as Figure 4 shows. We only
ran this test on the LAN environment, and we
can compare its performance with the first test.

Our study results reveal that the prototype sys-
tem’s performance is adversely affected by estab-

lishing connections between the client and Corba
objects, between Corba objects and EJBs in the
Oracle database server, and between EJBs inside the
EJB container (in our case, the Oracle database serv-
er). However, once connected, a client can invoke
methods in Corba objects and obtain returned
results quickly. We believe that the following mea-
sures will improve the system performance:

❚ Upgrade the main memory and increase the
capacity and number of CPUs for the Sun
Enterprise server.

❚ For each Corba object, create a pool of con-
nections to EJBs in the Oracle server to reduce
the need to establish a database connection
on the fly.

❚ For each EJB, create a pool of connections to
the Oracle database that stores GIS layers in
feature tables to avoid frequently establishing
the expensive database connection.

❚ Explore cache technology to reduce the fre-
quency of accessing the physical databases.

Conclusion
GIS applications based on our architecture in

its current form are interoperable syntactically. At
this level of interoperability, before using a GIS
layer correctly, the user must acquire knowledge
on the semantics of attributes of the underlying
GIS layer12 through studying the metadata of the
GIS layer. Researchers have conducted much work
toward solving the GIS semantic heterogeneity.17,18

We envision that the future OpenGIS catalog ser-
vice14 will improve our ability to resolve semantic
heterogeneity in distributed GISs by enabling
metadata servers to interact with one another
dynamically. MM

Acknowledgments
We thank Chris Snyder for his help with our

Java GUI and his comments on this article. We
also appreciate Marinell Davis’ assistance with
Oracle8i. We are fortunate to have Geoff Sutcliffe
providing valuable feedback on this study. We
thank the reviewers whose constructive sugges-
tions have improved the presentation and litera-
ture survey. This research was carried out in part
under the auspices of the Cooperative Institute
for Marine and Atmospheric Studies (CIMAS), a
Joint Institute of the University of Miami and the
NOAA, cooperative agreement #NA67RJ0149.

75

A
p

ril–Jun
e 2002

References
1. S.H. Wong, A Corba-Based Middleware Architecture

for Building Open and Interoperable Geographic Infor-

mation Systems, master’s thesis, Dept. of Computer

Science, Univ. of Miami, 2000.

2. M.J. Egenhofer et al., “Progress in Computational

Methods for Representing Geographical

Concepts,” Int’l J. Geographical Information Science,

vol. 13, no. 8, Dec. 1999, pp. 775-796.

3. The Complete Corba/IIOP 2.5 Specification, Object

Management Group, http://www.omg.org/

technology/documents/formal/corba_iiop.htm,

1998.

4. R. Orfali and D. Harkey, Client/Server Programming

with Java and Corba, 2nd ed., John Wiley & Sons,

New York, 1998.

5. OpenGIS Simple Features Specification for Corba, revi-

sion 1.0, Open GIS Consortium, http://www.

opengis.org/techno/specs.htm, 1998.

6. Enterprise JavaBeansTM Specification, version 1.1,

Sun Microsystems, http://java.sun.com/products/

ejb/docs.html, 1999.

7. OpenGIS Simple Feature Specification for SQL,

revision 1.1, Open GIS Consortium, http://www.

opengis.org/techno/specs.htm, 1999.

8. Oracle8i Spatial User’s Guide and Reference, release

8.1.5, Oracle, 1998.

9. J. Gaskill and D. Brooks, “Understanding ArcSDE,”

http://www.esri.com/software/arcinfo/arcsde/

understanding_arcsde_uc20000.ppt, 2000.

10. VisiBroker for Java Product Documentation, Borland,

http://www.borland.com/techpubs/books/vbj/vbj3

3/pdf_index.html, 2000.

11. Federal Geographic Data Committee, Content Stan-

dard for Digital Geospatial Metadata, http://www.

fgdc.gov/metadata/contstan.html.

12. An Overview of the Web Mapping Testbed, Open GIS

Consortium, http://opengis.opengis.org/wmt/

wmtinsert.pdf, 2000.

13. Y. Bishr, “Overcoming the Semantic and Other Barri-

ers to GIS interoprability,” Int’l J. Geographical Infor-

mation Science, vol. 12, no. 4, June 1998, pp.

299-314.

14. OpenGIS Catalog Interface Implementation Specifica-

tion, revision 1.0, Open GIS Consortium, http://

www.opengis.org/techno/specs/99-051.pdf, 2000.

15. OpenGIS Web Map Server Interfaces Implementation

Specification, revision 1.0.0, Open GIS Consortium,

http://www.opengis.org/techno/specs/00-028.pdf,

2000.

16. C.S. Horstmann and G.Cornell, Core Java, Sun

Microsystems Press, Palo Alto, Calif., 1998.

17. T. Devogele, C. Parent, and S. Spaccapietra, “On

Spatial Database Integration,” Int’l J. Geographical

Information Science, vol. 12, no. 4, June 1998,

pp. 335-352.

18. R. Laurini, “Spatial Multi-Database Topological Con-

tinuity and Indexing: A Step Towards Seamless GIS

Data Interoprability,” Int’l J. Geographical Information

Science, vol. 12, no. 4, June 1998, pp. 373-402.

Steven H. Wong is a physical sci-

entist at the Southeast Fisheries

Science Center of NOAA Fisheries.

His research interests include object

systems and architecture and

applying geographic information

systems and remote sensing to the study of marine fishery

ecology. He has a BS in marine geology from the

Shandong College of Oceanography, China; an MS in

marine geology from the University of Miami; and an MS

in computer science from the University of Miami, Florida.

Dilip Sarkar is an associate pro-

fessor of computer science at the

University of Miami, Coral

Gables. His research interests

include design and analysis of

algorithms, parallel and distrib-

uted processing, middleware and Web computing, mul-

timedia communication over broadband and wireless

networks, fuzzy systems, and neural networks. He has

a BTech in electronics and electrical communication

engineering from the Indian Institute of Technology,

Kharagpur; an MS in computer science from the Indian

Institute of Science, Bangalore; and a PhD in comput-

er science from the University of Central Florida.

Steven L. Swartz is the director for

the Protected Species and

Biodiversity Division, Southeast

Fisheries Science Center of NOAA

Fisheries. His current research

interests include marine mammal

studies and applying information technology to marine

fisheries studies. He has a BA in biology from the

University of California, Santa Barbara, and a PhD in

marine science from the University of California, Santa

Cruz.

Readers may contact Wong at the Southeast Fisheries

Science Center, NOAA Fisheries, 75 Virginia Beach Dr.,

Miami, FL 33149, email Steven.Wong@noaa.gov.

76

IE
EE

 M
ul

ti
M

ed
ia

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

