
ISBN 0-321-49362-1

Chapter 6

Type Checking

Type Checking

• Generalize the concept of operands and operators to include
subprograms and assignments

• Type checking is the activity of ensuring that the operands
of an operator are of compatible types

• A compatible type is one that is either legal for the operator,
or is allowed under language rules to be implicitly
converted, by compiler- generated code, to a legal type
– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand
of an inappropriate type

2

Type Checking (continued)

• If all type bindings are static, nearly all type
checking can be static

• If type bindings are dynamic, type checking must
be dynamic

• A programming language is strongly typed if type
errors are always detected

• Advantage of strong typing: allows the detection of
the misuses of variables that result in type errors

3

Strong Typing

Language examples:
–FORTRAN 95 is not
–C and C++ are not: parameter type checking can be

avoided; unions are not type checked
–Ada, Java, C#: is, almost strongly typed (e.g., types

can be explicitly cast which could result in error)
- ML is strongly typed
- Ruby, Python are strongly typed (determined at run

time)

4

Strong Typing (continued)

• Coercion rules strongly affect strong typing--they
can weaken it considerably (C++ versus Ada)

• Although Java has just half the assignment
coercions of C++, its strong typing is still far less
effective than that of Ada

5

Name Type Equivalence

• Name type equivalence means the two variables
have equivalent types if they are in either the same
declaration or in declarations that use the same
type name

• Easy to implement but highly restrictive:
–Subranges of integer types are not equivalent with

integer types
–Formal parameters must be the same type as their

corresponding actual parameters

6

Structure Type Equivalence

• Structure type equivalence means that two
variables have equivalent types if their types have
identical structures

• More flexible, but harder to implement

7

Type Equivalence (continued)

• Consider the problem of two structured types:
–Are two record types equivalent if they are structurally the

same but use different field names?
–Are two array types equivalent if they are the same

except that the subscripts are different?
(e.g. [1..10] and [0..9])

–Are two enumeration types equivalent if their components
are spelled differently?

–With structural type equivalence, you cannot differentiate
between types of the same structure (e.g. different
units of speed, both float)

8

