
ISBN 0-321-49362-1

Chapter 5

Names, Bindings, and
Scopes

Chapter 5 Topics
• Introduction
• Names
• Variables
• The Concept of Binding
• Scope
• Scope and Lifetime
• Referencing Environments
• Named Constants

2

Introduction

• Imperative languages are abstractions of von
Neumann architecture
–Memory
–Processor

• Variables characterized by attributes
–To design a type, must consider scope, lifetime, type

checking, initialization, and type compatibility

3

Names

• Design issues for names:
–Are names case sensitive?
–Are special words reserved words or keywords?

4

Names (continued)

• Length
–Language examples:

• Earliest languages used single character! (math influence)
• FORTRAN I: maximum 6
• COBOL: maximum 30
• FORTRAN 90 and C89: maximum 31
• C99: maximum 63
• C#, Ada, and Java: no limit, and all are significant
• C++: no limit, but implementers often impose one

5

Names (continued)

• 1970s and 80s: underscore  
example: my_stack

• Camel form in C-based languages 
example: myStack

6

Names (continued)

• Case sensitivity
–Disadvantage: readability (names that look alike are

different)
• Names in the C-based languages are case sensitive
• Names in others are not
• Worse in C++, Java, and C# because predefined names are

mixed case (e.g. IndexOutOfBoundsException)

7

Names (continued)

• Special words
–An aid to readability; used to delimit or separate statement

clauses
• A keyword is a word that is special only in certain contexts, e.g., in

Fortran
– Real VarName (Real is a data type followed with a name, therefore Real is a keyword)
– Real = 3.4 (Real is a variable)

–A reserved word is a special word that cannot be used as a
user-defined name

–Potential problem with reserved words: If there are too many,
many collisions occur (e.g., COBOL has 300 reserved
words!)

8

Variables

• A variable is an abstraction of a memory cell
• Variables can be characterized as a sextuple of

attributes:
–Name
–Address
–Type
–Value
–Lifetime
–Scope

9

Variables Attributes

• Name - not all variables have them (later)
• Address - the memory address with which it is associated

– A variable may have different addresses at different times during
execution

– A variable may have different addresses at different places in a program
– If two variable names can be used to access the same memory location,

they are called aliases
–Aliases are created via pointers, reference variables, C and C++ unions
–Aliases are harmful to readability (program readers must remember all of

them)

10

Variables Attributes (continued)

• Type - determines the range of values of variables and
the set of operations that are defined for values of that
type; in the case of floating point, type also determines
the precision

• Value - the contents of the location with which the
variable is associated

 - The l-value of a variable is its address
 - The r-value of a variable is its value
• Abstract memory cell - the physical cell or collection of

cells associated with a variable

11

The Concept of Binding

• A binding is an association, such as between an
attribute and an entity, or between an operation
and a symbol

• Binding time is the time at which a binding takes
place.

12

Possible Binding Times

• Language design time -- bind operator symbols to
operations

• Language implementation time -- bind floating point
type to a representation

• Compile time -- bind a variable to a type in C or Java
• Load time -- bind a C or C++ static variable to a

memory cell)
• Runtime -- bind a non-static local variable to a memory

cell

13

Static and Dynamic Binding

• A binding is static if it first occurs before run time
and remains unchanged throughout program
execution.

• A binding is dynamic if it first occurs during
execution or can change during execution of the
program

14

Type Binding

1. How is a type specified?
2. When does the binding take place?

If static, the type may be specified by either an
explicit or an implicit declaration

15

Explicit/Implicit Declaration

• An explicit declaration is a program statement used
for declaring the types of variables

• An implicit declaration is a default mechanism for
specifying types of variables (the first appearance
of the variable in the program)

• FORTRAN, PL/I, BASIC, and Perl provide implicit
declarations
–Advantage: writability
–Disadvantage: reliability (less trouble with Perl)

16

Dynamic Type Binding

• Dynamic Type Binding (JavaScript and PHP)
• Specified through an assignment statement

e.g., JavaScript
list = [2, 4.33, 6, 8];

list = 17.3;

–Advantage: flexibility (generic program units)
–Disadvantages:

• Type error detection by the compiler is difficult
• High cost (dynamic type checking and interpretation)

17

Variable Attributes (continued)

• Type Inferencing (ML, Miranda, and Haskell)
–Rather than by assignment statement, types are

determined (by the compiler) from the context of the
reference

• Storage Bindings & Lifetime
–Allocation - getting a cell from some pool of available

cells
–Deallocation - putting a cell back into the pool

• The lifetime of a variable is the time during which it
is bound to a particular memory cell

18

Categories of Variables by Lifetimes

• Static--bound to memory cells before execution
begins and remains bound to the same memory
cell throughout execution, e.g., C and C++ static
variables
–Advantages: efficiency (direct addressing), history-

sensitive subprogram support
–Disadvantage: lack of flexibility (no recursion)

19

Categories of Variables by Lifetimes
• Stack-dynamic--Storage bindings are created for variables when

their declaration statements are elaborated.
 (A declaration is elaborated when the executable code

associated with it is executed)
• If scalar, all attributes except address are statically bound

–local variables in C subprograms and Java methods

• Advantage: allows recursion; conserves storage
• Disadvantages:

–Overhead of allocation and deallocation
–Subprograms cannot be history sensitive
–Inefficient references (indirect addressing)

20

Categories of Variables by Lifetimes

• Explicit heap-dynamic -- Allocated and deallocated by
explicit directives, specified by the programmer, which
take effect during execution

• Referenced only through pointers or references, e.g.
dynamic objects in C++ (via new and delete), all objects
in Java

• Advantage: provides for dynamic storage management,
often used for lists and trees

• Disadvantage: inefficient and unreliable

21

Categories of Variables by Lifetimes

• Implicit heap-dynamic--Allocation and deallocation
caused by assignment statements
–all variables in APL; all strings and arrays in Perl,

JavaScript, and PHP
• Advantage: flexibility (generic code)
• Disadvantages:

–Inefficient, because all attributes are dynamic
–Loss of error detection

22

Type Checking

• Generalize the concept of operands and operators to include
subprograms and assignments

• Type checking is the activity of ensuring that the operands
of an operator are of compatible types

• A compatible type is one that is either legal for the operator,
or is allowed under language rules to be implicitly
converted, by compiler- generated code, to a legal type
– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand
of an inappropriate type

23

Type Checking (continued)

• If all type bindings are static, nearly all type
checking can be static

• If type bindings are dynamic, type checking must
be dynamic

• A programming language is strongly typed if type
errors are always detected

• Advantage of strong typing: allows the detection of
the misuses of variables that result in type errors

24

Strong Typing

Language examples:
–FORTRAN 95 is not: parameters, EQUIVALENCE
–C and C++ are not: parameter type checking can be

avoided; unions are not type checked
–Ada is, almost (UNCHECKED CONVERSION is loophole),

e.g. user-defined storage allocation, addresses are
Integers, but must be used as pointers

(Java and C# are similar to Ada)
- ML is strongly typed

25

Strong Typing (continued)

• Coercion rules strongly affect strong typing--they
can weaken it considerably (C++ versus Ada)

• Although Java has just half the assignment
coercions of C++, its strong typing is still far less
effective than that of Ada

26

Name Type Equivalence

• Name type equivalence means the two variables
have equivalent types if they are in either the same
declaration or in declarations that use the same
type name

• Easy to implement but highly restrictive:
–Subranges of integer types are not equivalent with

integer types
–Formal parameters must be the same type as their

corresponding actual parameters

27

Structure Type Equivalence

• Structure type equivalence means that two
variables have equivalent types if their types have
identical structures

• More flexible, but harder to implement

28

Type Equivalence (continued)

• Consider the problem of two structured types:
–Are two record types equivalent if they are structurally the

same but use different field names?
–Are two array types equivalent if they are the same

except that the subscripts are different?
(e.g. [1..10] and [0..9])

–Are two enumeration types equivalent if their components
are spelled differently?

–With structural type equivalence, you cannot differentiate
between types of the same structure (e.g. different
units of speed, both float)

29

Variable Attributes: Scope

• The scope of a variable is the range of statements
over which it is visible

• The nonlocal variables of a program unit are those
that are visible but not declared there

• The scope rules of a language determine how
references to names are associated with variables

30

Static Scope  

• Based on program text
• To connect a name reference to a variable, you (or the

compiler) must find the declaration
• Search process: search declarations, first locally, then in

increasingly larger enclosing scopes, until one is found for
the given name

• Enclosing static scopes (to a specific scope) are called its
static ancestors; the nearest static ancestor is called a static
parent

• Some languages allow nested subprogram definitions, which
create nested static scopes (e.g., Ada, JavaScript, and PHP)

31

Scope (continued)

• Variables can be hidden from a unit by having a
"closer" variable with the same name

• C++ and Ada allow access to these "hidden"
variables
–In Ada: unit.name
–In C++: class_name::name

32

Blocks  

–A method of creating static scopes inside program units--from ALGOL 60
–Examples:

 C-based languages:
 while (...) {

int index;
 ...
 }

 Ada: declare Temp : Float;
 begin

 ...
 end

33

Evaluation of Static Scoping  

• Assume MAIN calls A and B
 A calls C and D
 B calls A and E

34

Static Scope Example

35

A lot of calling opportunities!

Static Scope Example

36

Desired calling opportunities

Static Scope (continued)

37

Static Scope (continued)

38

• Suppose the spec is changed so that D must now access some
data in B

Static Scope (continued)

39

• Solutions:
–Put D in B (but then D cannot access A's variables)
–Move the data from B that D needs to MAIN (but then all

procedures can access them)
• Overall: static scoping often encourages many globals

Dynamic Scope  

• Based on calling sequences of program units, not
their textual layout (temporal versus spatial)

• References to variables are connected to
declarations by searching back through the chain of
subprogram calls that forced execution to this point

40

Scope Example
Big
 - declaration of X
 Sub1
 - declaration of X -
 ...
 call Sub2
 ...

 Sub2
 ...
 - reference to X -
 ...

 ...
 call Sub1
 …

Big calls Sub1
Sub1 calls Sub2
Sub2 uses X

41

Scope Example

• Static scoping
–Reference to X is to Big's X

• Dynamic scoping
–Reference to X is to Sub1's X

• Evaluation of Dynamic Scoping:
–Advantage: convenience (called subprogram is

executed in the context of the caller)
–Disadvantage: poor readability

42

Scope and Lifetime

• Scope and lifetime are sometimes closely related,
but are different concepts

• Consider a static variable in a C or C++ function

43

Referencing Environments

• The referencing environment of a statement is the collection
of all names that are visible in the statement

• In a static-scoped language, it is the local variables plus all of
the visible variables in all of the enclosing scopes

• A subprogram is active if its execution has begun but has not
yet terminated

• In a dynamic-scoped language, the referencing environment
is the local variables plus all visible variables in all active
subprograms

• Examples on board…

44

Named Constants

• A named constant is a variable that is bound to a value only when it
is bound to storage

• Advantages: readability and modifiability
• Used to parameterize programs
• The binding of values to named constants can be either static

(called manifest constants) or dynamic
• Languages:

– FORTRAN 95: constant-valued expressions
– Ada, C++, and Java: expressions of any kind
– C# has two kinds, readonly and const

 - the values of const named constants are bound at
 compile time
 - The values of readonly named constants are
 dynamically bound

45

void example() {
 int[] intList = new int[100];
 String[] strList = new String[100];
 ...
 for (index=0; index<100; index++) {
 ...
 }
 for (index=0; index<100; index++) {
 ...
 }
 ...
 average = sum / 100;
 ...
}

Example Named Constants

46

void example() {
 final int len = 100;
 int[] intList = new int[len];
 String[] strList = new String[len];
 ...
 for (index=0; index<len; index++) {
 ...
 }
 for (index=0; index<len; index++) {
 ...
 }
 ...
 average = sum / len;
 ...
}

Example Named Constants

47

Variable Initialization

• The binding of a variable to a value at the time it is
bound to storage is called initialization

• Initialization is often done on the declaration
statement, e.g., in Java

 int sum = 0;

48

Summary

• Case sensitivity and the relationship of names to special
words represent design issues of names

• Variables are characterized by the sextuples: name,
address, value, type, lifetime, scope

• Binding is the association of attributes with program
entities (can be static or dynamic scope)

• Variables are categorized considering lifetime as: static,
stack dynamic, explicit heap dynamic, implicit heap
dynamic

• Referencing environment is collection of all variables
visible to that statement

• named constants are variables bound to values only once
49

