Chapter 3

. . CONCEPTS OF
Describing Syntax PROGRAMMING LANGUAGES 11/¢

and Semantics

Chapter 3 Topics

Introduction

The General Problem of Describing Syntax
Formal Methods of Describing Syntax
Attribute Grammars

Describing the Meanings of Programs:
Dynamic Semantics

Ambiguous grammar

- 2 parse trees

for the sentence <assign> <assign>
] Operator <i‘d> - <expr> <id> - <expr>
precedence ! /[\ ’ /]\
<expr> + <expr> A <expr> » <expr>
- Conflicting //////r\\\\\ /////1\\\\\\
preced ence <id> <expr> & <expr> <expr> + <expr> <id>
B <id> <id> <id> <id> A

An Unambiguous Expression Grammar

- If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> — <expr> - <term> | <term>
<term> — <term> / const| const

<expr>

SN

<expr> - <term>
| SN T

<term> <term> /| const
| |

const const

Associativity of Operators

- Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>
<expr> + const

/N

<expr> + const

const

Extended BNF (EBNF)

- Optional parts are placed in brackets []

<1f stmt> -> 1f (<expression>)
<statement> [else <statement>]

- Alternative parts of RHSs are placed
inside parentheses and separated via
vertical bars

<term> — <term> (+]|-) const

- Repetitions (0 or more) are placed inside
braces { }

BNF and EBNF

- BNF

<expr> — <expr> + <term>
| <expr> - <term>
| <term>
<term> — <term> * <factor>
| <term> / <factor>
| <factor>

- EBNF

<expr> — <term> {(+ | -) <term>}
<term> — <factor> {(* | /) <factor>}

Recent Variations in EBNF

- Alternative RHSs are put on separate lines

- Use of a colon instead of -

- Use of __ for optional parts

. Use of oneof for choices

Static semantics

- Context-free grammars (CFGs) cannot describe
all of the syntax of programming languages

- Categories of constructs that are trouble:
- Context-free, but cumbersome (e.qg.,

types of operands in expressions; Java
floating-

point value cannot be assigned to integer
type,
but opposite legal)

Attribute Grammars

. Attribute grammars are used to describe
more of the structure of PL than we can
do with CFG, e.g. to address static
semantics such as type compatibility

. Attribute grammars (AGs) have additions
to CFGs to carry some semantic info on
parse tree nodes

- Primary value of AGs:

- Static semantics specification "

Attribute Grammars : Definition

- Def: An attribute grammar is a context—free
grammar with the following additions:

- For each grammar symbol x there is a set A(x)
of attribute values

- Each rule has a set of functions that define
certain attributes of the nonterminals in the rule

- Each rule has a (possibly empty) set of
predicates, which state the static semantic rules,
to check for attribute consistency

11

Attribute Grammars: Definition

. Let X, — X, ... X bearule

- Synthesized attributes — up the parse tree
from children

- Inherited attributes — down and across
parse tree

- Initially, there are intrinsic attributes on the
leaves (such as actual types of variables, int
or real)

12

Attribute Grammars (continued)

- How are attribute values computed?

- If all attributes were inherited, the tree could be
decorated in top-down order.

- If all attributes were synthesized, the tree could
oe decorated in bottom-up order.

- In many cases, both kinds of attributes are
used, and it is some combination of top-down
and bottom-up that must be used.

13

Extra (optional) examples Chapter

14

Example of parsing string and generating error (from

chap 4)

Parsing examples as part of compilation process (chapter 4) and
generating errors

Example recursive-descent parser using a parse tree written

in C

Follows the generative, top-down, process of the EBNF grammar,
with collections of subprograms that could be recursive

Subprogram for each non terminal rule; traces parse tree rooted
at that non terminal

Starts from root and does leftmost derivation

We assume function lex() gets the next lexeme and puts its
token code in the global variable nextToken

15

Example of parsing string and generating error (from
chap 4)

EBNF rule: <expr> — <term= {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>)

<factor> — id | int_constant | (<expr>)

/* expr
Parses strings in the language generated by the rule:
<expr> -> <term> {(+ | -) <term>}
*/

void expr() {
printf("Enter <expr>\n");

/* Parse the first term */
term();
/* As long as the next token is + or -, get
the next token and parse the next term */
while (nextToken == ADD OP || nextToken == SUB OP) { lex();

term(); }

printf ("Exit <expr>\n");
} /* End of function expr */

Example of parsing string and generating error (from
chap 4)

EBNF rule: <expr> — <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>)

<factor> — id | int_constant | (<expr>)

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*/

void term() {
printf("Enter <term>\n");

/* Parse the first factor */
factor();
/* As long as the next token is * or /, get the
next token and parse the next factor */
while (nextToken == MULT OP || nextToken == DIV OP) { lex();

factor(); }

printf("Exit <term>\n");
} /* End of function term */

17

Example of parsing string and generating error (from
chap 4)

EBNF rule: <expr> = <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>)

<factor> — id | int_constant | (<expr>)

/* factor
Parses strings in the language generated by the rule:
<factor> -> id | int constant | (<expr)
*/

void factor() {

printf ("Enter <factor>\n");

/* Determine which RHS */
if (nextToken == IDENT || nextToken == INT LIT)

/* Get the next token */
lex();

18

Example of parsing string and generating error (from
chap 4)

EBNF rule: <expr> = <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>)

<factor> — id | int_constant | (<expr>)

/* If the RHS is (<expr>), call lex to pass over the
left parenthesis, call expr, and check for the right
parenthesis */

else {

if (nextToken == LEFT PAREN) ({

lex();
expr();
if (nextToken == RIGHT PAREN)

lex();
else

error();
} /* End of if (nextToken == ... */

Example of parsing string and generating error (from
chap 4)

EBNF rule: <expr> = <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>)

<factor> — id | int_constant | (<expr>)

/* It was not an id, an integer literal, or a left
parenthesis */
else

error();
} /* End of else */
printf("Exit <factor>\n");;
} /* End of function factor */

20

Example of parsing string and generating error (from
chap 4) <ifstmt> — if (<boolexpr>) <statement> [else <statement>]

/* Function ifstmt
Parses strings in the language generated by the rule:
<ifstmt> -> if (<boolexpr>) <statement>
[else <statement>]
*/
void ifstmt() {
/* Be sure the first token is 'if' */
if (nextToken !=IF_CODE)
error(); else {
/* Call lex to get to the next token */
lex();
/* Check for the left parenthesis */
if (nextToken != LEFT_PAREN)
error(); else {
/* Call boolexpr to parse the Boolean expression */
boolexpr();
/* Check for the right parenthesis */
if (nextToken != RIGHT_PAREN)
error(); 21

Example of parsing string and generating error (from

chap 4) <ifstmt> — if (<boolexpr>) <statement> [else <statement>]

else {
/* Call statement to parse the then clause */
statement();
/* If an else is next, parse the else clause */
if (nextToken == ELSE_CODE) {
/* Call lex to get over the else */
lex();
statement();
} /* end of if (nextToken == ELSE_CODE ... */
} /* end of else of if (nextToken != RIGHT ... */
} /* end of else of if (nextToken != LEFT ... */
} /* end of else of if (nextToken !=I1IF_CODE ... */
} /* end of ifstmt */

22

