
ISBN 0-321-49362-1

Chapter 2

Evolution of the Major
Programming
Languages (part 2)

The First Step Toward Sophistication: ALGOL 60

• Environment of development
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all for specific

machines
– No portable language; all were machine-dependent
– No universal language for communicating algorithms

• ALGOL 60 was the result of efforts to design a
universal language

• ALGOL from?

2

The First Step Toward Sophistication: ALGOL 60

• Environment of development
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all for specific

machines
– No portable language; all were machine-dependent
– No universal language for communicating algorithms

• ALGOL 60 was the result of efforts to design a
universal language

• ALGOL from ALGOrithmic Language

3

Early Design Process

• ACM and GAMM met for four (!) days for design (May
27 to June 1, 1958) 

4

Early Design Process

• ACM and GAMM met for four (!) days for design (May
27 to June 1, 1958)

• ACM = Association for Computing Machinery;  
GAMM = German acronym for Association of Applied
Mathematics and Mechanics

5

Early Design Process

• ACM and GAMM met for four (!) days for design (May
27 to June 1, 1958)

• Goals of the language
– Syntax close to mathematical notation
– Good for describing algorithms in publications - new
– Must be mechanically translatable into machine code

6

Early Design Process

• Example: Assignment statement:
– Initially like Plankalkül (not yet published, but some

European members were familiar with) 
expression => variable

– Discussion/arguments: Card punches at time did not include
greater than symbol

– Later changed to Fortran form: 
variable := expression

7

ALGOL 58

• Concept of type was formalized
• Names could be any length (machine independent)
• Arrays could have any number of subscripts
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements (begin ... end)
• Semicolon as a statement separator
• Assignment operator was :=
• if had an else-if clause
• No I/O - “would make it machine dependent”

8

In many ways descendent from Fortran, but meant
to be more general and machine independent

ALGOL 58

• No I/O - “would make it machine dependent”
• Knuth 1964, A proposal for input-output conventions in

ALGOL 60: “The ALGOL 60 language as first defined
made no explicit reference to input and output processes.
Such processes appeared to be quite dependent on the
computer used, and so it was difficult to obtain agreement
on those matters. As time has passed, a great many
ALGOL compilers have come into use, and each compiler
has incorporated some input-output facilities.”

9

ALGOL 58 Implementation

• Not meant to be implemented, but variations of it were
(MAD, JOVIAL)

• Although IBM was initially enthusiastic, all support
was dropped by mid 1959 (difficult to read;
understand; more support for Fortran)

10

ALGOL 60 Overview

• Modified ALGOL 58 at 6-day meeting in Paris
• New features

– Block structure (local scope)
– Two parameter passing methods
– Subprogram recursion (new for imperative; note LISP in

1959)
– Stack-dynamic arrays (array size set at time of execution)
– Still no I/O and no string handling

11

ALGOL 60 Evaluation

• Successes
– It was the standard way to publish algorithms for over 20

years

12

ALGOL 60 Evaluation

• Successes
– It was the standard way to publish algorithms for over 20

years
– All subsequent imperative languages are based on it

13

ALGOL 60 Evaluation

• Successes
– It was the standard way to publish algorithms for over 20

years
– All subsequent imperative languages are based on it
– First machine-independent language

14

ALGOL 60 Evaluation

• Successes
– It was the standard way to publish algorithms for over 20

years!
– All subsequent imperative languages are based on it
– First machine-independent language
– First language whose syntax was formally defined (BNF;

later)

15

ALGOL 60 Evaluation

• Most imperative languages are direct or indirect
descendants: PL/I, SIMULA 67, C, Pascal, Ada, C++,
Java …

16

ALGOL 60 Evaluation (continued)

• Failure
– Never widely used, especially in U.S.
– Reasons

• Lack of I/O statements and the character set made
programs non-portable

• Too flexible--hard to implement
• Entrenchment of Fortran
• BNF for formal syntax description - back then seemed

strange and complicated; today widely used
• Lack of support from IBM

17

// the main program (this is a comment)

begin
 integer N;
 Read Int(N);

 begin
 real array Data[1:N];
 real sum, avg;
 integer i;
 sum:=0;

 for i:=1 step 1 until N do
 begin real val;
 Read Real(val);
 Data[i]:=if val<0 then -val else val
 end;

 for i:=1 step 1 until N do
 sum:=sum + Data[i];
 avg:=sum/N;
 Print Real(avg)
 end
end

18Source: http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.html, October 2008

Example ALGOL code calculating mean

Computerizing Business Records: COBOL

19

Computerizing Business Records: COBOL

20

y2k problem: dates yy to save memory space, versus yyyy;
misinterpretation of differences between dates

Computerizing Business Records: COBOL

• Story a bit opposite to Algol 60…
– Goal: common language for business applications
– Has been used for 65 years for business
– But little effect on design of subsequent languages  

(only PL/I)

21

COBOL Historical Background

• Based on FLOW-MATIC designed at UNIVAC
• Grace Hopper at Univac: “mathematical programs

should be written in mathematical notation, data
processing programs should be written in English
statements”

22

COBOL Historical Background

• Based on FLOW-MATIC
• FLOW-MATIC features

– Names up to 12 characters, with embedded hyphens
– English names for arithmetic operators (no arithmetic

expressions)
– Data and code were completely separate
– The first word in every statement was a verb

23

COBOL Design Process

• First Design Meeting (Pentagon) - May 1959
• Design goals

– Must look like simple English
– Must be easy to use, even if that means it will be less powerful
– Must broaden the base of computer users
– Must not be biased by current compiler problems

• Design committee members were all from computer
manufacturers and DoD branches

• Design Problems: arithmetic expressions? subscripts? Fights
among manufacturers

24

COBOL Evaluation

• Contributions
– First macro facility in a high-level language
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with hyphens
– Separate data division (strong part: ideal for business and

accounting reports)

25

COBOL: DoD Influence

• First language required by DoD
– would have failed without DoD

• Still the most widely used business applications
language

26

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. ShortestProgram.

PROCEDURE DIVISION.
DisplayPrompt.
 DISPLAY "I did it".
 STOP RUN.

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
* Uses the ACCEPT and DISPLAY verbs to accept a student record
* from the user and display some of the fields. Also shows how
* the ACCEPT may be used to get the system date and time.

* The YYYYMMDD in "ACCEPT CurrentDate FROM DATE YYYYMMDD."
* is a format command that ensures that the date contains a
* 4 digit year. If not used, the year supplied by the system will
* only contain two digits which may cause a problem in the year 2000.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Surname PIC X(8).
 03 Initials PIC XX.
 02 CourseCode PIC X(4).
 02 Gender PIC X.

* YYMMDD
01 CurrentDate.
 02 CurrentYear PIC 9(4).
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

* YYDDD
01 DayOfYear.
 02 FILLER PIC 9(4).
 02 YearDay PIC 9(3).

* HHMMSSss s = S/100
01 CurrentTime.
 02 CurrentHour PIC 99.
 02 CurrentMinute PIC 99.
 02 FILLER PIC 9(4).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter student details using template below".
 DISPLAY "Enter - ID,Surname,Initials,CourseCode,Gender"
 DISPLAY "SSSSSSSNNNNNNNNIICCCCG".
 ACCEPT StudentDetails.
 ACCEPT CurrentDate FROM DATE YYYYMMDD.
 ACCEPT DayOfYear FROM DAY YYYYDDD.
 ACCEPT CurrentTime FROM TIME.
 DISPLAY "Name is ", Initials SPACE Surname.
 DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
 DISPLAY "Today is day " YearDay " of the year".
 DISPLAY "The time is " CurrentHour ":" CurrentMinute.
 STOP RUN.Source: http://www.csis.ul.ie/COBOL/examples/default.htm#SimplePrograms, 

University of Limerick, Ireland

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. ShortestProgram.

PROCEDURE DIVISION.
DisplayPrompt.
 DISPLAY "I did it".
 STOP RUN.

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
* Uses the ACCEPT and DISPLAY verbs to accept a student record
* from the user and display some of the fields. Also shows how
* the ACCEPT may be used to get the system date and time.

* The YYYYMMDD in "ACCEPT CurrentDate FROM DATE YYYYMMDD."
* is a format command that ensures that the date contains a
* 4 digit year. If not used, the year supplied by the system will
* only contain two digits which may cause a problem in the year 2000.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Surname PIC X(8).
 03 Initials PIC XX.
 02 CourseCode PIC X(4).
 02 Gender PIC X.

* YYMMDD
01 CurrentDate.
 02 CurrentYear PIC 9(4).
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

* YYDDD
01 DayOfYear.
 02 FILLER PIC 9(4).
 02 YearDay PIC 9(3).

* HHMMSSss s = S/100
01 CurrentTime.
 02 CurrentHour PIC 99.
 02 CurrentMinute PIC 99.
 02 FILLER PIC 9(4).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter student details using template below".
 DISPLAY "Enter - ID,Surname,Initials,CourseCode,Gender"
 DISPLAY "SSSSSSSNNNNNNNNIICCCCG".
 ACCEPT StudentDetails.
 ACCEPT CurrentDate FROM DATE YYYYMMDD.
 ACCEPT DayOfYear FROM DAY YYYYDDD.
 ACCEPT CurrentTime FROM TIME.
 DISPLAY "Name is ", Initials SPACE Surname.
 DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
 DISPLAY "Today is day " YearDay " of the year".
 DISPLAY "The time is " CurrentHour ":" CurrentMinute.
 STOP RUN.Source: http://www.csis.ul.ie/COBOL/examples/default.htm#SimplePrograms, 

University of Limerick, Ireland

Shortest program

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. ShortestProgram.

PROCEDURE DIVISION.
DisplayPrompt.
 DISPLAY "I did it".
 STOP RUN.

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
* Uses the ACCEPT and DISPLAY verbs to accept a student record
* from the user and display some of the fields. Also shows how
* the ACCEPT may be used to get the system date and time.

* The YYYYMMDD in "ACCEPT CurrentDate FROM DATE YYYYMMDD."
* is a format command that ensures that the date contains a
* 4 digit year. If not used, the year supplied by the system will
* only contain two digits which may cause a problem in the year 2000.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Surname PIC X(8).
 03 Initials PIC XX.
 02 CourseCode PIC X(4).
 02 Gender PIC X.

* YYMMDD
01 CurrentDate.
 02 CurrentYear PIC 9(4).
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

* YYDDD
01 DayOfYear.
 02 FILLER PIC 9(4).
 02 YearDay PIC 9(3).

* HHMMSSss s = S/100
01 CurrentTime.
 02 CurrentHour PIC 99.
 02 CurrentMinute PIC 99.
 02 FILLER PIC 9(4).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter student details using template below".
 DISPLAY "Enter - ID,Surname,Initials,CourseCode,Gender"
 DISPLAY "SSSSSSSNNNNNNNNIICCCCG".
 ACCEPT StudentDetails.
 ACCEPT CurrentDate FROM DATE YYYYMMDD.
 ACCEPT DayOfYear FROM DAY YYYYDDD.
 ACCEPT CurrentTime FROM TIME.
 DISPLAY "Name is ", Initials SPACE Surname.
 DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
 DISPLAY "Today is day " YearDay " of the year".
 DISPLAY "The time is " CurrentHour ":" CurrentMinute.
 STOP RUN.Source: http://www.csis.ul.ie/COBOL/examples/default.htm#SimplePrograms, 

University of Limerick, Ireland

Separate data and procedure
division

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. ShortestProgram.

PROCEDURE DIVISION.
DisplayPrompt.
 DISPLAY "I did it".
 STOP RUN.

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
* Uses the ACCEPT and DISPLAY verbs to accept a student record
* from the user and display some of the fields. Also shows how
* the ACCEPT may be used to get the system date and time.

* The YYYYMMDD in "ACCEPT CurrentDate FROM DATE YYYYMMDD."
* is a format command that ensures that the date contains a
* 4 digit year. If not used, the year supplied by the system will
* only contain two digits which may cause a problem in the year 2000.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Surname PIC X(8).
 03 Initials PIC XX.
 02 CourseCode PIC X(4).
 02 Gender PIC X.

* YYMMDD
01 CurrentDate.
 02 CurrentYear PIC 9(4).
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

* YYDDD
01 DayOfYear.
 02 FILLER PIC 9(4).
 02 YearDay PIC 9(3).

* HHMMSSss s = S/100
01 CurrentTime.
 02 CurrentHour PIC 99.
 02 CurrentMinute PIC 99.
 02 FILLER PIC 9(4).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter student details using template below".
 DISPLAY "Enter - ID,Surname,Initials,CourseCode,Gender"
 DISPLAY "SSSSSSSNNNNNNNNIICCCCG".
 ACCEPT StudentDetails.
 ACCEPT CurrentDate FROM DATE YYYYMMDD.
 ACCEPT DayOfYear FROM DAY YYYYDDD.
 ACCEPT CurrentTime FROM TIME.
 DISPLAY "Name is ", Initials SPACE Surname.
 DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
 DISPLAY "Today is day " YearDay " of the year".
 DISPLAY "The time is " CurrentHour ":" CurrentMinute.
 STOP RUN.Source: http://www.csis.ul.ie/COBOL/examples/default.htm#SimplePrograms, 

University of Limerick, Ireland

Instead of data types,
“Declaration by example” of

picture of storage required for data

Template or picture of the storage:
9(7) = 7 character digit

X(8) = 8 character alphabetic

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. ShortestProgram.

PROCEDURE DIVISION.
DisplayPrompt.
 DISPLAY "I did it".
 STOP RUN.

 $ SET SOURCEFORMAT"FREE"
IDENTIFICATION DIVISION.
PROGRAM-ID. AcceptAndDisplay.
AUTHOR. Michael Coughlan.
* Uses the ACCEPT and DISPLAY verbs to accept a student record
* from the user and display some of the fields. Also shows how
* the ACCEPT may be used to get the system date and time.

* The YYYYMMDD in "ACCEPT CurrentDate FROM DATE YYYYMMDD."
* is a format command that ensures that the date contains a
* 4 digit year. If not used, the year supplied by the system will
* only contain two digits which may cause a problem in the year 2000.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 StudentDetails.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Surname PIC X(8).
 03 Initials PIC XX.
 02 CourseCode PIC X(4).
 02 Gender PIC X.

* YYMMDD
01 CurrentDate.
 02 CurrentYear PIC 9(4).
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

* YYDDD
01 DayOfYear.
 02 FILLER PIC 9(4).
 02 YearDay PIC 9(3).

* HHMMSSss s = S/100
01 CurrentTime.
 02 CurrentHour PIC 99.
 02 CurrentMinute PIC 99.
 02 FILLER PIC 9(4).

PROCEDURE DIVISION.
Begin.
 DISPLAY "Enter student details using template below".
 DISPLAY "Enter - ID,Surname,Initials,CourseCode,Gender"
 DISPLAY "SSSSSSSNNNNNNNNIICCCCG".
 ACCEPT StudentDetails.
 ACCEPT CurrentDate FROM DATE YYYYMMDD.
 ACCEPT DayOfYear FROM DAY YYYYDDD.
 ACCEPT CurrentTime FROM TIME.
 DISPLAY "Name is ", Initials SPACE Surname.
 DISPLAY "Date is " CurrentDay SPACE CurrentMonth SPACE CurrentYear.
 DISPLAY "Today is day " YearDay " of the year".
 DISPLAY "The time is " CurrentHour ":" CurrentMinute.
 STOP RUN.Source: http://www.csis.ul.ie/COBOL/examples/default.htm#SimplePrograms, 

University of Limerick, Ireland

Note date warning

BASIC (1971)

• BASIC meaning?

32

BASIC (1971)

• BASIC meaning?  
Beginners All purpose Symbolic Instruction code

33

BASIC (1971)

• BASIC meaning?  
Beginners All purpose Symbolic Instruction code

• Initially only 14 different type of statements and a
single data type (floating point)!

34

BASIC (1971)

• Designed by Kemeny & Kurtz at Dartmouth
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time - new

concept…

35

BASIC (1971)

• Designed by Kemeny & Kurtz at Dartmouth
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time - new

concept…
• Current popular dialect: Visual BASIC

36

The Beginning of Timesharing: BASIC

• Designed by Kemeny & Kurtz at Dartmouth
• First widely used language with time sharing.

Terminals connected to remote computers (before
punch cards or tapes)

37http://gt.ibnlive.in.com.akadns.net/photogallery/15806-13.html

BASIC Evaluation

38

• First widely used language that used terminals
• Design largely from FORTRAN, some from ALGOL
• Criticized for poor structure of programs
• Readability and reliability
• Resurgence by Visual Basic in 1990

– GUI
– VB .NET

BASIC Evaluation

39

CLS

x = INT(RND * 10) + 1

PRINT "I am thinking of a number between 1 and 10, can you guess it?"

PRINT "You have 3 chances"

INPUT "What is it, Chance 1"; i%

IF i% = x GOTO win

IF i% x THEN PRINT "Guess lower!"

INPUT "Chance 2"; i%

IF i% = x GOTO win

IF i% x THEN PRINT "Guess lower!"

INPUT "Chance 3, last chance"; i%

IF i% = x GOTO win

IF i% x THEN GOTO loose

win: CLS

COLOR 9

PRINT "Congratulations!!! You guessed right"

END

lose: CLS

PRINT "You lost!"

PRINT

PRINT "The correct number was "; x

Source: http://www.osix.net/modules/article/?id=111, verified on Sep 9, 2008

2.8 Everything for Everybody: PL/I

• Designed by IBM and SHARE
• Computing situation in 1964 (IBM's point of view)

– Scientific computing
• IBM 1620 and 7090 computers
• FORTRAN
• SHARE user group

– Business computing
• IBM 1401, 7080 computers
• COBOL
• GUIDE user group

41

2.8 Everything for Everybody: PL/I

• Designed by IBM and SHARE
• Computing situation in 1964 (IBM's point of view)

– Scientific computing
• IBM 1620 and 7090 computers
• FORTRAN
• SHARE user group

– Business computing
• IBM 1401, 7080 computers
• COBOL
• GUIDE user group

42

Goal: Large-scale attempt at language that can be used
for variety of problems

PL/I: Design Process

• Designed in five months by the 3 x 3 Committee
– Three members from IBM, three members from SHARE

• Initially called NPL (New Programming Language)
• Name changed to PL/I in 1965 (to avoid confusion

with “National Physical Laboratory” in England)

43

PL/I: Language overview

• Included best parts of
– ALGOL 60: recursion and block structure
– Fortran IV: separate compilation, communication through

global data
– COBOL 60: data structures, i/o, report generation

44

PL/I: Evaluation

45

PL/I: Evaluation

• PL/I contributions
– First concurrently executing subprograms
– First exception handling
– Switch-selectable recursion (could turn off recursion for

efficiency)
– First pointer data type
– First array cross sections (e.g., referencing third row of

matrix)
• Concerns

– Many new features were poorly designed
– Too large and too complex

46

• No longer used today

SHELL: PROCEDURE OPTIONS (MAIN);
 DECLARE
 ARRAY(50) FIXED BIN(15),
 (K,N) FIXED BIN(15);

 GET LIST(N);
 GET EDIT((ARRAY(K) DO K = 1 TO N));
 PUT EDIT((ARRAY(K) DO K = 1 TO N));
 CALL BUBBLE(ARRAY,N);

END BUBBLE;

BUBBLE: PROCEDURE(ARRAY,N); /* BUBBLE SORT*/
 DECLARE (I,J) FIXED BIN(15);
 DECLARE S BIT(1); /* SWITCH */
 DECLARE Y FIXED BIN(15); /* TEMPO */
 DO I = N-1 BY -1 TO 1;
 S = '1'B;
 DO J = 1 TO I;
 IF X(J)>X(J+1) THEN DO;
 S = '0'B;
 Y = X(J);
 X(J) = X(J+1);
 X(J+1) = Y;
 END;
 END;
 IF S THEN RETURN;
 END;
 RETURN;
 END SRT;

Source: http://www.engin.umd.umich.edu/CIS/course.des/cis400/pl1/pl1bubble.html verified on Sep 9, 2008

What is this
program doing?

Two Early Dynamic Languages: APL and
SNOBOL

• Characterized by dynamic typing and dynamic
storage allocation 
 

48

Two Early Dynamic Languages: APL and
SNOBOL

• Characterized by dynamic typing and dynamic
storage allocation 
 
What is dynamic typing?

49

Two Early Dynamic Languages: APL and
SNOBOL

• Characterized by dynamic typing and dynamic
storage allocation 
 
What is dynamic typing?  
Examples today: Python; Javascript; variable gets its
type when assigned value at run time: 
a=10; a=5.5; more later…

50

APL: A Programming Language

• Designed as a hardware description language at IBM
by Ken Iverson around 1960
– Highly expressive (many operators, for both scalars and

arrays of various dimensions)
– Programs are very difficult to read

• Considered “throw away” language: write quickly, then
discard for readability and maintaining hard

• Initially used on IBM printing terminals that had
optional print balls with odd character set

• Language still in use, though not widely; minimal
changes

51

• Readability: Example APL code and special
keyboard for computing matrix determinant:
(http://www.computerhistory.org/atchm/the-apl-programming-
language-source-code/) 
 

52

APL: A Programming Language

SNOBOL

• Designed as a string manipulation language at Bell
Labs by Farber, Griswold, and Polensky in 1964

• Powerful operators for string pattern matching
• Slower than alternative languages (and thus no longer

used for writing editors)
• Still used for certain text processing tasks 
 
https://motherboard.vice.com/en_us/article/78x5ba/
this-70-year-old-programmer-is-preserving-an-
ancient-coding-language-on-github

53

SNOBOL

• Designed as a string manipulation language at Bell
Labs by Farber, Griswold, and Polensky in 1964

• Powerful operators for string pattern matching
• Slower than alternative languages (and thus no longer

used for writing editors) 
 
Why slower?

54

SNOBOL

• Designed as a string manipulation language at Bell
Labs by Farber, Griswold, and Polensky in 1964

• Powerful operators for string pattern matching
• Slower than alternative languages (and thus no longer

used for writing editors) 
 
Why slower? Dynamically typed…

55

The Beginning of Data Abstraction: SIMULA 67

• Designed primarily for system simulation in
Norway by Nygaard and Dahl

• Did not achieve widespread use
• Based on ALGOL 60 (and initial SIMULA I)
• Primary Contributions

– Coroutines - a kind of subprogram (allow restart where
left off for simulations)

– Classes, objects, and inheritance

56

The Beginning of Data Abstraction: SIMULA 67

57

Orthogonal Design: ALGOL 68

• From the continued development of ALGOL 60
• Design is based on the concept of orthogonality

– A few basic concepts, plus a few combining mechanisms 
(eg, combining few primitive types and structures for user
defined data structures) 
 

58

Orthogonal Design: ALGOL 68

• Source of several new ideas (even though the
language itself never achieved widespread use)

• Had strong influence on subsequent languages,
especially Pascal, C, and Ada

• Popularity reduced due to complicated grammar used
to describe language (mistake of Algol 60) 
 

59

Pascal - 1971

• Developed by Wirth (a former member of the ALGOL
68 committee)

• Designed for teaching structured programming
• Small, simple, nothing really new
• Largest impact was on teaching programming

– From mid-1970s until the late 1990s, it was the most widely
used language for teaching programming

60

Pascal - 1971

61

program temperature(output) ;

{ Program to convert temperatures from
 Fahrenheit to Celsius. }

const
MIN = 32 ;
MAX = 50 ;
CONVERT = 5 / 9 ;

var
fahren: integer ;
celsius: real ;

begin
writeln('Fahrenheit Celsius') ;
writeln('---------- -------') ;
for fahren := MIN to MAX do begin

celsius := CONVERT * (fahren - 32) ;
writeln(fahren: 5, celsius: 18: 2) ;

 end ;
end.

Source: http://www.informatik.uni-hamburg.de/RZ/software/SUNWspro/pascal/user_guide/using_pascalug.doc.html, verified on Sep 11, 2008l

C - 1972

• Designed originally for systems programming (at Bell
Labs by Dennis Richie)

• Evolved primarily from BCLP, B (untyped), but also
ALGOL 68 (for, switch, pointers)

• Powerful set of operators, but poor type checking
• Initially spread through UNIX (free; widespread use)
• Many areas of application

63

C - 1972

• Standard for a long time: Kernaghan and Ritchie 1978
book

• 1989 ANSI standard

64

#include <stdio.h>

inline float convert(float f) {
 return ((5.0/9.0) * (f - 32));
}

int main() {
 float f;
 for(f = -40; f <= 220; f += 10) {

 printf("%f degrees fahrenheit = %f degrees celsius.\n", f, convert(f));
 }
}

Programming Based on Logic: Prolog

• Developed, by Comerauer and Roussel (University of
Aix-Marseille), with help from Kowalski (University of
Edinburgh) early 1970s

• Based on formal logic
• Non-procedural
• Can be summarized as being an intelligent database

system that uses an inferencing process to infer the
truth of given queries

• Highly inefficient, small application areas

66

mother(joanne,jake).
father(vern,joanne).

grandparent(X,Z) :=
 parent(X,Y),
 parent(Y,Z).

Query: father(bob,darcie).

History’s Largest Design Effort: Ada

• Huge design effort, involving hundreds of people,
much money, and about eight years
– Strawman requirements (April 1975)
– Woodman requirements (August 1975)
– Tinman requirements (1976)
– Ironman equipments (1977)
– Steelman requirements (1978)

• Named Ada after Augusta Ada Byron  
(1815-1841), the first programmer

• Developed by DoD

68

Ada Evaluation

• Competitive design
• Included all that was then known about software engineering

and language design
• First compilers were very difficult; the first really usable

compiler came nearly five years after the language design was
completed

• Too large and complex

69

Ada 95

• Ada 95 (began in 1988), included among other
features OOP and more flexible libraries

• Popularity suffered because the  
DoD no longer requires its use  
but also because of popularity of  
C++

70

Source: http://www.cs.fit.edu/~ryan/ada/programs/access/main-adb.html, verified on Sep 11, 2008

 1 -- main.adb: main program for approximate string matching
 2
 3 with
 4 Ada.Command_Line, -- Access to external execution env (Ada95 A.15)
 5 Ada.Text_IO, -- Usual string oriented IO package
 6 Approx; -- User defined function
 7 use Ada;
 8
 9 procedure main is
 10 K : constant Natural := Integer'Value (Command_Line.Argument(1));
 11 M : constant Boolean := Approx (K,
 12 Command_Line.Argument (2), Command_Line.Argument (3));
 13 begin
 14 if M then
 15 Text_IO.Put_Line ("Match.");
 16 else
 17 Text_IO.Put_Line ("No match.");
 18 end if;
 19 end main;

Object-Oriented Programming: Smalltalk (1980)

• Developed at Xerox PARC, initially by Alan Kay (PhD
late 1960s), later by Adele Goldberg

• First full implementation of an object-oriented
language

• populated by objects; all computing by sending a
message to an object to invoke method

• Pioneered the graphical user interface design
• Promoted OOP

72

Object-Oriented Programming: Smalltalk

73

Object-Oriented Programming: Smalltalk

• Developed at Xerox PARC, initially by Alan Kay (PhD
late 1960s), later by Adele Goldberg (developed until
Smalltalk-80)

• First full implementation of an object-oriented
language

• all objects; all computing by sending a message to an
object to invoke one of its methods

• Pioneered the graphical user interface design
• Promoted OOP

74

"The following is a class definition, instantiations of which can draw equilateral polygons of any
number of sides"  
class name  
superclass  
instance variable names  
numSides  
sideLength  
"Class methods"

 "Create an instance"
 new
^ super new getPen

 "Get a pen for drawing polygons"
 getPen
ourPen <- Pen new defaultNib: 2

 "Instance methods"
 "Draw a polygon"
 draw
 numSides timesRepeat: [ourPen go: sideLength;
 turn: 360 // numSides]
 "Set length of sides"
 length: len
 sideLength <- len
 "Set number of sides"
 sides: num
numSides <- num

Example Smalltalk class definition

 Window turtleWindow: 'Turtle Graphics'.
 Turtle
 defaultNib: 2;
 foreColor: ClrDarkgray;
 home;
 go: 100;
 turn: 120;
 go: 100;
 turn: 120;
 go: 100;
 turn: 120

Graphics with Smalltalk

Combining Imperative and Object-Oriented
Programming: C++

• Developed at Bell Labs by Stroustrup in 1980
• Evolved from C and SIMULA 67
• Facilities for object-oriented programming, taken partially from

SIMULA 67
• Provides exception handling
• A large and complex language, in part because it supports both

procedural and OO programming
• Rapidly grew in popularity, along with OOP
• good and inexpensive compilers; backwards compatible with C
• ANSI standard approved in November 97
• Microsoft’s version (released with .NET in 2002): Managed C++

77

Combining Imperative and Object-Oriented
Programming: C++

78

Objective C

• Another hybrid with both imperative and OOP
• Initially consisted of C, plus classes and message

passing like SmallTalk
• Steve Jobs founded NeXT computer systems used;

then Apple bought NeXT and Objective C
• Language of MAC OS X, iphone software, which

increased popularity
• Now Swift (safer, e.g. removes unsafe pointer

management)

79

An Imperative-Based Object-Oriented Language:
Java

• Developed at Sun in the early 1990s
– What applications originally developed for?

80

An Imperative-Based Object-Oriented Language:
Java

• Developed at Sun in the early 1990s
– What applications originally developed for?  

toasters, microwave ovens, interactive TV systems 

81

An Imperative-Based Object-Oriented Language:
Java

• Developed at Sun in the early 1990s
– C and C++ were not satisfactory for embedded electronic

devices
– Reliability was a primary goal

• Based on C++
– Significantly simplified (e.g., does not include union,

pointer arithmetic, and half of the assignment coercions of C
++)

– Supports OOP
– Has references, but not pointers
– Includes support for applets and a form of concurrency

82

Java Evaluation

• Eliminated many unsafe features of C++
• Supports concurrency
• Libraries for applets, GUIs, database access
• Widely used for Web programming
• Use increased faster than any  

previous language
• Most recent version, Java SE8,  

appeared in 2014

83

84

Source: https://onionesquereality.wordpress.com/tag/lisp/
referencing “Land of Lisp: Learn to Program in List, One Game at a time” by M. D. Conrad Barski.

Scripting Languages for the Web

• JavaScript (mid 1990s)
–Began at Netscape, but later became a joint venture of

Netscape and Sun Microsystems
–A client-side HTML-embedded scripting language, often

used to create dynamic HTML documents
–Purely interpreted
–Related to Java only through similar syntax 

• PHP
–PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf

to provide tool for tracking visitors to his website
–A server-side HTML-embedded scripting language, often

used for form processing and database access through the
Web

85

Example Javascript

http://www.cs.miami.edu/home/burt/learning/Csc517.101/
workbook/partition.html

From Burt Rosenberg:

Scripting Languages (and beyond)

• Python
–Named after?
–An OOP interpreted scripting language
–Type checked but dynamically typed
–Used initially for CGI (Common Gateway Interface)

programming; set of standards that define how information is
exchanged between the web server and a custom script.

–More recently prominent in other areas, such as machine
learning and scientific computing

87

Scripting Languages (and beyond)

• Python
–Named after? Monty Python
–An OOP interpreted scripting language
–Type checked but dynamically typed
–Used initially for CGI (Common Gateway Interface)

programming; set of standards that define how information is
exchanged between the web server and a custom script.

–More recently prominent in other areas, such as machine
learning and scientific computing

88

Python example

• Partial example from ipython notebook (Luis Gonzalo Sanchez Giraldo) 
 
import numpy as np  
import matplotlib.pyplot as plt 
 
instantiate an empty network  
my_net = DNN.Net() 
add layers to my_net in a bottom up fashion  
my_net.addLayer(n_in=2, n_out=4, activation='relu') 
my_net.addLayer(n_out=1, activation='sigmoid') 
 
solver_params = {'lr_rate': 0.01,  
 'momentum': 0.9, \ 
 ’solver': 'sgd'}  
my_solver = DNN.Solver(solver_params) 
 
def addLayer(self, n_in=None, n_out=None, activation=None): 
 assert n_in is not None or self.n_layer > 0, "n_in must be specified for  
 input layer” 
 assert n_out is not None, "n_out must be specified" 
 assert activation is not None, "activation must be specified" 
  
 self.layers += [Layer(n_in, n_out, activation)] 
 self.n_layer += 1

89

Scripting Languages for the Web

• Other scripting languages: Perl, Lua
• Ruby (1996); popularized by Ruby on rails (2004)
• Designed in Japan by Yukihiro Matsumoto (a.k.a,

“Matz”)
– Began as a replacement for Perl and Python
– A pure object-oriented scripting language
 - All data are objects
– Purely interpreted

90

A C-Based Language for the New Millennium: C#

• Part of the .NET development platform (2000)
• Based on C++ , Java, and Delphi
• Provides a language for component-based software

development; can easily combine components from
variety of languages

• All .NET languages (C#, Visual BASIC.NET, Managed
C++, J#.NET, and Jscript.NET) use Common Type
System (CTS), which provides a common class library

• All compiled into same intermediate form

91

Summary

• Development, development environment, and
evaluation of a number of important programming
languages

• Perspective into current issues in language design

92

