
ISBN 0-321-49362-1

Chapter 15

Functional
Programming
Languages

Chapter 15 Topics
• Introduction

• Mathematical Functions

• Fundamentals of Functional Programming Languages

• The First Functional Programming Language: LISP

• Introduction to Scheme

• COMMON LISP

• ML

• Haskell

• Applications of Functional Languages

• Comparison of Functional and Imperative Languages
2

Introduction
• The design of the imperative languages is

based directly on the von Neumann
architecture
– Efficiency is the primary concern, rather than the

suitability of the language for software
development

• The design of the functional languages is
based on mathematical functions
– A solid theoretical basis that is also closer to the

user, but relatively unconcerned with the
architecture of the machines on which programs
will run

3

Mathematical Functions

• A mathematical function is a mapping of
members of one set, called the domain set,
to another set, called the range set

• A lambda expression specifies the
parameter(s) and the mapping of a function
in the following form

 λ(x) x * x * x

 for the function cube (x) ≡ x * x * x  
where x is a real number

4

Lambda Expressions

• Lambda expressions describe nameless
functions

• Lambda expressions are applied to
parameter(s) by placing the parameter(s)
after the expression

 e.g., (λ(x) x * x * x)(2)
 which evaluates to 8

5

Functional Forms

• A higher-order function, or functional
form, is one that either takes functions as
parameters or yields a function as its
result, or both

• Common forms are function composition
and apply-to-all

6

Function Composition

• A functional form that takes two functions
as parameters and yields a function whose
value is the first actual parameter function
applied to the application of the second

 Form: h ≡ f ° g

 which means h (x) ≡ f (g(x))
 For f (x) ≡ x + 2 and g (x) ≡ 3 * x,

 h ≡ f ° g yields (3 * x) + 2

7

Apply-to-all

• A functional form that takes a single
function as a parameter and yields a list of
values obtained by applying the given
function to each element of a list of
parameters

 Form: α

 For h (x) ≡ x * x
 α(h, (2, 3, 4)) yields (4, 9, 16)

8

Fundamentals of Functional Programming
Languages

• The objective of the design of a FPL is to mimic
mathematical functions to the greatest extent
possible

• The basic process of computation is
fundamentally different in a FPL than in an
imperative language
– In an imperative language, operations are done and the

results are stored in variables for later use

– Management of variables is a constant concern and
source of complexity for imperative programming

• In an FPL, variables are not necessary, as is the
9

Referential Transparency

• In an FPL, the evaluation of a function
always produces the same result given the
same parameters

10

LISP Data Types and Structures

• Data object types: originally only atoms and
lists

• List form: parenthesized collections of
sublists and/or atoms

 e.g., (A B (C D) E)
• Originally, LISP was a typeless language

• LISP lists are stored internally as single-
linked lists

11

15–

LISP Interpretation
• Lambda notation is used to specify functions and

function definitions. Function applications and data have
the same form.

 e.g., If the list (A B C) is interpreted as data it is

 a simple list of three atoms, A, B, and C

 If it is interpreted as a function application,

 it means that the function named A is

 applied to the two parameters, B and C

• The first LISP interpreter appeared only as a
demonstration of the universality of the computational
capabilities of the notation

13

Origins of Scheme
• A mid-1970s dialect of LISP, designed to

be a cleaner, more modern, and simpler
version than the contemporary dialects of
LISP

• Uses only static scoping
• Functions are first-class entities

– They can be the values of expressions and
elements of lists

– They can be assigned to variables and passed
as parameters

14

Evaluation

• Parameters are evaluated, in no particular
order

• The values of the parameters are substituted
into the function body

• The function body is evaluated
• The value of the last expression in the body

is the value of the function

15

Primitive Numeric Functions

• Arithmetic: +, -, *, /, ABS, SQRT,
REMAINDER, MIN, MAX

 e.g., (+ 5 2) yields 7
• QUOTE - takes one parameter; returns the

parameter without evaluation
– QUOTE is required because the Scheme interpreter, named

EVAL, always evaluates parameters to function
applications before applying the function. QUOTE is used
to avoid parameter evaluation when it is not appropriate

– QUOTE can be abbreviated with the apostrophe prefix
operator

 '(A B) is equivalent to (QUOTE (A B))
16

Function Definition: LAMBDA

• Lambda Expressions
– Form is based on λ notation

 e.g., (LAMBDA (x) (* x x))
 x is called a bound variable

• Lambda expressions can be applied
 e.g., ((LAMBDA (x) (* x x)) 7)

17

Special Form Function: DEFINE

• A Function for Constructing Functions DEFINE - Two forms:
– To bind a symbol to an expression 

e.g., (DEFINE pi 3.141593)  
Example use: (DEFINE two_pi (* 2 pi))

– To bind names to lambda expressions 
e.g., (DEFINE (square x) (* x x))  
Example use: (square 5)  

• The evaluation process for DEFINE is different! The first
parameter is never evaluated. The second parameter is
evaluated and bound to the first parameter.

18

Output Functions

• (DISPLAY expression)
• (NEWLINE)

19

Numeric Predicate Functions

• #T is true and #F is false (sometimes () is
used for false)

• =, <>, >, <, >=, <=
• EVEN?, ODD?, ZERO?, NEGATIVE?

20

Control Flow: IF

• Selection- the special form, IF
 (IF predicate then_exp else_exp)

 e.g.,

 (IF (<> count 0)
 (/ sum count)
 0)

21

Control Flow: COND

• Multiple Selection - the special form, COND
 General form:
 (COND

 (predicate_1 expr {expr})
 (predicate_2 expr {expr})
 ...
 (predicate_n expr {expr})
 [(ELSE expr {expr})]
)

• Returns the value of the last expression in the
first pair whose predicate evaluates to true

22

Example of COND

(DEFINE (compare x y)
 (COND
 ((> x y) “x is greater than y”)
 ((< x y) “y is greater than x”)
 (ELSE “x and y are equal”)
)
)

23

List Functions: CAR and CDR
• CAR takes a list parameter; returns the first

element of that list

 e.g., (CAR '(A B C)) yields A

 (CAR '((A B) C D)) yields (A B)
• CDR takes a list parameter; returns the list after

removing its first element

 e.g., (CDR '(A B C)) yields (B C)

 (CDR '((A B) C D)) yields (C D)

24

List Functions: CONS and LIST

• CONS takes two parameters, the first of which
can be either an atom or a list and the second of
which is a list; returns a new list that includes
the first parameter as its first element and the
second parameter as the remainder of its result

 e.g., (CONS 'A '(B C)) returns (A B C)
• LIST takes any number of parameters; returns a

list with the parameters as elements

25

Predicate Function: EQ?
• EQ? takes two symbolic parameters; it returns
#T if both parameters are atoms and the two
are the same

 e.g., (EQ? 'A 'A) yields #T

 (EQ? 'A 'B) yields #F
– Note that if EQ? is called with list parameters,

the result is not reliable
– Also EQ? does not work for numeric atoms

26

Predicate Functions: LIST? and NULL?

•LIST? takes one parameter; it returns #T if
the parameter is a list; otherwise #F

•NULL? takes one parameter; it returns #T if
the parameter is the empty list; otherwise #F

– Note that NULL? returns #T if the parameter is()

27

Example Scheme Function: member

• member takes an atom and a simple list;
returns #T if the atom is in the list; #F
otherwise

 (DEFINE (member atm lis)
 (COND
 ((NULL? lis) #F)
 ((EQ? atm (CAR lis)) #T)
 ((ELSE (member atm (CDR lis)))
))

28

Example Scheme Function: equalsimp

• equalsimp takes two simple lists as parameters;
returns #T if the two simple lists are equal; #F
otherwise

 (DEFINE (equalsimp lis1 lis2)
 (COND
 ((NULL? lis1) (NULL? lis2))
 ((NULL? lis2) #F)
 ((EQ? (CAR lis1) (CAR lis2))
 (equalsimp(CDR lis1)(CDR lis2)))
 (ELSE #F)
))

29

Example Scheme Function: equal
• equal takes two general lists as parameters; returns #T

if the two lists are equal; #F otherwise
 (DEFINE (equal lis1 lis2)
 (COND
 ((NOT (LIST? lis1))(EQ? lis1 lis2))
 ((NOT (LIST? lis2)) #F)
 ((NULL? lis1) (NULL? lis2))
 ((NULL? lis2) #F)
 ((equal (CAR lis1) (CAR lis2))
 (equal (CDR lis1) (CDR lis2)))
 (ELSE #F)
))

30

Example Scheme Function: append

• append takes two lists as parameters; returns the
first parameter list with the elements of the second
parameter list appended at the end

 (DEFINE (append lis1 lis2)
 (COND

 ((NULL? lis1) lis2)
 (ELSE (CONS (CAR lis1)

 (append (CDR lis1) lis2)))

))

31

Example Scheme Function: LET

• General form:
 (LET (
 (name_1 expression_1)

 (name_2 expression_2)
 ...

 (name_n expression_n))

 body
)

• Evaluate all expressions, then bind the values to
the names; evaluate the body

32

LET Example

(DEFINE (quadratic_roots a b c)
� (LET
 (
� (root_part_over_2a (/ (SQRT (- (* b b) (* 4 a c)))(* 2 a)))
� (minus_b_over_2a (/ (- 0 b) (* 2 a)))
)
� ��(LIST (+ minus_b_over_2a root_part_over_2a)
� ��� (- minus_b_over_2a root_part_over_2a))
)
)

33

Scheme Functional Forms

• Composition
– The previous examples have used it

– (CDR (CDR '(A B C))) returns (C)

• Apply to All - one form in Scheme is mapcar
– Applies the given function to all elements of the given

list;
 (DEFINE (mapcar fun lis)

 (COND

 ((NULL? lis) ())

 (ELSE (CONS (fun (CAR lis))

 (mapcar fun (CDR lis))))

))
34

Functions That Build Code

• It is possible in Scheme to define a
function that builds Scheme code and
requests its interpretation

• This is possible because the interpreter is a
user-available function, EVAL

35

Adding a List of Numbers

 ((DEFINE (adder lis)
 (COND
 ((NULL? lis) 0)
 (ELSE (EVAL (CONS '+ lis)))
))

• The parameter is a list of numbers to be added;
adder inserts a + operator and evaluates the
resulting list
– Use CONS to insert the atom + into the list of numbers.
– Be sure that + is quoted to prevent evaluation
– Submit the new list to EVAL for evaluation

36

COMMON LISP
• A combination of many of the features of the

popular dialects of LISP around in the early 1980s
• A large and complex language--the opposite of

Scheme
• Features include:

– records
– arrays
– complex numbers
– character strings
– powerful I/O capabilities
– packages with access control
– iterative control statements

37

ML

• A static-scoped functional language with syntax
that is closer to Pascal than to LISP

• Uses type declarations, but also does type
inferencing to determine the types of undeclared
variables

• It is strongly typed (whereas Scheme is essentially
typeless) and has no type coercions

• Includes exception handling and a module facility
for implementing abstract data types

• Includes lists and list operations
38

ML Specifics

• Function declaration form:
 fun name (parameters) = body;

 e.g., fun cube (x : int) = x * x * x;
• The type could be attached to return value, as in 

fun cube (x) : int = x * x * x;  
With no type specified, it would default to int (the
default for numeric values)

• User-defined overloaded functions are not allowed, so if
we wanted a cube function for real parameters, it
would need to have a different name

• There are no type coercions in ML

39

ML Specifics (continued)

• ML selection 
 if expression then then_expression  
 else else_expression

 where the first expression must evaluate to a Boolean
value

• Pattern matching is used to allow a function to
operate on different parameter forms 
 fun fact(0) = 1  
 | fact(n : int) : int = n * fact(n – 1)

40

ML Specifics (continued)

• Lists 
 Literal lists are specified in brackets 
 [3, 5, 7]  
 [] is the empty list  
 CONS is the binary infix operator, ::  
 4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]  
 CAR is the unary operator hd  
 CDR is the unary operator tl  
 fun length([]) = 0  
 | length(h :: t) = 1 + length(t);  
 
 fun append([], lis2) = lis2  
 | append(h :: t, lis2) = h :: append(t, lis2);

41

ML Specifics (continued)

• The val statement binds a name to a value
(similar to DEFINE in Scheme)  
 val distance = time * speed;  
 
 - As is the case with DEFINE, val is
nothing like an assignment statement in an
imperative language

42

Haskell
• Similar to ML (syntax, static scoped, strongly typed, type

inferencing, pattern matching)
• Different from ML (and most other functional languages) in

that it is purely functional (e.g., no variables, no assignment
statements, and no side effects of any kind)

Syntax differences from ML (no reserved word for functions,
parenthesis optional, alternative definitions of functions have
same appearance) 
 fact 0 = 1  
 fact n = n * fact (n – 1)  
 
 fib 0 = 1

 fib 1 = 1

 fib (n + 2) = fib (n + 1) + fib n

43

Function Definitions with Different Parameter Ranges

 fact n  
 | n == 0 = 1  
 | n > 0 = n * fact(n – 1)  
 
 
sub n  
 | n < 10 = 0  
 | n > 100 = 2  
 | otherwise = 1 
 
 
square x = x * x  
 
 - Works for any numeric type of x

44

Lists
• List notation: Put elements in brackets

 e.g., directions = ["north","south", "east","west"]
• Length: #

 e.g., #directions is 4
• Arithmetic series with the .. operator

 e.g., [2, 4..10] is [2, 4, 6, 8, 10]
• Catenation is with ++

 e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7]
• CONS, CAR, CDR via the colon operator (as in Prolog)
 e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]

45

Factorial Revisited

product [] = 1
product (a:x) = a * product x

fact n = product [1..n]

46

List Comprehension

• Set notation
• List of the squares of the first 20 positive

integers: [n * n | n ← [1..20]]

• All of the factors of its given parameter:  

 factors n = [i | i ← [1..n `div` 2], n ̀mod` i == 0]

47

Quicksort

sort [] = []
sort (a:x) =

 sort [b | b ← x; b <= a] ++
 [a] ++

 sort [b | b ← x; b > a]

48

let qsOneL xs = concat [qsOneL [y | y <- tail xs, y < x] ++ x : qsOneL [y | y <- tail xs, y >= x] | x <- take 1 xs]

Example: one-liner

 * A Pascal quicksort.
 ***}
PROGRAM Sort(input, output);
 CONST
 { Max array size. }
 MaxElts = 50;
 TYPE
 { Type of the element array. }
 IntArrType = ARRAY [1..MaxElts] OF Integer;

 VAR
 { Indexes, exchange temp, array size. }
 i, j, tmp, size: integer;

 { Array of ints }
 arr: IntArrType;

 { Read in the integers. }
 PROCEDURE ReadArr(VAR size: Integer; VAR a: IntArrType);
 BEGIN
 size := 1;
 WHILE NOT eof DO BEGIN
 readln(a[size]);
 IF NOT eof THEN
 size := size + 1
 END
 END;

 PROCEDURE QuicksortRecur(start, stop: integer);
 VAR
 m: integer;

 { The location separating the high and low parts. }
 splitpt: integer;

 { The quicksort split algorithm. Takes the range, and
 returns the split point. }
 FUNCTION Split(start, stop: integer): integer;
 VAR
 left, right: integer; { Scan pointers. }
 pivot: integer; { Pivot value. }

 { Interchange the parameters. }
 PROCEDURE swap(VAR a, b: integer);
 VAR
 t: integer;
 BEGIN
 t := a;
 a := b;
 b := t
 END;

 BEGIN { Split }
 { Set up the pointers for the hight and low sections, and
 get the pivot value. }
 pivot := arr[start];
 left := start + 1;
 right := stop;

 { Look for pairs out of place and swap 'em. }
 WHILE left <= right DO BEGIN
 WHILE (left <= stop) AND (arr[left] < pivot) DO
 left := left + 1;
 WHILE (right > start) AND (arr[right] >= pivot) DO
 right := right - 1;
 IF left < right THEN
 swap(arr[left], arr[right]);
 END;

 { Put the pivot between the halves. }
 swap(arr[start], arr[right]);

 { This is how you return function values in pascal.
 Yeccch. }
 Split := right
 END;

 BEGIN { QuicksortRecur }
 { If there's anything to do... }
 IF start < stop THEN BEGIN
 splitpt := Split(start, stop);
 QuicksortRecur(start, splitpt-1);
 QuicksortRecur(splitpt+1, stop);
 END
 END;

 BEGIN { Quicksort }
 QuicksortRecur(1, size)
 END;

 BEGIN
 { Read }
 ReadArr(size, arr);

 { Sort the contents. }
 Quicksort(size, arr);

 { Print. }
 FOR i := 1 TO size DO
 writeln(arr[i])
 END.

Source: http://sandbox.mc.edu/~bennet/cs404/doc/qsort_pas.html

 private static long exchanges = 0;

 /***
 * Quicksort code from Sedgewick 7.1, 7.2.
 ***/
 public static void quicksort(double[] a) {
 shuffle(a); // to guard against worst-case
 quicksort(a, 0, a.length - 1);
 }

 // quicksort a[left] to a[right]
 public static void quicksort(double[] a, int left, int right) {
 if (right <= left) return;
 int i = partition(a, left, right);
 quicksort(a, left, i-1);
 quicksort(a, i+1, right);
 }

 // partition a[left] to a[right], assumes left < right
 private static int partition(double[] a, int left, int right) {
 int i = left - 1;
 int j = right;
 while (true) {
 while (less(a[++i], a[right])) // find item on left to swap
 ; // a[right] acts as sentinel
 while (less(a[right], a[--j])) // find item on right to swap
 if (j == left) break; // don't go out-of-bounds
 if (i >= j) break; // check if pointers cross
 exch(a, i, j); // swap two elements into place
 }
 exch(a, i, right); // swap with partition element
 return i;
 }

 // is x < y ?
 private static boolean less(double x, double y) {
 comparisons++;
 return (x < y);
 }

 // exchange a[i] and a[j]
 private static void exch(double[] a, int i, int j) {
 exchanges++;
 double swap = a[i];
 a[i] = a[j];
 a[j] = swap;
 }

 // shuffle the array a[]
 private static void shuffle(double[] a) {
 int N = a.length;
 for (int i = 0; i < N; i++) {
 int r = i + (int) (Math.random() * (N-i)); // between i and N-1
 exch(a, i, r);
 }
 }

 // test client
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);

 // generate N random real numbers between 0 and 1
 long start = System.currentTimeMillis();
 double[] a = new double[N];
 for (int i = 0; i < N; i++)
 a[i] = Math.random();
 long stop = System.currentTimeMillis();
 double elapsed = (stop - start) / 1000.0;
 System.out.println("Generating input: " + elapsed + " seconds");

 // sort them
 start = System.currentTimeMillis();
 quicksort(a);
 stop = System.currentTimeMillis();
 elapsed = (stop - start) / 1000.0;
 System.out.println("Quicksort: " + elapsed + " seconds");

 // print statistics
 System.out.println("Comparisons: " + comparisons);
 System.out.println("Exchanges: " + exchanges);
 }
}

Source: http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html

http://sandbox.mc.edu/~bennet/cs404/doc/qsort_pas.html
http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html

Lazy Evaluation
• A language is strict if it requires all actual parameters to be

fully evaluated
• A language is nonstrict if it does not have the strict

requirement
• Nonstrict languages are more efficient and allow some

interesting capabilities – infinite lists
• Lazy evaluation - Only compute those values that are

necessary
• Positive numbers

 positives = [0..], evens = [2,4,..]  
squares = [n * n | n ← [0..]]

• Determining if 16 is a square number

 

member squares 16
50

Member Revisited

• The member function could be written as:
 member [] b = False
 member(a:x) b=(a == b)||member x b

• However, this would only work if the parameter to
squares was a perfect square; if not, it will keep
generating them forever. The following version
will always work:

 member2 (m:x) n
 | m < n = member2 x n
 | m == n = True
 | otherwise = False

51

Applications of Functional Languages

• APL is used for throw-away programs
• LISP is used for artificial intelligence

– Knowledge representation

– Machine learning
– Natural language processing
– Modeling of speech and vision

• Scheme is used to teach introductory
programming at some universities

52

Comparing Functional and Imperative Languages

• Imperative Languages:
– Efficient execution
– Complex semantics
– Complex syntax
– Concurrency is programmer designed

• Functional Languages:
– Simple semantics
– Simple syntax
– Inefficient execution
– Programs can automatically be made

53

Summary
• Functional programming languages use function application,

conditional expressions, recursion, and functional forms to control
program execution instead of imperative features such as variables
and assignments

• LISP began as a purely functional language and later included
imperative features

• Scheme is a relatively simple dialect of LISP that uses static scoping
exclusively

• COMMON LISP is a large LISP-based language
• ML is a static-scoped and strongly typed functional language which

includes type inference, exception handling, and a variety of data
structures and abstract data types

• Haskell is a lazy functional language supporting infinite lists and set
comprehension.

• Purely functional languages have advantages over imperative
alternatives, but their lower efficiency on existing machine
architectures has prevented them from enjoying widespread use

54

