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Introduction
• The design of the imperative languages is 

based directly on the von Neumann 
architecture 
– Efficiency is the primary concern, rather than the 

suitability of the language for software 
development 

• The design of the functional languages is 
based on mathematical functions 
– A solid theoretical basis that is also closer to the 

user, but relatively unconcerned with the 
architecture of the machines on which programs 
will run
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Mathematical Functions

• A mathematical function is a mapping of 
members of one set, called the domain set, 
to another set, called the range set 

• A lambda expression specifies the 
parameter(s) and the mapping of a function 
in the following form 

 λ(x) x * x * x 

   for the function  cube (x) ≡ x * x * x  
where x is a real number
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Lambda Expressions

• Lambda expressions describe nameless 
functions 

• Lambda expressions are applied to 
parameter(s) by placing the parameter(s) 
after the expression 

 e.g.,   (λ(x) x * x * x)(2) 
 which evaluates to 8
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Functional Forms

• A higher-order function, or functional 
form, is one that either takes functions as 
parameters or yields a function as its 
result, or both 

• Common forms are function composition 
and apply-to-all
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Function Composition

• A functional form that takes two functions 
as parameters and yields a function whose 
value is the first actual parameter function 
applied to the application of the second 

 Form: h ≡ f ° g 

 which means h (x) ≡ f (g(x)) 
 For f (x) ≡ x + 2  and  g (x) ≡ 3 * x, 

 h ≡ f ° g yields (3 * x) + 2
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Apply-to-all

• A functional form that takes a single 
function as a parameter and yields a list of 
values obtained by applying the given 
function to each element of a list of 
parameters 

 Form: α 

 For h (x) ≡ x * x 
 α( h, (2, 3, 4))  yields  (4, 9, 16)
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Fundamentals of Functional Programming 
Languages

• The objective of the design of a FPL is to mimic 
mathematical functions to the greatest extent 
possible 

• The basic process of computation is 
fundamentally different in a FPL than in an 
imperative language 
– In an imperative language, operations are done and the 

results are stored in variables for later use 

– Management of variables is a constant concern and 
source of complexity for imperative programming 

• In an FPL, variables are not necessary, as is the 
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Referential Transparency

• In an FPL, the evaluation of a function 
always produces the same result given the 
same parameters
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LISP Data Types and Structures

• Data object types: originally only atoms and 
lists 

• List form: parenthesized collections of 
sublists and/or atoms 

 e.g., (A B (C D) E) 
• Originally, LISP was a typeless language 

• LISP lists are stored internally as single-
linked lists
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LISP Interpretation
• Lambda notation is used to specify functions and 

function definitions. Function applications and data have 
the same form. 

 e.g., If the list (A B C) is interpreted as data it is 

 a simple list of three atoms, A, B, and C 

 If it is interpreted as a function application, 

 it means that the function named A is 

 applied to the two parameters, B and C 

• The first LISP interpreter appeared only as a  
demonstration of the universality of the computational 
capabilities of the notation
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Origins of Scheme
• A mid-1970s dialect of LISP, designed to 

be a cleaner, more modern, and simpler 
version than the contemporary dialects of 
LISP 

• Uses only static scoping 
• Functions are first-class entities 

– They can be the values of expressions and 
elements of lists 

– They can be assigned to variables and passed 
as parameters 
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Evaluation

• Parameters are evaluated, in no particular 
order 

• The values of the parameters are substituted 
into the function body 

• The function body is evaluated 
• The value of the last expression in the body 

is the value of the function
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Primitive Numeric Functions

• Arithmetic: +, -, *, /, ABS, SQRT, 
REMAINDER, MIN, MAX 

 e.g., (+ 5 2) yields 7 
• QUOTE - takes one parameter; returns the 

parameter without evaluation  
– QUOTE is required because the Scheme interpreter, named 

EVAL, always evaluates parameters to function 
applications before applying the function. QUOTE is used 
to avoid parameter evaluation when it is not appropriate 

– QUOTE can be abbreviated with the apostrophe prefix 
operator 

     '(A B) is equivalent to (QUOTE (A B)) 
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Function Definition: LAMBDA

• Lambda Expressions 
– Form is based on λ notation 

     e.g., (LAMBDA (x) (* x x)) 
     x is called a bound variable 

• Lambda expressions can be applied 
 e.g., ((LAMBDA (x) (* x x)) 7)
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Special Form Function: DEFINE

• A Function for Constructing Functions DEFINE - Two forms: 
– To bind a symbol to an expression 

e.g., (DEFINE pi 3.141593)  
Example use: (DEFINE two_pi (* 2 pi)) 

– To bind names to lambda expressions 
e.g., (DEFINE (square x) (* x x))  
Example use: (square 5)  

• The evaluation process for DEFINE is different! The first 
parameter is never evaluated. The second parameter is 
evaluated and bound to the first parameter. 
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Output Functions

• (DISPLAY expression) 
• (NEWLINE)
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Numeric Predicate Functions

• #T is true and #F is false (sometimes () is 
used for false) 

• =, <>, >, <, >=, <= 
• EVEN?, ODD?, ZERO?, NEGATIVE?
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Control Flow: IF

• Selection- the special form, IF 
 (IF predicate then_exp else_exp) 

 e.g.,  
  
  (IF (<> count 0) 
  (/ sum count) 
  0)
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Control Flow: COND

• Multiple Selection - the special form, COND 
 General form: 
 (COND 

  (predicate_1  expr {expr}) 
  (predicate_2  expr {expr}) 
  ... 
  (predicate_n  expr {expr}) 
  [(ELSE expr {expr})] 
  ) 

• Returns the value of the last expression in the 
first pair whose predicate evaluates to true
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Example of COND

(DEFINE (compare x y) 
   (COND 
     ((> x y) “x is greater than y”) 
     ((< x y) “y is greater than x”) 
     (ELSE “x and y are equal”) 
   ) 
 )
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List Functions: CAR and CDR
• CAR takes a list parameter; returns the first 

element of that list 

 e.g., (CAR '(A B C)) yields A 

 (CAR '((A B) C D)) yields (A B) 
• CDR takes a list parameter; returns the list after 

removing its first element 

 e.g., (CDR '(A B C)) yields (B C) 

 (CDR '((A B) C D)) yields (C D)
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List Functions: CONS and LIST

• CONS takes two parameters, the first of which 
can be either an atom or a list and the second of 
which is a list; returns a new list that includes 
the first parameter as its first element and the 
second parameter as the remainder of its result 

 e.g., (CONS 'A '(B C)) returns (A B C) 
• LIST takes any number of parameters; returns a 

list with the parameters as elements
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Predicate Function: EQ?
• EQ? takes two symbolic parameters; it returns 
#T if both parameters are atoms and the two 
are the same 

 e.g., (EQ? 'A 'A) yields #T 

 (EQ? 'A 'B) yields #F 
– Note that if EQ? is called with list parameters, 

the result is not reliable 
– Also EQ? does not work for numeric atoms
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Predicate Functions: LIST? and NULL?

•LIST? takes one parameter; it returns #T if 
the parameter is a list; otherwise #F 

•NULL? takes one parameter; it returns #T if 
the parameter is the empty list; otherwise #F 

– Note that NULL? returns #T if the parameter is()
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Example Scheme Function: member

• member takes an atom and a simple list; 
returns #T if the atom is in the list; #F 
otherwise 

 (DEFINE (member atm lis) 
 (COND 
  ((NULL? lis) #F) 
  ((EQ? atm (CAR lis)) #T) 
  ((ELSE (member atm (CDR lis))) 
 ))    
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Example Scheme Function: equalsimp

• equalsimp takes two simple lists as parameters; 
returns #T if the two simple lists are equal; #F 
otherwise 

 (DEFINE (equalsimp lis1 lis2) 
 (COND 
  ((NULL? lis1) (NULL? lis2)) 
  ((NULL? lis2) #F) 
  ((EQ? (CAR lis1) (CAR lis2)) 
   (equalsimp(CDR lis1)(CDR lis2))) 
  (ELSE #F) 
 ))
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Example Scheme Function: equal
• equal takes two general lists as parameters;  returns #T 

if the two lists are equal; #F otherwise 
 (DEFINE (equal lis1 lis2) 
   (COND 
  ((NOT (LIST? lis1))(EQ? lis1 lis2)) 
  ((NOT (LIST? lis2)) #F) 
  ((NULL? lis1) (NULL? lis2)) 
  ((NULL? lis2) #F) 
  ((equal (CAR lis1) (CAR lis2)) 
   (equal (CDR lis1) (CDR lis2))) 
  (ELSE #F) 
 ))
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Example Scheme Function: append

• append takes two lists as parameters; returns the 
first parameter list with the elements of the second 
parameter list appended at the end 

 (DEFINE (append lis1 lis2) 
   (COND 

  ((NULL? lis1) lis2) 
  (ELSE (CONS (CAR lis1) 

      (append (CDR lis1) lis2))) 

 ))
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Example Scheme Function: LET

• General form: 
 (LET ( 
  (name_1 expression_1) 

  (name_2 expression_2) 
  ... 

  (name_n expression_n)) 

  body 
 ) 

• Evaluate all expressions, then bind the values to 
the names; evaluate the body
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LET Example

(DEFINE (quadratic_roots a b c) 
� (LET  
     ( 
�    (root_part_over_2a (/ (SQRT (- (* b b) (* 4 a c)))(* 2 a))) 
�    (minus_b_over_2a   (/ (- 0 b) (* 2 a))) 
     ) 
� ��(LIST (+ minus_b_over_2a root_part_over_2a) 
� ���     (- minus_b_over_2a root_part_over_2a)) 
   ) 
)
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Scheme Functional Forms

• Composition 
– The previous examples have used it 

– (CDR  (CDR '(A B C))) returns (C) 

• Apply to All - one form in Scheme is mapcar  
– Applies the given function to all elements of the given 

list;  
 (DEFINE (mapcar fun lis) 

   (COND 

     ((NULL? lis) ()) 

     (ELSE (CONS (fun (CAR lis)) 

      (mapcar fun (CDR lis)))) 

 ))
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Functions That Build Code

• It is possible in Scheme to define a 
function that builds Scheme code and 
requests its interpretation 

• This is possible because the interpreter is a 
user-available function, EVAL

35



Adding a List of Numbers

 ((DEFINE (adder lis) 
   (COND 
     ((NULL? lis) 0) 
     (ELSE (EVAL (CONS '+ lis))) 
 )) 

•  The parameter is a list of numbers to be added; 
adder inserts a + operator and evaluates the 
resulting list 
– Use CONS to insert the atom + into the list of numbers. 
– Be sure that + is quoted to prevent evaluation 
– Submit the new list to EVAL for evaluation 
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COMMON LISP
• A combination of many of the features of the 

popular dialects of LISP around in the early 1980s 
• A large and complex language--the opposite of 

Scheme 
• Features include: 

– records  
– arrays  
– complex numbers 
– character strings 
– powerful I/O capabilities 
– packages with access control 
– iterative control statements
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ML

• A static-scoped functional language with syntax 
that is closer to Pascal than to LISP 

• Uses type declarations, but also does type 
inferencing to determine the types of undeclared 
variables 

• It is strongly typed (whereas Scheme is essentially 
typeless) and has no type coercions 

• Includes exception handling and a module facility 
for implementing abstract data types 

• Includes lists and list operations
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ML Specifics

• Function declaration form: 
 fun name (parameters) = body; 

 e.g., fun cube (x : int) = x * x * x; 
• The type could be attached to return value, as in 

fun cube (x) : int = x * x * x;  
With no type specified, it would default to int (the 
default for numeric values) 

• User-defined overloaded functions are not allowed, so if 
we wanted a cube function for real parameters, it 
would need to have a different name 

• There are no type coercions in ML
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ML Specifics (continued)

• ML selection 
  if expression then then_expression  
  else else_expression 

   where the first expression must evaluate to a Boolean 
value 

• Pattern matching is used to allow a function to 
operate on different parameter forms 
  fun fact(0) = 1  
 | fact(n : int) : int = n * fact(n – 1)
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ML Specifics (continued)

• Lists 
 Literal lists are specified in brackets 
  [3, 5, 7]  
 [] is the empty list  
 CONS is the binary infix operator, ::  
   4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]  
 CAR is the unary operator hd  
 CDR is the unary operator tl  
  fun length([]) = 0  
 |   length(h :: t) = 1 + length(t);  
 
 fun append([], lis2) = lis2  
 |   append(h :: t, lis2) = h :: append(t, lis2);
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ML Specifics (continued)

• The val statement binds a name to a value 
(similar to DEFINE in Scheme)  
  val distance = time * speed;  
 
   - As is the case with DEFINE, val is 
nothing like an assignment statement in an 
imperative language

42



Haskell
• Similar to ML (syntax, static scoped, strongly typed, type 

inferencing, pattern matching) 
• Different from ML (and most other functional languages) in 

that it is purely functional (e.g., no variables, no assignment 
statements, and no side effects of any kind) 

Syntax differences from ML (no reserved word for functions, 
parenthesis optional, alternative definitions of functions have 
same appearance) 
  fact 0 = 1  
 fact n = n * fact (n – 1)  
 
 fib 0 = 1 

  fib 1 = 1 

  fib (n + 2) = fib (n + 1) + fib n
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Function Definitions with Different Parameter Ranges

 fact n  
 |  n == 0 = 1  
 |  n > 0 = n * fact(n – 1)  
 
 
sub n  
  | n < 10 = 0  
  | n > 100 = 2  
  | otherwise  = 1 
 
 
square x = x * x  
 
  - Works for any numeric type of x 
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Lists
• List notation: Put elements in brackets 

 e.g., directions = ["north","south", "east","west"] 
• Length: #  

 e.g.,  #directions is 4 
• Arithmetic series with the .. operator 

 e.g., [2, 4..10] is [2, 4, 6, 8, 10] 
• Catenation is with ++ 

 e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7] 
• CONS, CAR, CDR via the colon operator (as in Prolog) 
 e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]
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Factorial Revisited

product [] = 1 
product (a:x) = a * product x 

fact n = product [1..n]
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List Comprehension

• Set notation 
• List of the squares of the first 20 positive 

integers: [n * n | n ← [1..20]] 

• All of the factors of its given parameter:  

 factors n = [i | i ← [1..n `div` 2], n  ̀mod` i == 0]
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Quicksort

sort [] = [] 
sort (a:x) = 

  sort [b | b ← x; b <= a] ++ 
  [a] ++ 

  sort [b | b ← x; b > a]
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let qsOneL xs = concat [qsOneL [y | y <- tail xs, y < x] ++ x : qsOneL [y | y <- tail xs, y >= x] | x <- take 1 xs]

Example: one-liner



 * A Pascal quicksort.
 *****************************************************************************}
PROGRAM Sort(input, output);
    CONST
        { Max array size. }
        MaxElts = 50;
    TYPE 
        { Type of the element array. }
        IntArrType = ARRAY [1..MaxElts] OF Integer;

    VAR
        { Indexes, exchange temp, array size. }
        i, j, tmp, size: integer;

        { Array of ints }
        arr: IntArrType;

    { Read in the integers. }
    PROCEDURE ReadArr(VAR size: Integer; VAR a: IntArrType);
        BEGIN
            size := 1;
            WHILE NOT eof DO BEGIN
                readln(a[size]);
                IF NOT eof THEN 
                    size := size + 1
            END
        END;

           PROCEDURE QuicksortRecur(start, stop: integer);
            VAR
                m: integer;

                { The location separating the high and low parts. }
                splitpt: integer;

            { The quicksort split algorithm.  Takes the range, and
              returns the split point. }
            FUNCTION Split(start, stop: integer): integer;
                VAR
                    left, right: integer;       { Scan pointers. }
                    pivot: integer;             { Pivot value. }

                { Interchange the parameters. }
                PROCEDURE swap(VAR a, b: integer);
                    VAR
                        t: integer;
                    BEGIN
                        t := a;
                        a := b;
                        b := t
                    END;

                BEGIN { Split }
                    { Set up the pointers for the hight and low sections, and
                      get the pivot value. }
                    pivot := arr[start];
                    left := start + 1;
                    right := stop;

                    { Look for pairs out of place and swap 'em. }
                    WHILE left <= right DO BEGIN
                        WHILE (left <= stop) AND (arr[left] < pivot) DO
                            left := left + 1;
                        WHILE (right > start) AND (arr[right] >= pivot) DO
                            right := right - 1;
                        IF left < right THEN 
                            swap(arr[left], arr[right]);
                    END;

                    { Put the pivot between the halves. }
                    swap(arr[start], arr[right]);

                    { This is how you return function values in pascal.
                      Yeccch. }
                    Split := right
                END;

            BEGIN { QuicksortRecur }
                { If there's anything to do... }
                IF start < stop THEN BEGIN
                    splitpt := Split(start, stop);
                    QuicksortRecur(start, splitpt-1);
                    QuicksortRecur(splitpt+1, stop);
                END
            END;
                    
        BEGIN { Quicksort }
            QuicksortRecur(1, size)
        END;

    BEGIN
        { Read }
        ReadArr(size, arr);

        { Sort the contents. }
        Quicksort(size, arr);

        { Print. }
        FOR i := 1 TO size DO
            writeln(arr[i])
    END.

Source: http://sandbox.mc.edu/~bennet/cs404/doc/qsort_pas.html

    private static long exchanges   = 0;

   /***********************************************************************
    *  Quicksort code from Sedgewick 7.1, 7.2.
    ***********************************************************************/
    public static void quicksort(double[] a) {
        shuffle(a);                        // to guard against worst-case
        quicksort(a, 0, a.length - 1);
    }

    // quicksort a[left] to a[right]
    public static void quicksort(double[] a, int left, int right) {
        if (right <= left) return;
        int i = partition(a, left, right);
        quicksort(a, left, i-1);
        quicksort(a, i+1, right);
    }

    // partition a[left] to a[right], assumes left < right
    private static int partition(double[] a, int left, int right) {
        int i = left - 1;
        int j = right;
        while (true) {
            while (less(a[++i], a[right]))      // find item on left to swap
                ;                               // a[right] acts as sentinel
            while (less(a[right], a[--j]))      // find item on right to swap
                if (j == left) break;           // don't go out-of-bounds
            if (i >= j) break;                  // check if pointers cross
            exch(a, i, j);                      // swap two elements into place
        }
        exch(a, i, right);                      // swap with partition element
        return i;
    }

    // is x < y ?
    private static boolean less(double x, double y) {
        comparisons++;
        return (x < y);
    }

    // exchange a[i] and a[j]
    private static void exch(double[] a, int i, int j) {
        exchanges++;
        double swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    // shuffle the array a[]
    private static void shuffle(double[] a) {
        int N = a.length;
        for (int i = 0; i < N; i++) {
            int r = i + (int) (Math.random() * (N-i));   // between i and N-1
            exch(a, i, r);
        }
    }

    // test client
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);

        // generate N random real numbers between 0 and 1
        long start = System.currentTimeMillis();
        double[] a = new double[N];
        for (int i = 0; i < N; i++)
            a[i] = Math.random();
        long stop = System.currentTimeMillis();
        double elapsed = (stop - start) / 1000.0;
        System.out.println("Generating input:  " + elapsed + " seconds");

        // sort them
        start = System.currentTimeMillis();
        quicksort(a);
        stop = System.currentTimeMillis();
        elapsed = (stop - start) / 1000.0;
        System.out.println("Quicksort:   " + elapsed + " seconds");

        // print statistics
        System.out.println("Comparisons: " + comparisons);
        System.out.println("Exchanges:   " + exchanges);
    }
}

Source: http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html

http://sandbox.mc.edu/~bennet/cs404/doc/qsort_pas.html
http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html


Lazy Evaluation
• A language is strict if it requires all actual parameters to be 

fully evaluated 
• A language is nonstrict if it does not have the strict 

requirement 
• Nonstrict languages are more efficient and allow some 

interesting capabilities – infinite lists 
• Lazy evaluation - Only compute those values that are 

necessary 
• Positive numbers 

 positives = [0..], evens = [2,4,..]  
squares = [n * n | n ← [0..]] 

• Determining if 16 is a square number 
  
 

member squares 16
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Member Revisited

• The member function could be written as: 
 member [] b = False 
 member(a:x) b=(a == b)||member x b 

• However, this would only work if the parameter to 
squares was a perfect square; if not, it will keep 
generating them forever. The following version 
will always work: 

 member2 (m:x) n 
  | m < n = member2 x n 
  | m == n = True 
  | otherwise = False
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Applications of Functional Languages

• APL is used for throw-away programs 
• LISP is used for artificial intelligence 

– Knowledge representation 

– Machine learning 
– Natural language processing 
– Modeling of speech and vision 

• Scheme is used to teach introductory 
programming at some universities
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Comparing Functional and Imperative Languages

• Imperative Languages: 
– Efficient execution 
– Complex semantics 
– Complex syntax 
– Concurrency is programmer designed 

• Functional Languages: 
– Simple semantics 
– Simple syntax 
– Inefficient execution 
– Programs can automatically be made 
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Summary
• Functional programming languages use function application, 

conditional expressions, recursion, and functional forms to control 
program execution instead of imperative features such as variables 
and assignments 

• LISP began as a purely functional language and later included 
imperative features 

• Scheme is a relatively simple dialect of LISP that uses static scoping 
exclusively 

• COMMON LISP is a large LISP-based language 
• ML is a static-scoped and strongly typed functional language which 

includes type inference, exception handling, and a variety of data 
structures and abstract data types 

• Haskell is a lazy functional language supporting infinite lists and set 
comprehension. 

• Purely functional languages have advantages over imperative 
alternatives, but their lower efficiency on existing machine 
architectures has prevented them from enjoying widespread use 
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