Redundancy:

 How often one letter appears (eg., in English "a" more often than "q")

- How often one letter appears (eg., in English "a" more often than "q")
- How often one letter followed by another (eg, "sh" more often than "sd")

- How often one letter appears (eg., in English "a" more often than "q")
- How often one letter followed by another (eg, "sh" more often than "sd")
- We could utilize knowledge of redundancies to compress

- How often one letter appears (eg., in English "a" more often than "q")
- How often one letter followed by another (eg, "sh" more often than "sd")
- We could utilize knowledge of redundancies to compress

- How often one letter appears (eg., in English "a" more often than "q")
- If a letter appears often and we want to use it a lot, code it with less space/bits!
- This can be done with Huffman Coding, a greedy algorithm we will look at!

Redundancy and coding in Bits

BABABABADABACAABAACABDAAAAABAAAAAAAADBCA

$A \rightarrow 00$	
$B \to 01$	0100010001000100110001001000000100001000
$C \rightarrow 10$	01110000000000100000000000000011011000
$D \rightarrow 11$	

 $\Lambda \rightarrow 00$

Hyvarinen et al. book, 2009

Variable length coding

BABABABADABACAABAACABDAAAAABAAAAAAAADBCA

- $A \rightarrow 0$
- $B \to 10 \qquad 10010010010011101001000110010111000$
- $C \to 110 \qquad \begin{array}{c} 00100000000111101100 \\ \end{array}$
- $D \rightarrow 111$

Hyvarinen et al. book, 2009

Images are spatially redundant

Kersten, 1992 (psychophysics); Dierickx and Meynants, 1987 (computer)

Images are spatially redundant

Attneave 1951; "guessing game"

Images are spatially redundant

Attneave 1951; "ink bottle on the corner of the desk"

Image compression can be lossy

JPEG

Compression:

- Includes a lossy part (reducing some of the visual information)
- Followed by variable length coding! (like with the alphabet example). This part is done with Huffman Coding (and is lossless). Symbols that appear more frequently are coded with less bits.

• Does the brain make use of redundancies in images to code efficiently??