
Graphs part 2 

Depth First Search (DFS) 

Search deeply first… Explores edges out of most recently discovered vertex so 
long as there are still unexplored edges leaving it… and then backtracks (like 
searching in a maze). Run time as in BFS will be linear in number of vertices and 
edges O(n+m) 

Applications: topological sort in directed acyclic graphs (sequences of events 
where one comes before another; later); strongly connected components (later). 

Simple example of DFS ordering showing main idea and distinguishing from bfs: 

 

Note the “forest” (not just a single tree). 

One way to implement: Stack instead of queue. Last in first out. But often 
implemented recursively. 

Marking nodes in algorithm: Colors are the same: 

White: Vertices are initially white;  

Gray: First time vertex encountered, make gray  

Black: Only when all its adjacent neighbors discovered, turn to black. 

We also mark a node with a number “time stamp” both when it is first discovered 
(turns gray) and when we have gone through all its neighbors (black). The 
discovery time is u.d and the finish time is u.f (u.f > u.d). 

Main algorithm with recursion: We’ll have a function DFS that initializes, and then 
calls DFS-Visit, which is a recursive function and does the depth first search. 

 

 

1%

S%

2% 3%

a%

b%

c%

d%

4%5%

6%

e%

f%

7%



DFS(G)    // G is a graph  

- initialize all vertices to white 

- set all time stamps to 0 

- for each vertex u in G.V 

     if u.color == white 

         DFS-Visit(G,u) 

 

Recursion: 

DFS-Visit(G,u) 

1. time = time + 1       // white vertex u has just been discovered 

2. u.d = time               // start time 

3. u.color = gray        // we’ve discovered u 

4. For each v in adjacency list of u     

5.        if v.color == white 

6.             v.parent = u 

7.             DFS-Visit(G, v) 

8. u.color = black      // we finished going through all of u’s neighbors 

9. time = time + 1 

10. u.f = time            // finish time 

 

 

 

 

 

 

 

 



 

Example of DFS: 

 

 

Run time DFS: O(n + m) with n number vertices and m number edges. Procedure 
DFS-Visit is called exactly once for each vertex (only if white and then changed). 
During the DFS-Visit all adjacent nodes of each vertex are used, so overall 
includes all edges. 

Some properties DFS:  

1. Every vertex v that gets discovered between start of u and end of u, is a child 
of u in the DFS tree. The v will also finish before u does (see path from u to v to y 
to x). 

This can be seen in recursion: DFS-Visit(u) called first; and then calls DFS-
visit(v), which finishes first (last in first out, as in a stack) 

2. There is never an edge from a black to a white node (because if a node is 
black, we already visited all its neighbors). 
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Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u
has been assigned a discovery time u:d and a finishing time u: f .

In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments
the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex ! adjacent to u
and recursively visit ! if it is white. As each vertex ! 2 AdjŒu" is considered in
line 4, we say that edge .u; !/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not



3. White path theorem: vertex v is a descendant of vertex u if and only if when 
the search discovers u, there is a path from u to v consisting entirely of white 
vertices. 

(example, look at panel a in example, nodes u and y, when u is discovered the 
path to y is all white). Proof: induction (we won’t show). 

4. Disjoint trees, contained trees, and parenthesis theorem: Consider vertices u 
and v. Either: 

a. [u.d u.f] and [v.d v.f] are entirely disjoint. Neither u or v is a descendant of the 
other. 

b. Or [u.d u.f] is contained entirely within [v.d v.f], and u is a descendant of v 
(which means u was discovered after v) 

c. Or vice versa; [v.d v.f] is contained entirely within [u.d u.f], and v is a 
descendant of u (which means v was discovered after u) 

We represent start time of u with “(u”, and end time with “u)” … 
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Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed
graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for
the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each
rectangle spans the interval given by the discovery and finishing times of the corresponding vertex.
Only tree edges are shown. If two intervals overlap, then one is nested within the other, and the
vertex corresponding to the smaller interval is a descendant of the vertex corresponding to the larger.
(c) The graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree
and all back edges going up from a descendant to an ancestor.



 

 

5. Classification of edges: edge (u,v).  

We did not discuss this in class. I am keeping it in the notes for completeness, 
but not required. 

Tree edges: v was discovered from u, during the procedure. If this is the case, 
then when we were at u and checked out its adjacency neighbor v, v was white. 

Back edges: connects u to ancestor v. This happens when we are in u and 
checking adjacency neighbor v, but v is already gray (so v is like a grandfather). 
(This also includes self-loops.) 

Forward edges: connects u to a descendant v (but not part of the tree; not direct 
child that was discovered). This happens during the procedure if we are in u and 
check out adjacency neighbor v, and v is black. 

Cross edges: everything else. Can be between trees or in the same tree. Here 
also v is black. 

Note: Some ambiguity since in undirected graph, edge between u and v could 
also mean edge between v and u: can classify based on which is encountered 
first in procedure, or which is first in list of edge types. 

Note: in undirected graph, every edge either a tree edge or back edge. 

 


