
Data$Structures$and$Algorithm$

Analysis$(CSC317)$

Divide$and$conquer$(part$3)



Goals

What$kind$of$recurrences$arise$in$algorithms

and$how$do$we$solve$more$generally$(than$what

we$saw$for$merge$sort)?

• More$recurrence$examples

• Revisit$recursion$trees$more$generally

• Master$theorem$as$“recipe”$for$range$of$cases

• (Substitution$method)



Master$method

T (n) = aT (n
b
)+ f (n)

a ≥1;b >1
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Master$method

T (n) = aT (n
b
)+ f (n)

Competition$between:

a number$of$recursive$calls$made$– bad

b$how$much$problem$size$decreased$each$call$– good

f(n)$determines$work$outside$of$recursive$call$we$compare$to

We’ll$be$comparing:

andf (n) n logb a = a logb n

Intuitively,$is$there$more$work$at$the$root$or$at$the$

leaves?$Like$what$we$developed$in$recursion$tree$

examples…
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T (n) = aT (n
b
)+ f (n)

Let$a>=1$and$b>1$be$constants,$f(n)$a$function,$and$let

T(n)$be$defined$on$the$nonnegative$integers$by$the$recurrence

Then$T(n)$has$the$following$asymptotic$bounds:

3.$If$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$for$some$constant$$$$$$$$$$$$and

,$for$some$constant$c<1,$then:

f (n) =Ω(n logb a+ε )

T (n) =Θ( f (n))

n logb aIf$$$$$$$$$$$$polynomially smaller$than$$f(n)$X>$$f(n)$dominates

ε > 0

af n
b
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⎞
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Like$the$root$dominating$in$a$recursion$tree



Master$theorem$summary$– 3$cases

n logb aIf$$$$$$$$$$$$<$$f(n)$X>$$$f(n)$dominates

Like$the$root$dominating$in$a$recursion$tree

n logb aIf$$$$$$$$$$$$equals$f(n)$X> n logb a logn
Like$merge$sort$$X equal$work$each$level

n logb aIf$$$$$$$$$$$$>$f(n)$X>$$$$$$$$$$$$dominatesn logb a

Like$the$leaves$dominating$in$a$recursion$tree

T (n) = aT (n
b
)+ f (n)

1

2

3



Master$theorem:

n logb aSo$in$all$cases$we$compare$$$$$$$$$$$$$to$f(n)

and$look$if$they$are$equal$or$for$polynomial$differences

Intuition:$Either$the$leaves and$recursion$process$dominate

the$cost,$or$the$root$dominates$the$cost,$or$they$are$balanced

Proof:$we$won’t$showZ$but$relies$on$recursion$trees$and$

geometric$sums,$similar$to$example$cases$we$looked$at



Master$theorem:$examples

On$the$board…$we’ll$remember$that:

n logb a3.$If$$$$$$$$$$$$<$$f(n)$X>

n logb a2.$If$$$$$$$$$$$$equals$f(n)$X>

n logb a1.$If$$$$$$$$$$$$>$f(n)$X>

T (n) = aT (n
b
)+ f (n)

T (n) =Θ(n logb a )

T (n) =Θ(n logb a logn)
T (n) =Θ( f (n))



Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

T (n) = 8T (n
2
)+Θ(n2 )



Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2 )

T (n) = 8T (n
2
)+Θ(n2 )

Familiar??



Master$theorem:$example$1

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2 )

T (n) = 8T (n
2
)+Θ(n2 )

Familiar??$

Our$first$divide$and$conquer$matrix$multiplication
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a = 8;b = 2; f (n) =Θ(n2 )

T (n) = 8T (n
2
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T (n) =Θ(n logb a ) =Θ(n3)

n logb a = n log2 8 = n3

Polynomially larger$than
Case$1f (n) = n2
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Master$theorem:$example$2

T (n) = aT (n
b
)+ f (n)

a = 7;b = 2; f (n) =Θ(n2 )

T (n) = 7T (n
2
)+Θ(n2 )

Familiar??$Strassen’s method!



Master$theorem:$example$2

T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2 )

T (n) = 8T (n
2
)+Θ(n2 )

n logb a = n log2 7 What$case$is$this?
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T (n) = aT (n
b
)+ f (n)

a = 8;b = 2; f (n) =Θ(n2 )

T (n) = 8T (n
2
)+Θ(n2 )

n logb a = n log2 7 Case$1

T (n) =Θ(n logb a ) =Θ(n log2 7 ) ≈ Θ(n2.8 )
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Master$theorem:$example$3

T (n) = aT (n
b
)+ f (n)

a =1;b = 3; f (n) =1

n logb a = n log31 = n0 =1

Equal$to$f(n)=1

T (n) =Θ( f (n)logn) =Θ(1logn) =Θ(logn)

Case$2

T (n) = T (n
3
)+1
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Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

a = 3;b = 4; f (n) = n logn

n logb a = n log4 3 = n0.793

polynomially smaller$than$f(n)

T (n) =Θ( f (n)) =Θ(n logn)

Case$3

T (n) = 3T (n
4
)+ n logn

Note:$need$to$verify$regularity$condition$holds
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Master$theorem:$example$5

T (n) = aT (n
b
)+ f (n)

T (n) = 2T (n
2
)+ n logn

a = 2;b = 2; f (n) = n logn

n logb a = n log2 2 = n1 = n

smaller$than$ Case$3?f (n) = n logn
No,$not$polynomially smaller

n logn
n

= logn < nε



One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Compare:$(Like$Merge$Sort)

To:$(Like$an$uneven$split$Merge$Sort)

Better?$Worse?$Equal?

T (n) = T (n
2
)+T (n

2
)+ cn
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Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.
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is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.
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T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

Work*each*level?
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is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
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In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

Height?



One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Height?
Longest*path*root*to*leaf: n

2
3
n

2
3

⎛
⎝⎜

⎞
⎠⎟
2

n

1

…
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3
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Height?
At*the*leaf: 2

3
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⎠⎟
k
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One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Height?
At*the*leaf: 2

3
⎛
⎝⎜

⎞
⎠⎟
k

n =1;

n = 3
2

⎛
⎝⎜

⎞
⎠⎟
k

;

k = log3
2

n



One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn4.4 The recursion-tree method for solving recurrences 91
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"
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!
4n
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"
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

At$some$point,$tree$actually$is$

Incomplete,$but$this$is$upper$bound
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Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ ! dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ ! 3T .bn=4c/C cn2

! 3d bn=4c2 C cn2

! 3d.n=4/2 C cn2

D
3

16
dn2 C cn2

! dn2 ;

where the last step holds as long as d " .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

We$ignore$constant$factors$in$big

O$notation



One$more$recursion$tree

Also$note,$we$ignored$base$of$algorithm,$since

constant$factor:

logb a =
logc a
logc b



One$more$recursion$tree

T (n) = T (n
3
)+T (2n

3
)+ cn

Compare:$(Like$Merge$Sort)

To:$(Like$an$uneven$split$Merge$Sort)

Better?$Worse?$Equal?

Asymptotically,$similar

T (n) = T (n
2
)+T (n

2
)+ cn



Goals

What$kind$of$recurrences$arise$in$algorithms

and$how$do$we$solve$more$generally$(than$what

we$saw$for$merge$sort)?

• More$recurrence$examples

• Revisit$recursion$trees$more$generally

• Master$theorem$as$“recipe”$for$range$of$cases

• Substitution$method



Substitution$method

• Guess$a$bound



Substitution$method

• Guess$a$bound$(we$need$a$guess!!)



Substitution$method

• Guess$a$bound$(we$need$a$guess!!)

• Prove$correct$by$induction

• Find$constants$in$this$process



Example

Prove$that$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$is

O(n logn)

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n



Example

Prove$that$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$is

We$need$to$prove$that

For$appropriate$choice$of$constant$c>0

(can’t$use$big$Oh$in$substitution$because$of$induction,$

need$to$write$out$definition$with$constants!)$

O(n logn)

T (n) ≤ cn logn

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n



Example

Induction$step:$assume$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Then
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⎛
⎝⎜

⎞
⎠⎟
log n
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⎥
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⎛
⎝⎜

⎞
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Then
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…we$want T n( ) ≤ cn log n( )
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Then
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When?
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Then
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…we$want T n( ) ≤ cn log n( )

−cn + n ≤ 0;
n ≤ cn
c ≥1

Holds$for:
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Induction$step:$assume$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Then
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2
⎢
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⎝⎜

⎞
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log n

2
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⎛
⎝⎜

⎞
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+ n =

cn logn − cn log2 + n =
cn logn − cn + n ≤ cn logn

For$c>=1

T (n) = 2T n
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Example

Induction$needs$base$condition.$For$n=1,$assume:

Then:

T (1) ≤ c1log1 (?)

T (1) =1



Example

Induction$needs$base$condition.$For$n=1,$assume:

Then:

1= T (1) ≤ c1log1= 0

(?)

T (1) =1

T (1) ≤ c1log1= c log1

no



Example

Induction$needs$base$condition.$For$n=1,$assume:

Then:

1= T (1) ≤ c1log1= 0

(?)

T (1) =1

T (1) ≤ c1log1= c log1

no

Asymptotic$notation$requires$only$for$n>=no

T (n) ≤ cn logn



Example

Induction$needs$base$condition.$

Asymptotic$notation$requires$only$for$n>=no

Let’s$try$n=3,$so$as$not$to$depend$directly$on$T(1):

T (n) ≤ cn logn

T (1) =1

T (2) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 2 = 4

T (3) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 3 = 5



Example

Induction$needs$base$condition.$

T (1) =1

T (2) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 2 = 4

T (3) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n = 2 + 3 = 5

T (3) = 5 ≤ cn logn = c3log3 = 3c(1.58)

Asymptotic$notation$requires$only$for$n>=no

Let’s$try$n=3:

T (n) ≤ cn logn

Holds$for$c>=2



Example

We’ve$shown$for

Asymptotic$notation$requires$only$for$n>=3$c>=2

(both$induction$step$and$base$case)

T (n) ≤ cn logn

T (n) = 2T n
2
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+ n



Change$of$variable

T (n) = 2T ( n )+ logn



Define:$$$$

T (n) = 2T ( n )+ logn

m = logn n = 2m

Change$of$variable



Example$2

Change$of$variable

Define:$$$

Familiar$pattern?$

T (n) = 2T ( n )+ logn

T (n) = T (2m ) = 2T (2
m
2 )+m

m = logn n = 2m



T (2m ) = 2T (2
m
2 )+m

S(m) = 2S(m
2
)+m

Change$of$variable



T (2m ) = 2T (2
m
2 )+m

S(m) = 2S(m
2
)+m

Like$what?

Change$of$variable



T (2m ) = 2T (2
m
2 )+m

S(m) = 2S(m
2
)+m

Like$what?$Merge$Sort

Change$of$variable



T (2m ) = 2T (2
m
2 )+m

S(m) = 2S(m
2
)+m

O(m logm)
Like$what?$Merge$Sort

Change$of$variable



T (2m ) = 2T (2
m
2 )+m

S(m) = 2S(m
2
)+m

O(m logm) =O(logn log(logn))
Change$variable$back

Like$what?$Merge$Sort

Change$of$variable



Goals

Solving$recurrences

• Revisit$recursion$trees$more$generally

• Master$theorem$as$“recipe”$for$range$of$cases

• Substitution$method

PROS$/$CONS?


