
Red Black tree 

Summary from last time: General Binary search tree. Many possible trees 
for one set of keys. Run time: O(h) with h the height of the given binary tree. If 
tree is evenly balanced this could be height log n, but if the tree each time just 
spreads in one direction (eg, always right) then operations are as slow as a 
linked list O(n). 

 

We’d like: Tree that is more balanced; search; min; max; predecessor; 
successor, in time O(log n) with n number of nodes in the tree. 

Red Black Tree: special case of a Binary Search Tree in which the tree is 
approximately balanced, and thus has the good O(log n) run time. 

Data structure fields: As in a Binary Search Tree, but has extra attribute color: 
x.color, either red or black. 

Properties of a red-black tree: 

1. Every node is either red or black 
2. The root is black 
3. Every leaf is black and nil (often omitted in drawings) 
4. If a node is red, then both its children are black (no two reds in a 

row) 
5. For each node: all paths from node to (nil) leaves contain same 

number of black nodes. Think of as all unsuccessful searches from 
the given node have same number of black nodes. 

(bolded are the main properties to check each time when dynamically 
changing a tree; other properties more simple) 
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Example Red-Black tree: 

 

 

We usually draw without the nil: 

 

Satisfies all properties: 

- root is black.. 
- no two reds in a row 
- For every node, every path from the node to nil contains same number of 

black nodes (convention is not to count root node itself but to count the nil 
leaves, as in making an unsuccessful search). From root: every path has 2 
black nodes; from 2 and 6 every path just goes to nil so 1 black node. 

Unique Red-Black tree for these nodes? 

No. Also: 

 

 

(convince yourself again that all properties hold) 



Adding another node: need to maintain Red-Black properties. This won’t work 
(black nodes from root to leaf different; also can’t place as Red since then two 
Reds in a row): 

 

  

Adding another node: this will work with some reorganization (now number Black 
from root to node equals 2; more on re-organization later): 

 

Can we make a chain / linked list that is a Red Black Tree for these nodes? No. 
Schematic below violates path from root to nil has same number black nodes (1 
versus 2) 

 

Node 6 also can’t be red, because then have two reds in a row, not allowed. 



If node 4 is Black and node 6 is Red, again every path from root to nil does not 
have same number of black nodes. 

Conclusion from examples: So we see intuitively that a linked list, whose height 
is n, violates the Red Black tree properties. This is good, since we said we would 
like to maintain things relatively balanced and a height O(log n). 

Definition: BH = Black Height of a node x:  number nodes that are black from x 
down to leaves (not counting the node x itself). This is the same number of black 
nodes we have been counting in property number 5 of Red Black trees. 

Example Red Black tree and BH marked: 

 

Definition: Height of tree:  number internal nodes from root down to leaves.  

Lemma: A Red-Black tree with n nodes has height <= 2 log(n+1) (internal nodes; 
excluding the nil leaves) = nice height property that we would like for binary tree 

Proof: 

a. Subtree with root node x contains at least 2BH (x ) −1  (internal) 
nodes 

By induction: 

Base case: If height of x is 0, then x is a leaf node (nil), BH(x)=0,  and tree 

rooted at x indeed contains 20 −1=1−1= 0 nodes. 
 
Inductive step: Consider a node x that has positive height and has two 
children. Each child of x is either Red or Black, so has Black Height of 
either BH(x) or BH(x)-1. Since the height of each child is less than the 
height of x itself, we can use the inductive hypothesis that each of x’s 

children contains at least 2BH (x )−1 −1 internal nodes. Then the subtree 
from node x will contain at least 

(2BH (x )−1 −1)+ (2BH (x )−1 −1)+1= 2BH (x ) −1nodes, which is what 
we wanted to prove inductively. 



 
b. We’ll now use a property of Red-Black trees to complete the lemma 

proof. Let h be the height of the tree from its root. According to property 4 
(no two reds in a row), at least half the nodes from root to leaf are black, 

so the BH must be at least h / 2 .  

     So from part (a) of the proof we have: n ≥ 2BH (x ) −1≥ 2h/2 −1  

     Therefore: n ≥ 2h/2 −1  

     Moving the 1 to the right and taking log on both sides:   

    log(n +1) ≥ h / 2  

     Therefore: h ≤ 2 log(n +1)  

Interpretation: Red-Black tree height is O(log n) and so we can do 
operations that depend on its height (search; min; max; predecessor; 
successor) in O(log n) time 

 

Insert (and delete) in a Red Black tree 

Requires re-organization as in a previous example, to maintain balanced tree 
properties of the Red Black tree. This can be done through operations such 
as changing the color of a node, and/or rotation.   

We’ll first discuss rotation, and then look at insert (will skip delete which is even 
more involved) 
 
Rotation: a local operation that is used generally for balanced trees, including 
Red Black trees, and preserves the binary search tree properties (of ordering of 
keys).!It runs in constant time.!(We typically use this to rebalance a tree after 
some modification has been made. Not particular for Red Black, although we will 
use this in Red-Black examples of insert later) 

 

 

 

 

Schematic: 



 

 

In this tree: keys in X.key < Y.key 

We also have: alpha < X.key < beta < Y.key < gamma 

 

We want to exchange the parent y and child x: 

 

We changed the direction (rotate right) to maintain: X.key < Y.key 

After doing so, we need to also restructure the remaining tree to maintain the 
ordering of the keys of the subtrees. 

 
 

X’s left and Y’s right children stay the same 

Y 

X γ subtree 

α β subtree 
subtree 



 

Turn X’s previously right subtree into Y’s left subtree 

As before: alpha < X.key < beta < Y.key < gamma 

 

Overall like a rotation: 

 

Summary for rotation: 

- We exchanged parent Y and child X, and restructured tree 
- Constant number of operations O(1) 
- Preserves binary search tree (ordering) properties 

 

 

 

 

 



Another example with numbers and left rotation: 

Y’s left subtree became X’s right 

X’s left subtree remained the same and Y’s right subtree remained the same 

 

Insertion: O(logn) time 


