Data Structures and Algorithm
Analysis (CSC317)

Dynamic Programming 2

Odelia Schwartz

Dynamic Programming

* Problems that may naively have exponential running time,
but can be made polynomial (fast!)

- Dynamic: “| wanted to get across the idea that this was
dynamic, this was multistage, this was time-varying... It
also has a very interesting property as an adjective, and
that is it's impossible to use the word dynamic in a

pejorative sense.”
http://www.cs.miami.edu/home/odelia/teaching/csc317 fall19/syllabus/dy birth.pdf

* Programming: Not programming languages; Bellman was
Interested in “planning and decision making.”

 Main approach: hold answers to previous problems already
solved in a table, to be used again without recomputing.

Dynamic Programming so far

Main properties:

1. Overlapping subproblems (same subproblems solved over
and over again)

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure; more on later)

We'll want to contrast with other algorithmic approaches,
such as divide and conquier...

Dynamic Programming so far

Main properties:

1. Overlapping subproblems (same subproblems solved over
and over again)

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure; more on later)

To make algorithm more efficient, what did we do?

Dynamic Programming so far

Main properties:

1. Overlapping subproblems (same subproblems solved over
and over again

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure; more on later)

To make algorithm more efficient, we either (i) memoized
(saved solutions to smaller subproblems in a table as we
recursed; “recursive solution “remembers” what results it has
computed previously”); or we saved solutions to subproblems
in a table (ii) bottom-up. These turned out equivalent.

We did: Fibonacci Memoized and Bottom-up
Dynamic Programming

See online by Galles:
https://www.cs.usfca.edu/~qgalles/visualization/DPFib.html

Runtime?

Dynamic Programming Class Outline

« Examples of applications (motivation)
« Simple example to gain intuition (Fib)
 Backto applications and more examples

Examples of applications

« Computational Biology (genome similarity)
Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

What is the Longest Common Subsequence?
Answer: 3 CGT

LCS(6,6) =3 //length of Longest Common Subsequence

Examples of applications

« Computational Biology (genome similarity)

What is the Longest Common Subsequence?
ACCCGGTCGAGTG...

GTCGTTCGGAATT...

Brute force: Try all subsequences in 15t string and
compare to second string...
n=500 then 27500 possibilities

Pick first character or do not...
Pick 2nd character or do not...
Pick 3 or do not...
2*2*2*2....7 2 (ntimes)

Longest Common Subsequence

 Formulating the recursion

« We'll try and start from the largest sequence,
and then formulate the recursion for smaller
subproblems

Longest Common Subsequence

 Look atexample
CCGCTT

ACGGAT

Longest Common Subsequence

 Look atexample
CCGCT

ACGGA

Last letter of both strings identical
What to do??

Longest Common Subsequence

 Look atexample

CCGCT|T

ACGGA|T

Last letter of both strings identical:
Recurse on LCS(5,5)

Solution here?

Longest Common Subsequence

 Look atexample

CCGCT|T

ACGGA|T

Last letter of both strings identical:
Recurse on LCS(5,5)

Solution here?

LCS(6,6) = LCS(5,5)+1=...3
CCGCT T
ACGGA T

Longest Common Subsequence

 Look atexample

CCGCT|C

ACGGA|T

Last letter of both strings different:
What to do??

Longest Common Subsequence

 Look atexample

[CCGCTc [ccGCeTd

IACGGAT| [ACGGAT

Last letter of both strings different:

LCS[6,6] = max(LCS[5,6], LCS(6,5]) = ... 3
CCGCT CCGCTC
ACGGAT ACGGA

Longest Common Subsequence

 Look atexample

[CCGCTc [ccGCeTd

IACGGAT| [ACGGAT

Last letter of both strings different:

LCS[6,6] = max(LCS[5,6], LCS(6,5]) = ... 3
CCGCT CCGCTC
ACGGAT ACGGA
=3CGT =2CG

Longest Common Subsequence

« Summary so far

Let ¢ hold the length of the LCS
The first string is x (indexed by i)
Second string is y (indexed by j)

From textbook:

0 ifi =0o0rj =0,
cli,jl=qcli—1,j—1]+1 ifi,j >0and x; = y; ,
max(cli,j —1],c[i —1,j]) ifi,j > 0and x; # y, .

Longest Common Subsequence

« We've structured as large subproblem
composed of small subproblems

 If we know optimal solution to smaller
subproblems, we can obtain optimal solution

to larger subproblem

From textbook:

0 ifi =0o0rj =0,
cli,jl=qcli—1,j—1]+1 ifi,j >0and x; = y; ,
max(cli,j —1],c[i —1,j]) ifi,j > 0and x; # y, .

Longest Common Subsequence

From textbook:

0 ifi =0orj =0,
cli,jl=Scli—1,j —1]+1 ifi,j >0and x; =y, ,
max(c[i,j — 1],c[i = 1,j]) ifi,j >0andx; # y; .

Question: Is this recursive solution efficient?

Longest Common Subsequence

From textbook:

0 ifi =0orj =0,
cli,jl=(cli—1,j —1]+1 ifi,j >0and x; =y, ,
max(c[i,j — 1],c[i = 1,j]) ifi,j >0andx; # y; .

Answer: Not efficient; only if memoized previous
solutions (or build bottom-up) — just like with Fib

Longest Common Subsequence

From textbook:

0 ifi =0orj =0,
cli,jl=(cli—1,j —1]+1 ifi,j >0and x; =y, ,
max(c[i,j — 1],c[i = 1,j]) ifi,j >0andx; # y; .

Question: Are there overlapping subproblems?

Recursion tree on the board...

Longest Common Subsequence

Dynamic Programming solution:

Needs a table. In Fib length n.
Here??

Longest Common Subsequence

Dynamic Programming solution:

* Define table c[0..m, 0..n]
n = X.length (of first subsequence)
m = y.length (of second subsequence)

0 m

n -

Longest Common Subsequence

Animation by Galles:

https:.//www.cs.usfca.edu/~galles/visualization/DPLCS.html

Bottom-up: we impose order
Memoized: order imposed by recursion

Longest Common Subsequence

Dynamic Programming solution:

 Main approach: Either memoize solutions to
subproblems not yet computed, or compute
solutions to subproblems bottom-up

« \We'll see that runtime is @(mn)
mn subproblems
constant computation each

« We'll write out Bottom-up (memoized as
assignment)

Longest Common Subsequence

Main properties that allow DP:

* OQOverlapping subproblems
« Solution to big problem constructed from solutions

to smaller subproblem (optimal)

Bottom-up LCS from book

LCS-LENGTH(X,Y)

I m = X.length

2 n = Y.length

3 leth[l..m,1..n]and c[0..m,0..n] be new tables
4 fori = 1tom

5 c[i,0] =0

6 forj =O0ton

7 cl0,j] =0

8 fori =1tom

9 for j = 1ton

10 if.Xi ==Y,

11 cli,.jl=cli—1,j —1]+1
12 bli, j] ="\"

13 elseif c[i — 1, 7] > c[i,j — 1]
14 cli,j] = cl[i — 1, j]

15 bli, j] =17

16 else c[i, j] = c[i,j — 1]

17 bli, j] = “<”

18 return c and b

Bottom-up LCS from book
Runtime: @(mn)

Size of table (mn)
Times constant operations per table entry (up to 3!)

Bottom-up LCS from book

Example on the board...

Bottom-up LCS from book

Printing result

PRINT-LCS (b, X, i, /)

ifi ==0or j ==
return
if b[i, j]==“N"
PRINT-LCS (0, X,i —1,] — 1)
print x;
elseif b[i, j] ==
PRINT-LCS (b, X,i — 1,)
else PRINT-LCS (D, X,i,j — 1)

(13 29

01O Lt & W IN -

DP so far

* Problems that naively can appear exponential time

« But via recursion and memoization, or bottom-up
filling a table, become polynomial

« Main idea: Save solutions to subproblems in a table
that can later be accessed

DP so far

* Fibonacci:
- number of subproblems = table size

- for each subproblem, look at how many choices
of previous subproblems

« LCS:
- number of subproblems = table size

- for each subproblem, look at how many choices
of previous subproblems

DP so far

* Fibonacci: @(n)
- number of subproblems = table size: n
- for each subproblem, look at how many choices

of previous subproblems? 2

* LCS: @(mn)
- number of subproblems = table size: n x m
- for each subproblem, look at how many choices

of previous subproblems? Up to 3

Another DP example

« Rod-cutting problem
* First DP problem in the book...
« Table size n but may have up to n choices...

Rod cutting problem

We are given prices P; for each rod of length i

2 3 4 5 6 7 8 9 10
5 8 9 10 17 17 20 24 30

length i |
price p; |

1
1

Question: We are given a rod of length n, and want to maximize revenue, by
cutting up the rod into pieces and selling each of the pieces.

Rod cutting problem

Example: 4 inch rod. Best solution?
Wel'll first list all solutions...

1. Cut into 2 pieces length 2:
p,+p,=5+5=10
2. Cut into 4 pieces length 1:
pt+p+p+p=1+1+1+1=4
3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1):
p+p,=1+8=9;p.+p, =8+1=9
5. Keep length 4:
p,=9
6-8: Cut into 3 pieces, length 1, 1, and 2 (any order):

p+p+p,=Tp,+p+p=T.p+p,+p =7

Rod cutting problem

Example: 4 inch rod. Best solution?
Wel'll first list all solutions...

1. Cut into 2 pieces length 2:

2. Cut into 4 pieces length 1:

pt+p+p+p=1+1+1+1=4

3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1):
p+p,=1+8=9;p.+p, =8+1=9

5. Keep length 4:
p,=9

6-8: Cut into 3 pieces, length 1, 1, and 2 (any order):

p+p+p,=Tp,+p+p=T.p+p,+p =7

Rod cutting problem

__~n-1
Total: 8 cases for n=4(_ 2). We can slightly reduce by always requiring cuts
in non-decreasing order. But still a lot!

Note: We've computed a brute force solution; all possibilities for this simple small
example. But we want more optimal solution!

Rod cutting problem

Will Divide and Conquer work?

Maybe, but need to think about how to combine
solutions...

On the board... length 8, conquer each 4;
Best solution 10+10=20

But dividing into 6 and 2 yields 17+5=22 better!

Rod cutting problem One solution

I D

* Cutrod into length i and n-i
* Recurse on n-i

Rod cutting problem One solution

I D

* Cutrod into length i and n-i
* Recurse on n-i

Rod cutting problem

We'll define;

a. Maximum revenue for log of size n: 7,
(this is the solution we want to find)

b. Revenue (price) for single log of length i: Pi

Example: If we cut log into length i and n-i:

.+ r .
Revenue: P n—i

(this can be seen as recursing on n-i)

Rod cutting problem

Many possible choices of i...

7, = max -

N\

pl +rn—1

p2 +rn—2 [

\pn_l_ro J

Size 1, recurse on n-1

Size 2, recurse on n-2

Size n, recurse on nothing

Rod cutting problem

Recursive solution...

CuT-ROD(p,n)
1 ifn ==

2 return 0

3 g =—©

4 fori = 1ton
5 g = max(q, pli] + CUT-ROD(p,n —1))
6 return g

Rod cutting problem

Recursive solution...

CuT-ROD(p,n)
1 ifn ==

2 return 0

3 g =—©

4 fori = 1ton
5 g = max(q, pli] + CUT-ROD(p,n —1))
6 return g

Why is this so slow?

Rod cutting problem

Recursive solution... why is this so slow?

Cut-rod calls itself repeatedly with the same parameter values. We can see by
plotting a tree:

- Node label = size of subproblem called on

- Can see by eye that many subproblems called repeatedly. We call this a
problem with subproblem overlap.

- Number of nodes exponential in n (2n); therefore exponential number of calls
to Cut-Rod

Leaves: each possible way of cutting rod; either cut or not
at each position 2*(n-1)

Rod cutting problem: memoized solution

Step 1: Initialization:

MEMOIZED-CUT-ROD (p, n)

1 letr[0..n]beanew array

2 fori =0ton

3 rli] = —oo

4 return MEMOIZED-CUT-ROD-AUX (p,n,r)

Creates array for holding memoized results, and initialized to minus infinity. Then
calls the main auxiliary function

Rod cutting problem: memoized DP

Step 2: The main auxiliary function, which goes through the lengths, computes
answers to subproblems and memoizes if subproblem not yet encountered:

MEMOIZED-CUT-ROD-AUX (p,n,r)

1 ifrn]>0

2 return r|n]

3 ifn==0

4 q =20

5 elseqg = —o0

6 fori = 1ton

7 g = max(q, pli] + MEMOIZED-CUT-ROD-AUX(p,n —i,r1))
8 r[n] =g¢q

9 return g

Rod cutting problem: Bottom-up DP

BoTTOM-UP-CUT-ROD(p, 1)

1 letr[0..n]be anew array

2 r[0]=0

3 forj =1ton

4 q = —o0

5 fori = 1toj

6 q = max(q, pli]+r[j —i])
7 rljl = ¢

8 return r|n]

Rod cutting problem: Bottom-up DP

BoTrTOM-UP-CUT-ROD(p, 1)

1 letr[0..n] be anew array

2 r[0] =0

3 forj =1ton

4 q = —0o0

5 fori =1toj

6 q = max(q, pli] +r[j —i])
7 rljl = ¢

8 return r{n]

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the
maximal revenue if it has not already been memoized, and line 8 saves it.

Run time: For both top-down and bottom-up versions:

o(n’)

Easiest to see for bottom-up version: doubly-nested for loop.

Rod cutting problem

* We can also view graph form; reduce previous tree that
iIncluded all subproblems repeatedly...

« Each vertex represents subproblem of given size

» Vertex label = subproblem size

Edge from x to y: We need a solution to subproblem

y when solving subproblem x

» Runtime equal to number of edges O(n*)

Runtime a combination of number of items in the

table (n) and work peritem (n). The work per item is

due to the max operation (needed even if the table is

filled and we just take values from the table) is proportional
to n, as in the number of edges in the graph

