
Data Structures and Algorithm
Analysis (CSC317)

Dynamic Programming 2

Odelia Schwartz

• Problems that may naively have exponential running time,
but can be made polynomial (fast!)

• Dynamic: “I wanted to get across the idea that this was
dynamic, this was multistage, this was time-varying… It
also has a very interesting property as an adjective, and
that is it's impossible to use the word dynamic in a
pejorative sense.”

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/dy_birth.pdf

• Programming: Not programming languages;; Bellman was
interested in “planning and decision making.”

• Main approach: hold answers to previous problems already
solved in a table, to be used again without recomputing.

Dynamic Programming

Dynamic Programming so far

Main properties:

1. Overlapping subproblems (same subproblems solved over
and over again)

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure;; more on later)

We’ll want to contrast with other algorithmic approaches,
such as divide and conquer…

Dynamic Programming so far

Main properties:

1. Overlapping subproblems (same subproblems solved over
and over again)

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure;; more on later)

To make algorithm more efficient, what did we do?

Dynamic Programming so far

Main properties:

1. Overlapping subproblems (same subproblems solved over
and over again

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure;; more on later)

To make algorithm more efficient, we either (i) memoized
(saved solutions to smaller subproblems in a table as we
recursed;; “recursive solution “remembers” what results it has
computed previously”);; or we saved solutions to subproblems
in a table (ii) bottom-up. These turned out equivalent.

We did: Fibonacci Memoized and Bottom-up
Dynamic Programming

See online by Galles:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Runtime?

Dynamic Programming Class Outline

• Examples of applications (motivation)
• Simple example to gain intuition (Fib)
• Back to applications and more examples

Examples of applications

• Computational Biology (genome similarity)

Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

What is the Longest Common Subsequence?

Answer: 3 CGT

LCS(6,6) = 3 // length of Longest Common Subsequence

Examples of applications

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
A C C C G G T C G A G T G …
G T C G T T C G G A A T T …

Brute force: Try all subsequences in 1st string and
compare to second string…
n=500 then 2^500 possibilities

Pick first character or do not…
Pick 2nd character or do not…
Pick 3rd or do not…
2 * 2 * 2 * 2 …. * 2 (n times)

Longest Common Subsequence

• Formulating the recursion

• We’ll try and start from the largest sequence,
and then formulate the recursion for smaller
subproblems

Longest Common Subsequence

• Look at example

C C G C T T

A C G G A T

Longest Common Subsequence

• Look at example

C C G C T T

A C G G A T

Last letter of both strings identical
What to do??

Longest Common Subsequence

• Look at example

C C G C T T

A C G G A T

Last letter of both strings identical:
Recurse on LCS(5,5)

Solution here?

Longest Common Subsequence

• Look at example

C C G C T T

A C G G A T

Last letter of both strings identical:
Recurse on LCS(5,5)

Solution here?
LCS(6,6) = LCS(5,5) + 1 = … 3

CCGCT T
ACGGA T

Longest Common Subsequence

• Look at example

C C G C T C

A C G G A T

Last letter of both strings different:
What to do??

Longest Common Subsequence

• Look at example

C C G C T C C C G C T C

A C G G A T A C G G A T

Last letter of both strings different:

LCS[6,6] = max(LCS[5,6], LCS(6,5]) = … 3
CCGCT CCGCTC
ACGGAT ACGGA

Longest Common Subsequence

• Look at example

C C G C T C C C G C T C

A C G G A T A C G G A T

Last letter of both strings different:

LCS[6,6] = max(LCS[5,6], LCS(6,5]) = … 3
CCGCT CCGCTC
ACGGAT ACGGA
= 3 CGT = 2 CG

Longest Common Subsequence

• Summary so far
Let c hold the length of the LCS
The first string is x (indexed by i)
Second string is y (indexed by j)

From textbook:

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Longest Common Subsequence

• We’ve structured as large subproblem
composed of small subproblems

• If we know optimal solution to smaller
subproblems, we can obtain optimal solution
to larger subproblem

From textbook:

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Longest Common Subsequence

From textbook:

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Question: Is this recursive solution efficient?

Longest Common Subsequence

From textbook:

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Answer: Not efficient;; only if memoized previous
solutions (or build bottom-up) – just like with Fib

Longest Common Subsequence

From textbook:

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Question: Are there overlapping subproblems?

Recursion tree on the board…

Longest Common Subsequence

Dynamic Programming solution:

Needs a table. In Fib length n.
Here??

Longest Common Subsequence

Dynamic Programming solution:

• Define table c[0..m, 0..n]
n = x.length (of first subsequence)
m = y.length (of second subsequence)

0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 m

0	 	 	 	 	 	 	 	 	 	 	 	 	 	

n

Longest Common Subsequence

Animation by Galles:

https://www.cs.usfca.edu/~galles/visualization/DPLCS.html

Bottom-up: we impose order
Memoized: order imposed by recursion

Longest Common Subsequence

Dynamic Programming solution:

• Main approach: Either memoize solutions to
subproblems not yet computed, or compute
solutions to subproblems bottom-up

• We’ll see that runtime is
mn subproblems
constant computation each

• We’ll write out Bottom-up (memoized as
assignment)

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH

Longest Common Subsequence

Main properties that allow DP:

• Overlapping subproblems
• Solution to big problem constructed from solutions
to smaller subproblem (optimal)

Bottom-up LCS from book

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH

Bottom-up LCS from book

Runtime:

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH

Size of table (mn)
Times constant operations per table entry (up to 3!)

Bottom-up LCS from book

Example on the board…

Bottom-up LCS from book

Printing result

15.4 Longest common subsequence 395

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 2 2
0 1 1 2 2 2
0 1 1 2 2 3
0 1 2 2 2 3 3
0 1 2 2 3 3
0 1 2 2 3 4 4

1
2

3

4

B D C A B A
1 2 3 4 5 60

A
B
C
B
D
A
B

1
2
3
4
5
6
7

0

j
i

xi

yj

Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences X D hA; B; C; B;
D;A;Bi and Y D hB;D;C;A;B;Ai. The square in row i and column j contains the value of cŒi; j !
and the appropriate arrow for the value of bŒi; j !. The entry 4 in cŒ7; 6!—the lower right-hand corner
of the table—is the length of an LCS hB; C; B; Ai of X and Y . For i; j > 0, entry cŒi; j ! depends
only on whether xi D yj and the values in entries cŒi ! 1; j !, cŒi; j ! 1!, and cŒi ! 1; j ! 1!, which
are computed before cŒi; j !. To reconstruct the elements of an LCS, follow the bŒi; j ! arrows from
the lower right-hand corner; the sequence is shaded. Each “-” on the shaded sequence corresponds
to an entry (highlighted) for which xi D yj is a member of an LCS.

found. With this method, we encounter the elements of this LCS in reverse order.
The following recursive procedure prints out an LCS of X and Y in the proper,
forward order. The initial call is PRINT-LCS.b; X; X: length; Y: length/.

PRINT-LCS.b; X; i; j /

1 if i == 0 or j == 0
2 return
3 if bŒi; j ! == “-”
4 PRINT-LCS.b; X; i ! 1; j ! 1/
5 print xi

6 elseif bŒi; j ! == “"”
7 PRINT-LCS.b; X; i ! 1; j /
8 else PRINT-LCS.b; X; i; j ! 1/

For the b table in Figure 15.8, this procedure prints BCBA. The procedure takes
time O.mC n/, since it decrements at least one of i and j in each recursive call.

DP so far

• Problems that naively can appear exponential time
• But via recursion and memoization, or bottom-up
filling a table, become polynomial

• Main idea: Save solutions to subproblems in a table
that can later be accessed

DP so far

• Fibonacci:
- number of subproblems = table size
- for each subproblem, look at how many choices
of previous subproblems

• LCS:
- number of subproblems = table size
- for each subproblem, look at how many choices
of previous subproblems

DP so far

• Fibonacci:
- number of subproblems = table size: n
- for each subproblem, look at how many choices
of previous subproblems? 2

• LCS:
- number of subproblems = table size: n x m
- for each subproblem, look at how many choices
of previous subproblems? Up to 3

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH

30 Chapter 2 Getting Started

2.3.1 The divide-and-conquer approach
Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:
Divide the problem into a number of subproblems that are smaller instances of the

same problem.
Conquer the subproblems by solving them recursively. If the subproblem sizes are

small enough, however, just solve the subproblems in a straightforward manner.
Combine the solutions to the subproblems into the solution for the original prob-

lem.
The merge sort algorithm closely follows the divide-and-conquer paradigm. In-

tuitively, it operates as follows.
Divide: Divide the n-element sequence to be sorted into two subsequences of n=2

elements each.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.
The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE.A; p; q; r/, where A is an array and p, q, and r are indices into the array
such that p ! q < r . The procedure assumes that the subarrays AŒp : : q! and
AŒq C 1 : : r ! are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray AŒp : : r !.

Our MERGE procedure takes time ‚.n/, where n D r " p C 1 is the total
number of elements being merged, and it works as follows. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto

Another DP example

• Rod-cutting problem
• First DP problem in the book…
• Table size n but may have up to n choices…

Rod cutting problem

Dynamic Programming – class 2

- Main approach is recursive, but holds answers to subproblems in a table so that
 can be used again without re-computing

- Can be formulated both via recursion and saving in a table (memoization) or
saving in a table bottom-up. Typically, we first formulate the recursive solution,
and then turn it into recursion plus dynamic programming via memoization, or
bottom-up.

- “programming” as in tabular, not programming code

Example: Rod cutting:

We are given prices pi for each rod of length i

Question: We are given a rod of length n, and want to maximize revenue, by
cutting up the rod into pieces and selling each of the pieces.

Example: We are given a 4 inches rod. Best solution to cut up? We’ll first list the
solutions:

1. Cut into 2 pieces length 2:

p2 + p2 = 5+ 5 =10

2. Cut into 4 pieces length 1:

 p1 + p1 + p1 + p1 =1+1+1+1= 4

3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1):

 p1 + p3 =1+ 8 = 9; p3 + p1 = 8+1= 9

5. Keep length 4:

 p4 = 9

6-8: Cut into 3 pieces, length 1, 1, and 2 (any order):

 p1 + p1 + p2 = 7; p2 + p1 + p1 = 7; p1 + p2 + p1 = 7

360 Chapter 15 Dynamic Programming

rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.

Rod cutting problem

Dynamic Programming – class 2

- Main approach is recursive, but holds answers to subproblems in a table so that
 can be used again without re-computing

- Can be formulated both via recursion and saving in a table (memoization) or
saving in a table bottom-up. Typically, we first formulate the recursive solution,
and then turn it into recursion plus dynamic programming via memoization, or
bottom-up.

- “programming” as in tabular, not programming code

Example: Rod cutting:

We are given prices pi for each rod of length i

Question: We are given a rod of length n, and want to maximize revenue, by
cutting up the rod into pieces and selling each of the pieces.

Example: We are given a 4 inches rod. Best solution to cut up? We’ll first list the
solutions:

1. Cut into 2 pieces length 2:

p2 + p2 = 5+ 5 =10

2. Cut into 4 pieces length 1:

 p1 + p1 + p1 + p1 =1+1+1+1= 4

3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1):

 p1 + p3 =1+ 8 = 9; p3 + p1 = 8+1= 9

5. Keep length 4:

 p4 = 9

6-8: Cut into 3 pieces, length 1, 1, and 2 (any order):

 p1 + p1 + p2 = 7; p2 + p1 + p1 = 7; p1 + p2 + p1 = 7

360 Chapter 15 Dynamic Programming

rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.
Example: 4 inch rod. Best solution?
We’ll first list all solutions…

Rod cutting problem

Dynamic Programming – class 2

- Main approach is recursive, but holds answers to subproblems in a table so that
 can be used again without re-computing

- Can be formulated both via recursion and saving in a table (memoization) or
saving in a table bottom-up. Typically, we first formulate the recursive solution,
and then turn it into recursion plus dynamic programming via memoization, or
bottom-up.

- “programming” as in tabular, not programming code

Example: Rod cutting:

We are given prices pi for each rod of length i

Question: We are given a rod of length n, and want to maximize revenue, by
cutting up the rod into pieces and selling each of the pieces.

Example: We are given a 4 inches rod. Best solution to cut up? We’ll first list the
solutions:

1. Cut into 2 pieces length 2:

p2 + p2 = 5+ 5 =10

2. Cut into 4 pieces length 1:

 p1 + p1 + p1 + p1 =1+1+1+1= 4

3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1):

 p1 + p3 =1+ 8 = 9; p3 + p1 = 8+1= 9

5. Keep length 4:

 p4 = 9

6-8: Cut into 3 pieces, length 1, 1, and 2 (any order):

 p1 + p1 + p2 = 7; p2 + p1 + p1 = 7; p1 + p2 + p1 = 7

360 Chapter 15 Dynamic Programming

rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.
Example: 4 inch rod. Best solution?
We’ll first list all solutions…

Rod cutting problem

Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts

in non-decreasing order. But still a lot!

Note: We’ve computed a brute force solution; all possibilities for this simple small
example. But we want more optimal solution!

One solution:

- Cut rod into length i and n-i

- Only remainder n-i can be cut (recursed on) further

We’ll define:

a. Maximum revenue for log of size n: rn
 (this is the solution we want to find)

b. Revenue (price) for single log of length i: pi

Example: If we cut log into length i and n-i:

Revenue: pi + rn−i

(this can be seen as recursing on n-i)

There are many possible choices of i:

rn =max

p1 + rn−1
p2 + rn−2
...
pn + r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

i" n$i"
Recurse on further

Rod cutting problem

Will Divide and Conquer work?

Maybe, but need to think about how to combine
solutions…

On the board… length 8, conquer each 4;;
Best solution 10+10=20
But dividing into 6 and 2 yields 17+5=22 better!

Rod cutting problem One solution

Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts

in non-decreasing order. But still a lot!

Note: We’ve computed a brute force solution; all possibilities for this simple small
example. But we want more optimal solution!

One solution:

- Cut rod into length i and n-i

- Only remainder n-i can be cut (recursed on) further

We’ll define:

a. Maximum revenue for log of size n: rn
 (this is the solution we want to find)

b. Revenue (price) for single log of length i: pi

Example: If we cut log into length i and n-i:

Revenue: pi + rn−i

(this can be seen as recursing on n-i)

There are many possible choices of i:

rn =max

p1 + rn−1
p2 + rn−2
...
pn + r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

i" n$i"
Recurse on further

• Cut rod into length i and n-i
• Recurse on n-i

Rod cutting problem One solution

Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts

in non-decreasing order. But still a lot!

Note: We’ve computed a brute force solution; all possibilities for this simple small
example. But we want more optimal solution!

One solution:

- Cut rod into length i and n-i

- Only remainder n-i can be cut (recursed on) further

We’ll define:

a. Maximum revenue for log of size n: rn
 (this is the solution we want to find)

b. Revenue (price) for single log of length i: pi

Example: If we cut log into length i and n-i:

Revenue: pi + rn−i

(this can be seen as recursing on n-i)

There are many possible choices of i:

rn =max

p1 + rn−1
p2 + rn−2
...
pn + r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

i" n$i"
Recurse on further

• Cut rod into length i and n-i
• Recurse on n-i

Rod cutting problem

Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts

in non-decreasing order. But still a lot!

Note: We’ve computed a brute force solution; all possibilities for this simple small
example. But we want more optimal solution!

One solution:

- Cut rod into length i and n-i

- Only remainder n-i can be cut (recursed on) further

We’ll define:

a. Maximum revenue for log of size n: rn
 (this is the solution we want to find)

b. Revenue (price) for single log of length i: pi

Example: If we cut log into length i and n-i:

Revenue: pi + rn−i

(this can be seen as recursing on n-i)

There are many possible choices of i:

rn =max

p1 + rn−1
p2 + rn−2
...
pn + r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

i" n$i"
Recurse on further

Rod cutting problem
Many possible choices of i…

Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts

in non-decreasing order. But still a lot!

Note: We’ve computed a brute force solution; all possibilities for this simple small
example. But we want more optimal solution!

One solution:

- Cut rod into length i and n-i

- Only remainder n-i can be cut (recursed on) further

We’ll define:

a. Maximum revenue for log of size n: rn
 (this is the solution we want to find)

b. Revenue (price) for single log of length i: pi

Example: If we cut log into length i and n-i:

Revenue: pi + rn−i

(this can be seen as recursing on n-i)

There are many possible choices of i:

rn =max

p1 + rn−1
p2 + rn−2
...
pn + r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

i" n$i"
Recurse on further

Size	 1,	 recurse on	 n-‐1

Size	 2,	 recurse on	 n-‐2

Size	 n,	 recurse on	 nothing

Rod cutting problem
Recursive solution…Recursive (top-down) pseudo code:

Problem?

Run time very slow; like brute force

Why?

Cut-rod calls itself repeatedly with the same parameter values. We can see by
plotting a tree:

- Node label = size of subproblem called on

- Can see by eye that many subproblems called repeatedly. We call this a
 problem with subproblem overlap.

- Number of nodes exponential in n (2n); therefore exponential number of calls
 to Cut-Rod

15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and

364 Chapter 15 Dynamic Programming

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s ! t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n!1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n!1

leaves.

T .n/ D 1C
n!1X

j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it

Rod cutting problem
Recursive solution…Recursive (top-down) pseudo code:

Problem?

Run time very slow; like brute force

Why?

Cut-rod calls itself repeatedly with the same parameter values. We can see by
plotting a tree:

- Node label = size of subproblem called on

- Can see by eye that many subproblems called repeatedly. We call this a
 problem with subproblem overlap.

- Number of nodes exponential in n (2n); therefore exponential number of calls
 to Cut-Rod

15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and

364 Chapter 15 Dynamic Programming

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s ! t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n!1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n!1

leaves.

T .n/ D 1C
n!1X

j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it

Why is this so slow?

Rod cutting problem
Recursive solution… why is this so slow?

Recursive (top-down) pseudo code:

Problem?

Run time very slow; like brute force

Why?

Cut-rod calls itself repeatedly with the same parameter values. We can see by
plotting a tree:

- Node label = size of subproblem called on

- Can see by eye that many subproblems called repeatedly. We call this a
 problem with subproblem overlap.

- Number of nodes exponential in n (2n); therefore exponential number of calls
 to Cut-Rod

15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and

364 Chapter 15 Dynamic Programming

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s ! t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n!1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n!1

leaves.

T .n/ D 1C
n!1X

j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it

Leaves:	 each	 possible	 way	 of	 cutting	 rod;	 either	 cut	 or	 not
at	 each	 position	 2^(n-‐1)

Rod cutting problem: memoized solution

Dynamic programming approach:

- We saw that recursive solution inefficient, since repeatedly computing answer
 to same subproblem (overlapping subproblems)

- Instead, solve each subproblem only once and save its solution. Next time we
 encounter subproblem, look it up in hash table or array. We call this
 memoization = sub-solution has been remembered. (recursive, top-down
 solution)

- We’ll also discuss a second, equivalently good solution, of saving the results of
 subproblems of increasing size (in order) in an array, each time using results
 from previously computed array entries (bottom-up solution).

(1) Recursive top-down solution: Cut-Rod with Memoization:

Step 1: Initialization:

"
Creates array for holding memoized results, and initialized to minus infinity. Then
calls the main auxiliary function

Step 2: The main auxiliary function, which goes through the lengths, computes
answers to subproblems and memoizes if subproblem not yet encountered:

15.1 Rod cutting 365

up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.2 In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends
on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 for i D 0 to n
3 rŒi ! D !1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.

Rod cutting problem: memoized DP

Dynamic programming approach:

- We saw that recursive solution inefficient, since repeatedly computing answer
 to same subproblem (overlapping subproblems)

- Instead, solve each subproblem only once and save its solution. Next time we
 encounter subproblem, look it up in hash table or array. We call this
 memoization = sub-solution has been remembered. (recursive, top-down
 solution)

- We’ll also discuss a second, equivalently good solution, of saving the results of
 subproblems of increasing size (in order) in an array, each time using results
 from previously computed array entries (bottom-up solution).

(1) Recursive top-down solution: Cut-Rod with Memoization:

Step 1: Initialization:

"
Creates array for holding memoized results, and initialized to minus infinity. Then
calls the main auxiliary function

Step 2: The main auxiliary function, which goes through the lengths, computes
answers to subproblems and memoizes if subproblem not yet encountered:

15.1 Rod cutting 365

up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.2 In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends
on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 for i D 0 to n
3 rŒi ! D !1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.

(2) There’s a simpler bottom-up solution, going in order, each time using previous
 value from array:

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the
maximal revenue if it has not already been memoized, and line 8 saves it.

Run time: For both top-down and bottom-up versions:

O(n2)

Easiest to see for bottom-up version: doubly-nested for loop.

We can also view the subproblems encountered in graph form:

- We reduce previous tree that included all the subproblems repeatedly

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

Rod cutting problem: Bottom-up DP

(2) There’s a simpler bottom-up solution, going in order, each time using previous
 value from array:

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the
maximal revenue if it has not already been memoized, and line 8 saves it.

Run time: For both top-down and bottom-up versions:

O(n2)

Easiest to see for bottom-up version: doubly-nested for loop.

We can also view the subproblems encountered in graph form:

- We reduce previous tree that included all the subproblems repeatedly

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

Rod cutting problem: Bottom-up DP

(2) There’s a simpler bottom-up solution, going in order, each time using previous
 value from array:

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the
maximal revenue if it has not already been memoized, and line 8 saves it.

Run time: For both top-down and bottom-up versions:

O(n2)

Easiest to see for bottom-up version: doubly-nested for loop.

We can also view the subproblems encountered in graph form:

- We reduce previous tree that included all the subproblems repeatedly

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

(2) There’s a simpler bottom-up solution, going in order, each time using previous
 value from array:

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the
maximal revenue if it has not already been memoized, and line 8 saves it.

Run time: For both top-down and bottom-up versions:

O(n2)

Easiest to see for bottom-up version: doubly-nested for loop.

We can also view the subproblems encountered in graph form:

- We reduce previous tree that included all the subproblems repeatedly

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

Rod cutting problem
• We can also view graph form;; reduce previous tree that
included all subproblems repeatedly…

- Here each vertex represents subproblem of a given size

Vertex label: subproblem size

Edge from x to y: We need a solution to subproblem y when solving subproblem
x.

Run time: Can be seen as number of edges: O(n2)

Note: Run time is a combination of number of items in table (n) and work per item
(n). The work per item because of the max operation (needed even if the table is
filled and we just take values from the table) is proportional to n, as in the number
of edges in the graph.

15.1 Rod cutting 367

3

0

1

2

4

Figure 15.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels
give the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that we need a
solution to subproblem y when solving subproblem x. This graph is a reduced version of the tree of
Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

directly references array entry rŒj ! i ! instead of making a recursive call to solve
the subproblem of size j ! i . Line 7 saves in rŒj ! the solution to the subproblem
of size j . Finally, line 8 returns rŒn!, which equals the optimal value rn.

The bottom-up and top-down versions have the same asymptotic running time.
The running time of procedure BOTTOM-UP-CUT-ROD is ‚.n2/, due to its
doubly-nested loop structure. The number of iterations of its inner for loop, in
lines 5–6, forms an arithmetic series. The running time of its top-down counterpart,
MEMOIZED-CUT-ROD, is also ‚.n2/, although this running time may be a little
harder to see. Because a recursive call to solve a previously solved subproblem
returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It
solves subproblems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for
loop of lines 6–7 iterates n times. Thus, the total number of iterations of this for
loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series,
giving a total of ‚.n2/ iterations, just like the inner for loop of BOTTOM-UP-
CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see
aggregate analysis in detail in Section 17.1.)

Subproblem graphs
When we think about a dynamic-programming problem, we should understand the
set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Fig-
ure 15.4 shows the subproblem graph for the rod-cutting problem with n D 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-

• Each vertex represents subproblem of given size
• Vertex label = subproblem size
• Edge from x to y: We need a solution to subproblem
y when solving subproblem x

• Runtime equal to number of edges
• Runtime a combination of number of items in the
table (n) and work per item (n). The work per item is
due to the max operation (needed even if the table is
filled and we just take values from the table) is proportional
to n, as in the number of edges in the graph

(2) There’s a simpler bottom-up solution, going in order, each time using previous
 value from array:

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the
maximal revenue if it has not already been memoized, and line 8 saves it.

Run time: For both top-down and bottom-up versions:

O(n2)

Easiest to see for bottom-up version: doubly-nested for loop.

We can also view the subproblems encountered in graph form:

- We reduce previous tree that included all the subproblems repeatedly

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

