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• Problems  that  may  naively  have  exponential  running  time,  
but  can  be  made  polynomial  (fast!)

• Dynamic:  “I  wanted  to  get  across  the  idea  that  this  was  
dynamic,  this  was  multistage,  this  was  time-varying…  It  
also  has  a  very  interesting  property  as  an  adjective,  and  
that  is  it's  impossible  to  use  the  word  dynamic  in  a    
pejorative  sense.”  

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/dy_birth.pdf

• Programming:  Not  programming  languages;;  Bellman  was  
interested  in  “planning  and  decision  making.”  

• Main  approach:  hold  answers  to  previous  problems  already  
solved  in  a  table,  to  be  used  again  without  recomputing.

Dynamic  Programming



Dynamic  Programming  so  far

Main  properties:

1. Overlapping  subproblems  (same  subproblems  solved  over
and  over  again)

2. Solution  to  big  problem  constructed  from  solutions  to  smaller
subproblems  (optimal  substructure;;  more  on  later)

We’ll  want  to  contrast  with  other  algorithmic  approaches,
such  as  divide  and  conquer…
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To  make  algorithm  more  efficient,  what  did  we  do?



Dynamic  Programming  so  far

Main  properties:

1. Overlapping  subproblems (same  subproblems solved  over
and  over  again

2. Solution  to  big  problem  constructed  from  solutions  to  smaller
subproblems  (optimal  substructure;;  more  on  later)

To  make  algorithm  more  efficient,  we  either  (i)  memoized
(saved  solutions  to  smaller  subproblems  in  a  table  as  we
recursed;;  “recursive  solution  “remembers”  what  results  it  has  
computed  previously”);;  or  we  saved  solutions  to  subproblems
in  a  table  (ii)  bottom-up.  These  turned  out  equivalent.



We  did:  Fibonacci  Memoized and  Bottom-up
Dynamic  Programming

See  online  by  Galles:  
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Runtime?



Dynamic  Programming  Class  Outline

• Examples  of  applications  (motivation)
• Simple  example  to  gain  intuition  (Fib)
• Back  to  applications  and  more  examples  



Examples  of  applications

• Computational  Biology  (genome  similarity)

Strings  from  alphabet  {A,  C,  G,  T}

Example:  ACGGAT              
CCGCTT

What  is  the  Longest  Common  Subsequence?

Answer:  3  CGT

LCS(6,6)  =  3            //  length  of  Longest  Common  Subsequence



Examples  of  applications

• Computational  Biology  (genome  similarity)

What  is  the  Longest  Common  Subsequence?
A  C  C  C  G  G  T  C  G  A  G  T  G  …
G  T  C  G  T  T  C  G  G  A  A  T  T  …

Brute  force:  Try  all  subsequences  in  1st string  and
compare  to  second  string…
n=500  then  2^500  possibilities

Pick  first  character  or  do  not…
Pick  2nd character  or  do  not…
Pick  3rd or  do  not…  
2  *  2  *  2  *  2  ….  *  2    (n  times)  



Longest  Common  Subsequence

• Formulating  the  recursion

• We’ll  try  and  start  from  the  largest  sequence,  
and  then  formulate  the  recursion  for  smaller
subproblems



Longest  Common  Subsequence

• Look  at  example

C  C  G  C  T  T

A  C  G  G  A  T



Longest  Common  Subsequence

• Look  at  example

C  C  G  C  T  T

A  C  G  G  A  T

Last  letter  of  both  strings  identical
What  to  do??
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• Look  at  example

C  C  G  C  T  T

A  C  G  G  A  T

Last  letter  of  both  strings  identical:
Recurse on  LCS(5,5)

Solution  here?



Longest  Common  Subsequence

• Look  at  example

C  C  G  C  T  T

A  C  G  G  A  T

Last  letter  of  both  strings  identical:
Recurse on  LCS(5,5)

Solution  here?  
LCS(6,6)  =  LCS(5,5)  +  1  =  …  3

CCGCT            T
ACGGA            T



Longest  Common  Subsequence

• Look  at  example

C  C  G  C  T  C

A  C  G  G  A  T

Last  letter  of  both  strings  different:
What  to  do??



Longest  Common  Subsequence

• Look  at  example

C  C  G  C  T  C                C  C  G  C  T  C

A  C  G  G  A  T                  A  C  G  G  A  T

Last  letter  of  both  strings  different:

LCS[6,6]  =  max(LCS[5,6],  LCS(6,5])  =  …  3
CCGCT              CCGCTC
ACGGAT          ACGGA



Longest  Common  Subsequence

• Look  at  example

C  C  G  C  T  C                C  C  G  C  T  C

A  C  G  G  A  T                  A  C  G  G  A  T

Last  letter  of  both  strings  different:

LCS[6,6]  =  max(LCS[5,6],  LCS(6,5])  =  …  3
CCGCT              CCGCTC
ACGGAT          ACGGA
=  3  CGT            =  2  CG



Longest  Common  Subsequence

• Summary  so  far
Let  c  hold  the  length  of  the  LCS
The  first  string  is  x  (indexed  by  i)
Second  string  is  y  (indexed  by  j)

From  textbook:

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem



Longest  Common  Subsequence

• We’ve  structured  as  large  subproblem
composed  of  small  subproblems

• If  we  know  optimal  solution  to  smaller  
subproblems,  we  can  obtain  optimal  solution
to  larger  subproblem

From  textbook:
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sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem
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sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Question:  Is  this  recursive  solution  efficient?
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sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Answer:  Not  efficient;;  only  if  memoized previous
solutions  (or  build  bottom-up)  – just  like  with  Fib
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sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution
Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm!1 and Yn!1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm!1 and Y and finding an LCS of X and Yn!1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn!1 and
of Xm!1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm!1 and Yn!1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j ! to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j ! D

!
0 if i D 0 or j D 0 ;

cŒi ! 1; j ! 1!C 1 if i; j > 0 and xi D yj ;

max.cŒi; j ! 1!; cŒi ! 1; j !/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi!1 and Yj !1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj !1 and of Xi!1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS
Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

Question:  Are  there  overlapping  subproblems?

Recursion  tree  on  the  board…



Longest  Common  Subsequence

Dynamic  Programming  solution:

Needs  a  table.  In  Fib  length  n.  
Here??



Longest  Common  Subsequence

Dynamic  Programming  solution:

• Define  table  c[0..m,  0..n]
n  =  x.length (of  first  subsequence)
m  =  y.length (of  second  subsequence)

0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  m

0	  	  	  	  	  	  	  	  	  	  	  	  	  	  

n



Longest  Common  Subsequence

Animation  by  Galles:

https://www.cs.usfca.edu/~galles/visualization/DPLCS.html

Bottom-up:  we  impose  order
Memoized:  order  imposed  by  recursion



Longest  Common  Subsequence

Dynamic  Programming  solution:

• Main  approach:  Either  memoize solutions  to
subproblems not  yet  computed,  or  compute  
solutions  to  subproblems bottom-up

• We’ll  see  that  runtime  is  
mn subproblems
constant  computation  each

• We’ll  write  out  Bottom-up  (memoized as
assignment)

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH



Longest  Common  Subsequence

Main  properties  that  allow  DP:

• Overlapping  subproblems
• Solution  to  big  problem  constructed  from  solutions
to  smaller  subproblem (optimal)



Bottom-up  LCS  from  book
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has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH
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Runtime:  
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Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
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Size  of  table  (mn)  
Times  constant  operations  per  table  entry  (up  to  3!)
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Example  on  the  board…



Bottom-up  LCS  from  book

Printing  result
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0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 2 2
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Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences X D hA; B; C; B;
D;A;Bi and Y D hB;D;C;A;B;Ai. The square in row i and column j contains the value of cŒi; j !
and the appropriate arrow for the value of bŒi; j !. The entry 4 in cŒ7; 6!—the lower right-hand corner
of the table—is the length of an LCS hB; C; B; Ai of X and Y . For i; j > 0, entry cŒi; j ! depends
only on whether xi D yj and the values in entries cŒi ! 1; j !, cŒi; j ! 1!, and cŒi ! 1; j ! 1!, which
are computed before cŒi; j !. To reconstruct the elements of an LCS, follow the bŒi; j ! arrows from
the lower right-hand corner; the sequence is shaded. Each “-” on the shaded sequence corresponds
to an entry (highlighted) for which xi D yj is a member of an LCS.

found. With this method, we encounter the elements of this LCS in reverse order.
The following recursive procedure prints out an LCS of X and Y in the proper,
forward order. The initial call is PRINT-LCS.b; X; X: length; Y: length/.

PRINT-LCS.b; X; i; j /

1 if i == 0 or j == 0
2 return
3 if bŒi; j ! == “-”
4 PRINT-LCS.b; X; i ! 1; j ! 1/
5 print xi

6 elseif bŒi; j ! == “"”
7 PRINT-LCS.b; X; i ! 1; j /
8 else PRINT-LCS.b; X; i; j ! 1/

For the b table in Figure 15.8, this procedure prints BCBA. The procedure takes
time O.mC n/, since it decrements at least one of i and j in each recursive call.



DP  so  far

• Problems  that  naively  can  appear  exponential  time
• But  via  recursion  and  memoization,  or  bottom-up
filling  a  table,  become  polynomial

• Main  idea:  Save  solutions  to  subproblems in  a  table
that  can  later  be  accessed



DP  so  far

• Fibonacci:
- number  of  subproblems =  table  size
- for  each  subproblem,  look  at  how  many  choices
of  previous  subproblems

• LCS:
- number  of  subproblems =  table  size
- for  each  subproblem,  look  at  how  many  choices
of  previous  subproblems



DP  so  far

• Fibonacci:
- number  of  subproblems =  table  size:  n
- for  each  subproblem,  look  at  how  many  choices
of  previous  subproblems?  2

• LCS:
- number  of  subproblems =  table  size:  n  x  m
- for  each  subproblem,  look  at  how  many  choices
of  previous  subproblems?  Up  to  3

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.
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Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j ! values in a table cŒ0 : : m; 0 : : n!,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n! to help us construct an optimal solution. Intu-
itively, bŒi; j ! points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j !. The procedure returns the b and c tables;
cŒm; n! contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n! and cŒ0 : : m; 0 : : n! be new tables
4 for i D 1 to m
5 cŒi; 0! D 0
6 for j D 0 to n
7 cŒ0; j ! D 0
8 for i D 1 to m
9 for j D 1 to n

10 if xi == yj

11 cŒi; j ! D cŒi ! 1; j ! 1!C 1
12 bŒi; j ! D “-”
13 elseif cŒi ! 1; j ! " cŒi; j ! 1!
14 cŒi; j ! D cŒi ! 1; j !
15 bŒi; j ! D “"”
16 else cŒi; j ! D cŒi; j ! 1!
17 bŒi; j ! D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS
The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n! and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j !, it implies that xi D yj is an element of the LCS that LCS-LENGTH
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2.3.1 The divide-and-conquer approach
Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:
Divide the problem into a number of subproblems that are smaller instances of the

same problem.
Conquer the subproblems by solving them recursively. If the subproblem sizes are

small enough, however, just solve the subproblems in a straightforward manner.
Combine the solutions to the subproblems into the solution for the original prob-

lem.
The merge sort algorithm closely follows the divide-and-conquer paradigm. In-

tuitively, it operates as follows.
Divide: Divide the n-element sequence to be sorted into two subsequences of n=2

elements each.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.
The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE.A; p; q; r/, where A is an array and p, q, and r are indices into the array
such that p ! q < r . The procedure assumes that the subarrays AŒp : : q! and
AŒq C 1 : : r ! are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray AŒp : : r !.

Our MERGE procedure takes time ‚.n/, where n D r " p C 1 is the total
number of elements being merged, and it works as follows. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto



Another  DP  example

• Rod-cutting  problem
• First  DP  problem  in  the  book…
• Table  size  n  but  may  have  up  to  n  choices…  



Rod  cutting  problem

Dynamic Programming – class 2  

- Main approach is recursive, but holds answers to subproblems in a table so that   
  can be used again without re-computing 
 
- Can be formulated both via recursion and saving in a table (memoization) or 
saving in a table bottom-up. Typically, we first formulate the recursive solution, 
and then turn it into recursion plus dynamic programming via memoization, or 
bottom-up. 

- “programming” as in tabular, not programming code 

Example: Rod cutting: 

We are given prices pi  for each rod of length i  

 

Question: We are given a rod of length n, and want to maximize revenue, by 
cutting up the rod into pieces and selling each of the pieces. 

Example: We are given a 4 inches rod. Best solution to cut up? We’ll first list the 
solutions: 

1. Cut into 2 pieces length 2:  

   
p2 + p2 = 5+ 5 =10

 
2. Cut into 4 pieces length 1:  

   p1 + p1 + p1 + p1 =1+1+1+1= 4  

3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1): 

   p1 + p3 =1+ 8 = 9; p3 + p1 = 8+1= 9  

5. Keep length 4: 

   p4 = 9  

6-8: Cut into 3 pieces, length 1, 1, and 2 (any order): 

   p1 + p1 + p2 = 7; p2 + p1 + p1 = 7; p1 + p2 + p1 = 7  
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rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.
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rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.
Example:  4  inch  rod.  Best  solution?  
We’ll  first  list  all  solutions…
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rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
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cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
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Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.
Example:  4  inch  rod.  Best  solution?  
We’ll  first  list  all  solutions…



Rod  cutting  problem

Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts 

in non-decreasing order. But still a lot! 

Note: We’ve computed a brute force solution; all possibilities for this simple small 
example. But we want more optimal solution! 

 

One solution: 

 

 

 

- Cut rod into length i and n-i 

- Only remainder n-i can be cut (recursed on) further 

 

We’ll define: 

a. Maximum revenue for log of size n: rn  
   (this is the solution we want to find) 

b. Revenue (price) for single log of length i: pi  

 

Example: If we cut log into length i and n-i: 

Revenue: pi + rn−i  

(this can be seen as recursing on n-i) 

 

There are many possible choices of i: 

rn =max

p1 + rn−1
p2 + rn−2
...
pn + r0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 

 

i" n$i"
Recurse on further 



Rod  cutting  problem

Will  Divide  and  Conquer  work?  

Maybe,  but  need  to  think  about  how  to  combine
solutions…

On  the  board…  length  8,  conquer  each  4;;
Best  solution  10+10=20  
But  dividing  into  6  and  2  yields  17+5=22  better!
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⎫

⎬
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⎭
⎪
⎪

 

 

i" n$i"
Recurse on further 

• Cut  rod  into  length  i and  n-i
• Recurse on  n-i
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Size	  1,	  recurse on	  n-‐1

Size	  2,	  recurse on	  n-‐2

Size	  n,	  recurse on	  nothing



Rod  cutting  problem
Recursive  solution…Recursive (top-down) pseudo code: 

 

 

Problem?  

Run time very slow; like brute force 

 

Why? 

Cut-rod calls itself repeatedly with the same parameter values. We can see by 
plotting a tree: 

 

- Node label = size of subproblem called on 

- Can see by eye that many subproblems called repeatedly. We call this a 
  problem with subproblem overlap. 

- Number of nodes exponential in n (2n ); therefore exponential number of calls   
  to Cut-Rod 
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In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and
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Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s ! t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n!1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n!1

leaves.

T .n/ D 1C
n!1X

j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it
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it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.
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same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
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process unfolds recursively, the amount of work done, as a function of n, grows
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To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and
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The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it
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In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
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Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and
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n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s ! t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n!1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n!1

leaves.

T .n/ D 1C
n!1X

j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it

Leaves:	  each	  possible	  way	  of	  cutting	  rod;	  either	  cut	  or	  not
at	  each	  position	  2^(n-‐1)



Rod  cutting  problem:  memoized solution

Dynamic programming approach: 

- We saw that recursive solution inefficient, since repeatedly computing answer   
  to same subproblem (overlapping subproblems) 

- Instead, solve each subproblem only once and save its solution. Next time we  
  encounter subproblem, look it up in hash table or array. We call this  
  memoization = sub-solution has been remembered. (recursive, top-down  
  solution) 

- We’ll also discuss a second, equivalently good solution, of saving the results of   
  subproblems of increasing size (in order) in an array, each time using results  
  from previously computed array entries (bottom-up solution). 

 

(1) Recursive top-down solution: Cut-Rod with Memoization: 

Step 1: Initialization: 

"
Creates array for holding memoized results, and initialized to minus infinity. Then 
calls the main auxiliary function 

 

Step 2: The main auxiliary function, which goes through the lengths, computes 
answers to subproblems and memoizes if subproblem not yet encountered: 

15.1 Rod cutting 365

up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.2 In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends
on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 for i D 0 to n
3 rŒi ! D !1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.
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except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
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1 let rŒ0 : : n! be a new array
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(2) There’s a simpler bottom-up solution, going in order, each time using previous  
     value from array: 

 

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the 
maximal revenue if it has not already been memoized, and line 8 saves it. 

Run time: For both top-down and bottom-up versions: 
 
O(n2 )   

Easiest to see for bottom-up version: doubly-nested for loop.  

 

We can also view the subproblems encountered in graph form: 

- We reduce previous tree that included all the subproblems repeatedly 
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MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now
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known.” (Known revenue values are always nonnegative.) It then calls its helper
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The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
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The bottom-up version is even simpler:
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2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
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7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now
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included  all  subproblems repeatedly…

- Here each vertex represents subproblem of a given size 

 

Vertex label: subproblem size 

Edge from x to y: We need a solution to subproblem y when solving subproblem 
x. 

Run time: Can be seen as number of edges: O(n2 )  

Note: Run time is a combination of number of items in table (n) and work per item 
(n). The work per item because of the max operation (needed even if the table is 
filled and we just take values from the table) is proportional to n, as in the number 
of edges in the graph. 
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Figure 15.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels
give the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that we need a
solution to subproblem y when solving subproblem x. This graph is a reduced version of the tree of
Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

directly references array entry rŒj ! i ! instead of making a recursive call to solve
the subproblem of size j ! i . Line 7 saves in rŒj ! the solution to the subproblem
of size j . Finally, line 8 returns rŒn!, which equals the optimal value rn.

The bottom-up and top-down versions have the same asymptotic running time.
The running time of procedure BOTTOM-UP-CUT-ROD is ‚.n2/, due to its
doubly-nested loop structure. The number of iterations of its inner for loop, in
lines 5–6, forms an arithmetic series. The running time of its top-down counterpart,
MEMOIZED-CUT-ROD, is also ‚.n2/, although this running time may be a little
harder to see. Because a recursive call to solve a previously solved subproblem
returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It
solves subproblems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for
loop of lines 6–7 iterates n times. Thus, the total number of iterations of this for
loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series,
giving a total of ‚.n2/ iterations, just like the inner for loop of BOTTOM-UP-
CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see
aggregate analysis in detail in Section 17.1.)

Subproblem graphs
When we think about a dynamic-programming problem, we should understand the
set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Fig-
ure 15.4 shows the subproblem graph for the rod-cutting problem with n D 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-

• Each  vertex  represents  subproblem of  given  size
• Vertex  label  =  subproblem size
• Edge  from  x  to  y:  We  need  a  solution  to  subproblem
y  when  solving  subproblem x

• Runtime  equal  to  number  of  edges  
• Runtime  a  combination  of  number  of  items  in  the
table  (n)  and  work  per  item  (n).  The  work  per  item  is
due  to  the  max  operation  (needed  even  if  the  table  is
filled  and  we  just  take  values  from  the  table)  is  proportional
to  n,  as  in  the  number  of  edges  in  the  graph
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Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:
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3 for j D 1 to n
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For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now
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