## Data Structures and Algorithm Analysis (CSC317)

## Dynamic Programming 1

Odelia Schwartz

## CSC317 House Keeping

- Introductions...

Your major and what do you hope to get out of this course?

## In my field... Computational neuroscience

Brain receives input, processes information, and computes outputs. What algorithms does the brain use??


## CSC317 House Keeping

- Course homepage: I will post slides: http://www.cs.miami.edu/home/odelia/teaching/csc317 fall19/index.html
- My typed slides will be posted on a regular basis; in class develop on the board...
- Odelia Schwartz (odelia at cs miami dot edu). Encouraged to email to make appointment or stop by
- Assignments continue to be on BB
- Continued structure of quizzes (and no final!)


## Data Structures and Algorithm Analysis (CSC317)



## Optional reading, beyond scope



## Algorithmic approaches so far?

## Algorithmic approaches so far?

- Divide and Conquer


## Algorithmic approaches so far?

- Divide and Conquer

Next:

- Dynamic Programming
- Greedy algorithms


## Algorithmic approaches so far?

- Divide and Conquer

Next:

- Dynamic Programming
- Greedy algorithms


## Dynamic Programming

- General, powerful
- Problems that may naively have exponential running time, but can be made poynomial (fast!)
- "Programming"?


## Dynamic Programming

- General, powerful
- Problems that may naively have exponential running time, but can be made poynomial (fast!)
- "Programming"? Not programming languages; Bellman was interested in planning and decision making. See:
http://www.cs.miami.edu/home/odelia/teaching/csc317 fall19/syllabus/dy birth.pdf


## Dynamic Programming

- General, powerful
- Problems that may naively have exponential running time, but can be made poynomial (fast!)
- "Programming"? Not programming languages; Bellman was interested in planning and decision making. See:
http://www.cs.miami.edu/home/odelia/teaching/csc317 fall19/syllabus/dy birth.pdf
- Can be thought of as "tabular programming" as in "table." Main approach: hold answers to previous problems already solved in a table, so that can be used again without recomputing.


## Dynamic Programming Class Outline

- Examples of applications (motivation)
- Simple example to gain intuition
- Back to applications and more examples (next classes)


## Dynamic Programming Class Outline

- Examples of applications (motivation)
- Simple example to gain intuition
- Back to applications and more examples (next classes)


## Examples of applications (motivation)

## Examples of applications (motivation)

- Computational Biology (genome similarity; also spike similarity; file text similarity)
- Cypher to Thomas Jefferson (will mention)
- Finding shortest path (later)


## Examples of applications (motivation)

- Computational Biology (genome similarity)

Strings from alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
Example: ACGGAT CCGCTT

How to determine similarity?
And why? Understanding one genome sequence and its similarity to another can teach us about function...

## Examples of applications (motivation)

- Computational Biology (genome similarity)

Strings from alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
Example: ACGGAT CCGCTT

How to determine similarity?
Number of changes from one to another small Allowed to change character
Find the Longest Common Subsequence

## Examples of applications (motivation)

- Computational Biology (genome similarity)

Strings from alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
Example: ACGGAT CCGCTT

What is the Longest Common Subsequence?

## Examples of applications (motivation)

- Computational Biology (genome similarity)

Strings from alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
Example: ACGGAT CCGCTT

What is the Longest Common Subsequence?
Answer: 3 CGT
Is answer unique?

## Examples of applications (motivation)

- Computational Biology (genome similarity)

Strings from alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
Example: ACGGAT CCGCTT

What is the Longest Common Subsequence?
We easily eye balled answer for these short sequences.
Longer sequences of 500 or more characters?
Brute force solution?

## Examples of applications (motivation)

- Computational Biology (genome similarity)

What is the Longest Common Subsequence?
ACCCGGTCGAGTG...
GTCGTTCGGAATT...
Brute force: Try all subsequences in $1^{\text {st }}$ string and compare to second string... $\mathrm{n}=500$ then $2^{\wedge} 500$ possibilities

Pick first character or do not...
Pick $2^{\text {nd }}$ character or do not...
Pick ${ }^{\text {rd }}$ or do not...
2*2*2*2 .... *2 (n times)

## Examples of applications (motivation)

- Computational Biology (genome similarity)

What is the Longest Common Subsequence?
ACCCGGTCGAGTG...
GTCGTTCGGAATT...
Brute force:
$\mathrm{n}=500$ then $2^{\wedge} 500$ possibilities
Pick $1^{\text {st }}$ character or do not...
Pick 2 ${ }^{\text {nd }}$ character or do not...
Pick $3^{\text {rd }}$ or do not...
2 * 2 * 2 * $2 \ldots$ * 2 ( $n$ times) $=2^{\wedge} n$
Actually need to multiply by length of $2^{\text {nd }}$ string

## Examples of applications (motivation)

- Computational Biology (genome similarity)

What is the Longest Common Subsequence?
ACGGAT
CCGCTT
We learned Divide and Conquer. Will this approach work?

## Examples of applications (motivation)

- Computational Biology (genome similarity)

What is the Longest Common Subsequence?
ACGGAT
CCGCTT
We learned Divide and Conquer. Will this approach work?
Answer: No. Not in a simple way.
It could for this example, but not generally...
ACG GAT
CCG CTT
C G T

## Examples of applications (motivation)

- Computational Biology (genome similarity)

What is the Longest Common Subsequence?
CGTGAC
CGGTTT
We learned Divide and Conquer. Will this approach work?
Answer: No. Not in a simple way. Does not find C G T,
Unless you look across the midline...
Doesn't work easily here...
CGT GAC
CGG TTT
C G

## Examples of applications (motivation)

- Computational Biology (genome similarity)

What is the Longest Common Subsequence?
CGTGAC
CGGTTT
We will learn a Dynamic Programming approach...

## Examples of applications (motivation)

- Spike Similarity...


## Examples of applications (motivation)

- Cypher to Thomas Jefferson
http://www.cs.miami.edu/home/odelia/teaching/ csc317 fall19/syllabus/cipherJefferson-amsci2009-03S.pdf



## Examples of applications (motivation)

- Cypher to Thomas Jefferson
http://www.cs.miami.edu/home/odelia/teaching/
csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf


## Examples of applications (motivation)

## - Cypher to Thomas Jefferson

http://www.cs.miami.edu/home/odelia/teaching/
csc317 fall19/syllabus/cipherJefferson-amsci2009-03S.pdf


## Examples of applications (motivation)

- Cypher to Thomas Jefferson
http://www.cs.miami.edu/home/odelia/teaching/
csc317 fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

| I binlei | 58 wsataispapsevh ... |
| :--- | :--- |
| 2 uvclst | 71 eaaoebc ... |
| 3 oeethh | 33 chnoeeth ... |
| 4 nnihat | 49 nemeyeesannihat ... |
| 5 apsevh | 83 stlrcwreh ... |
| 6 penwee | 14 seesbinlei... |
| 7 aaoobc | 62 arpenwee ... |
| 8 rcwreh | 20 uvclst $\ldots$ |

## Simple example (to build intuition)

- Fibonacci!


## Simple example (to build intuition)

- Fibonacci!

Fib(n)

1. If $n==0$ return 1
2. If $\mathrm{n}==1$ return 1
3. else return Fib(n-1) $+\operatorname{Fib}(n-2)$

Good algorithm??

## Simple example (to build intuition)

- Fibonacci!

Fib(n)

1. If $n==0$ return 1
2. If $\mathrm{n}==1$ return 1
3. else return $\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$

Good algorithm?? Does the job but ... no, very wasteful! Why?

## Simple example (to build intuition)

Fib(n)

1. If $n==0$ return 1
2. If $\mathrm{n}==1$ return 1
3. else return $\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2)$

Good algorithm?? Does the job but ... no, very wasteful! Why?

A lot of recomputing ...

## Simple example (to build intuition)

Fib(n)

1. If $n==0$ return 1
2. If $\mathrm{n}==1$ return 1
3. else return $\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2)$

Good algorithm?? Does the job but ... no, very wasteful! Why?

Keep repeating computations ...
$\operatorname{Fib}(25)=\operatorname{Fib}(24)+\operatorname{Fib}(23) \ldots$
$\operatorname{Fib}(24)=\operatorname{Fib}(23)+\operatorname{Fib}(22) \ldots$

## Simple example (to build intuition)

Fib(n)

1. If $n==0$ return 1
2. If $\mathrm{n}==1$ return 1
3. else return $\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2)$

Recursion tree on the board...

## Simple example (to build intuition)

Fib(n)

1. If $n==0$ return 1
2. If $\mathrm{n}==1$ return 1
3. else return $\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2)$

See animation:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

## Simple example (Fibonacci)

Summary so far:

- Overlapping subproblems (lots)!
- Solution to big problem can be constructed from solutions to subproblems
- Example of type of problems that can be solved with Dynamic Programming


## Simple example (Fibonacci)

Dynamic Programming Fibonacci:

- Main idea: Save in dictionary (e.g., array) subproblems already solved, so no need to recompute
- Memoization: from memo pad or memory ... funky name...


## Fibonacci Memoized Dynamic Programming

On the board...
a. Initialization: Let mem be a new array with values initialized to minus infinity

## Fibonacci Memoized Dynamic Programming

a. Initialization: Let mem be a new array with values initialized to minus infinity
b. Fib(n) //Memoized Dynamic Programming

1. If mem[n]>=0
2. return mem[n] //if already previously computed in memo pad
3. if $n==0$ return 1
4. if $n==1$ return 1
5. else $\mathrm{f}=\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2) / / /$ therwise compute and save value
6. $m e m[n]=f / / s a v e ~ v a l u e ~ i n ~ m e m o ~ p a d ~$
7. return f

## Fibonacci Memoized Dynamic Programming

Plot tree: On the board...

- Run time proportional to n
- Second time encountered, just use memoized result...
- Cuts off whole recursion subtrees!
\# of subproblems: n (size of array) work per subproblem: constant


## Fibonacci Memoized Dynamic Programming

Plot tree: On the board...

- Run time proportional to n
- Second time encountered, just use memoized result...
- Cuts off whole recursion subtrees!

See online by Galles:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html
See online by Rosenberg:
http://www.cs.miami.edu/home/odelia/teaching/fib2019.html
Summary:
Recursion + memoization

## Another Fibonacci Dynamic Programming (bottom-up)

Fib(n) //Bottom-up Dynamic Programming

1. Let mem[0..n] be a new array
2. $m e m[0]=1$
3. $\operatorname{mem}[1]=1$
4. For $\mathrm{i}=2$ to n
5. $\operatorname{mem}[i]=\operatorname{mem}[i-1]+\operatorname{mem}[i-2]$
6. return mem[n]

## Another Fibonacci Dynamic Programming (bottom-up)

Question: Is bottom-up algorithm the same or different from the previous recursive memoized solution?

## See online by Galles:

https://www.cs.usfca.edu/~galles/visualization/DPFib.html

# Another Fibonacci Dynamic Programming (bottom-up) 

Question: Is bottom-up algorithm the same or different from the previous recursive memoized solution?

## See online by Galles:

https://www.cs.usfca.edu/~galles/visualization/DPFib.html
Answer: One for loop, complexity proportional to n Equivalent solution to recursive memoization (same things Happen in same order; but in bottom-up we know and set the order in advance)

## Another Fibonacci Dynamic Programming (bottom-up)

Question: If this is how we were first taught Fibbonacci, why bother with naïve inefficient recursion, memoized solution, etc. first?

Answer: Other problems initially less intuitive, but approach will be similar (think back to Genome question)

## Dynamic Programming so far

1. Overlapping subproblems (same subproblems solved over and over again
2. Solution to big problem constructed from solutions to smaller subproblems (optimal substructure; more on later)
3. To make algorithm more efficient, we either memoized (saved solutions to smaller subproblems in a table) as we recursed; or we saved solutions to subproblems bottom-up. These turned out equivalent.

## Dynamic Programming so far

Question: Both Dynamic Programming and Divide \& Conquer have recursive solutions. But they are different. Why?

## Dynamic Programming so far

Question: Both Dynamic Programming and Divide \& Conquer have recursive solutions. But they are different. Why?

Answer: For instance, Divide \& Conquer doesn't have overlapping subproblems...

## Next

- In Fib clear what the smaller subproblems are, and how knowing their solution solves the bigger problem
- Start to build intuition with more complex problems, starting from genome similarity and Longest Common Subsequence...

