
Data Structures and Algorithm
Analysis (CSC317)

Dynamic Programming 1

Odelia Schwartz

CSC317 House Keeping

• Introductions…

Your major and what do you hope to get out of this
course?

In my field… Computational neuroscience

Brain receives input, processes information, and computes
outputs. What algorithms does the brain use??

CSC317 House Keeping

• Course homepage: I will post slides:
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/index.html

• My typed slides will be posted on a regular basis;
in class develop on the board…

• Odelia Schwartz (odelia at cs miami dot edu).
Encouraged to email to make appointment
or stop by

• Assignments continue to be on BB

• Continued structure of quizzes (and no final!)

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/index.html

Data Structures and Algorithm
Analysis (CSC317)

Optional reading, beyond scope

Algorithmic approaches so far?

Algorithmic approaches so far?

• Divide and Conquer

Algorithmic approaches so far?

• Divide and Conquer

Next:
• Dynamic Programming
• Greedy algorithms

Algorithmic approaches so far?

• Divide and Conquer

Next:
• Dynamic Programming
• Greedy algorithms

• General, powerful
• Problems that may naively have exponential

running time, but can be made poynomial (fast!)
• “Programming”?

Dynamic Programming

• General, powerful
• Problems that may naively have exponential

running time, but can be made poynomial (fast!)
• “Programming”? Not programming languages;

Bellman was interested in planning and
decision making. See:

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/dy_birth.pdf

Dynamic Programming

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/dy_birth.pdf

• General, powerful
• Problems that may naively have exponential

running time, but can be made poynomial (fast!)
• “Programming”? Not programming languages;

Bellman was interested in planning and
decision making. See:

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/dy_birth.pdf

• Can be thought of as “tabular programming”
as in “table.” Main approach: hold answers to
previous problems already solved in a table,
so that can be used again without recomputing.

Dynamic Programming

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/dy_birth.pdf

Dynamic Programming Class Outline

• Examples of applications (motivation)
• Simple example to gain intuition
• Back to applications and more examples

(next classes)

Dynamic Programming Class Outline

• Examples of applications (motivation)
• Simple example to gain intuition
• Back to applications and more examples

(next classes)

Examples of applications (motivation)

Examples of applications (motivation)

• Computational Biology (genome similarity;
also spike similarity; file text similarity)

• Cypher to Thomas Jefferson (will mention)
• Finding shortest path (later)

Examples of applications (motivation)

• Computational Biology (genome similarity)

Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

How to determine similarity?

And why? Understanding one genome sequence and its
similarity to another can teach us about function…

Examples of applications (motivation)

• Computational Biology (genome similarity)

Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

How to determine similarity?

Number of changes from one to another small
Allowed to change character
Find the Longest Common Subsequence

Examples of applications (motivation)

• Computational Biology (genome similarity)

Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

What is the Longest Common Subsequence?

Examples of applications (motivation)

• Computational Biology (genome similarity)

Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

What is the Longest Common Subsequence?

Answer: 3 CGT

Is answer unique?

Examples of applications (motivation)

• Computational Biology (genome similarity)

Strings from alphabet {A, C, G, T}

Example: ACGGAT
CCGCTT

What is the Longest Common Subsequence?

We easily eye balled answer for these short sequences.
Longer sequences of 500 or more characters?
Brute force solution?

Examples of applications (motivation)

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
A C C C G G T C G A G T G …
G T C G T T C G G A A T T …

Brute force: Try all subsequences in 1st string and
compare to second string…
n=500 then 2^500 possibilities

Pick first character or do not…
Pick 2nd character or do not…
Pick 3rd or do not…
2 * 2 * 2 * 2 …. * 2 (n times)

Examples of applications (motivation)

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
A C C C G G T C G A G T G …
G T C G T T C G G A A T T …

Brute force:
n=500 then 2^500 possibilities

Pick 1st character or do not…
Pick 2nd character or do not…
Pick 3rd or do not…
2 * 2 * 2 * 2 …. * 2 (n times) = 2^n
Actually need to multiply by length of 2nd string

Examples of applications (motivation)

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
A C G G A T
C C G C T T

We learned Divide and Conquer. Will this approach work?

Examples of applications (motivation)

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
A C G G A T
C C G C T T

We learned Divide and Conquer. Will this approach work?

Answer: No. Not in a simple way.

It could for this example, but not generally…
A C G G A T
C C G C T T

C G T

Examples of applications (motivation)

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
C G T G A C
C G G T T T

We learned Divide and Conquer. Will this approach work?

Answer: No. Not in a simple way. Does not find C G T,
Unless you look across the midline…
Doesn’t work easily here…
C G T G A C
C G G T T T

C G

Examples of applications (motivation)

• Computational Biology (genome similarity)

What is the Longest Common Subsequence?
C G T G A C
C G G T T T

We will learn a Dynamic Programming approach…

Examples of applications (motivation)

• Spike Similarity…

Examples of applications (motivation)

• Cypher to Thomas Jefferson

http://www.cs.miami.edu/home/odelia/teaching/
csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

2009 March–April 143www.americanscientist.org © 2009 Sigma Xi, The Scientific Research Society. Reproduction with
permission only. Contact perms@amsci.org.

Figure 1. On December 19, 1801, Robert Pat-
terson (far left)—a professor of mathematics
at the University of Pennsylvania—wrote a
letter to Thomas Jefferson (immediate left)
about cryptography. In this letter (above),
Patterson described his vision of a “per-
fect cipher,” which required four elements:
adaptable to all languages, easy to memorize,
simple to perform and inscrutable without
the key. Patterson also described an encryp-
tion technique that he believed met these
criteria. In addition, he included encrypted
text, which he said could never be decrypted.
There is no evidence that Jefferson was able
to decode the text. The author took on Patter-
son’s challenge using techniques that could
have been applied—if laboriously—in the
early 19th century. (All letter reproductions
courtesy of the Library of Congress.)T

he
 A

rt
 A

rc
hi

ve
/L

au
ri

e
Pl

at
t W

in
fr

ey

A
m

er
ic

an
 P

hi
lo

so
ph

ic
al

 S
oc

ie
ty

2009 March–April 143www.americanscientist.org © 2009 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

Examples of applications (motivation)

• Cypher to Thomas Jefferson

http://www.cs.miami.edu/home/odelia/teaching/
csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

Examples of applications (motivation)

• Cypher to Thomas Jefferson

http://www.cs.miami.edu/home/odelia/teaching/
csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

144 American Scientist, Volume 97 © 2009 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

a transposition cipher, which changes the order
of characters from the original text to conceal a
message. As Patterson wrote:

In this system, there is no substitution of
one letter or character for another; but
every word is to be written at large, in
its proper alphabetical characters, as in
common writing: only that there need be
no use of capitals, pointing, nor spaces
between words; since any piece of writ-
ing may be easily read without these dis-
tinctions.

He continued:

Let the writer rule on his paper as many
pencil lines as will be sufficient to con-
tain the whole writing.… Then, instead of
placing the letters one after the other, as in
common writing, let them be placed one
under the other, in the Chinese manner,

namely, the first letter at the beginning
of the first line, the second letter at the
beginning of the second line, and so on,
writing column after column, from left to
right, till the whole is written.

To demonstrate the approach, Patterson in-
cluded an example that began: “Buonaparte
has at last given peace to Europe,” and he
explained how to encipher it:

This writing is then to be distributed into
sections of not more than nine lines in
each section, and these are to be num-
bered 1. 2. 3 &c 1. 2. 3 &c (from top to bot-
tom). The whole is then to be transcribed,
section after section, taking the lines of
each section in any order at pleasure,
inserting at the beginning of each line
respectively any number of arbitrary or
insignificant letters, not exceeding nine;
& also filling up the vacant spaces at the

Figure 2. A worked example in Patterson’s letter demonstrates his transposition technique. He started by writing the message in columns, fol-
lowing letters placed beneath the preceding letters, like Chinese writing, and starting new rows as needed (left). His worked example began:
“Buonaparte has at last given peace to Europe.” Patterson also included an encrypted version of this text (right). He broke the rows into sections
of nines lines or less, scrambled the lines within the sections—done the same in each section—and added an arbitrary number of letters to the
beginning of each line. The number of added letters remained the same for each line throughout the encryption, such as, say, adding 3 letters
to line 8 in every section of the encrypted text.

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

Examples of applications (motivation)

• Cypher to Thomas Jefferson

http://www.cs.miami.edu/home/odelia/teaching/
csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

2009 March–April 145www.americanscientist.org © 2009 Sigma Xi, The Scientific Research Society. Reproduction with
permission only. Contact perms@amsci.org.

end of the lines with like letters. Now the
key or secret for decyphering will consist
in knowing—the number of lines in each
section, the order in which these are tran-
scribed, and the number of insignificant
letters at the beginning of each line.…

A column of two-digit numbers provides the
key to Patterson’s cipher. For each pair of dig-
its, the first represents a line number within a
section, and the order of the first digits indi-
cates how to rearrange the lines. The second
digit in each pair indicates how many extra
letters to add to the beginning of that line.

Crunching Patterson’s Challenge
In describing this cipher to Jefferson, Patter-
son wrote, “It will be absolutely impossible,
even for one perfectly acquainted with the
general system, ever to desypher the writing
of another without his key.” Moreover, Pat-
terson estimated the number of keys available
for his cipher at more than “ninety millions
of millions.” Jefferson might have simply ac-
cepted Patterson’s warning—“the utter im-
possibility of decyphering will be readily ac-
knowledged”—and Jefferson probably never
cracked the enciphered portion of the letter.
Still, Jefferson was so taken by the cipher’s ap-
parent efficacy that he forwarded the method
to Robert Livingston, ambassador to France.
Nonetheless, Livingston continued to use a
nomenclator.

Others also bypassed Patterson’s cipher. For
example, when Ralph E. Weber—a scholar in
residence at the U.S. Central Intelligence Agen-
cy and National Security Agency—described
Patterson’s cipher method in 1979 in United
States Diplomatic Codes and Ciphers 1775–1938,
Weber dealt only with the worked example,
completely skipping the challenge cipher.

Is Patterson’s cipher truly unsolvable? Al-
though the analysis of the frequencies of single
letters cannot break Patterson’s code, I sus-
pected that analyzing groups of letters might.
Like the frequencies of single letters in text,
digraph frequencies—the likelihood of spe-
cific pairs of letters appearing together—are
not uniform and therefore might help to break
Patterson’s cipher.

To test this idea, I needed a table of digraph
frequencies of English made from text that
was contemporary with Patterson’s cipher.
To build such a table, I used the 80,000 letters
that make up Jefferson’s State of the Union
addresses—with spaces and punctuation re-
moved, capitalization ignored—and counted
the occurrences of “aa,” “ab,”“ac” and so on
through “zz.” This created a table with 26 col-
umns and 26 rows of digraph counts. Then, di-
viding each digraph count by the total number
of letters used in the text gave the frequencies.
I also built a digraph-frequency table from a

much larger collection of writing from Patter-
son’s era. In both cases, the digraph frequen-
cies came out virtually the same.

Next, I guessed at five things: the number of
rows in a section size, two rows that belong next
to each other and the number of extra letters in-
serted at the beginning of those two rows. So
instead of trying to figure out Patterson’s entire
key, I just guessed at part of it. For example, I
could guess that each section consists of 8 rows,
and that rows 7 and 3 belong next to each other.
That would mean that the pattern would repeat
every 8 rows—making row 15 (8 rows after 7)
and 11 (8 rows after 3) lie next to each other, and
the same for rows 23 and 19, and so on. Given

1 binlei 58 wsataispapsevh …

2 uvclst 71 eaaoobc …

3 oeethh 33 chnoeeth …

4 nnihat 49 nemeyeesannihat …

5 apsevh 83 stlrcwreh …

6 penwee 14 seesbinlei …

7 aaoobc 62 arpenwee …

8 rcwreh 20 uvclst …

1 tealei 58 sdtrodiesuauno …

2 ettdne 71 stoetls …

3 hopfcf 33 ptohopfcf …

4 aeeooc 49 porterepiaeeooc …

5 suauno 83 tlrlpwruu …

6 arcrcn 14 etretealei

7 toetls 62 wharcrcn …

8 lpwruu 20 ettdne …

1 aeiedl 33 sautrhtdi …

2 sftaew 49 adtradiiegaaiwt …

3 tvhtdi 14 nonsaeiedl …

4 gaaiwt 20 sftaewtvoiw …

Figure 3. A column of two-digit numbers provided
the method for encrypting and the key. The first digit
indicated the line number within a section and the
second was the number of letters added to the begin-
ning of that row. In Patterson’s worked example, the
key was 58, 71, 33, 49, 83, 14, 62, 20. To encrypt the first
section of the example text, which is shown in part
(left), Patterson moved row 5 to the first line (right)
and added 8 letters, moved row 7 to row 2 and added
1 letter, and so on. Then, he made the same transposi-
tions for the following sections. This example shows
the encryption for “Buonaparte (red) has (green) at
(purple) last (gold) given (blue).…” In the second line
of the cipher, the o indicates an “o” that Patterson left
out when transcribing row 7 (left) to row 2 (right).

http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf
http://www.cs.miami.edu/home/odelia/teaching/csc317_fall19/syllabus/cipherJefferson-amsci2009-03S.pdf

Simple example (to build intuition)

• Fibonacci!

Simple example (to build intuition)

• Fibonacci!

1. If n==0 return 1
2. If n==1 return 1
3. else return Fib(n-1) + Fib(n-2)

Good algorithm??

Fib(n)

Simple example (to build intuition)

• Fibonacci!

1. If n==0 return 1
2. If n==1 return 1
3. else return Fib(n-1) + Fib(n-2)

Good algorithm?? Does the job but … no,
very wasteful! Why?

Fib(n)

Simple example (to build intuition)

1. If n==0 return 1
2. If n==1 return 1
3. else return Fib(n-1) + Fib(n-2)

Good algorithm?? Does the job but … no,
very wasteful! Why?

A lot of recomputing …

Fib(n)

Simple example (to build intuition)

1. If n==0 return 1
2. If n==1 return 1
3. else return Fib(n-1) + Fib(n-2)

Good algorithm?? Does the job but … no,
very wasteful! Why?

Keep repeating computations …
Fib(25) = Fib(24) + Fib(23) …
Fib(24) = Fib(23) + Fib(22)…

Fib(n)

Simple example (to build intuition)

1. If n==0 return 1
2. If n==1 return 1
3. else return Fib(n-1) + Fib(n-2)

Recursion tree on the board…

Fib(n)

Simple example (to build intuition)

1. If n==0 return 1
2. If n==1 return 1
3. else return Fib(n-1) + Fib(n-2)

See animation:

https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Fib(n)

https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Simple example (Fibonacci)
Summary so far:

• Overlapping subproblems (lots)!
• Solution to big problem can be constructed from solutions

to subproblems
• Example of type of problems that can be solved with

Dynamic Programming

Simple example (Fibonacci)
Dynamic Programming Fibonacci:

• Main idea: Save in dictionary (e.g., array) subproblems
already solved, so no need to recompute

• Memoization: from memo pad or memory …
funky name…

Fibonacci Memoized Dynamic Programming

On the board…
a. Initialization: Let mem be a new array with values

initialized to minus infinity

Fibonacci Memoized Dynamic Programming

a. Initialization: Let mem be a new array with values
initialized to minus infinity

b. Fib(n) //Memoized Dynamic Programming
1. If mem[n]>=0
2. return mem[n] //if already previously computed in memo pad
3. if n==0 return 1
4. if n==1 return 1
5. else f = Fib(n-1) + Fib(n-2) //otherwise compute and save value
6. mem[n] = f //save value in memo pad
7. return f

Fibonacci Memoized Dynamic Programming

Plot tree: On the board…

• Run time proportional to n
• Second time encountered, just use memoized result…
• Cuts off whole recursion subtrees!

of subproblems: n (size of array)
work per subproblem: constant

Fibonacci Memoized Dynamic Programming

Plot tree: On the board…

• Run time proportional to n
• Second time encountered, just use memoized result…
• Cuts off whole recursion subtrees!

See online by Galles:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

See online by Rosenberg:
http://www.cs.miami.edu/home/odelia/teaching/fib2019.html

Summary:
Recursion + memoization

https://www.cs.usfca.edu/~galles/visualization/DPFib.html
http://www.cs.miami.edu/home/odelia/teaching/fib2019.html

Another Fibonacci Dynamic Programming
(bottom-up)

Fib(n) //Bottom-up Dynamic Programming
1. Let mem[0..n] be a new array
2. mem[0] = 1
3. mem[1] = 1
4. For i=2 to n
5. mem[i] = mem[i-1] + mem[i-2]
6. return mem[n]

Another Fibonacci Dynamic Programming
(bottom-up)

Question: Is bottom-up algorithm the same or different
from the previous recursive memoized solution?

See online by Galles:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Another Fibonacci Dynamic Programming
(bottom-up)

Question: Is bottom-up algorithm the same or different
from the previous recursive memoized solution?

See online by Galles:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Answer: One for loop, complexity proportional to n
Equivalent solution to recursive memoization (same things
Happen in same order; but in bottom-up we know and
set the order in advance)

https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Another Fibonacci Dynamic Programming
(bottom-up)

Question: If this is how we were first taught Fibbonacci,
why bother with naïve inefficient recursion, memoized
solution, etc. first?

Answer: Other problems initially less intuitive, but
approach will be similar (think back to Genome
question)

Dynamic Programming so far

1. Overlapping subproblems (same subproblems solved over
and over again

2. Solution to big problem constructed from solutions to smaller
subproblems (optimal substructure; more on later)

3. To make algorithm more efficient, we either memoized
(saved solutions to smaller subproblems in a table)
as we recursed; or we saved solutions to subproblems
bottom-up. These turned out equivalent.

Dynamic Programming so far

Question: Both Dynamic Programming and Divide & Conquer
have recursive solutions. But they are different. Why?

Dynamic Programming so far

Question: Both Dynamic Programming and Divide & Conquer
have recursive solutions. But they are different. Why?

Answer: For instance, Divide & Conquer doesn’t have
overlapping subproblems…

Next

• In Fib clear what the smaller subproblems are, and how
knowing their solution solves the bigger problem

• Start to build intuition with more complex problems,
starting from genome similarity and Longest Common
Subsequence…

