Graphs Part 4
Dijkstra’s shortest path algorithm

1. This algorithm finds a single source shortest path on a directed graph, with
weights for the edges (for instance, weights could be driving distances between
locations).

2. This is a greedy algorithm, and the weights must be non negative (otherwise,
for instance if we want to represent positive profit and negative loss, we can use
a “cousin” algorithm, Bellman Ford, which we do not discuss here, and uses
dynamic programming).

3. Remember that Breadth First Search (BFS) also finds a shortest path, but in
the case of unweighted edges. Dijkstra can be seen as a generalization of BFS.

Approach: We first describe the main approach, and then look at an example
from the text-book, which will make it more concrete.

The main idea is that we maintain a set of vertices S whose final shortest path
lengths have already been determined. Each time we consider the not yet
discovered vertices in the graph, and all edges going from a discovered vertex
(u) to an undiscovered vertex (v). We choose an undiscovered vertex with an
edge from u to v, that gives the shortest path length. The length from u to v for
each vertex v, is given by the length of u, plus the weight between u and v.

In the initialization, we just include source node s in the set of discovered nodes,
and set its length to 0. All other lengths are initially infinity. Then we keep
expanding set S of discovered nodes in a greedy manner, as in the example
figure below.

In the figure, the black vertices at each step are those vertices added to set S.
Initially, only s is in set S. s can go to t (length 10) or y (length 5), and y yields the
shortest path. Now both s and y are in set S. We consider all possibilities from
set S (vertices s and y) to other vertices. We already have the s to t (length 10)
stored and we also look atytot(5+3=8);ytoz(6+2=7);andytox (5 +9) -
14. The shortest greedy choice is y to z (length 7), so now z is added to our set
of discovered nodes S. And so on; see figure below.



Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S, and white vertices are in the min-priority queue Q = V — S. (a) The
situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)—(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

Run time summary: We noted in class that we go though each vertex once, and
then for each vertex we need to look at its adjacency list. If there are n vertices
and m edges, we have the usual (n + m) number of operations. However, each
operation takes time, since we need to find the minimum amongst all possible
edges. This can be done efficiently by extracting the minimum from a Queue,
with each such minimum taking O(log n) time. Overall we have O( (n+m) log n)




