
Dynamic Programming – class 2  

- Main approach is recursive, but holds answers to subproblems in a table so that   
  can be used again without re-computing 
 
- Can be formulated both via recursion and saving in a table (memoization) or 
saving in a table bottom-up. Typically, we first formulate the recursive solution, 
and then turn it into recursion plus dynamic programming via memoization, or 
bottom-up. 

- “programming” as in tabular, not programming code 

Example: Rod cutting: 

We are given prices pi  for each rod of length i  

 

Question: We are given a rod of length n, and want to maximize revenue, by 
cutting up the rod into pieces and selling each of the pieces. 

Example: We are given a 4 inches rod. Best solution to cut up? We’ll first list the 
solutions: 

1. Cut into 2 pieces length 2:  

   
p2 + p2 = 5+ 5 =10  

2. Cut into 4 pieces length 1:  

   p1 + p1 + p1 + p1 =1+1+1+1= 4  

3-4. Cut into 2 pieces, length 1 and length 3 (or vice versa length 3 and then 1): 

   p1 + p3 =1+ 8 = 9; p3 + p1 = 8+1= 9  

5. Keep length 4: 

   p4 = 9  

6-8: Cut into 3 pieces, length 1, 1, and 2 (any order): 

   p1 + p1 + p2 = 7; p2 + p1 + p1 = 7; p1 + p2 + p1 = 7  
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rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n!1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.



Total: 8 cases for n=4 (= 2
n−1) . We can slightly reduce by always requiring cuts 

in non-decreasing order. But still a lot! 

Note: We’ve computed a brute force solution; all possibilities for this simple small 
example. But we want more optimal solution! 

 

One solution: 

 

 

 

- Cut rod into length i and n-i 

- Only remainder n-i can be cut (recursed on) further 

 

We’ll define: 

a. Maximum revenue for log of size n: rn  
   (this is the solution we want to find) 

b. Revenue (price) for single log of length i: pi  

 

Example: If we cut log into length i and n-i: 

Revenue: pi + rn−i  

(this can be seen as recursing on n-i) 

 

There are many possible choices of i: 

rn =max
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Recurse on further 



Recursive (top-down) pseudo code: 

 

 

Problem?  

Run time very slow; like brute force 

 

Why? 

Cut-rod calls itself repeatedly with the same parameter values. We can see by 
plotting a tree: 

 

- Node label = size of subproblem called on 

- Can see by eye that many subproblems called repeatedly. We call this a 
  problem with subproblem overlap. 

- Number of nodes exponential in n (2n ); therefore exponential number of calls   
  to Cut-Rod 

 

15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and
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Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s ! t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n!1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n!1

leaves.

T .n/ D 1C
n!1X

j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n ! i/, where j D n ! i .
As Exercise 15.1-1 asks you to show,
T .n/ D 2n ; (15.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all the 2n!1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n!1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting
We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it



Dynamic programming approach: 

- We saw that recursive solution inefficient, since repeatedly computing answer   
  to same subproblem (overlapping subproblems) 

- Instead, solve each subproblem only once and save its solution. Next time we  
  encounter subproblem, look it up in hash table or array. We call this  
  memoization = sub-solution has been remembered. (recursive, top-down  
  solution) 

- We’ll also discuss a second, equivalently good solution, of saving the results of   
  subproblems of increasing size (in order) in an array, each time using results  
  from previously computed array entries (bottom-up solution). 

 

(1) Recursive top-down solution: Cut-Rod with Memoization: 

Step 1: Initialization: 

"
Creates array for holding memoized results, and initialized to minus infinity. Then 
calls the main auxiliary function 

 

Step 2: The main auxiliary function, which goes through the lengths, computes 
answers to subproblems and memoizes if subproblem not yet encountered: 
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up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.2 In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends
on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 for i D 0 to n
3 rŒi ! D !1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.



 

 

(2) There’s a simpler bottom-up solution, going in order, each time using previous  
     value from array: 

 

Lines 1-2 check if value already known or memoized; Lines 3-7 compute the 
maximal revenue if it has not already been memoized, and line 8 saves it. 

Run time: For both top-down and bottom-up versions: 
 
O(n2 )   

Easiest to see for bottom-up version: doubly-nested for loop.  

 

We can also view the subproblems encountered in graph form: 

- We reduce previous tree that included all the subproblems repeatedly 
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MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now
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- Here each vertex represents subproblem of a given size 

 

Vertex label: subproblem size 

Edge from x to y: We need a solution to subproblem y when solving subproblem 
x. 

Run time: Can be seen as number of edges: O(n2 )  

Note: Run time is a combination of number of items in table (n) and work per item 
(n). The work per item because of the max operation (needed even if the table is 
filled and we just take values from the table) is proportional to n, as in the number 
of edges in the graph. 
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Figure 15.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels
give the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that we need a
solution to subproblem y when solving subproblem x. This graph is a reduced version of the tree of
Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

directly references array entry rŒj ! i ! instead of making a recursive call to solve
the subproblem of size j ! i . Line 7 saves in rŒj ! the solution to the subproblem
of size j . Finally, line 8 returns rŒn!, which equals the optimal value rn.

The bottom-up and top-down versions have the same asymptotic running time.
The running time of procedure BOTTOM-UP-CUT-ROD is ‚.n2/, due to its
doubly-nested loop structure. The number of iterations of its inner for loop, in
lines 5–6, forms an arithmetic series. The running time of its top-down counterpart,
MEMOIZED-CUT-ROD, is also ‚.n2/, although this running time may be a little
harder to see. Because a recursive call to solve a previously solved subproblem
returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It
solves subproblems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for
loop of lines 6–7 iterates n times. Thus, the total number of iterations of this for
loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series,
giving a total of ‚.n2/ iterations, just like the inner for loop of BOTTOM-UP-
CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see
aggregate analysis in detail in Section 17.1.)

Subproblem graphs
When we think about a dynamic-programming problem, we should understand the
set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Fig-
ure 15.4 shows the subproblem graph for the rod-cutting problem with n D 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-


