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From  previous  class

Go  over  proofs  for  growth  of  functions  (on  the  board)



Goals

What  kind  of  recurrences  arise  in  algorithms
and  how  do  we  solve  more  generally  (than  what
we  saw  for  merge  sort)?

• More  recurrence  examples  

• Run  time  not  always  intuitive,  so  need  tools



Usefulness  in  recent  applications  
Application  of  divide-and-conquer  algorithm paradigm  to  improve  the  
detection  speed  of  high  interaction  client  honeypots.  Seifert  et  al.  2008.
“…one  needs  to  be  able  to  find  malicious  servers  on  a  network…  Client  
honeypots  are  the  new  emerging  technology  that  can  perform  such  
searches…  they  are  faced  with  crawling  the  Internet  with  its  millions  of  
servers.  Finding  a  malicious  server  might  be  similar  to  finding  a  needle  in  a  
haystack.”  

Our research is targeted at increasing the performance of
client honeypots by applying a divide-and-conquer strategy
in the way a client honeypot interacts with and classifies
potentially malicious servers. The remainder of this paper
is organized as follows. In section 2, we describe existing
client honeypots and review the existing algorithms. In sec-
tion 3, we introduce a new algorithm to client honeypot
technology that applies a divide-and-conquer strategy in in-
teracting with potentially malicious servers. In section 4, we
compare our new algorithm to the existing algorithm that
guarantees identical detection accuracy. We review related
work in section 5, conclude in section 6 and provide an out-
look on our future research in section 7.

2. CLIENT HONEYPOTS

Figure 1: Client Honeypot Architecture

Client honeypots find malicious servers on a network. They
do so by generating a queue of server requests, issuing these
requests to the servers one-by-one and consuming the re-
sponse of the servers as shown in Figure 1. After a response
is consumed, the client honeypot can perform an analysis
that determines whether the server is malicious or benign.

This classification is based on monitoring the system for
unauthorized state changes occurring on the system after the
client honeypot has interacted with a server. Client honey-
pots are dedicated machines and since no other activity is
occurring on them, unauthorized state changes such as new
processes, newly installed files, etc., can be detected by the
client honeypot. Once state changes are detected and the
classification has been made, the machine needs to be reset
into a clean state before it can interact with another server.
Client honeypots that make use of this approach are also
referred to as high interaction client honeypots.

Finding malicious web servers, for example, one would
retrieve web pages with a browser. This will cause various
state changes to occur on the system, such as files being
written to in the cache. These are authorized events that
we will ignore for making a classification on whether the
web page was malicious or benign. However, if a new exe
file appears in the start-up folder, we classify the web page
as malicious because only an attack that originated from
that web page could have caused the placement of this file
in the start-up folder.

Few high interaction client honeypot implementations ex-

ist today: HoneyClient [7]; Honeymonkey [9]; the client hon-
eypot of the University of Washington (UW) [3]; the CHP
System [12]; and Capture-HPC [6]. These client honeypots
focus on malicious web servers, which they interact with
by driving a web browser on the dedicated honeypot sys-
tem. HoneyClient detects successful attacks by monitoring
changes to a list of files, directories, and system configu-
ration after the HoneyClient has interacted with a server.
Honeymonkey also detects intrusions by monitoring changes
to a list of files and registry entries, but it goes a step further
by adding monitoring of the child processes to its repertoire
to detect client side attacks. Besides the ability to detect
additional state changes, Honeymonkey is also event based,
which allows it to detect state changes as they occur. The
UW client honeypot and Capture-HPC use event triggers of
file system activity, process creation, registry activity, and
browser crashes to identify client-side attacks. The CHP
system, which uses the CWSandbox [10] as the underlying
mechanism to detect state changes, is able to monitor addi-
tional types of state changes on event triggers, such as access
to virtual memory areas, protective storage areas, and ini-
tiated network connections.

The malicious server detection speed of these client hon-
eypots is influenced by various factors. First, there is the
underlying technology on how state changes are detected.
HoneyClient, for example, utilizes snapshots that take a
long time to create whereas the other implementations uti-
lize event triggers that permit detection of the state changes
as they occur. Independent of the implementation, there are
additional factors that influence the total time tt to inspect
a set of n servers. The network bandwidth b and average
size of the request/response s, which influences the time ti

to retrieve a server response, the overhead of resetting the
client honeypot into a clean state after a malicious server has
been encountered tr, which overall is impacted by the per-
centage of malicious servers that exist on a network pm, and
lastly the classification delay tw. The classification delay is a
purposefully introduced waiting period after a response of a
server has been received before a classification is made. This
is introduced because some time passes before many exploits
trigger. This might be due to the nature of the exploit or
intentionally introduced by the attacker to avoid detection.
In a setting in which web servers are inspected, the classi-
fication delay consumes most of the time when inspecting
servers. In addition to the duration to retrieve and analyze
server responses comes the cost of creating a queue of server
requests to issue Tq, which is usually constant. Tq, ti, tw, tr

are the four factors that we take into account for determin-
ing the computational complexity of the various algorithms.

To reliably attribute a malicious server response to a re-
quest, a client honeypot instance needs to interact with
servers sequentially and make a classification after each server
has visited. If server responses were to be retrieved in par-
allel, which must be supported by the available bandwidth
to the client honeypot, one would be unable to reliably at-
tribute the occurring state changes to one response or the
other. Figure 2 contains the pseudo code of this algorithm.
After a queue of server requests has been created, each server
is visited. After each visitation, the client honeypot waits
before checking for state changes on the system to classify
the server as malicious or benign. If the server was indeed
malicious, the state of the system is reset. The computa-
tional time complexity is O(n) as the time to inspect servers



Usefulness  in  recent  applications  
Application  of  divide-and-conquer  algorithm paradigm  to  
improve  the  detection  speed  of  high  interaction  client  honeypots.  
Seifert  et  al.  2008.

• Sequential:  Make  server  request  one  by  one  to  a  large  set
of  servers,  and  detect  malicious

• Detect  malicious  by  making  server  requests  in  parallel  for  
set  of  servers  in  a  buffer.  Each  time  mark  a  given  set  as  
malicious  or  not,  but  can’t  determine  server  identity  without  
manual  check

• Use  the  divide  and  conquer  approach
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Figure 7: Divide-and-conquer Algorithm Example

Table 1: Optimum values for buffer size depending
on pm

to the sequential algorithm. If the buffer is too large, we
could select too many malicious servers in the buffer leading
to less efficient identification than when the buffer is split
into smaller chunks. The optimum value of k is given by
the global minimum of the function that captures the total
number of operations taking into account the binominal dis-
tribution. Table 1 shows the optimum values of buffer size
with varying values of pm.

The algorithm as presented is constrained by certain real
world settings. First, bandwidth limits the number of re-
quests that can be obtained. As the bandwidth decreases,
ti will increase with the possibility of becoming the main
factor that determines the total time tt to inspect the set of
servers. Second, we assume that processing a set of server
responses is as expensive as processing one server response if
all server responses have been cached. This is a safe assump-
tion when few client instances retrieve the server response
from the cache. For example, opening several tabs within
Internet Explorer to retrieve web content hardly incurs an
overhead. However, opening dozens of large PowerPoint pre-
sentations on one machine is likely to be more resource in-

tensive and one quickly runs into memory constraints.

4. COMPARISONTOSEQUENTIALALGO-
RITHM

In this section, we compare the divide-and-conquer algo-
rithm with the sequential algorithm used by many client
honeypot implementations today. We present a compari-
son of performance characteristics under varying conditions
through simulation. If not otherwise stated, the following
values are used, which are aimed at representing a real world
environment: n = 5000, pm = 0.01, ti = 1.2, tw = 30, tr =
60, tq = 500 and a buffer size k = 40 identified from Table
1. These values were obtained primarily from observation of
previous studies [4, 8, 9] and derived from the performance
of the underlying hardware.

Figure 8: Simulation ttotal with varying pm

Figure 8 compares the two algorithms with varying values
of pm ranging from pm = 0.005 to pm = 0.10. The buffer
size k is adjusted according to Table 1. It shows that in

Malicious	  detected
Then	  divide	  in	  half;
otherwise	  stop
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Max  Subarray Problem

Day

Price

Problem:  Can  buy  stock  once,  sell  stock  once.  Want  to  
maximize  profit;;  allowed  to  look  into  the  future

68 Chapter 4 Divide-and-Conquer

4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical
Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,
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Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
Change 13 !3 !25 20 !3 !16 !23 18 20 !7 12 !5 !22 15 !4 7

Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.



Max  Subarray Problem

4.1 The maximum-subarray problem 69

0 1 2 3 4

11
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8
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Day 0 1 2 3 4

Price 10 11 7 10 6
Change 1 !4 3 !4

Figure 4.2 An example showing that the maximum profit does not always start at the lowest price
or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows
the price. Here, the maximum profit of $3 per share would be earned by buying after day 2 and
selling after day 3. The price of $7 after day 2 is not the lowest price overall, and the price of $10
after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the
lowest price nor by selling at the highest price.

A brute-force solution
We can easily devise a brute-force solution to this problem: just try every possible
pair of buy and sell dates in which the buy date precedes the sell date. A period of n
days has !

n

2

" such pairs of dates. Since !
n

2

" is ‚.n2/, and the best we can hope for
is to evaluate each pair of dates in constant time, this approach would take !.n2/
time. Can we do better?

A transformation
In order to design an algorithm with an o.n2/ running time, we will look at the
input in a slightly different way. We want to find a sequence of days over which
the net change from the first day to the last is maximum. Instead of looking at the
daily prices, let us instead consider the daily change in price, where the change on
day i is the difference between the prices after day i ! 1 and after day i . The table
in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as
an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous
subarray of A whose values have the largest sum. We call this contiguous subarray
the maximum subarray. For example, in the array of Figure 4.3, the maximum
subarray of AŒ1 : : 16" is AŒ8 : : 11", with the sum 43. Thus, you would want to buy
the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a
profit of $43 per share.

At first glance, this transformation does not help. We still need to check!
n!1

2

"
D ‚.n2/ subarrays for a period of n days. Exercise 4.1-2 asks you to show

Day

Price

Problem:  Can  buy  stock  once,  sell  stock  once.  Want  to  
maximize  profit;;  allowed  to  look  into  the  future
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Problem:Can  buy  stock  once,  sell  stock  once.  Want  to  
maximize  profit;;  allowed  to  look  into  the  future
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demonstrating that the maximum profit sometimes comes neither by buying at the
lowest price nor by selling at the highest price.

A brute-force solution
We can easily devise a brute-force solution to this problem: just try every possible
pair of buy and sell dates in which the buy date precedes the sell date. A period of n
days has !
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" is ‚.n2/, and the best we can hope for
is to evaluate each pair of dates in constant time, this approach would take !.n2/
time. Can we do better?

A transformation
In order to design an algorithm with an o.n2/ running time, we will look at the
input in a slightly different way. We want to find a sequence of days over which
the net change from the first day to the last is maximum. Instead of looking at the
daily prices, let us instead consider the daily change in price, where the change on
day i is the difference between the prices after day i ! 1 and after day i . The table
in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as
an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous
subarray of A whose values have the largest sum. We call this contiguous subarray
the maximum subarray. For example, in the array of Figure 4.3, the maximum
subarray of AŒ1 : : 16" is AŒ8 : : 11", with the sum 43. Thus, you would want to buy
the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a
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Problem:Can  buy  stock  once,  sell  stock  once.  Want  to  
maximize  profit;;  allowed  to  look  into  the  future.
Complexity?
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Brute  force:  Try  every  possible  pair  of  buy  and  
sell  dates:
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Max  Subarray Problem

Brute  force:  Try  every  possible  pair  of  buy  and  
sell  dates:

n
2

⎛
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⎞
⎠⎟
= n!
(n − 2)!2!

= n(n −1)(n − 2)!
(n − 2)!2!
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Can  we  do  better?



Max  Subarray Problem

Brute  force:  Can  we  do  better?  Try  to  reframe
as  greatest  sum  of  any  contiguous  array
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4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical
Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,
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Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.
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Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-
ray AŒ8 : : 11!, with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ‚.n2/ subarray sums, we can orga-
nize the computation so that each subarray sum takes O.1/ time, given the values
of previously computed subarray sums, so that the brute-force solution takes ‚.n2/
time.

So let us seek a more efficient solution to the maximum-subarray problem.
When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer
Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high!. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : : mid!
and AŒmidC 1 : : high!. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j !
of AŒlow : : high! must lie in exactly one of the following places:
! entirely in the subarray AŒlow : : mid!, so that low ! i ! j ! mid,
! entirely in the subarray AŒmidC 1 : : high!, so that mid < i ! j ! high, or
! crossing the midpoint, so that low ! i ! mid < j ! high.
Therefore, a maximum subarray of AŒlow : : high! must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high! must have the greatest
sum over all subarrays entirely in AŒlow : : mid!, entirely in AŒmid C 1 : : high!,
or crossing the midpoint. We can find maximum subarrays of AŒlow : : mid! and
AŒmidC1 : : high! recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a

best  contiguous  sum  representing  gain  from  buy  to  sell!
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Brute  force:  Can  we  do  better?  Try  to reframe
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maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer
Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high!. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : : mid!
and AŒmidC 1 : : high!. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j !
of AŒlow : : high! must lie in exactly one of the following places:
! entirely in the subarray AŒlow : : mid!, so that low ! i ! j ! mid,
! entirely in the subarray AŒmidC 1 : : high!, so that mid < i ! j ! high, or
! crossing the midpoint, so that low ! i ! mid < j ! high.
Therefore, a maximum subarray of AŒlow : : high! must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high! must have the greatest
sum over all subarrays entirely in AŒlow : : mid!, entirely in AŒmid C 1 : : high!,
or crossing the midpoint. We can find maximum subarrays of AŒlow : : mid! and
AŒmidC1 : : high! recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a
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4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical
Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,
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Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.
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Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-
ray AŒ8 : : 11!, with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ‚.n2/ subarray sums, we can orga-
nize the computation so that each subarray sum takes O.1/ time, given the values
of previously computed subarray sums, so that the brute-force solution takes ‚.n2/
time.

So let us seek a more efficient solution to the maximum-subarray problem.
When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer
Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high!. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : : mid!
and AŒmidC 1 : : high!. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j !
of AŒlow : : high! must lie in exactly one of the following places:
! entirely in the subarray AŒlow : : mid!, so that low ! i ! j ! mid,
! entirely in the subarray AŒmidC 1 : : high!, so that mid < i ! j ! high, or
! crossing the midpoint, so that low ! i ! mid < j ! high.
Therefore, a maximum subarray of AŒlow : : high! must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high! must have the greatest
sum over all subarrays entirely in AŒlow : : mid!, entirely in AŒmid C 1 : : high!,
or crossing the midpoint. We can find maximum subarrays of AŒlow : : mid! and
AŒmidC1 : : high! recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a
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of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,
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that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ‚.n2/ subarray sums, we can orga-
nize the computation so that each subarray sum takes O.1/ time, given the values
of previously computed subarray sums, so that the brute-force solution takes ‚.n2/
time.

So let us seek a more efficient solution to the maximum-subarray problem.
When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer
Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high!. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : : mid!
and AŒmidC 1 : : high!. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j !
of AŒlow : : high! must lie in exactly one of the following places:
! entirely in the subarray AŒlow : : mid!, so that low ! i ! j ! mid,
! entirely in the subarray AŒmidC 1 : : high!, so that mid < i ! j ! high, or
! crossing the midpoint, so that low ! i ! mid < j ! high.
Therefore, a maximum subarray of AŒlow : : high! must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high! must have the greatest
sum over all subarrays entirely in AŒlow : : mid!, entirely in AŒmid C 1 : : high!,
or crossing the midpoint. We can find maximum subarrays of AŒlow : : mid! and
AŒmidC1 : : high! recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a
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Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,
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axis shows the price. The bottom row of the table gives the change in price from the previous day.
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Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-
ray AŒ8 : : 11!, with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ‚.n2/ subarray sums, we can orga-
nize the computation so that each subarray sum takes O.1/ time, given the values
of previously computed subarray sums, so that the brute-force solution takes ‚.n2/
time.

So let us seek a more efficient solution to the maximum-subarray problem.
When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer
Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high!. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : : mid!
and AŒmidC 1 : : high!. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j !
of AŒlow : : high! must lie in exactly one of the following places:
! entirely in the subarray AŒlow : : mid!, so that low ! i ! j ! mid,
! entirely in the subarray AŒmidC 1 : : high!, so that mid < i ! j ! high, or
! crossing the midpoint, so that low ! i ! mid < j ! high.
Therefore, a maximum subarray of AŒlow : : high! must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high! must have the greatest
sum over all subarrays entirely in AŒlow : : mid!, entirely in AŒmid C 1 : : high!,
or crossing the midpoint. We can find maximum subarrays of AŒlow : : mid! and
AŒmidC1 : : high! recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a
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2.    Conquer,  finding  max  of  subarraysA[low..mid]  and
A[mid+1..high]

3.    Combine,  finding  best  solution  of:
a.  the  two  solutions  found  in  conquer  step
b.  solution  of  subarray crossing  the  midpoint
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Subarray crossing  midpoint

[-16  -23  18  20  -7  12  -5  -22]

Θ(n)

4.1 The maximum-subarray problem 71

(a) (b)

lowlow midmid highhigh
crosses the midpoint

midC 1midC 1

entirely in AŒlow : : mid! entirely in AŒmidC 1 : : high!

i

j

AŒi : : mid!

AŒmidC 1 : : j !

Figure 4.4 (a) Possible locations of subarrays of AŒlow : : high!: entirely in AŒlow : : mid!, entirely
in AŒmid C 1 : : high!, or crossing the midpoint mid. (b) Any subarray of AŒlow : : high! crossing
the midpoint comprises two subarrays AŒi : : mid! and AŒmid C 1 : : j !, where low ! i ! mid and
mid < j ! high.

maximum subarray that crosses the midpoint, and take a subarray with the largest
sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear
in the size of the subarray AŒlow : : high!. This problem is not a smaller instance
of our original problem, because it has the added restriction that the subarray it
chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing
the midpoint is itself made of two subarrays AŒi : : mid! and AŒmidC 1 : : j !, where
low ! i ! mid and mid < j ! high. Therefore, we just need to find maximum
subarrays of the form AŒi : : mid! and AŒmidC 1 : : j ! and then combine them. The
procedure FIND-MAX-CROSSING-SUBARRAY takes as input the array A and the
indices low, mid, and high, and it returns a tuple containing the indices demarcating
a maximum subarray that crosses the midpoint, along with the sum of the values in
a maximum subarray.
FIND-MAX-CROSSING-SUBARRAY.A; low; mid; high/

1 left-sum D "1
2 sum D 0
3 for i D mid downto low
4 sum D sumC AŒi !
5 if sum > left-sum
6 left-sum D sum
7 max-left D i
8 right-sum D "1
9 sum D 0

10 for j D midC 1 to high
11 sum D sumC AŒj !
12 if sum > right-sum
13 right-sum D sum
14 max-right D j
15 return .max-left; max-right; left-sum C right-sum/
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Answer:  Naïve implementation

O(n3)
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Classical  example:  matrix  multiplication

Square-Matrix-Multiply(A,B)

1. n  =  A.rows
2. Let  C  be  a  new  n  by  n  matrix
3. For i=1  to  n
4. For j=1  to  n
5. cij =  0
6. For k=1  to  n
7. cij =  cij+  aik bkj
8. Return C

O(n3)

cij = aikbkj
k=1

n

∑



Classical  example:  matrix  multiplication

• Run  time?

Answer:  Naïve implementation

Can  we  do  better?  (next  class;;  divide  and  conquer  
approaches)

O(n3)


